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Abstract

Background: Choosing which biomarker tests to select for 
further research and development is not only a matter of 
diagnostic accuracy, but also of the clinical and monetary 
benefits downstream. Early health economic modeling 
provides tools to assess the potential effects of biomarker 
innovation and support decision-making.
Methods: We applied early health economic modeling to 
the case of diagnosing primary aldosteronism in patients 
with resistant hypertension. We simulated a cohort of 
patients using a Markov cohort state-transition model. 
Using the headroom method, we compared the currently 
used aldosterone-to-renin ratio to a hypothetical new test 
with perfect diagnostic properties to determine the head-
room based on quality-adjusted life-years (QALYs) and 
costs, followed by threshold analyses to determine the 
minimal diagnostic accuracy for a cost-effective product.
Results: Our model indicated that a perfect diagnostic 
test would yield 0.027 QALYs and increase costs by €43 

per patient. At a cost-effectiveness threshold of €20,000 
per QALY, the maximum price for this perfect test to be 
cost-effective is €498 (95% confidence interval [CI]: €275–
€808). The value of the perfect test was most strongly 
influenced by the sensitivity of the current biomarker test. 
Threshold analysis showed the novel test needs a sensi-
tivity of at least 0.9 and a specificity of at least 0.7 to be 
cost-effective.
Conclusions: Our model-based approach evaluated the 
added value of a clinical biomarker innovation, prior to 
extensive investment in development, clinical studies and 
implementation. We conclude that early health economic 
modeling can be a valuable tool when prioritizing bio-
marker innovations in the laboratory.

Keywords: biomarker innovation; diagnostic innovation; 
early health technology assessment; liquid chromatogra-
phy mass spectrometry; primary aldosteronism.

Introduction
In laboratory medicine, the past decades have been an 
era of health technology innovation [1]. Inventions such 
as genome sequencing, liquid chromatography mass 
spectrometry (LC-MS) and random-access analyzers have 
considerably improved the personalized diagnosis and 
treatment of numerous medical conditions. However 
undeniable the advantages of health technology inno-
vation are [2], the advances have coincided with a steep 
rise in health care expenditure [3, 4]. Studies predict that 
health care costs will consume around one-third of family 
incomes by the year 2040 [5, 6], which would challenge 
the accessibility of health care and the social solidarity 
to collectively cover costs [7]. In addition, it is not always 
clear whether innovations provide ‘true value for money’ 
[8]. The need for decision-making in innovation is there-
fore evident.

This is particularly true in the field of molecular 
biomarkers. Considerable progress in the fields of next 
generation sequencing and MS have enabled a detailed 
analysis of DNA, proteins and metabolites, yielding a 
wealth of biomarker candidates. However, many of these 
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candidate biomarkers do not progress to clinical applica-
tion and the innovation gap between research and appli-
cation is widening [9]. Efficient ways to calculate the 
added clinical value of biomarkers prior to their devel-
opment could prove useful in the process of biomarker 
prioritization.

Health economic modeling provides tools to make 
such calculations, thereby supporting decision-making 
on which biomarker innovations to pursue and which 
to lay aside. The goal of health economic modeling is 
to provide insight in the costs and clinical benefits of a 
(novel) intervention, and compare them to standard of 
care. Its methods are increasingly being applied at the 
early stages of technology development to inform deci-
sions regarding the further development of innovative 
ideas [10]. Even when there is no data on the diagnostic 
accuracy or health impact of the innovation, health eco-
nomic modeling methods such as headroom analysis offer 
estimates of its potential value by assessing the room for 
improvement in current care practices [11].

Specific applications of novel technologies are often 
proposed by biomarker scientists or clinicians who tend 
to be unfamiliar with health economic modeling concepts. 
Using the example of diagnosing primary aldosteronism 
(PA), we will illustrate how such early modeling methods 
can help clinicians and diagnostic test developers in the 
laboratory make evidence-informed decisions on whether 
or not to pursue a new diagnostic innovation.

In the field of PA, new concepts are being considered 
out of concern for the current diagnostic method, which 
centers around the aldosterone-to-renin ratio (ARR) test. 
First, renin’s biological variability is a cause for concern. 
It is known that renin measurements vary depending on 
time of day, posture during sampling and patient char-
acteristics [12]. The different recommended cut-off values 
for the ARR in the Endocrine Society Clinical Practice 
Guideline introduce further variability between laborato-
ries [13]. Second, for reliable use of the ARR as a screen-
ing test – the Japan Endocrine Society even recommends 
screening all hypertensive patients for PA – the test’s sen-
sitivity should be very high to avoid false negatives [14]. 
Doubts regarding the ARR’s suitability are evident from 
the many studies that investigated its diagnostic proper-
ties, indicating a repeated desire to evaluate the use of 
ARR and its cut-off value [15]. Third, optimization of the 
PA diagnosis is an active field of research, implying con-
cerns regarding current diagnostic methods. This is illus-
trated by ENSAT-HT and PRIMAL, two ongoing clinical 
trials [16, 17], and the Berge et al. and Rehan et al. studies 
investigating the use of LC-MS for the analysis of aldos-
terone [18, 19]. The analyses conducted by Berge et  al. 

and Rehan et al. indicated that targeted MS could (semi-)
quantitate renin and related isoforms, providing the bas-
isfor an innovative test for PA diagnosis with higher spec-
ificity and selectivity.

We believe novel tests for PA are highly relevant for 
an early health economic assessment to estimate their 
potential value prior to (further) development and clinical 
validation. Through decision analytic modeling we ana-
lyzed the room for improvement in current PA testing and 
determined what properties a new test should have (in 
terms of sensitivity, specificity and costs) for it to become 
cost-effective.

Materials and methods
Model overview and validation

To simulate the expected costs and health benefits of various diag-
nostic strategies, we constructed a health economic model (see the 
Glossary in Figure 1) that consists of a decision tree for the diagnostic 
part (Figure 2) and a cohort state-transition model (see the Glossary 
in Figure 1) to simulate the long-term health and economic conse-
quences (Supplementary Material, Appendix Figure 1). The model 
was developed based on literature and input of various experts in the 
areas of hypertension, laboratory medicine and technology assess-
ment. The model was constructed and analyzed using Microsoft Office 
Excel 2016.

Target population

The target population consists of patients diagnosed with resist-
ant hypertension who are suspected of PA. We assume that prior 
attempts to treat their hypertension with antihypertensive medica-
tion have failed and that patients are being monitored by a hyper-
tension specialist. For this population, the aim of diagnosis is not 
only to treat hypertension but to treat hyperaldosteronism and 
its adverse cardiovascular effects. The starting age of the patient 
cohort in our model is 40 years old, and a cohort-state transition 
model was created that reflects a lifelong perspective on costs and 
effects.

Model structure

In the decision tree, the patients are divided into those with and 
without PA. Patients with PA can have a (false) negative or (true) 
positive test result and those without PA a (true) negative or (false) 
positive test result. Every positive test result of the current (ARR) 
and new test is followed by a confirmatory saline-infusion (SI) test 
(which is considered one of four recommended reference tests for 
PA) [13]. In the case of a positive SI test, a CT scan plus adrenal 
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vein sampling (AVS) is used to subtype PA. Following the diagno-
sis, patients receive treatment: adrenalectomy and/or medication 
for those patients with a confirmed PA and continuation of antihy-
pertensive medication for those not diagnosed with PA. Following 
treatment, patients have a probability to either become normoten-
sive, with or without continued use of their medication, or remain 
hypertensive.

The long-term part of the model is shown in Supplementary 
Material, Appendix Figure 1. Note that reducing the risk of cardiovas-
cular events is an important aim in the treatment of hyperaldosteron-
ism. All patients are at risk of developing cardiovascular events (i.e. 
stroke, coronary artery disease, atrial fibrillation or heart failure). 

The risk is lowest for the normotensive group, higher for the hyper-
tensive group, and highest for the PA groups [20]. Once affected by a 
cardiovascular complication, patients move to a post-complication 
health state, which is associated with higher health care costs, a 
lower quality of life and higher risk of death compared to their start-
ing health states. At every cycle, patients in the cohort may die from 
cardiovascular or other causes.

The decision tree and state-transition model are equally struc-
tured for the two strategies (ARR test and hypothetical test). Most 
parameter values remain the same; only the sensitivity and speci-
ficity is different; for the hypothetical test they are both 1, meaning 
there are no false positives or false negatives (see Model input). The 

Figure 1: Glossary containing key terminology pertaining to early health economic modeling.
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model hereby simulates a scenario of perfect diagnostics; note that 
the probability of normotension after treatment remains the same.

Assumptions

We assume that SI tests are always conducted to confirm the PA diag-
nosis and that they have a sensitivity and specificity of 1. The assumed 
effectiveness of antihypertensive medication is based on a 50% treat-
ment adherence rate [21]. Due to scarce data on long-term risk esti-
mates for developing hypertension in this population, we assume that 
once patients are assigned to the normotension or hypertension health 
state, they will remain in that health state until they develop cardio-
vascular events or die. Regarding cardiovascular events, patients 
could only develop one complication during their remaining life-span 
due to scarce data on the probability and consequences of developing 
multiple cardiovascular events within this specific population.

Model input

All model inputs and their sources are listed in Supplementary Mate-
rial, Appendix Table 1.

Transition probabilities

In the diagnostic part of our model, we assume a 15% prevalence of 
PA as reported by Jansen et al., which fits with the literature on PA 
in patients with essential hypertension [22, 23]. Because prevalence 
estimates differ across healthcare settings, we varied this parameter 
in a sensitivity analysis to investigate the relationship between PA 
prevalence and the headroom for a diagnostic test (see Analyses) 
[24]. For the ARR test, we assume a sensitivity of 0.89 and a specific-
ity of 0.96 based on a meta-analysis conducted by Li et al. [15]. For 
confirmed PA patients we assume a probability of 0.47 of having an 
aldosterone-producing adenoma that qualifies for surgery from Shah 
and Deshpande [25]. The outcomes of unilateral adrenalectomy are 
based on a recent study by Williams et al., who reported that 37% of 
their patients became normotensive without further need for medica-
tion and another 47% following antihypertensive medication, while 
16% remained hypertensive even with antihypertensive medication 
[26]. For all patients that did not have an aldosterone-producing ade-
noma suitable for surgery, we assume that the probability to become 
either normotensive or remain hypertensive is equal to the patients’ 
adherence to their medication regimen, reflecting the notion that the 
medication itself is effective. Azizi et al. estimated medication adher-
ence in this subgroup to be 0.5 [21].

Figure 2: Decision tree for the diagnosis of primary aldosteronism (PA), comparing the current ARR test to a hypothetical diagnostic test, 
leading to one of five health states that form the starting point of the long-term part of the model that simulates yearly costs and health 
effects (see Supplementary Material, Appendix Figure 1).
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In the long-term part of our model, we based the probability for 
our patients to develop one of four cardiovascular events on pub-
licly available data on normotension and hypertension issued by 
the Dutch Ministry of Health. For the PA patients, odds ratios pub-
lished by Monticone et al. were used to calculate their increased risk 
of cardiovascular events compared to hypertensive patients [20]. 
The probability of dying from cardiovascular causes was derived 
from various studies, where we distinguished between the year of 
the event and all subsequent years [27–30]. The probability of dying 
from other causes was based on publicly available data from Statis-
tics Netherlands [31].

Utilities

To model health effects in terms of QALYs (see the Glossary in 
Figure 1), we retrieved utilities (see the Glossary in Figure 1) for every 
health state from the relevant literature. Recently it has been argued 
that, despite their limitations, QALYs do provide a useful metric for 
quantifying and comparing health effects associated with different 
health technologies (especially when evaluating multiple cardio-
vascular outcomes, as is the case in our study) [32]. QALYs were dis-
counted at a rate of 1.5% annually to reflect the Dutch time preference 
for health effects [33].

Costs

In the model, costs were determined from a societal perspective and 
based on Dutch sources, comprising one-time costs of the various 
tests, the yearly costs of medication, and those associated with the 
four cardiovascular events. All costs were converted to 2016 prices 
and discounted at a rate of 4% [33].

Analyses

Based on the transition probabilities pertaining to the PA diagnosis, 
the cohort data were divided across health states (see Figure 2 and 
Supplementary Material, Appendix Figure 1). Using yearly cycles, we 
calculated the costs and QALYs proportional to either remaining in 
the starting health states or a progression to cardiovascular events 
or death. Next, we calculated the total costs and QALYs per patient 
at 10 years, 20 years and lifetime, and compared the costs and QALYs 
of the current test with those of the hypothetical test. We used these 
per-patient totals in our subsequent headroom [11], sensitivity and 
threshold analyses [34].

Our headroom analysis (see the Glossary in Figure 1) estimates 
the (financial) room for improvement in the current diagnostic 
pathway of patients with PA by comparing the ARR to a hypotheti-
cal, perfectly accurate test with a sensitivity and specificity of 1. 
The difference in QALYs between the current and the perfect diag-
nostic procedure is known as the effectiveness gap, or the health 
effects foregone due to diagnostic tests with imperfect accuracy 
in the current pathway. Headroom, then, is calculated by mon-
etizing the effectiveness gap using a cost-effectiveness threshold 
– in our case €20,000 per QALY, following the Dutch recommen-
dations for diagnostic and preventive interventions – and adding 

or subtracting any differences in costs between the current and 
perfect diagnostic strategy. For example, an effectiveness gap 
of 0.1 QALY with an additional cost of €500 gives a headroom of 
0.1 × €20,000–€500 = €1500. The resulting headroom can be inter-
preted as the maximum price at which a perfectly accurate PA test 
could be considered cost-effective. Given the lifelong consequences 
of cardiovascular events a lifetime horizon on costs and health ben-
efits is most appropriate. We will also report the main results at 10 
and 20 years after the diagnosis.

Many of the parameters in our model suffer from a degree of 
uncertainty. A PSA (see the Glossary in Figure 1) was conducted 
using 10,000  samples from beta distributions [34]. Standard 
errors for probabilistically varied parameters are listed in Supple-
mentary Material, Appendix Table 1. The results of the PSA are 
reported using the percentile method, yielding ranges similar to 
95% confidence intervals (CIs). Furthermore, a univariate sensi-
tivity analysis was conducted to investigate the individual impact 
of the following parameters: the sensitivity and specificity of the 
ARR (varied from 0.22 to 1 and 0.56 to 1, respectively, based on 
the ranges reported in a meta-analysis by Li et al. [15]), the preva-
lence of PA (varied from 5% to 25%), and the cost-effectiveness 
threshold (varied from €20,000 to €80,000). The ARR sensitivity 
and specificity values were selected because of the heterogeneous 
figures reported in the literature and the PA prevalence rate and 
cost-effectiveness threshold based on potential differences across 
health care settings.

A novel test for PA is unlikely to be perfect and costless, hence 
we also performed a multivariate threshold analysis to investigate 
trade-offs between a novel test’s sensitivity, specificity and cost. In 
this analysis both sensitivity and specificity were varied from 0 to 1 
in steps of 0.1.

Ethical approval

Ethical approval: the conducted research is not related to either 
human or animals use.

Results

Headroom analysis

The average QALYs per patient of the ARR strategy with 
a  lifetime horizon were 21.249 vs. 21.276 for the perfect 
diagnostic strategy (Table 1). The average lifetime costs 
per  patient were €17,779 vs. €17,822. Compared to the 
current test, a perfect test would yield 0.027 QALYs – or 
nearly 10  days in perfect health – at a cost increase of 
€43 per patient. At our cost-effectiveness threshold of 
€20,000 per QALY gained, the resulting headroom is 
0.027 × €20,000–€43, or €498 (95% CI: €275–€808). 
When shorter time horizons of 10 and 20 years are consid-
ered, the potential headroom decreases, predominantly 
as a result of less QALYs that are to be gained.
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Univariate sensitivity analyses

The lifetime headroom results were further investigated 
whereby key parameters of interests were varied one by 
one (Figure 3). As an example, when the sensitivity of 
the current ARR test was changed from 0.89 to a perfect 
sensitivity of 1, the headroom was near 0, meaning the 
potential value of even a perfect diagnostic test would 
be limited. When an ARR test sensitivity of 0.22 was used 
(lowest point estimate from studies in the meta-analysis), 
headroom increased to €3500.

The sensitivity of the current test had the largest 
impact on the headroom estimate, followed by the cost-
effectiveness threshold. PA prevalence had some impact 
on the headroom, indicating that an improved test would 
be most valuable in care settings with relatively speak-
ing many PA patients. The impact of the specificity of the 
current test on the headroom results was negligible.

Multivariate threshold analysis

The results of the multivariate threshold analysis, in which 
the sensitivity and specificity of the novel test were varied 
simultaneously, are presented in Figure 4. To exemplify, a 
novel PA test for hypertensive patients with a sensitivity 

of 0.90 and a specificity of 1 may cost up to €51 more than 
the current test and still be considered cost-effective. Note 
that for the current test we assumed a sensitivity of 0.89 
and a specificity of 0.96 [15]. Figure 4 shows that a novel 
test for diagnosing PA may be worth the extra expenditure 
when its sensitivity is at least 0.90 and its specificity is at 
least 0.70.

Discussion
We applied headroom and threshold analyses to illustrate 
how early health economic modeling can support deci-
sions regarding biomarker innovations. Focusing on a 
hypothetical novel test as an alternative to the currently 
used ARR test in the diagnostic pathway of PA, we found 
that there was some room for improvement. Additional 
research is needed to determine whether a headroom of 
roughly €500 per patient provides realistic opportunities 
for the R&D of innovations such as LC-MS techniques. This 
will further depend on the costs of research, development, 
implementation and maintenance/calibration, sharing of 
equipment between centers, and many other factors.

Headroom analyses can similarly be applied to other 
indications and target populations to obtain an estimate 
of the room for improvement and the potential value of 

Figure 3: Tornado plot for the univariate sensitivity analyses, lifetime perspective on costs and effects.
Parameters of interest are listed on the y-axis, ranges specified in brackets. The x-axis contains the headroom values, with bars showing the 
result across the range of each parameter.

Table 1: Results of the headroom analysis as averages per patient.

Horizon Current test Perfect test Increments Headroom

QALYs Costs QALYs Costs QALYs Costs (95% CI)

10 years 7.721 €6867 7.724 €6915 0.003 €48 €19 (€9–€62)
20 years 13.692 €12,245 13.703 €12,280 0.011 €35 €181 (€90–€320)
Lifetime 21.249 €17,779 21.276 €17,822 0.027 €43 €498 (€275–€808)

Headroom was calculated with a cost-effectiveness threshold of €20,000 per QALY.
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specific applications of new health technologies – diag-
nostic or otherwise – before committing resources to their 
further development and clinical studies. Our analyses 
may be especially useful in the early stages of biomarker 
innovation [35].

Decisions to adopt (or discard) innovative techno-
logical applications are particularly complicated if there 
is debate about the diagnostic accuracy of the ARR test, 
currently applied in clinical practice. While most studies 
investigating the current ARR test for diagnosing PA in 
patients with essential hypertension found that its speci-
ficity and sensitivity are high, some studies showed that 
they may be as low as 0.56 and 0.22, respectively [22, 
36]. Through our model-based approach we were able to 
assess these discrepancies between studies by including 
them in a sensitivity analysis, showing how uncertainty 
regarding the ARR test’s sensitivity and specificity influ-
ence the headroom.

Several choices and assumptions we made in the 
modeling process are worth mentioning. Due to the lack 
of data, we assumed that patients would either remain 
normotensive or hypertensive without allowing for tran-
sitions between the two. Because in reality hypertensive 
patients can become normotensive with a reduced risk 
of developing cardiovascular events, our headroom may 
be overestimated. We also assumed that false negatives 
would never be identified as having PA, while in reality 
the persistence of hypertension will likely prompt further 
testing and, in some cases, the eventual diagnosis of 
PA. Although a delayed diagnosis is costly as well, our 
assumption may have resulted in an overestimation of 
the headroom in that it underestimates the current detec-
tion rate of PA. Likewise, the model may overestimate the 
extra risk of cardiovascular events in PA patients because 
they were computed relative to the risks in a hypertensive 

population that is likely to also contain undiagnosed PA 
patients.

Another choice we made is that we reduced the 
complex and multifaceted nature of the diagnostic process 
to one specific test and assumed that all other tests in the 
diagnostic pathway are perfectly accurate. While debat-
able [37], doing so allowed us to single out the effectiveness 
gap of the ARR test itself and ignore the inaccuracies of 
tests that are beyond the scope of our headroom analysis. 
In addition, we based the effectiveness of the medication 
regimen in false negatives and non-PA patients on a 50% 
treatment adherence. If the effectiveness is lower due to 
lower adherence to medication in daily practice, our head-
room is underestimated and vice versa. Finally, the effect 
of detecting PA will depend on the type of hypertensive 
patient that is being referred for PA diagnosis. Patients that 
have had therapy resistant hypertension for over a decade 
may profit less from treatment than patients who have been 
hypertensive for a shorter period of time – due to increased 
endocrine damage over time. In our model we synthesized 
evidence about treatment effects as if the target population 
was always identical, but this assumption is open to debate.

We acknowledge that these – and other – assump-
tions may affect the support for our model. However, our 
goal was to illustrate how an exploratory analysis could 
illustrate whether or not a (diagnostic) innovation might 
be worthwhile and why. Our model can easily be adapted 
to incorporate different assumptions or model inputs, for 
example, when new data becomes available, which makes 
it a versatile tool to assess the cost-effectiveness of pro-
posed innovations. It should be noted that we adopted 
a societal perspective, whereas the decision to invest in 
novel biomarker tests is usually taken at the level of the 
individual laboratory. While it is possible to adopt the per-
spective of the latter when doing early cost-effectiveness 

Figure 4: Results of the multivariate threshold analysis.
The Figure contains model results indicating the monetary loss or gains associated with a hypothetical new test for different specificity 
(y-axis) and sensitivity (x-axis) combinations. The red area indicates a net loss for the new test and the green area its additional value 
compared to the current test.



Kluytmans et al.: Assessing the value of clinical biomarker innovation      1719

analyses, we argue that it is desirable to make these R&D 
decisions from a societal perspective on the innovation’s 
costs and effects.

Thus, when it comes to clinical biomarker innovation, 
when is it worthwhile? We have illustrated that the answer 
to this question is more complex than a simple yes/no. As 
indicated, many factors determine whether the room for 
improvement in current care and the potential value of 
a specific diagnostic innovation are ‘large enough’. The 
analyses presented in this paper provide a starting point 
from which these factors may be investigated for specific 
novel biomarker technologies; if there is no room for 
improvement to begin with, or if it is known beforehand 
that the required diagnostic accuracy cannot be achieved, 
there would be no point in pursuing innovation. This may 
prevent a considerable waste of R&D resources that can 
now be spent on other, more (potentially) valuable inno-
vations. If early health economic modeling shows that an 
innovation is potentially worthwhile, the estimate of its 
potential added value may be updated anytime new infor-
mation becomes available – such as costs or diagnostic 
accuracy – by simply adding this information to the model. 
Similarly, research may show that current diagnostic tests 
are more or less accurate than previously believed, the 
impact of which can also be quickly processed by adding 
these new insights to the model.

In conclusion, we believe early health economic mod-
eling methods such as headroom analysis can help bio-
marker scientists and clinicians decide on innovations 
before committing considerable resources. On a larger 
scale, models like ours could help increase a biomark-
er’s clinical and monetary yield, and allow for efficient 
research budget allocation towards the most promising 
innovations. More applications of early modeling through 
collaborations between health economists and clinical 
experts will illustrate their benefits and help further their 
accessibility.
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