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suggested, we admit that it is the way sci-
ence perpetuates itself. Given the present 
situation and information, we do not see 
any justification to reinterpret our data.

We sincerely hope that our responses 
reassure the readership of the validity and 
robustness of the evidence regarding ar-
temisinin resistance.
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Ultralow-density Plasmodium 
falciparum Infections in African 
Settings

To the Editor—As countries accelerate 
towards elimination, an increasing pro-
portion of infections may be of low par-
asite densities. In a recent report, Girma 
and colleagues [1] deployed ultrasensitive 
diagnostics to characterize asymptomatic 
infections in Ethiopia. The Plasmodium 
falciparum prevalence was 1.3% by mi-
croscopy, 3.6% by conventional rapid 
diagnostic tests (RDT), 8.5% by ultrasen-
sitive Alere RDT, 22.2% by loop-medi-
ated isothermal amplification and 21.5% 
by ultrasensitive quantitative reverse 
transcription-polymerase chain reaction 
(qRT-PCR). These findings are in line 
with a growing body of evidence demon-
strating the superiority of ultrasensitive 
diagnostics in detecting low-density infec-
tions, when compared to microscopy and 
standard RDTs [2]. The reported qRT-PCR 
prevalence is considerably higher than 

prevalence estimates from a meta-analy-
sis tool that relates microscopy and PCR 
prevalence data from population sur-
veys [3]. Based on the meta-analysis, one 
would expect a P. falciparum PCR preva-
lence in the range of 2.9% to 10.6%. The 
higher prevalence in the study by Girma 
and colleagues [1] may be explained by 
their approach to targeting highly abun-
dant RNA targets instead of DNA targets. 
Their finding thus suggests that there may 
be a reservoir of infections that is too low 
to be detected by conventional diagnostics 
or even conventional PCR [4]. Our own 
findings, from cross-sectional surveys in 
pre-elimination settings of South Africa, 
are in line with the findings of Girma and 
colleagues [1], in the sense that we also 
detected infections with ultralow parasite 
densities, below the limit of detection of 
conventional PCR. Our study observed 
no RDT-positive infections or 18S nest-
ed-PCR–positive infections among 1475 
individuals, whilst 3.9% of the study pop-
ulation was positive for P. falciparum par-
asites by sensitive, telomere-associated 
repetitive element 2–based quantitative 
PCR (qPCR), sometimes with genetically 
complex infections (Table 1).

The real challenge of the study by 
Girma and colleagues [1], as well as of 
our own work, lies in the interpretation 
of such parasite survey data in relation 
to transmission patterns, particularly in 
low-transmission settings. Ethiopia and 
South Africa have both set targets for 
malaria elimination. It is unclear to what 
extent the presence of ultralow-density 
infections may challenge these ambi-
tions. The authors correctly point out the 

Table 1.  Plasmodium falciparum Infection and Multiplicity of Infection Outcomes in South Africa

Local Subjects Migrant Subjects

RDTs (First Response Malaria) 0 (0/933) 0 (0/542)

18S rRNA PCR 0 (0/933) 0 (0/542)

TARE-2 qPCR % (n/N) 2.6% (24/993) 6.1% (33/542)

Mean multiplicity of infections (range) 1.8 (1–3) 2.8 (1–5)

Subjects were recruited in 2 community-wide, cross-sectional surveys among asymptomatic participants in 2014 and 2015. 
The 18S rRNA PCR [5], TARE-2 qPCR [6], and multiplicity of infections [7] were based on established protocols, using 4.2 µL 
of blood from filter paper bloodspots. Abbreviation: PCR, polymerase chain reaction; RDT, rapid diagnostic tests; rRNA, ribo-
somal RNA; TARE-2 qPCR, telomere-associated repetitive element-2 quantitative PCR. 
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Reply to Awandu et al

To the Editor—We thank Awandu and 
colleagues for their insightful comments 
on our recent article describing ultra-
sensitive diagnostic tests for detection 
of asymptomatic malaria in a highly en-
demic region of Gambella, Ethiopia [1]. 
The higher prevalence noted in Gambella 

Table 2.  Variation in the Limit of Detections of the Different Molecular Tools for Diagnosing Plasmodium falciparum (modified from [12])

Method Target Gene LOD (parasites/mL)

Nested PCR 18S rRNA, dhfr-ts, 28S rRNA, stevor 100–10 000

PCR mitochondrial DNA 500

qPCR 18S rRNA, cox1, cytb, TARE-2 20–3000

qRT-PCR RNA extraction [1] 18S rRNA 2–20

LAMP 18S rRNA, mitochondrial DNA 1000–100 000

US-LAMP RNA extraction [1] 18S rRNA, exp1 0.8–50

NASBA 18S rRNA 20

Abbreviations: LOD, limit of detection; NASBA, nucleic acid sequence-based amplification; PCR, polymerase chain reaction; qPCR, quantitative polymerase chain reaction; qRT-PCR, quan-
titative reverse transcriptase polymerase chain reaction; rRNA, ribosomal RNA; RT, reverse transcriptase; TARE-2, telomere-associated repetitive element 2; US-LAMP, ultrasensitive loop 
mediated amplification.

Table 1.  Nested Polymerase Chain Reaction (PCR) Results of Samples Positive for Plasmodium falciparum by Quantitative Reverse Transcriptase PCR 
(n = 48) From the Gambella Study

Type No. (%) Median Parasite Count/mL Range (First Quartile −Third Quartile)

Nested PCR positive 29 (60.42) 11 390 1902.5–42 875

Nested PCR negative 19 (39.58) 95.8 27.5–439.9

Abbreviation: PCR, polymerase chain reaction.

limitations of cross-sectional surveys for 
answering such questions, since these fail 
to take into account parasite dynamics 
that may fluctuate on a daily basis [8]. The 
authors also did not perform any assess-
ment of gametocyte carriage or transmis-
sibility to mosquitoes, whilst longitudinal 
surveys that accurately measure parasite 
kinetics, gametocyte production, and on-
ward transmission potential are probably 
needed to truly determine the relevance 
of low-density infections for onward 
transmission. This contribution to trans-
mission not only depends on their infec-
tivity to mosquitoes, but also on real-life 
mosquito exposure [9]. In areas with low 
vector densities, inefficient vectors, or ef-
fective vector control, the transmission 
potential of low-density or ultralow-den-
sity infections is likely to be very lim-
ited. In other settings, such infections 
may plausibly form a stumbling block 
for elimination [10]. The study by Girma 
and colleagues [1] thereby forms a rele-
vant starting point to examine these im-
portant questions, which urgently need 
addressing to inform malaria policy.
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