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Abstract 8 

The majority of microbial communities consist of hundreds to thousands of species, creating a 9 

massive network of organisms competing for available resources within an ecosystem. In 10 

natural microbial communities it appears that many microbial species have highly redundant 11 

metabolisms and seemingly are capable of utilizing the same substrates. This is paradoxical, 12 

as theory indicates that species requiring a common resource should outcompete one another. 13 

To better understand why microbial species can co-exist, we developed Metabolic Overlap 14 

(MO) as a new metric to survey the functional redundancy of microbial communities at the 15 

genome scale across a wide variety of ecosystems. Using metagenome-assembled genomes, 16 

we surveyed over 1200 studies across ten ecosystem types. We found the highest MO in 17 

extreme (i.e., low pH/high temperature) and aquatic environments, while the lowest MO was 18 

observed in communities associated with animal hosts, or the built/engineered environment. 19 

In addition, different metabolism subcategories were explored for their degree of metabolic 20 

overlap. For instance, overlap in nitrogen metabolism was among the lowest in Animal and 21 

Engineered ecosystems, while the most was in species from the Built environment. Together, 22 

we present a metric that utilizes whole genome information to explore overlapping niches of 23 

microbes. This provides a detailed picture of potential metabolic competition and cooperation 24 

between species present in an ecosystem, indicates the main substrate types sustaining the 25 

community and serves as a valuable tool to generate hypotheses for future research. 26 

  27 
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Introduction 28 

Microorganisms drive global biogeochemical cycles, but they do not work or live in isolation. 29 

In order for any living species to survive they must engage in competition for space and 30 

resources with other organisms that share similar nutritional requirements. The concept of loss 31 

of species less adapted relative to their competitors is known as competitive exclusion (Gause 32 

1934). When one species cannot sufficiently persist in a habitat, they become locally extinct. 33 

Through selection of traits that reduce the dependence on a common resource, populations 34 

may shift towards coexistence. This is known as niche partitioning, whereby competition is 35 

avoided through the utilization of different resources (Schoener 1974). Evidence that these 36 

ecological and evolutionary forces shape microbial communities is prevalent in literature; 37 

however, the strength of these forces varies with the availability of resources (reviewed in 38 

(Nemergut et al. 2013). 39 

Describing a niche of an organism has remained challenging ever since the concept first 40 

emerged (Hutchinson 1957). Typically, closely related species are thought to share similar 41 

niches, assuming their evolutionary relatedness is reflected in their nutritional requirements. 42 

Recently, neutral genetic markers have emerged as a proxy to measure species’ divergence on 43 

an evolutionary timescale; however, these phylogenetic markers (i.e., 16S rRNA genes) are 44 

unsuitable to evaluate differences in the biochemical capacity of the organisms. Whole 45 

genomes contain information relevant to the metabolic capacity of a species, which is 46 

essential to describe the putative niches a microbial species may occupy. If one were to ask 47 

about the overlap of two microorganisms’ niches, it is conceivable that this is akin to asking 48 

how similar the two are on a genomic level. 49 

With the continued advancement in high-throughput DNA sequencing, large amounts of 50 

genomic data are frequently released and available for public use. Several recent publications 51 

have reported thousands of novel bacterial and archaeal metagenome-assembled genomes 52 

(MAGs; Anantharaman et al. 2016; Delmont et al. 2018; Parks et al. 2017; Tully, Graham, 53 

and Heidelberg 2018). The sequencing data originated from hundreds of studies investigating 54 

different ecosystems, such that these genomes represent a diverse set of taxa from ecosystems 55 

around the globe. This presents an opportunity to address the following important questions: 56 

how variable is niche overlap in microbial communities across different ecosystems and does 57 

the nature of the overlap (i.e., abundance of genes involved in nitrogen cycling) change based 58 

on habitat? 59 

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted May 29, 2019. . https://doi.org/10.1101/653881doi: bioRxiv preprint 

https://doi.org/10.1101/653881
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

In the current study, we surveyed niche overlap in microbial communities by searching for 60 

shared pathways in the metabolic reaction network of species within these communities, 61 

which we refer to as ‘metabolic overlap’ (MO). This approach was used to investigate two 62 

main questions. First, does the degree of niche overlap in microbial communities vary 63 

between ecosystems (i.e., do some communities have more species that utilize the same 64 

substrates)? Second, how do these microbial communities vary in the degree of overlap of 65 

different metabolic categories (i.e., nitrogen or sulfur metabolism)?  66 

We observed patterns of overlap in microbial community members’ metabolism across 67 

different ecosystems, which were largely consistent with literature reports. For instance, a low 68 

degree of MO was found in microorganisms involved in highly specialized animal host-69 

microbe associations, while aquatic microbes displayed a cosmopolitan repertoire of strategies 70 

for nutrient acquisition. These variations seem to be driven by different categories of 71 

metabolism, depending on the ecosystem. In addition, we addressed the question of how 72 

much the phylogenetic relationship of microbes corresponds to their metabolic overlap. We 73 

found that phylogenetic distance between microorganisms was indeed a good predictor for the 74 

degree of MO. The strength of this relationship, however, varied between different 75 

ecosystems. Generally, survey-based metrics like MO enable observations of global trends 76 

and prompt fundamental questions about the biology and ecology of microorganisms.  77 

 78 

  79 

  80 
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Results 81 

Definition of metabolic overlap. 82 

We defined metabolic overlap (MO) as the number of compounds (i.e., reactants) that can be 83 

utilized by two organisms based on their shared metabolic network (Figure 1). For example, 84 

an organism (Org1) that can perform all steps of denitrification from nitrate (NO3
-) to nitrogen 85 

gas (N2, four reactions in total) shares two reactants with a partially denitrifying organism 86 

(Org2) that only reduces NO2
- to N2O. This then results in a MO = 2 (ignoring the rest of their 87 

metabolism). Conceivably, identifying MO allows a broad identification of species with 88 

overlapping niches by counting the compounds that link complimentary metabolic pathways. 89 

As the metabolic routes used to degrade certain substrates can vary between organisms, 90 

counting the number of shared reactants will reveal MOs that would not be uncovered by 91 

shared reactions only. Furthermore, as the number of reactants can vary between reactions, 92 

this approach is more sensitive in identifying weak metabolic similarities between organisms.  93 

We acknowledge that previous efforts to predict microbe-microbe interactions within 94 

microbial communities have been made with similar logic to the current approach. In 95 

particular, the NetCooperate software, utilizing the NetSeed framework, is a method to 96 

identify putative interactions in a community. It does so by using genome information to 97 

predict auxotrophies of the organisms present, based on the incompleteness of certain 98 

biosynthesis pathways leading to a dependency of the respective organism to external sources 99 

of the lacking metabolite (Levy et al., 2015; Carr and Borenstein, 2012). Thus, the 100 

NetSeed/NetCooperate approach predicts complementarity between species, which 101 

consequently occupy distinct niches, while the goal of our MO approach is to identify to what 102 

extent two species fill a common niche.  103 

Metabolic overlap of microbial communities in different ecosystems. 104 

In order to survey the degree of MO in various ecosystems from around the globe, thereby 105 

identifying the degree in which microbial species within the community overlap in the niches 106 

they fill, the set of Uncultivated Bacteria and Archaea (UBA) MAGs published by Parks and 107 

colleagues was utilized (Parks et al., 2017). The average predicted genome completeness of 108 

these MAGs ranged from 50-100%. A completion-based inclusion threshold of MAGs was 109 

found to have a negligible impact on the average MO of communities (Supplemental Figure 110 

1). In contrast, the number of MAGs included drastically decreased as a result of a more 111 

stringent threshold on genome completeness, resulting in ecosystems poorly or not at all 112 
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represented (Supplemental Figure 1). Thus, we included all 7903 MAGs from the Parks et al. 113 

dataset, representing 1248 studies. Studies were classified into their respective ecosystems of 114 

origin based on information included in the submission to the public repository or by manual 115 

curation if this information was insufficient. This resulted in ten ecosystem categories, with 116 

studies that could not be reasonably identified classified as “Other” (Table 1).  117 

In a given ecosystem, metabolic overlap and the predicted average genome sizes of MAGs 118 

were strongly correlated (Supplemental Figure 2; p < 0.01). In addition, average genome sizes 119 

significantly varied between ecosystems (Supplemental Figure 3; ANOVA; F = 88; p < 120 

0.001). The average predicted genome sizes were the highest in studies from the built 121 

environment (4Mbp +/- 0.65Mbp) and lowest in extreme environments (2Mbp +/- 0.96Mbp; 122 

Table 2). The number of MAGs in a given community (grouped per study) negatively 123 

correlated with the average MO of the community (Figure 2; Kendall’s tau = -0.38; p < 124 

0.001). As we were interested in investigating how MO varied between ecosystems, 125 

irrespective of the differences in genome sizes between ecosystems, we normalized MO to the 126 

average genome size of the respective study. Furthermore, the values were scaled so that the 127 

average MO of all ecosystems combined was 0 (Figure 3). 128 

To evaluate how the MO of microbial communities varied between ecosystems, we 129 

determined how the average MO of a single ecosystem differed from the average MO of all 130 

ecosystems. Communities from Animal, Built, and Engineered ecosystems had significantly 131 

lower MO than average (t-test; p < 0.01; Table 3; Figure 3). On the contrary, those from 132 

Extreme, Freshwater and Marine ecosystems had significantly higher MO than average (t-test; 133 

p < 0.01; Table 3; Figure 3). 134 

Breakdown of MO scores across different ecosystems to different levels of metabolism 135 

To investigate how metabolic overlap varied between ecosystems within different categories 136 

of metabolism (SEED subsystems), the MO within these subcategories was determined for 137 

each ecosystem and compared to the average value of all ecosystems (Table 4). Animal, Built 138 

and Engineered ecosystems were generally below the average MO for the majority of 139 

subcategories of metabolism with a few exceptions (t-test; p < 0.01; Table 4). Communities 140 

from Engineered ecosystems had an above average MO in Protein and Nucleotide sugar 141 

metabolism, as did communities from Animal ecosystems. In addition, communities from the 142 

Animal ecosystem had an above average MO in Nucleotide metabolism. While most 143 

subcategories of metabolism from the Built environment were below the average MO, these 144 
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communities contained higher MO in Nitrogen and Sulfur metabolism (Table 4). In contrast 145 

to the above communities, which were dominated by lower than average MO scores, Extreme, 146 

Freshwater, and Marine ecosystems had higher than average MO scores in the majority of the 147 

categories of metabolism (Table 4). 148 

The nitrogen metabolism was used to further investigate the influence of incomplete pathways 149 

on the MO. Therefore, the ratios of complete to incomplete denitrifiers were calculated for all 150 

ecosystems (i.e., complete denitrifiers encoding all proteins required for NO3
-, NO2

-, NO, and 151 

N2O reduction; incomplete denitrifiers missing at least one gene; Figure 4A).  The Built 152 

environment showed the largest MO in nitrogen metabolism and also had the highest ratio of 153 

complete to incomplete denitrifiers compared to all other ecosystems (Figure 4B). Contrary, 154 

the Animal ecosystem, which by far had the lowest MO in this category also contained mostly 155 

incomplete denitrifiers.  156 

Phylogenetic relationship of organisms and its relationship to the metabolic overlap. 157 

In order to determine if the evolutionary relatedness between MAGs was correlated with MO, 158 

the UBCG pipeline was utilized to infer a phylogenetic tree based on a concatenated 159 

alignment of 92 universal bacterial marker genes (Na et al. 2018). A significant negative 160 

correlation was observed between phylogenetic distance and metabolic overlap for all 161 

ecosystems (Figure 5; r = -0.33; p < 0.001), however the strength of this association varied. 162 

Phylogenetic distance and MO had the strongest association in Plant (r = -0.64), Built (r = -163 

0.53) and Marine ecosystems (r = -0.47), whereas the lowest associations were seen in 164 

Animal (r = -0.16), Extreme (r = -0.19) and Fresh Water ecosystems (r = -0.21; Figure 6).  165 
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Discussion 166 

In the current study a new metric termed MO, which describes how similar two species’ 167 

metabolisms are, was developed in the context of a genome-based survey of microbial 168 

communities from diverse ecosystems. High MO between two species suggests that they have 169 

the capacity to perform similar metabolic reactions, thus have similar growth requirements 170 

and fill similar niches. In contrast, low MO suggests that the two species in question may 171 

compete for fewer resources. We determined the average metabolic overlap of all community 172 

members (i.e., the average MO of all pairwise species comparisons) for a given study, which 173 

were grouped into distinct ecosystems based on their origin for comparison (Figure 3; Table 174 

3). The average MO of a community can be similarly interpreted as the pairwise species 175 

comparisons. In the case of high average overlap, many community members are overlapping 176 

in their biochemistry and could in theory compete for a similar niche, whereas a low average 177 

MO would suggest the opposite.  178 

Ecological and evolutionary drivers of metabolic overlap  179 

There are several well studied ecological forces that shape microbial community 180 

structure. Community diversity is maintained via dispersion (immigration and emigration) as 181 

well as speciation and extinction. In studying patterns of microbial biogeography, dispersion 182 

limitations were seen as one of the driving forces in structuring microbial community patterns 183 

in salt marshes and rice paddies, and likely have an influence on the genomic adaptations of 184 

marine microorganisms (Kelly et al. 2014; Lüke et al. 2014; Martiny et al. 2006). Microbial 185 

biogeography theory has also been applied to help understanding compartmentalized host-186 

associated microbial communities such as microbes in the human lungs (Whiteson et al. 187 

2014). In this study, we observed major ecosystem-dependent differences in the MO of 188 

microbial community members (Figure 3; Table 3). This variation may in part be attributed to 189 

dispersion limitations inherent to each ecosystem, where ecosystems in which the dispersion 190 

of microbial community members is limited would have less overlap than open homogenous 191 

ecosystems. Accordingly, the highest MO was observed in aquatic ecosystems, namely 192 

communities from the marine open ocean environment, while animal host-associated 193 

communities contained some of the lowest MO (Figure 3; Table 3). Ecosystems such as the 194 

ocean are likely to not have as strong dispersal limitations as ecosystems like the animal gut 195 

or human lungs, and these differences may be a driving force in structuring the MO of their 196 

respective microbial communities. 197 
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In addition to dispersion as an ecological force, disturbances to ecosystems can also 198 

play a large role for species diversity, driving extinction or speciation within the community 199 

(Buckling et al. 2000; Connell 1978). Varying degrees of disruption would impart some 200 

signature on the metabolic pathways represented in the microbial community. A higher 201 

frequency of disturbance would contribute to the extinction of species and reduce the number 202 

of redundant metabolisms in a given system. For example, disturbances associated with the 203 

marine ecosystem (high MO) such as storms or temperature anomalies are likely less frequent 204 

and intense than the regular consumption of foodstuff or intermittent bouts of inflammation in 205 

animal guts (low MO) (David et al. 2014; Kashyap et al. 2013; Reese et al. 2018). 206 

Substrate spectrum as a possible driver of metabolic overlap in ecosystems.  207 

The availability of resources, both in quality and quantity, drives which species can thrive in a 208 

given system. In the open ocean, the input of labile organic matter is a major factor 209 

controlling microbial activity in the photic zone, where phototrophs fix large quantities of 210 

inorganic carbon, making new organic matter available to heterotrophic organisms (Aylward 211 

et al. 2015; Hansell and Carlson 2002). It is understood that differences in the composition of 212 

dissolved organic matter (DOM) enrich for different clades of microorganisms and that the 213 

composition of the community is highly influential on the capacity to degrade this carbon 214 

(Nelson et al. 2013; Solden et al. 2018). It would follow that a higher substrate selection 215 

would drive diversity in the microbial community, and the higher diversity of substrates 216 

would then lead to more diverse microbial metabolisms. In the current study, a negative 217 

relationship between the richness of a community (number of genomes in a given sample) and 218 

their average MO was observed, which suggests that in more diverse communities there is 219 

less metabolic overlap (Figure 2). Indeed, there are many studies that report species-specific 220 

differences in the composition of host-associated microbial communities ranging from plants 221 

to animal hosts (Berg et al. 2014; E.R. Hester et al. 2016; Reese et al. 2018). These 222 

differences are in part attributed to the selection of organic compounds that are shared from 223 

host to symbiont (Lee et al. 2016; Sasse, Martinoia, and Northen 2018; Zhalnina et al. 2018).  224 

In addition to the quality of substrates, the quantity of organic matter also drastically differs 225 

between ecosystems. The concentration of DOC can vary greatly in aquatic systems, with 226 

around 40 µmol l-1 DOC in groundwater and 5000 µmol l-1 in swamps and marshes 227 

(Søndergaard and Thomas 2004). Likewise, variations in animal’s diet influence the 228 

availability of different substrates for microorganisms. In particular the diet of an animal 229 
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influences the availability of nitrogen to microbes in animal guts (Reese et al. 2018). Equally, 230 

N availability has a strong impact on plant-soil feedbacks, influencing the abundance and 231 

metabolism of microorganisms in the rhizosphere (Eric R Hester et al. 2018). If substrates are 232 

available in high enough concentrations, the effect of competition may be reduced, potentially 233 

leading to a higher number of species consuming a common substrate (i.e., higher MO). In the 234 

current study, we observe microbial communities from animal ecosystems had the lowest 235 

overlap in categories of metabolism involved in nitrogen and amino acid metabolism, which 236 

corresponds to the idea of N limitations in the animal gut and known auxotrophies (Table 4; 237 

Reese et al., 2018; Zengler and Zaramela, 2018). In contrast, microbial communities from the 238 

built environment tend to have higher overlap in nitrogen and sulfur metabolism, though the 239 

built environment is a loosely defined ecosystem with limited literature detailing nutrient 240 

fluxes through the system (Table 4; Adams et al. 2015).  This stark contrast of nitrogen 241 

metabolism overlap between the Built and Animal ecosystems, which both generally 242 

displayed a lower than average MO, corresponded to the observed number of species capable 243 

of complete denitrification. The Built ecosystem had the highest nitrogen metabolism MO, 244 

which largely was attributed to the highest proportion of microbial species capable of 245 

complete denitrification (Figure 4). This was contrasted by the low number of complete 246 

denitrifiers in the animal system. While the differences here could be due to nutrient 247 

availability, one should also consider possible differences in life strategies for persisting in a 248 

particular environment (i.e., detoxification versus energy conservation).  249 

Influence of phylogenetic relationship on metabolic overlap. 250 

Populations that become isolated and diverge on an evolutionary timescale do so as a result of 251 

being exposed to different environments and thus different selection pressures on specific 252 

traits, although some mechanisms exist that make this divergence less clear (i.e., convergent 253 

evolution, horizontal gene transfer, etc.). In the current study, a relationship was observed 254 

between the MO of species and their relatedness (Figure 5), with a reduction of MO with 255 

increasing taxonomic distance. While this corresponds well to theory, the strength of the 256 

relationship between phylogenetic relatedness and MO varied between ecosystems, 257 

suggesting that ecological differences between these ecosystems influence this relationship. 258 

The dominant taxonomic groups often vary between different ecosystems as a result of the 259 

underlying nutrient profiles or physical properties of those ecosystems. This may be a result 260 

of stronger selection pressures in a given ecosystem for traits specific to a few select 261 
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monophylogenetic groups (i.e., methanogenesis, ammonia and nitrite oxidation), as opposed 262 

to traits that are more widespread (i.e., denitrification). Phylogenetic groups may vary in the 263 

number of traits (i.e., some groups are more metabolically versatile than others), and MO is 264 

determined by the number of reactions a given pair of species share. For example, 265 

Zimmerman et al., found that a set of phylogenetically diverse Bacteria and Archaea had the 266 

potential to produce a subset of three extracellular enzymes (Zimmerman, Martiny, and 267 

Allison 2013). Specifically, the ability to produce these enzymes was non-randomly 268 

distributed phylogenetically. It follows that ecosystems which have strong selection pressures 269 

for metabolically diverse phylogenetic groups would have a weaker relationship between the 270 

phylogenetic relatedness and metabolic overlap. 271 

Caveats and limitations of genetic predictions of metabolic overlap. 272 

The emergence of vast amounts of sequence data has allowed the assembly of genomes of 273 

microorganisms from fragmented DNA isolated from the environment. The degree of 274 

information in whole genomes compared to that from marker genes (both phylogenetic and 275 

metabolic) is likely to provide significant advances in our understanding of the genetic 276 

organization of microorganisms. In addition, knowing that a certain set of genomes were 277 

physically in the same sample is advantageous in addressing fundamental questions about the 278 

ecology and evolution of microbial communities from natural settings. Unfortunately, there 279 

are still significant limitations when dealing with metagenome-assembled genomes. 280 

Specifically, the amount of information lost in the process of genome assembly and binning 281 

reduces our understanding of population-level genetic variation. Current sequencing depths do 282 

not provide sufficient coverage for the metagenomic assembly of low abundance organisms’ 283 

genomes, narrowing our view of genetic linkages between species towards the highly 284 

abundant species. However, these are mainly technological limitations, with solutions like 285 

long read sequencing becoming increasingly more available. Additionally, there is a 286 

significant lack of information about the environments in which samples were taken in the 287 

public archives, limiting what can be assessed with metrics such as metabolic overlap, and 288 

calling for an urgent need to provide as much metadata on samples as possible. 289 

In addition to the technical limitations mentioned above, there are also limitations in 290 

methods such as MO, which rely heavily on accurate automated annotation of genetic 291 

elements in genomes. Specifically, database quality is a key driver in the accuracy of survey 292 

studies such as the one presented here. A major issue is the inability to assign functions to 293 
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many genes, even in the genomes of the most well studied microorganisms (35% hypothetical 294 

proteins in E. coli genome; Ghatak et al. 2019). Apart from the limitations to automatic 295 

annotation methods, there are different levels of biology associated with niches that are not 296 

captured in genome-level information. These limitations include a lack of information of 297 

whether a gene is transcribed, whether the transcript is translated to a functional product and 298 

ultimately variations in affinity and activity of this protein. The variation in transport 299 

efficiency and regulatory mechanisms certainly contributes to the competitive advantage of an 300 

organism and thus the niche this organism fills. These complexities are not easily derived 301 

from genomic information. Idealistically, as emphasized by (Bowers et al. 2017), in order to 302 

improve discovery-based approaches that rely on machine readable formats of public 303 

repositories, additional information should accompany MAG submissions. This set of 304 

information would not only help assess the quality of the genome but aid in associating the 305 

genetic information to the biology and ecology of the organism. Ideally, such information 306 

should include conditions of the environment from which the species’ genome was obtained 307 

(i.e., pH and temperature), and if the species was cultivated, any physiological parameters that 308 

may have been measured (i.e., growth rate, substrate usage profile and affinities, etc.).   309 

Conclusions 310 

The observation of variation in MO across different ecosystems begs several questions about 311 

the nature of microbial community metabolism. Specifically, what drives metabolic versatility 312 

in microbial communities? Are there generalizable rules that can be deduced? Survey-based 313 

studies enriched with additional information, such as those highlighted above, may shed 314 

additional light on important factors that drive MO. In addition, there is a severe need to 315 

complement predictions based on the genetics of microorganisms with phenotypic data. 316 

Ultimately, understanding drivers of microbial community metabolism will lead to a better 317 

ability to predict and engineer microbial communities for industrial or conservational 318 

purposes. 319 

 320 

Methods 321 

Data origin and Annotation of Ecosystems  322 

Metagenome-assembled genomes (MAGs) utilized in the current study comprised the set 323 

published by Parks et al. (Parks et al. 2017). The Uncultured Bacterial and Archaeal (UBA) 324 

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted May 29, 2019. . https://doi.org/10.1101/653881doi: bioRxiv preprint 

https://doi.org/10.1101/653881
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

MAGs were downloaded from the author’s repository 325 

(https://data.ace.uq.edu.au/public/misc_downloads/uba_genomes/). The accompanying data 326 

from the UBA MAG set, including CheckM metrics of predicted genome completeness and 327 

size, was obtained from the publication (Parks et al. 2017). Each study in the UBA set of 328 

MAGs was manually sorted into a set of nine ecosystems and an unclassifiable category 329 

called ‘Other’. 330 

Metabolic overlap calculation  331 

All MAGs were subsequently annotated using a custom pipeline based on the SEED API 332 

(Aziz et al. 2008; Overbeek et al. 2005). In brief, protein encoding genes (pegs) were called 333 

from the assemblies using svr_call_pegs 334 

(http://servers.nmpdr.org/sapling/server.cgi?pod=ServerScripts). Each of these proteins was 335 

then assigned to a figfam with svr_assign_using_figfams. The association of a protein to a 336 

biochemical reaction was then made with svr_roles_to_reactions. A custom script 337 

(rxn_expandinfo) associated reactions with compounds from the reaction database which is 338 

found on the ModelSEED git repository (https://github.com/ModelSEED). Finally, the 339 

number of compounds shared between two organism’s set of biochemical reactions is 340 

calculated to create a pair-wise MO score, and a distance matrix was constructed to store this 341 

information. This was made using the custom python scripts rxn_to_connections and 342 

lists_to_matrix, respectively (https://github.com/ericHester/metabolicOverlap). The distance 343 

matrix represents the MO of all organisms within a single community and the average MO of 344 

all of these organisms is utilized in comparisons in this study.  345 

In addition to an overall MO score for a community, the above approach was used to calculate 346 

the MO of various sub-categories of metabolism for the respective community. In addition to 347 

the above, an additional step was performed where pegs were assigned to their respective 348 

SEED subsystems and filtered with a custom script utilizing svr_roles_to_subsys. With pegs 349 

assigned to these metabolic categories, the above pipeline was used to identify reactions and 350 

compounds shared between pairs of organisms, subsequently resulting in a distance matrix 351 

similar to that above. In this case, the distance matrix stores the MO of the community 352 

pertaining to a specific category of metabolism. Matrices and accompanying data were further 353 

analyzed in R (R Core Team 2016).  354 

Relating phylogenetic distances of MAGs to their MO within communities 355 
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In order to associate the phylogenetic distance of assembled genomes to their MO, the UBCG 356 

pipeline was utilized (Na et al. 2018). This pipeline extracts 92 conserved phylogenetic 357 

marker genes and builds multiple alignments for each gene. The resulting alignments are 358 

concatenated and a maximum likelihood tree is inferred. This tree was imported into R 359 

utilizing the ape package and distances were extracted from the tree object with the 360 

cophenetic function (Paradis, Claude, and Strimmer 2004). The result is a distance matrix 361 

containing phylogenetic distances between each pair of MAGs. Subsequently, this 362 

phylogenetic distance matrix and the distance matrix storing MO scores were correlated using 363 

the mantel.test function from the ape package. The Spearman’s rank correlation coefficient 364 

was calculated for each ecosystem subset.   365 
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 472 

Figure 1. Metabolic overlap is a metric that compares the overlap in the metabolism of two organisms 473 

by calculating the number of reactants these species can utilize in common. This is determined by 474 

establishing their shared biochemical pathways (A). The number of substrates shared between a set of 475 

organisms is represented in a matrix (B), typically a symmetrical distance matrix. The average 476 

metabolic overlap of all communities from a given ecosystem are calculated and can be then compared 477 

to other ecosystems as seen in the current study (C).  478 
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 480 

 481 

Figure 2. Relationship between metabolic overlap and the number of genomes in a community. Each 482 

circle represents one of the 1248 studies. The x-axis depicts the total number of MAGs in a given 483 

study, the y-axis the mean metabolic overlap of that study. 484 
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 486 

Figure 3. Metabolic overlap across all ecosystems. Boxplots are plotted with the black bar 487 

representing the mean, the box is the 25% and 75% quartiles, and the whiskers are the extreme values. 488 

A horizontal red dashed line was plotted to indicate 0, which corresponds to the average MO of all 489 

ecosystems combined. Each point represents the mean metabolic overlap of all MAGs from a given 490 

study. 491 
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 493 

 494 

Figure 4. Proportion of complete to incomplete denitrification pathways across different ecosystems. 495 

(A) Number of MAGs encoding all proteins to reduce NO3
- to N2 (complete denitrifiers) compared to 496 

the number of MAGs with one or more of the respective genes missing. (B) Ratio of complete to 497 

incomplete denitrification pathways.  498 

499 
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 500 

Figure 5. Relationship between metabolic overlap and phylogenetic distance of MAGs. Each point 501 

represents a pairwise comparison between two MAGs. The density of points is represented by a black 502 

and white gradient. The Spearman’s correlation coefficient is indicated in the upper left-hand corner of 503 

each plot. 504 
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 506 

Supplemental Figure 1. Relationship between the genome completeness and the average metabolic 507 

overlap observed (colored lines, right axis). The number of MAGs retained at the different 508 

completeness cutoffs is indicated by the black line (left axis). 509 
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 511 

Supplemental Figure 2. Relationship between metabolic overlap and genome size. Each circle 512 

represents one study. The y-axis indicates the average metabolic overlap of all MAGs in one study, 513 

and on the x-axis the average genome size for all MAGs in this study. 514 
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 516 

Supplemental Figure 3. Average genome sizes across ecosystems. The black bar of the boxplot 517 

indicates the median, the box edge represents the upper and lower quartiles, whiskers denote extreme 518 

values, and individual points are outliers.  519 
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Number of studies Number of metagenomes 

Animal 130 1823 
Brackish 17 66 

Built 446 1275 
Engineered 122 1374 

Extreme 44 156 
Fresh Water 59 231 

Marine 311 1811 
Other 35 928 
Plant 3 16 

Soil 81 223 

Total 1248 7903 
Table 1. Number of studies and metagenomes within each ecosystem. 521 
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Ecosystem 
Predicted Genome Size (bp) 

Mean s.d. 

Extreme 2051727 966129 
Animal 2340102 784483 

Brackish 2530756 516589 
Other 2608893 539528 

Fresh Water 2631460 1103610 
Engineered 2651621 920438 

Marine 2709229 987460 
Soil 2760719 1226428 

Plant 3074667 990199 
Built 4000017 658349 

Table 2. Mean genome size in each ecosystem. 523 
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Ecosystem t p.value 

Animal -4.25 < 0.001 
Brackish 1.23 0.23 

Built -5.32 < 0.001 
Engineered -5.31 < 0.001 

Extreme 3.08 0.003 
Fresh Water 3.19 0.002 

Marine 3.5 < 0.001 
Other -3 0.005 
Plant -0.41 0.72 
Soil -0.93 0.35 

Table 3. Metabolic overlap statistics in each ecosystem. 525 
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Statistic (t) Animal Brackish Built Engineered Extreme 
Fresh 
Water 

Marine Other Plant Soil 

Amino Acid 
Metabolism 

-18.808 1.0396 -7.0897 -8.0706 4.3911 3.0921 7.8829 -2.8291 -0.1535 0.0306 

Aromatic 
Metabolism 

-14.002 -0.2595 -4.3238 -2.9174 -1.4082 1.0256 7.0192 -0.793 -2.968 1.4364 

Carbohydrate 
Metabolism 

-10.015 0.5472 -4.4021 -7.0678 3.4987 1.9514 6.0391 -4.0708 -0.6076 -0.1959 

Cofactor 
Metabolism 

-23.996 1.7968 -8.3088 -9.3914 3.4899 3.6088 8.5258 -3.1922 -0.1503 0.5693 

Fatty Acid 
Metabolism 

-6.2286 3.0776 -7.0429 -5.054 2.5558 2.4734 6.5712 -1.5586 -0.5669 -2.5669 

Nitrogen 
Metabolism 

-15.495 1.7972 6.9147 -4.0639 2.3216 2.2063 -0.9558 -0.4684 -0.4381 -1.4858 

Nucleotide 
Metabolism 

4.6226 -0.4585 -16.574 0.0291 3.241 1.4079 4.8181 -1.164 -0.6831 -0.8228 

Nucleotide 
Sugar 

Metabolism 
3.073 1.4103 -12.295 2.9834 3.4546 3.6569 -1.2075 0.6512 -0.0622 2.3715 

Phosphorous 
Metabolism 

-3.8878 0.8176 -8.3411 -1.0578 0.7587 2.2691 4.6001 -1.064 -0.5048 -0.8658 

Protein 
Metabolism 

3.7253 1.8878 -33.882 2.2077 5.5824 3.9273 4.4379 -0.6715 0.2008 2.5578 

Respiration -15.021 3.4966 -3.8864 -5.1202 2.8844 2.5968 9.519 -1.5019 -1.0597 -1.8178 

Sulfur 
Metabolism 

-24.636 -0.3785 14.3902 -10.8816 -0.6835 0.5794 1.7196 -7.2878 -1.7582 -2.4058 

Secondary 
Metabolism 

-0.41 1.005 -15.753 -1.161 3.738 2.241 4.644 0.609 NA 2.243 

Table 4. Metabolic overlap in different categories of metabolism 527 
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