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Abstract

The goal of Quantitative Structure Activity Relationship (QSAR) Learning is to
learn a function that, given the structure of a small molecule (a potential drug),
outputs the predicted activity of the compound. We employed multi-task learning
(MTL) to exploit commonalities in drug targets and assays. We used datasets
containing curated records about the activity of specific compounds on drug
targets provided by ChEMBL. Totally, 1091 assays have been analysed. As a
baseline, a single task learning approach that trains random forest to predict drug
activity for each drug target individually was considered. We then carried out
feature-based and instance-based MTL to predict drug activities. We introduced
a natural metric of evolutionary distance between drug targets as a measure of
tasks relatedness.

Instance-based MTL significantly outperformed both, feature-based MTL and
the base learner, on 741 drug targets out of 1091. Feature-based MTL won on
179 occasions and the base learner performed best on 171 drug targets. We
conclude that MTL QSAR is improved by incorporating the evolutionary distance
between targets. These results indicate that QSAR learning can be performed
effectively, even if little data is available for specific drug targets, by leveraging
what is known about similar drug targets.

Availability: https://github.com/nsadawi/MTL-QSAR

Keywords: Multi-Task Learning; Quantitative Structure Activity Relationship;
Sequence-Based Similarity; Random Forest

Introduction and problem specification
Rich Caruana in his widely cited paper defined multi-task learning (MTL)(see the

list of abbreviations below) as “an approach to inductive transfer that improves

generalization by using the domain information contained in the training signals of

related tasks as an inductive bias. It does this by learning tasks in parallel while

using a shared representation; what is learned for each task can help other tasks be

learned better” [1]. A more formal definition of MTL is given in [2]:

Definition (MTL): Given m learning tasks

{Ti}i=mi=1
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where all the tasks or a subset of them are related but not identical, MTL aims to

help improve the learning of a model for Ti by using the knowledge contained in

the m tasks.

There are three aspects of the task relatedness: feature, parameter, and instance;

and correspondingly - three types of MTL [2]:

1 Feature-based MTL models assume that different tasks share identical

or similar feature representations, which can be a subset or a transformation

of the original features.

2 Parameter-based MTL models aim to encode the task relatedness into

the learning model via the regularization or prior on model parameters.

3 Instance-based MTL models propose to use data instances from all the

tasks to construct a learner for each task via instance weighting.

In recent years, MTL has been an active research area within the machine learning

community and beyond. Instance-based MTL is among the most popular approaches

because it often yields improved predictive performance [3, 4]. The intuition is that

by combining training data across multiple related tasks, each task benefits from

the related information in other tasks, resulting in higher accuracy learning [5]. In

other words, model generalization for individual tasks can be enhanced by sharing

representations among tasks that are related.

MTL is considered as a sub-area of transfer learning [6]. The idea of transfer

learning is to extract knowledge from one or more source domains, and reuse this

knowledge in a target domain where data is scarce, with the aim of building better

performing learning models in the target domain [7].

In this work we apply instance-based and feature-based MTL for the problem

of predicting Quantitative Structure Activity Relationship (QSAR). The goal of

QSAR learning is to learn a function that, given the structure of a small molecule

(a potential drug), outputs the predicted activity of the compound against an assay

(a test that predicts the potential of the compound being a drug) [8].

QSAR modelling has come a long way since its establishment in the early 1960s [9].

Although many drug targets are well studied and analyzed, a considerable number

of them is still not, meaning that the quantity of labelled data for such targets is

scarce (i.e. the number of chemical compounds with known bioactivity against these

targets is small). Therefore, this leads to poor quality QSAR models which hampers

understanding of these drug targets. Accurate predictive QSAR models are key for

the discovery of new bioactive chemical compounds [10].

A single task Ti is a task of predicting an activity Ai given a QSAR dataset

of molecular structures (see Table 1 for a typical example of QSAR dataset and

the Data section for further explanations). MTL is a suitable approach for the

considered problem because:

• Different QSAR learning tasks share identical feature representations. For

example, one of the most widely-used representations is fingerprints (see the

Data section for further detail).

• There are publicly available datasets for many QSAR tasks, and these data

instances can be used to construct a learner for each task via instance

weighting (see the Methods section for further detail).

• It is also possible to apply parameter-based MTL, because there are available

parametric QSAR models, although this is outside of the scope of this paper.
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The application of MTL for QSAR learning in particular is beneficial because

a considerable number of drug targets remains poorly studied and the quantity

of labelled data for such targets is scarce. It is costly to obtain labeled data and

this limits opportunities for constructing high-quality QSAR models and advancing

understanding of these drug targets. In this paper we report the results of the

use of existing data from related drug targets, where labeled data is aplenty, to

predict activities for the drug targets where data is scarce. Our method is to use

MTL where we exploit the drug target relatedness through the incorporation of

the natural evolutionary metric. Specifically, in this paper we test the following two

hypotheses:

1 MTL can improve on standard QSAR learning through the use of related

targets.

2 MTL QSAR can be improved by incorporating the evolutionary distance of

targets.

Related work
Mult-itask learning

MTL has been used in many areas. For example, Chen et al. employed MTL to

learn a common feature space from multiple related tasks and applied it for web

page categorization [11]. Bickel et al. applied MTL for HIV therapy screening data

with the focus on assigning weights to instances from multiple tasks so that tasks

can be learned jointly even if data for different tasks have arbitrary different

distributions [12]. Bickel et al. introduced a new MTL method for weighting

groups in tree guided group-lasso regression and applied it for the analysis of

genotype and gene expression data [13].

Zhang et al. reported on a multi-modal multi-task (M3T) method for

simultaneously predicting multiple outcomes for multi-modal data [2]. The method

is based on selecting common relevant features, applying kernel based data fusion

and then applying multi-outcome support vector regression. Experiments were

performed to jointly predict clinical scores in Alzheimer’s disease.

Deep learning

Deep learning has gained significant attention over the last years and there are

attempts to employ it for MTL. For example, deep relationship networks (DRN)

were proposed to estimate the relationships between tasks in the area of computer

vision [14]. In natural language processing (NLP), MTL was used with deep learning

for identifying better hierarchies for tasks to improve performance [15].

Task relatedness

A number of approaches have been reported in the literature for the specification

of task similarity, an important element of MTL. One common approach is to

build models on the individual tasks, and then to learn a common prior over the

trained model parameters. For instance, this prior can be inferred using Dirichlet

processes [16], matrix-variate normal distributions [17], or a maximum likelihood

procedure [18]. Clustered multi-task learning (CMTL) preforms clustering of tasks

into groups prior to applying MTL. This clustering can be done both on the task
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level [3, 19, 20] and on the level of shared feature representations among

tasks [21, 22, 23, 24].

Discovering highly important marker genes was the main focus of the work

reported in [25] where the aim was to identify a shared gene subspace across

different gene expression datasets using MTL. Zhou et al. modeled disease

progression by considering predictions at different time points as different tasks

and transform the problem into MTL [26]. The relatedness between tasks was

obtained by using a temporal group Lasso regularizer.

Taxonomy-based MTL was used to conduct biological sequence classification for

the purpose of predicting the splice sites in various drug targets [27]. In this

approach, the relatedness of tasks was defined by a phylogenic tree based

structure and learning was performed at different levels of the tree. Furthermore,

taxonomy- and graph-based transfer learning and MTL were used to predict the

binding of the Major Histocompatibility Complex (MHC)-I [28]. Although task

relatedness can be derived from the hierarchy, the authors report an interesting

approach to quantify this relatedness using multi-kernel SVMs. Also, a two step

MTL approach was employed for the prediction of small interfering RNA (siRNA)

efficacy [29]. In the first step, shared-task representations are learned, and in the

second step, these representations are fed into a regressor to model each task.

A methodology that employs sequence based distance is described in [30]. In

this approach an attempt was made to predict the similarity in binding profile

between any pair of kinases from the human kinome. A binding profile was built for

each kinase and it was used to compute pairwise similarity between kinases. This

similarity was compared with the sequence based distance in order to check whether

there is any correlation between the two. The difference between our approach and

this approach is that we use the pairwise sequence based similarity between drug

targets as input features to the classifier. Also, unlike our work, this method does

not allow predicting the activity of individual molecules on drug targets.

Multi-task learning for QSAR learning

MTL employing neural networks is reported in [31]. Multi-target predictions were

made for a total of 19 assays at the same time. Although training is conducted by

combining data from multiple assays, this method does not take advantage of the

task relatedness. The QSAR problem is considered as a classification problem (i.e.

whether a compound is active or inactive in a certain assay). This is different from

our approach where we treat QSAR as a regression problem, and we work with a

considerably larger number of assays (1091 assays).

Work applying MTL in QSAR learning includes applications in sequence

biology [28] using a graph-based regularization method [3, 32] based on SVM [33].

Experiments were performed on data from the human kinome, and the relatedness

between tasks was extracted from the taxonomy of kinase targets. A distance

matrix was derived from the taxonomy by considering the distance between two

taxa as the weight of the shortest path between them in the taxonomy [34]. This

matrix was then transformed into a similarity matrix and the values were used to

perform MTL. This measure of similarity is different from the homology used in

our work, and it is less biologically meaningful. Ning et al. used SVM-based MTL
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approach to learn a classification model for a drug target together with other

related drug targets, where compound- and target-specific kernel functions were

used to capture intrinsic commonalities [35].

One of the key QSAR studies that employed MTL as well as transfer learning

was reported in [36]. In addition to MTL, the approach uses feature nets (FN) to

construct neural network and partial least squares (PLS) models for the modeling of

11 types of tissue-air partition coefficients. A total of 56 and 50 models for H/tissue

and R/tissue respectively were obtained in the experiments which demonstrated

the usefulness of MTL and transfer learning in general. The reported approaches

showed that these techniques are specially useful when data is scarce. Our approache

is different in multiple ways. We performed experiments on a much larger scale. Also,

the authors did not evaluate traditional machine learning methods to select the best

performing ones for STL. In particular, random forest (RF) was not considered [36].

This could be due to the used descriptors: we worked with fingerprints whereas they

worked with some physicochemical properties as well as ISIDA descriptors [37]. In

addition, our results are more statistically significant.

A recent approach, that reports significant improvements over traditional baseline

machine learning approaches, applied massively multi-task neural networks for drug

discovery [38]. In this work, an attempt was made to use deep learning to provide a

framework for sharing information across a large number of datasets. The end goal

was to classify compounds as either active or inactive.

Another approach that employs deep neural networks (DNN) is the work

presented in [39] which tried to not only demonstrate that multi-task DNNs work

in QSAR but also to explain why this is the case. The authors report that some

form of signal transfer takes place between structurally similar molecules during

the training process, and this can lead to better performance when molecule

activities are correlated. A recent review of applications and challenges of MTL

and transfer learning in QSAR can be found in [40].

Advantages of the proposed approach

The proposed approach has the following advantages compared with the previous

MTL work:

1 The QSAR learning problem is considered as a regression problem. This is

more natural as finding the best threshold value to determine whether a

specific compound is active or inactive is problematic and often results in

loss of information.

2 We employ RF as the base learner. We showed in a previous study that RF

outperforms other learners on QSAR data in the majority of scenarios [41]

3 We employ the functional-class fingerprints (FCFP) method to represent

molecular structures. We have empirically found them to generally be the

most successful QSAR prediction representation. We have done this by

performing tests and comparisons using thousands of datasets and several

learners [41].

4 One of the contributions of our work is the use of the drug target similarities

in an MTL setting. The majority of existing MTL approaches focus on

learning the task similarities, whereas in our case, we exploit the sequence
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based similarities and incorporate them in our experiments. There are often

commonalities in QSAR assays as the target proteins may be evolutionary

related. We took advantage of this and used protein sequence similarity

values as our task similarities. This enables the inference of a natural metric

of evolutionary distance between the drug targets.

In this paper we introduce an intuitive, simple and effective method of learning

QSARs jointly. We test whether our MTL method can improve on standard QSAR

learning through the use of related targets, and evaluate whether QSAR MTL can be

improved by incorporating the evolutionary distance between targets. Our method

is based on the classification of drug targets into families and the use of sequence

similarity values between those drug targets [42].

Data
We obtained drug activity data from the publicly available database ChEMBL

containing curated records about the activity of specific compounds (drugs, small

molecules) on drug targets (proteins) [43]. Activities in ChEMBL, e.g. potency and

affinity endpoints, are recorded as real values (i.e. IC50, EC50, Ki, Kd and their

equivalents).

In this study we used IC50 values, inhibitory drug concentrations at 50%. IC50

value states the concentration of the drug compound that is required to block or

inhibit 50% of the proteins. This response data has been normalised by taking the

negative log of the drug concentrations that inhibited 50% of a target (pXC50):

pXC50 = −log10IC50

The pXC50 provides a continuous scale of 1-12 where a compound of the value 1

is the least potent inhibitor and requires a large concentration of the drug to achieve

50% inhibition and 12 is the most potent inhibitor requiring a very low concentration

to achieve 50% inhibition. In a small proportion of cases, where multiple activities

have been reported for a particular compound-target pair, a consensus value was

selected as the median of those activities falling in the modal log unit. Therefore, the

unit of activity we are referring to is the pseudo-pIC50. This is a similar procedure

to what was used in the AEROPATH target database project [44].

ChEMBL provides two ways of categorizing drug targets: a 6-level hierarchical

classification of protein families, and a grouping of drug targets by their preferred

names. In this paper, we perform MTL on the level of both groups and classes.

Drug target classes

In the 6-level hierarchy, the ChEMBL database curators have classified protein

targets into a manually curated family hierarchy according to nomenclature

commonly used by drug discovery scientists, e.g. a ligand-based classification of

G-protein-coupled receptors, and a division of enzymes into

proteases/kinases/phosphatases. The version of the hierarchy used in this study is

ChEMBL20, and it comprises of 6 levels, with Level 1 (L1) being the broadest

class and Level 6 (L6) - the most specific. For example, the protein

”tyrosine-protein kinase Srms” is classified as follows: enzyme (L1), kinase (L2),
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protein kinase (L3), TK protein kinase group (L4), tyrosine protein kinase Src

family (L5), tyrosine protein kinase Srm (L6). Different classes in L1 are not

evolutionary related to one another, whereas members of classes in L3 and below

share common evolutionary origins for the most part. The picture is mixed for L2.

The hierarchy is not fully populated, with the greatest emphasis being placed on

the target families of highest pharmaceutical interest, and the different levels of

the hierarchy are not defined by rigorous criteria. However, the hierarchical

classification provides a useful means of grouping related targets at different levels

of granularity.

Drug target groupings

The method using preferred names is based on the practice that individual proteins

can be described by a range of different identifiers and textual descriptions across the

various data resources. The ChEMBL curators have assigned each protein target

a preferred name in a robust and consistent manner, independent of the various

adopted names and synonyms used elsewhere. The detailed manual annotation of

canonical target names means that, for the most part, orthologous proteins from

related species are described consistently, allowing the most related proteins to be

grouped together. In the preferred name groupings, we obtained 468 drug target

groups. The minimum number of drug targets in a group is two, and the maximum

number of drug targets is 21 for the dihydrofolate reductase group (DHFR).

Drug targets similarity

In our approach we employ evolutionary relatedness of drug targets as a similarity

metric between drug targets within each drug target group or class. Drug targets

similarity is based on the similarity of their amino-acid sequences. Sequence

alignment is a method to detect regions of similarity among sequences [45]. There

are two types of alignment: global and local. In global alignment the full lengths of

sequences are aligned, whereas in local alignment, only parts of the sequences are

aligned. Often, the Needleman-Wunsch algorithm [46] is used for performing

global sequence alignment and the Smith-Waterman algorithm [47] is used to

carry out local sequence alignment.

To obtain a metric for the similarity of protein targets we pairwise aligned their

sequences using the Smith-Waterman algorithm and measured amino-acid residue

similarity. We used the full sequence as the active sites are not easily labeled. Using

active sites might further improve the results, but in this study we opted for the

simplest option.

In more detail, given a pairwise sequence alignment of related protein sequences,

it is common practice to quote the value of PID (Percentage Sequence Identity ) as

a simple measure of evolutionary relatedness. This gives us a metric of evolutionary

distance that ranges between zero and one; with numbers closer to one indicating

more related drug targets. There is no universally accepted standard method to

calculate PID [48]. In this work PID1 method (the default setting in BioStrings [49])

was used:

PID1 = 100 ∗ identical positions

aligned positions + internal gap positions
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Methods
Based on our previous extensive comparative study of conventional learners [41]

showing that RF [50] outperforms other learners for the majority of QSAR

problems, we decided to employ RF with 100 trees as our base learner, and

evaluate its performance with 10-fold cross-validation. We have chosen to use

RMSE (the Root Mean Squared Error) [51] as the evaluation measure because we

are predicting a real value number (the pseudo-pIC50).

We used the FCFP 1024-bit molecular fingerprints to represent molecules.

Molecular fingerprints encode the structure of a chemical compound as a series of

binary digits that indicate the presence or absence of particular substructures in

the molecule [52]. For example, if a molecule contains a benzyl ring, the

corresponding bit in the fingerprint will be 1, and if not - 0. This molecule

representation was selected because it is highly reliable for QSAR problems. More

details can be found in our previous work [41] where we carried out an extensive

comparison between several representations such as different kinds of fingerprints

and descriptors.

In this work we performed all experiments using WEKA 3.7.11 machine learning

library [53]. The implementation was done in Java utilising WEKA API as the basis

for building our algorithms and running experiments.

Single task learning

As a baseline, we include a single task learning (STL) approach that trains RF to

predict drug activity for each drug target individually. Table 1 shows an example

QSAR dataset, consisting of chemical compounds, their fingerprints and activity

values. We will refer to this setting as STL.

Table 1: A typical QSAR dataset.
MOL ID FP 1 FP 2 ... FP n Activity

ID 1 1 0 ... 1 6.351
ID 2 0 1 ... 0 7.534

... ... ... ... ... ...
ID 22 1 1 ... 1 8.001
ID 23 0 1 ... 0 6.239

Feature-based MTL

In the feature-based MTL approach we aim to learn all drug targets for a particular

protein target group (e.g. DHFR) or class (e.g. AMPA receptor) simultaneously.

This was done by concatenating all the datasets of the same group or class, and

adding an extra indicator attribute. As shown in Table 2, the Target ID attribute,

TID for short, indicates which drug target, or species, the example came from

(e.g. P. falciparum). As dataset entries (i.e. examples) are molecules, we give each

molecule a unique identifier (MOL ID). This helps to keep track of molecules even

if the same molecule appears in more than one dataset.
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Table 2: An input dataset for feature-based MTL.
MOL ID TID FP 1 FP 2 ... Activity

ID 1 7 1 0 ... 6.351
ID 2 7 0 1 ... 7.534

... ... ... ... ... ...
ID 111 95 1 1 ... 8.001
ID 112 95 0 1 ... 6.239

Algorithm 1 shows the pseudocode of feature-based MTL. We ran RF (with 100

trees) on the concatenated dataset and performed 10 fold cross-validation to

obtain an estimate of the performance. We used stratified sampling based on the

TID attribute for cross-validation [54]. Such sampling procedure ensures that,

when randomly selecting a sample from the population, the proportion of each

group in the sample is the same as in the original population. Although this is

usually done in the context of classification problems with imbalanced classes, we

employ it here to ensure that our per-fold performance estimates are based on the

actual distribution of drug targets in the original data. We evaluate the

performance (RMSE) of our MTL approach for each TID separately by filtering

out the predictions for that specific TID in each test set.

Input : n datasets which belong to the same drug target group (each

dataset represents one drug target)

Output: Performance evaluation of RF models built for each of these

datasets

1- Concatenate the n datasets into one big dataset;

2- Add an indicator variable TID to each example;

3- Perform the following using the big dataset;

for i← 1 to 10 do

Observe: the splits are stratified based on TID ;

- train set = 90% of the big dataset;

- test set = 10% of the big dataset;

- build RF using train set;

- predict the test set (here we save MOL ID, TID, actual and

predicted values);

end

4- Evaluate using the saved predictions;

for j ← 1 to n do

- filter predictions using jth TID;

- compute and save RMSE for the jth drug target;

end
Algorithm 1: Feature-based MTL.

By the end of the cross-validation, we obtained a list of all molecules and their

respective TIDs, and their actual and predicted activity values (see Table 3). In

order to examine the performance of RF on any particular drug target, we select

instances that are from that particular target’s dataset by filtering TIDs. This

gives the actual and predicted activity values for that particular dataset, and it
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is straightforward to compute RMSEs (see the Experiments and results section).

The same procedure is used for the evaluation of the performance of instance-based

MTL.

Table 3: An output table for feature-based MTL.
FOLD MOL ID TID Activity Prediction

1 ID 1 7 6.351 6.011
1 ID 2 7 7.534 7.681
... ... ... ... ...
10 ID 111 95 8.001 7.764
10 ID 112 95 6.239 6.401

Instance-based MTL

In the instance-based MTL we made use of the quantitative similarity between drug

targets described in the Drug target similarity section. To represent this information,

we added n extra attributes that consist of the similarity values to the other species

(n is the number of drug targets in each drug target group or class). As Table 4

shows, the attribute SimToTID 7 gives the similarity value between drug target

with TID 7 and all other drug targets in this concatenated dataset. For examples

which belong to TID 7, this value will be 1.

Table 4: A dataset for instance-based MTL.
MOL ID TID SimToTID 7 ... SimToTID 95 FP 1 FP 2 ... Activity

ID 1 7 1 ... 0.584 1 0 ... 6.351
ID 2 7 1 ... 0.584 0 1 ... 7.534

... ... ... ... ... ... ... ... ...
ID 111 95 0.584 ... 1 1 1 ... 8.001
ID 112 95 0.584 ... 1 1 1 ... 6.239

Algorithm 2 shows the pseudocode of instance-based MTL. We again used RF

with 100 trees on the concatenated dataset, which now contains the similarity

values. As in feature-based MTL, we used stratified 10 fold cross-validation

training based on the TID to evaluate the performance of instance-based MTL

approach, and compute the RMSE for each TID individually.
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Input : n datasets which belong to the same drug target group (each

dataset represents one drug target)

Output: Performance evaluation of RF models built for each of these

datasets

1- Concatenate the n datasets into one big dataset;

2- Add n extra variables to the big dataset:

SimToTID 1, SimToTID 2, ..., SimToTID n;

3- Fill values of these variables using similarities between drug targets:

sim(TID,SimToTID 1), sim(TID,SimToTID 2) ... and so on;

4- Perform the following using the big dataset;

for i← 1 to 10 do

Observe: the splits are stratified based on TID ;

- train set = 90% of the big dataset;

- test set = 10% of the big dataset;

- build RF using train set;

- predict the test set (here we save MOL ID, TID, actual and

predicted values);

end

5- Now evaluate using the saved predictions;

for j ← 1 to n do

- filter predictions using jth TID;

- compute and save RMSE for the jth drug target;

end
Algorithm 2: Instance-based MTL.

Results and discussion
To evaluate the performance of our MTL approach, we performed MTL on the level

of all groups and classes of drug targets, building a model simultaneously for all drug

targets within that group or class. We only considered groups or classes that have

more than one drug target, because otherwise there would be no difference with

STL, and only included drug targets for which the minimum size of their dataset

was 10, because we employ 10-fold cross-validation. In other words, each dataset

must contain at least 10 compounds with their corresponding activity against that

drug target.

We compared the three settings discussed in the Methods section by running

MTL on all drug classes and groups, obtaining a list of drug targets with their

corresponding RMSE values for STL, feature-based and instance-based MTLs.

Finally, we counted the number of cases where each setting had lowest RMSE.

To examine the distribution of RMSE values for each setting we drew histograms,

ran Shapiro-Wilk tests [55], generated Q-Q plots, and concluded that these values

do not follow a normal distribution. Hence, we applied the non-parametric Wilcoxon

Signed-ranks test to examine whether or not the difference between these values is

statistically significant. For each experiment, we show the results of three different

Wilcoxon Signed-ranks tests to pairwise compare the RMSE performance of the
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three settings. The following subsections show the details of our experiments using

ChEMBL’s 6-level hierarchical classification and its grouping by preferred names.

Using ChEMBL’s class levels

We previously described ChEMBL’s 6-level hierarchical protein family classification

which starts with L1 (most generic class) to L6 (most specific class). Table 5 displays

the number of classes we obtained at each level. Note that table 5 shows the number

of classes at each level in the hierarchy explained in the Drug target classes section,

and this is different from the number of groups in the preferred named grouping

explained in the Drug target groupings section.

Table 5: ChEMBL’s 6-level protein family classification.
Level No of Classes

L1 13
L2 24
L3 46
L4 111
L5 180
L6 50

Broad classes such as enzyme and membrane receptors can be found at L1,

whereas as we traverse down the hierarchy, we can find more specific classes such

as antiporter and protein kinase at L3 and amine and motilin receptor at L5. It is

reasonable to assume that more specific classes are more evolutionarily related. L5

has more classes than any level, i.e. 180, as shown in table 5. Over the total of

1091 drug targets (corresponding to 1091 assays we run experiments for), we

expect that a grouping at L5 would yield sets of targets which are closely related.

Therefore, we present our experimental results using this level.

Table 6: Pair-wise sign test for the L5 results.
Setting # +ve # -ve # ties
feature-based MTL vs STL 686 405 0
instance-based MTL vs STL 911 180 0
instance-based MTL vs feature-based MTL 891 200 0

Table 6 shows a simple sign test where we count how many times the RMSE value

for each algorithm is less than the other. The +ve column indicates how many times

the RMSE for the first setting is less than the second setting while the -ve column

indicates how many times the RMSE for the second setting is less than the first

setting. This shows that, for instance, feature-based MTL outperforms STL in 686

of the cases. Counting the number of overall wins, shown in Figure 1, yields that

instance-based MTL outperforms both feature-based MTL and STL on 741 drug

targets. Feature-based MTL won on 179 occasions and STL performed best on 171

occasions. The statistical significance of these results is shown in Table 7. Finally,

Figure 2 shows a point ranking where we award the best setting three points, the

second best two points and the third best one point.

ChEMBL datasets are known to be imbalanced toward active compounds [56];

hence we have compared our methods using the coefficient of determination (also

known as R-squared) [57]. Unlike RMSE where we are interested in the minimum
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value, when using R-squared we are interested in the highest value. This is

because R-squared explains how good a model is. The value of R-squared

normally ranges between 0 and 1, where 0 indicates a useless model and 1

indicates a perfect model. Our results are illustrated in Figure 3. The figure shows

how many drug targets each setting scores the highest R-squared on.

Instance-based MTL outperforms both feature-based MTL and STL on 639 drug

targets, feature-based MTL performs better than instance-based MTL and STL

on 360 drug targets whereas STL performed best on 92 drug targets.

Table 7 shows the results of the pairwise Wilcoxon signed-rank tests. The null

hypothesis is that the median change in RMSE values when we use our MTL

methods is zero. As can be seen, feature-based MTL (Median RMSE=0.701) and

instance-based MTL (Median RMSE=0.633) both significantly outperformed STL

(Median RMSE=0.744). Moreover, instance-based MTL also significantly

outperforms feature-based MTL. The difference in medians is further evident in

the boxplot provided in Figure 4.

Setting W p-value
STL vs feature-based MTL
medians: 0.744 & 0.701

374646 1.609e-13

STL vs instance-based MTL
medians: 0.744 & 0.633

535197 2.2e-16

feature-based MTL vs instance-based MTL
medians: 0.701 & 0.633

535673 2.2e-16

Table 7: Pair-wise Wilcoxon signed-ranks test for L5 results(W is the test statistic).

For validation, we carried out a Y-randomisation procedure [58] on the feature-

based MTL method. We repeated the same feature-based MTL procedure 1000

times using L5 target classes, and permuted the activity values each time. We

then performed a sign test similar to that reported in Table 6, and the results

demonstrate that RF (i.e. STL) performed significantly better than feature-based

MTL in all runs. All our results are available on the Github repository mentioned

above.

We also performed a randomisation procedure by shuffling the similarity values in

the instance-based MTL approach. We have randomly selected 24 level 5 classes (the

total number of selected drug targets is 120) and randomised their similarity values

1000 times. Each time we randomised, we run instance-based MTL and compute

RSME for each drug target. Our results show that in 104 out of the 120 drug

targets, the standard instance-based MTL approach performs better than when the

similarity values are randomised (i.e. the RSME value for most drug targets when

using the standard instance-based MTL approach is less than when randomising

the similarity values). That is 86.67% of the randomly selected drug targets. This

shows that the evolutionary data indeed significantly improves QSAR learners. Our

results are available on the github repository mentioned above.

We have analysed the results of our work further by identifying what drug target

classes benefited from the proposed MTL QSAR. We define a fully benefited class as

an L5 class in which all drug targets have better results when using feature-based

MTL as compared with STL or instance-based MTL as compared with feature-based

MTL. On the other hand, we define a no benefit class as an L5 class in which none
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of the drug targets have better results when using feature-based MTL as compared

with STL or instance-based MTL as compared with feature-based MTL. Our results

show that there are 12 no benefit drug target classes, for examples Neurotensin

receptor class with 4 drug targets and Cholecystokinin receptor class with 2 targets.

We have also found that 40 drug target classes fully benefited from feature-based

MTL. Examples are CMGC protein kinase RCK family with 2 drug targets and

tyrosine protein kinase Trk family with 3 drug targets. On the other hand, only 9

drug target classes fall under the instance-based MTL no benefit class. Example

classes are cytochrome P450 51A1 with 2 drug targets and aspartic protease A2A

subfamily with 3 drug targets. Also, as many as 78 drug target classes fully benefited

from instance-based MTL. Examples are tyrosine protein kinase EGFR family with

6 drug target and MCH receptor with 4 drug target. A list of all these drug target

classes is provided on our github repository.

Our results indicate that the size of no benefit classes are generally small with the

highest number of drug targets in each class as 3. In addition, we have studied the

similarity values amongst drug targets of fully benefited classes, and our analysis

shows that instance-based MTL works better if there is a range of evolutionary

distances in the class. In other words, if not all drug targets are very close or

distant from each other.

Using ChEMBL’s preferred name groups

Finally, we repeated our experiments using 468 drug target groups based on

ChEMBL’s preferred name grouping (see the Data section). For a more detailed

analysis, we investigated the performance of the three settings on the largest drug

target group we have, which is DHFR with 21 drug targets.

Figure 5 shows a barplot of the RMSE values for the three settings on each of

the 21 drug targets in the DHFR group. Instance-based MTL outperformed both

feature-based MTL and STL in 18 drug targets and was never the third best. The

STL was the best performer for only two drug targets whereas feature-based MTL

won on only one drug target.

Table 8 shows the results of the pairwise Wilcoxon signed-rank test. The null

hypothesis is that the median change in RMSE values when we use our MTL

methods is zero. As can be seen, for the specific DHFR group, there was no

significant difference in the RMSE values for STL (Median RMSE=0.821) and

feature-based MTL (Median RMSE=0.808). However, instance-based MTL

(Median RMSE=0.668) is significantly better than both STL and feature-based

MTL. The difference in medians is evident in the boxplot provided in Figure 6.

Table 8: Pair-wise Wilcoxon signed-ranks test for the 21 DHFR group results (W

is the test statistic).
Setting W p-value
STL vs feature-based MTL
medians: 0.821 & 0.808

108 0.8117

STL vs instance-based MTL
medians: 0.821 & 0.668

222 3.147e-05

feature-based MTL vs instance-based MTL
medians: 0.808 & 0.668

220 5.245e-05
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Conclusions and future work
We have shown that MTL can significantly improve the performance of QSAR

learning models, and thus can help to better predict the activity of drugs against

specific drug targets. We predicted the activities of potential drugs against 1091

assays (i.e. 1091 drug targets) by grouping similar drug targets and training models

on all targets within the same group simultaneously. Drug targets were grouped

based on ChEMBL’s 6-level classification, as well as based on their preferred names.

The results show that MTL significantly outperformed learning QSAR models

individually. Moreover, when incorporating a novel, natural similarity measure

between drug targets based on their sequence alignment, and hence their

evolutionary kinship, we can further significantly improve QSAR learning. These

results indicate that QSAR learning can be performed effectively, even if little

data is available for specific drug targets, by leveraging what is known about

similar drug targets.

The QSAR datasets and experimental results are available on OpenML [59].

OpenML is an open source platform that facilitates discovering, sharing and

reusing data, machine learning models and experiments. OpenML ensures that the

submitted experiments are compliant with the W3C MLSchema [60], and

therefore can be reproduced and reused in future work [61]. The Java source code

for all reported experiments is freely available on Github [62]. The link also

provides detailed information and a video demonstrating how the code can be run

and how to analyse the results.

In future work, we plan to evaluate the performance of our methods without TID-

based stratification. we intend to use the distance between drug targets instead of

similarity values (distance = 1 - similarity) and use similarity, or distance, between

datasets instead of drug targets and compare performance.
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Figures

Figure 1: The number of drug targets each method scores

the lowest RMSE value.

Figure 2: Feature-based and instance-based MTL compared with STL (ranked

from 3 to 1) using L5 classes.
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Figure 3: The number of drug targets each method scored the highest

R-squared value.

Figure 4: Boxplot of RMSE values for the three settings when applied to all

L5 drug target classes.

Figure 5: Barplot of RMSE values for 21 DHFR drug targets.
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Figure 6: Boxplot of RMSE values for the three settings when applied to

21 DHFR drug targets.


