
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/208890

 

 

 

Please be advised that this information was generated on 2020-09-09 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/237386241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/208890


J. Math. Phys. 60, 091701 (2019); https://doi.org/10.1063/1.5111344 60, 091701

© 2019 Author(s).

Convolution identities for Dunkl
orthogonal polynomials from the  Lie
superalgebra
Cite as: J. Math. Phys. 60, 091701 (2019); https://doi.org/10.1063/1.5111344
Submitted: 24 May 2019 . Accepted: 16 August 2019 . Published Online: 03 September 2019

Erik Koelink, Jean-Michel Lemay , and Luc Vinet

ARTICLES YOU MAY BE INTERESTED IN

An introduction to fractal uncertainty principle
Journal of Mathematical Physics 60, 081505 (2019); https://doi.org/10.1063/1.5094903

Slow manifolds for a nonlocal fast-slow stochastic system with stable Lévy noise
Journal of Mathematical Physics 60, 091501 (2019); https://doi.org/10.1063/1.5093181

An inverse problem in time-fractional diffusion equations with nonlinear boundary
condition
Journal of Mathematical Physics 60, 091502 (2019); https://doi.org/10.1063/1.5047074

https://images.scitation.org/redirect.spark?MID=176720&plid=1087480&setID=406887&channelID=0&CID=358799&banID=519828206&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=bcf0998991a65fb62c1c3b6e88d8397e82c6c5f3&location=
https://doi.org/10.1063/1.5111344
https://doi.org/10.1063/1.5111344
https://aip.scitation.org/author/Koelink%2C+Erik
https://aip.scitation.org/author/Lemay%2C+Jean-Michel
http://orcid.org/0000-0003-1347-1285
https://aip.scitation.org/author/Vinet%2C+Luc
https://doi.org/10.1063/1.5111344
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5111344
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5111344&domain=aip.scitation.org&date_stamp=2019-09-03
https://aip.scitation.org/doi/10.1063/1.5094903
https://doi.org/10.1063/1.5094903
https://aip.scitation.org/doi/10.1063/1.5093181
https://doi.org/10.1063/1.5093181
https://aip.scitation.org/doi/10.1063/1.5047074
https://aip.scitation.org/doi/10.1063/1.5047074
https://doi.org/10.1063/1.5047074


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Convolution identities for Dunkl orthogonal
polynomials from the osp(1∣2) Lie superalgebra

Cite as: J. Math. Phys. 60, 091701 (2019); doi: 10.1063/1.5111344
Submitted: 24 May 2019 • Accepted: 16 August 2019 •
Published Online: 3 September 2019

Erik Koelink,1 Jean-Michel Lemay,2 and Luc Vinet2

AFFILIATIONS
1 IMAPP, Radboud Universiteit, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
2Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada

ABSTRACT
New convolution identities for orthogonal polynomials belonging to the q = −1 analog of the Askey-scheme are obtained. Specialization of the
Chihara polynomials will play a central role as the eigenfunctions of a special element of the Lie superalgebra osp(1∣2) in the positive discrete
series representation. Using the Clebsch-Gordan coefficients, a convolution identity for the specialized Chihara, the dual -1 Hahn and the
Big -1 Jacobi polynomials are found. Using the Racah coefficients, a convolution identity for the Big -1 Jacobi and the Bannai-Ito polynomials
is found. Finally, these results are applied to construct a bilinear generating function for the Big -1 Jacobi polynomials.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5111344., s

I. INTRODUCTION
In Ref. 1, Granovskii and Zhedanov proposed an approach to obtain convolution identities for orthogonal polynomials of the Askey-

scheme through algebraic methods. The main idea is to study a self-adjoint element of a Lie algebra which corresponds to a recurrence
operator diagonalized by orthogonal polynomials in a suitable representation. In the tensor product of representations, the Clebsch-Gordan
decomposition and the Racah recoupling can then be used to relate polynomial eigenfunctions in two different bases to arrive at convolution
identities. Van der Jeugt2 expanded on this idea to obtain generalizations of some classical convolution identities for the Laguerre and Hermite
polynomials. One of the authors then joined Van der Jeugt3 to exploit this approach further and obtain convolution identities for the Meixner-
Pollaczek, the Hahn and the Jacobi polynomials, and their descendants with su(1, 1) as the underlying Lie algebra and also for the Al-Salam
Chihara, q-Racah, and Askey-Wilson polynomials using the quantized analog Uq(su(1, 1)). Two subsequent papers4,5 extended this work
and derived generating functions and Poisson kernels for some involved polynomials by using differential realizations of the discrete series
representations of su(1, 1) and their q-generalization.

The main goal of this paper is to use this construction to obtain convolution identities for orthogonal polynomials belonging to the
Bannai-Ito scheme of s1 orthogonal polynomials.6–12 These polynomials arise as the q = −1 limits of families belonging to the Askey tableau
of q-orthogonal polynomials.13 More precisely, most of its polynomials are defined by q → −1 limits of the Askey-Wilson polynomials and
its descendants. The −1 orthogonal polynomials are eigenfunctions of Dunkl operators14 which involve the reflection operator R defined by
Rf (x) = f (−x).15,16 For this reason, they are also called Dunkl orthogonal polynomials. The first example of such polynomials was introduced
by Bannai and Ito as a q→ −1 limit of the q-Racah polynomials in the classification of a category of the association scheme.6 They have since
been fully characterized8 and have appeared in various contexts: superintegrable systems17–19 and the transport of quantum information20,21,11

for example. The Lie superalgebra osp(1∣2), sometimes referred to as sl−1(2), has been found to provide a fruitful algebraic underpinning for
a number of −1 polynomials.22–24 In particular, the Clebsch-Gordan coefficients of osp(1∣2) can be expressed in terms of dual -1 Hahn
polynomials25 and the Racah coefficients in terms of Bannai-Ito polynomials.26 These two results are essential ingredients of the main results
of this paper: the convolution identities given in Propositions 4.4 and 4.7. The former relates the specialized Chihara, the dual -1 Hahn, and
the Big -1 Jacobi polynomials and the latter connects the Big -1 Jacobi and the Bannai-Ito polynomials. These results can also be interpreted
in another interesting way. They give connection coefficients for different two-variable polynomials orthogonal with respect to the same
measure. This is an interesting feature as the extension to multiple variables of the Bannai-Ito scheme is in its early stages.27–29 It is also quite
remarkable to have a framework relating so many Dunkl orthogonal polynomials. As additional results, we obtain a generating function for
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the specialized Chihara polynomials and follow an approach similar to the one used in Ref. 4 to obtain a bilinear generating function for the
Big -1 Jacobi polynomials. The discussion in Sec. V indicates that the results of Ref. 5 can be generalized to Lie superalgebra representations;
the complexity of the outcome will however increase considerably.

This paper is structured as follows: The properties of the relevant −1 orthogonal polynomials are surveyed in Sec. II, and Sec. III is ded-
icated to a review of the superalgebra osp(1∣2) and its Clebsch-Gordan and Racah coefficients. We proceed in Sec. IV to the construction of
convolution identities. A self-adjoint element of osp(1∣2) is introduced and its generalized eigenvectors in the positive discrete series repre-
sentation are obtained. Looking at the tensor product of irreducible representations, the Clebsch-Gordan coefficients are used to construct
a first convolution identity. Next, the three-fold tensor product and the Racah coefficients are considered to obtain a second convolution
identity. In Sec. V, we present a first application of these results and derive a bilinear generating function for the Big -1 Jacobi polynomials.
Finally, some closing remarks are given in the conclusion.

II. REVIEW OF DUNKL ORTHOGONONAL POLYNOMIALS
The results we present in this paper have the notable feature of connecting various orthogonal polynomials from the Bannai-Ito scheme

together. The families involved are the specialized Chihara polynomials Pn(λ; μ, γ), the Big -1 Jacobi polynomials Jn(x; a, b, c), the dual -1
Hahn polynomials Rn(x; η, ξ, N), and finally the Bannai-Ito polynomials Bn(x; ρ1, ρ2, r1, r2). We review in this section some of their properties
while establishing the notation that will be used throughout this paper.

A. Specialized Chihara polynomials
A one-parameter extension of the generalized Hermite polynomials was introduced in Ref. 12 as a special case of the Chihara polynomials

which both sit in the q =−1 analog of the Askey scheme. We present some of their properties here with a different normalization and a different
notation. For simplicity, we name them the specialized Chihara polynomials and denote them by Pn(λ; μ, γ) = Pn(λ). They satisfy the 3-term
recurrence relation

λPn(λ) = [n + 1]1/2μ Pn+1(λ) + γ(−1)nPn(λ) + [n]1/2μ Pn−1(λ), (2.1)

where [n]μ = n + (1 − (−1)n)μ denotes the μ-number. The specialized Chihara polynomials can be expressed in terms of Laguerre polynomials
in the following way:

P2n(λ;μ, γ) = (−1)n
¿
ÁÁÀ n! Γ(μ + 1

2)
Γ(n + μ + 1

2)
L
(μ− 1

2 )

n (λ
2 − γ2

2
),

P2n+1(λ;μ, γ) = (−1)n
¿
ÁÁÀ n! Γ(μ + 3

2)
Γ(n + μ + 3

2)
⎛
⎝

λ − γ√
2μ + 1

⎞
⎠
L
(μ+ 1

2 )

n (λ
2 − γ2

2
),

(2.2)

where the Laguerre polynomials are given in terms of the usual hypergeometric function

L(α)n (x) =
(α + 1)n

n! 1F1[
−n
α + 1

; x] (2.3)

with (a)n = a(a + 1)⋯ (a + n − 1) denoting the Pochhammer symbol. The specialized Chihara polynomials satisfy the orthogonality relation

∫
F
Pn(λ)Pm(λ)w(λ,μ, γ)dλ = 2Γ(μ + 1

2)δn,m, (2.4)

where F = (−∞, −|γ|) ∪ (|γ|,∞) and the weight function is given by

w(λ,μ, γ) = sign(λ)(λ + γ)(λ
2 − γ2

2
)
μ− 1

2

e
−(

λ2−γ2

2 )

. (2.5)

This result can easily be verified from the orthogonality of the Chihara polynomials or from that of the Laguerre polynomials. They also satisfy
a specialization of the differential-difference equation obeyed by the Chihara polynomials.

B. The Big -1 Jacobi polynomials
We now review some of the properties of the Big -1 Jacobi polynomials which shall be needed in the following. Denoted by Jn(x; a, b, c),

these polynomials are also part of the q = −1 analog of the Askey scheme and were introduced in Ref. 9 as a q→ −1 limit of the Big q-Jacobi
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polynomials. They are defined by

Jn(x; a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2F1[−
n
2 , n+a+b+2

2
a+1

2
; 1−x2

1−c2 ] + n(1−x)
(1+c)(a+1) 2F1[ 1− n

2 , n+a+b+2
2

a+3
2

; 1−x2

1−c2 ], n even,

2F1[−
n−1

2 , n+a+b+1
2

a+1
2

; 1−x2

1−c2 ] − (n+a+b+1)(1−x)
(1+c)(a+1) 2F1[−

n−1
2 , n+a+b+3

2
a+3

2
; 1−x2

1−c2 ], n odd,
(2.6)

where 2F1 is the standard Gauss hypergeometric function. We shall simply write Jn(x) instead of Jn(x; a, b, c) when the parameters are clear
from the context. They satisfy the recurrence relation

x Jn(x) = An Jn+1(x) + (1 − An − Cn) Jn(x) + Cn Jn−1(x)

with coefficients

An =
⎧⎪⎪⎨⎪⎪⎩

(n+a+1)(c+1)
2n+a+b+2 , n even,
(1−c)(n+a+b+1)

2n+a+b+2 , n odd,
Cn =

⎧⎪⎪⎨⎪⎪⎩

n(1−c)
2n+a+b , n even,
(n+b)(1+c)

2n+a+b , n odd.

It can be seen that for a, b > −1 and |c| ≠ 1, the polynomials Jn(x) are positive-definite. The orthogonality relation of the Big -1 Jacobi
polynomials is different for |c| < 1 and |c| > 1. In what follows, we only need the polynomials for the first case. For |c| < 1, one has

∫
C
Jn(x; a, b, c) Jm(x; a, b, c) ω(x; a, b, c) dx =

⎡⎢⎢⎢⎢⎣

(1 − c2) a+b+2
2

(1 + c)

⎤⎥⎥⎥⎥⎦
hn(a, b) δnm, (2.7)

where the interval is C = (−1,−∣c∣ ) ∪ ( ∣c∣, 1) and the weight function reads

ω(x; a, b, c) = sign(x) (1 + x) (x − c) (x2 − c2)
b−1

2 (1 − x2)
a−1

2 . (2.8)

The normalization factor hn is given by

hn(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 Γ( n+b+1
2 )Γ( n+a+3

2 )(
n
2 )!

(n+a+1) Γ( n+a+b+2
2 )(

a+1
2 )

2
n
2

, n even,

(n+a+b+1) Γ( n+b+2
2 )Γ( n+a+2

2 )(
n−1

2 )!

2 Γ( n+a+b+3
2 )(

a+1
2 )

2
n+1

2

, n odd.
(2.9)

The orthogonality relation for |c| > 1 and a difference equation can be found in Ref. 9.

C. The dual -1 Hahn polynomials
We now introduce a third family of orthogonal polynomials. The dual -1 Hahn polynomials, denoted by Rn(x; η, ξ, N) or Rn(x), depend

on two real parameters η, ξ and on an integer parameter N. They have been introduced in Ref. 11 as a q → −1 limit of the dual q-Hahn
polynomials. They have found applications in the transport of quantum information along spin chains20 and, of importance here, they have
also been shown to arise as the Clebsch-Gordan coefficients of the Lie superalgebra osp(1∣2).25 They satisfy the 3-term recurrence relation

xRn(x) = Rn+1(x) + ((−1)n+1(2ξ + (−1)N2η) − 1)Rn(x) + 4[n]ξ[N − n + 1]ηRn−1(x). (2.10)

They can be expressed as follows in terms of hypergeometric series. For N even, we have

Rn(x;η, ξ,N) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

16
n
2 (−N

2 )n
2
( 1−2η−N

2 )
n
2

3F2[
−
n
2 , δ+ x+1

4 , δ− x+1
4

−
N
2 ,

1−2η−N
2

; 1], n even,

16
n−1

2 (1− N
2 )n−1

2
( 1−2η−N

2 )
n−1

2

(x + 2η + 2ξ + 1) 3F2[
−
n−1

2 , δ+ x+1
4 , δ− x+1

4

1−N
2 ,

1−2η−N
2

; 1], n odd,
(2.11)

where δ = − η+ξ+N
2 and, for N odd, we have

Rn(x;η, ξ,N) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

16
n
2 ( 1−N

2 )n
2
( 2ξ+1

2 )n
2

3F2[
−
n
2 , δ+ x+1

4 , δ− x+1
4

1−N
2 ,

2ξ+1
2

; 1], n even,

16
n−1

2 ( 1−N
2 )n−1

2
( 2ξ+3

2 )n−1
2

(x + 2ξ − 2η + 1) 3F2[
−
n−1

2 , δ+ x+1
4 , δ− x+1

4
1−N

2 ,
2ξ+3

2
; 1], n odd,

(2.12)
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where δ = η+ξ+1
2 . The dual -1 Hahn polynomials are orthogonal with respect to the discrete measure

N

∑
s=0

ϖs(η, ξ,N)Rn(ys;η, ξ,N)Rm(ys,η, ξ,N) = νn(η, ξ,N)δn,m (2.13)

with the following grid points:

ys = {
(−1)s(2s − 2η − 2ξ − 2N − 1), N even,
(−1)s(2s + 2η + 2ξ + 1), N odd.

(2.14)

For N even, the weights and normalization factors are given by

ϖs(η, ξ,N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1) s
2

(−N
2 ) s

2
(−N

2 − η + 1
2) s

2
(−N − η − ξ) s

2

s
2 !(−N

2 − ξ + 1
2) s

2
(−N

2 − η − ξ) s
2

, s even,

(−1) s−1
2

(−N
2 ) s+1

2
(−N

2 − η + 1
2) s−1

2
(−N − η − ξ) s−1

2

s−1
2 !(−N

2 − ξ + 1
2) s−1

2
(−N

2 − η − ξ) s+1
2

, s odd,

(2.15)

νn(η, ξ,N) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

16n n
2 !(−N

2 ) n
2
(ξ + 1

2) n
2
(−N−2η+1

2 )
n
2

(−N−η−ξ) N
2

(
−N−2ξ+1

2 ) N
2

, n even,

−16n n−1
2 !(−N

2 ) n+1
2
(ξ + 1

2) n+1
2
(−N−2η+1

2 )
n−1

2

(−N−η−ξ) N
2

(
−N−2ξ+1

2 ) N
2

, n odd,
(2.16)

whereas for N odd, the weights and normalization factors are given by

ϖs(η, ξ,N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1) s
2

( 1−N
2 ) s

2
(ξ + 1

2) s
2
(η + ξ + 1) s

2

s
2 !(η + 1

2) s
2
(N+3

2 + η + ξ) s
2

, s even,

(−1) s−1
2

( 1−N
2 ) s−1

2
(ξ + 1

2) s+1
2
(η + ξ + 1) s−1

2

s−1
2 !(η + 1

2) s+1
2
(N+3

2 + η + ξ) s−1
2

, s odd,

(2.17)

νn(η, ξ,N) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

16n n
2 !( 1−N

2 ) n
2
(ξ + 1

2) n
2
(−N

2 − η) n
2

(η+ξ+1) N+1
2

(η+ 1
2 ) N+1

2

, n even,

−16n n−1
2 !( 1−N

2 ) n−1
2
(ξ + 1

2) n+1
2
(−N

2 − η) n+1
2

(η+ξ+1) N+1
2

(η+ 1
2 ) N+1

2

, n odd.
(2.18)

For future convenience, we introduce

zs = (−1)s+N+1(2s + 2η + 2ξ + 1), ρs(η, ξ,N) = {
ϖN−s(η, ξ,N), N even,
ϖs(η, ξ,N), N odd

(2.19)

which correspond to the grid points and weights of the dual -1 Hahn polynomials with the indices reversed when N is even but not when N is
odd.

D. The Bannai-Ito polynomials
We finally present a last family of orthogonal polynomials called the Bannai-Ito polynomials. They were originally discovered by Bannai

and Ito6 in their classification of P− and Q− polynomial association scheme which are in correspondence with orthogonal polynomials
satisfying the Leonard duality property. In this original setting, they were observed to be q→ −1 limit of the q-Racah polynomials. They have
also been shown to correspond to a q → −1 limit of the Askey-Wilson polynomials.8 The Bannai-Ito polynomials occur in a Bochner-type
theorem for first order Dunkl difference operators8 that has them at the top of the q = −1 analog of the q-Askey tableau. Of particular relevance
to this paper, they are the Racah coefficients for the Lie superalgebra osp(1∣2).26

The monic Bannai-Ito polynomials Bn(x; ρ1, ρ2, r1, r2), or Bn(x) for short, depend on 4 parameters ρ1, ρ2, r1, and r2 and the linear
combination

g = ρ1 + ρ2 − r1 − r2. (2.20)
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They are symmetric with respect to the Z2 × Z2 group transformations generated by ρ1 ↔ ρ2 and r1 ↔ r2. Throughout this section, it will be
convenient to write integers as follows:

n = 2ne + np, np ∈ {0, 1}, n,ne ∈ N. (2.21)
The Bannai-Ito polynomials can be defined in terms of two hypergeometric functions

1
ηn

Bn(x; ρ1, ρ2, r1, r2) = 4F3[
−ne , ne+g+1, x−r1+ 1

2 , −x−r1+ 1
2

1−r1−r2 , ρ1−r1+ 1
2 , ρ2−r1+ 1

2

; 1] (2.22)

+
(−1)n(ne+np+gnp)(x−r1 + 1

2)
(ρ1 − r1 + 1

2)(ρ2 − r1 + 1
2)

4F3[
−ne−np+1, ne+np+g+1, x−r1+ 3

2 , −x−r1+ 1
2

1−r1−r2 , ρ1−r1+ 3
2 , ρ2−r1+ 3

2

; 1]

with the normalization coefficients

ηn = (−1)n
(ρ1 − r1 + 1

2)ne+np(ρ2 − r1 + 1
2)ne+np(1 − r1 − r2)ne

(ne + g + 1)ne+np
. (2.23)

It is also possible to express the Bannai-Ito polynomials as a linear combination of two Wilson polynomials.8

The Bn(x) satisfy the 3-term recurrence relation

xBn(x) = Bn+1(x) + (ρ1 − An − Cn)Bn(x) + An−1CnBn−1(x), (2.24)

with the initial conditions B−1(x) = 0 and B0(x) = 1. The recurrence coefficients An and Cn are given by

An =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(n + 2ρ1 − 2r1 + 1)(n + 2ρ1 − 2r2 + 1)
4(n + g + 1) , n even,

(n + 2g + 1)(n + 2ρ1 + 2ρ2 + 1)
4(n + g + 1) , n odd,

Cn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−n(n − 2r1 − 2r2)
4(n + g) , n even,

−(n + 2ρ2 − 2r2)(n + 2ρ2 − 2r1)
4(n + g) , n odd.

(2.25)

Favard’s theorem states that these polynomials will be orthogonal only if they satisfy the positivity conditions un = An−1Cn > 0. Since this
cannot be achieved for all n ∈ N, the parameters must verify a truncation condition of the form

u0 = uN+1 = 0. (2.26)

The integer N is called the truncation parameter.
If these conditions are fulfilled, the Bannai-Ito polynomials Bn(x) satisfy the discrete orthogonality relation

N

∑
k=0

wkBn(xk)Bm(xk) = hnδnm, (2.27)

with respect to a positive set of weights wk. The orthogonality grid xk corresponds to the simple roots of the characteristic polynomial BN+1(x).
The explicit formulas for the weight function wk and the grid points xk depend on the parity of N and more explicitly on the realization of the
truncation condition uN+1 = 0.

If N is even, it follows from (2.25) that the condition uN+1 = 0 is tantamount to one of the following requirements associated with all
possible values of j and ℓ:

i) rj − ρℓ =
N + 1

2
, j, ℓ ∈ {1, 2}. (2.28)

Note that the four possibilities coming from the choices of j and ℓ are equivalent since the polynomials Bn(x) are invariant under the exchanges
ρ1↔ ρ2 and r1↔ r2.

If N is odd, it follows from (2.25) that the condition uN+1 = 0 is equivalent to one of the following restrictions:

ii) ρ1 + ρ2 = −
N + 1

2
, iii) r1 + r2 =

N + 1
2

, iv) ρ1 + ρ2 − r1 − r2 = −
N + 1

2
. (2.29)

In this paper, we shall only be concerned with the truncation conditions r2 − ρ1 = N+1
2 when N is even and ρ1 + ρ2 = −N+1

2 when N is odd. In
these cases, the grid points have the expression

xk = (−1)k(k/2 + ρ1 + 1/4) − 1/4, (2.30)
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for k = 0, . . ., N, and using (2.21), the weights take the form

wk =
(−1)k
ke!

(ρ1 − r1 + 1/2)ke+kp(ρ1 − r2 + 1/2)ke+kp(ρ1 + ρ2 + 1)ke(2ρ1 + 1)ke
(ρ1 + r1 + 1/2)ke+kp(ρ1 + r2 + 1/2)ke+kp(ρ1 − ρ2 + 1)ke

, (2.31)

where (a)n = a(a + 1)⋯ (a + n − 1) denotes the Pochhammer symbol. When N is even, the normalization factors are given by

hn =
ne!Ne!(1 + 2ρ1)Ne(1 + ρ1 + ρ2)ne(1 + ne + g)Ne−ne( 1

2 + ρ1 − r1)ne+np( 1
2 + ρ2 − r1)ne+np

(Ne − ne − np)!( 1
2 + ρ1 + r1)Ne−ne( 1

2 + ne + np + ρ2 − r2)Ne−ne−np(1 + n + g)2
ne+np

(2.32)

and, for N odd, they are instead given by

hn =
ne!Ne!(1 + 2ρ1)Ne+1(1−r1−r2)ne(1+ne+g)Ne+1−ne( 1

2 +ρ1−r1)ne+np( 1
2 +ρ1−r2)ne+np

(Ne−ne)!( 1
2 + ρ1 + r1)Ne+1−ne−np( 1

2 + ne + np + ρ2 − r2)Ne+1−ne−np(1 + n + g)2
ne+np

. (2.33)

The Bannai-Ito polynomials also verify a difference equation. It was shown in Ref. 8 that in fact they diagonalize the most general first
order Dunkl difference operator with orthogonal polynomials as eigenfunctions.

III. THE osp(1∣2) LIE SUPERALGEBRA
This section describes the key entity upon which our study rests, namely, the Lie superalgebra osp(1∣2). This superalgebra possesses

one even generator J0 and two odd generators J±. The Z2-grading will be encoded with the help of an involution operator R. The defining
relations are

[J0, J±] = ±J±, {J+, J−} = 2J0, [R, J0] = {R, J±} = 0, R2 = 1, (3.1)

where [A, B] = AB − BA and {A, B} = AB + BA are the usual commutator and anticommutator. There is a Casimir operator

Q = (J+J− − J0 + 1
2)R (3.2)

which commutes with all the generators. Moreover, osp(1∣2) also admits a Hopf algebra structure. In particular, there is an algebra morphism
called the coproduct defined on the universal enveloping algebra Δ : U(osp(1∣2))→ U(osp(1∣2))⊗U(osp(1∣2)) which acts as follows:

Δ(J±) = J± ⊗ R + 1⊗ J±, Δ(J0) = J0 ⊗ 1 + 1⊗ J0, Δ(R) = R⊗ R (3.3)

and a ∗-structure given by J∗± = J∓, J∗0 = J0, and R∗ = R. The Hilbert space ℓ2(Z+) equipped with the orthonormal basis e(μ,ϵ)
n ,n = 0, 1, . . .

supports irreducible representations (μ, ϵ) of osp(1∣2) indexed by two parameters μ > 0 and ϵ = ±1,

J0e
(μ,ϵ)
n = (n + μ + 1

2)e
(μ,ϵ)
n , Re(μ,ϵ)

n = ϵ(−1)ne(μ,ϵ)
n ,

J+e
(μ,ϵ)
n = [n + 1]1/2μ e(μ,ϵ)

n+1 , J−e
(μ,ϵ)
n = [n]1/2μ e(μ,ϵ)

n−1 ,
(3.4)

where [n]μ = n + (1 − (−1)n)μ denotes again the μ-number. It is called the positive discrete series representation, and the decomposition into
irreducible components of the tensor product of two such representations is given by

(μ1, ϵ1)⊗ (μ2, ϵ2) =
∞

⊕
j=0
(μ1 + μ2 + 1

2 + j, ϵ1ϵ2(−1) j). (3.5)

This Clebsch-Gordan decomposition series implies that there is a unitary transformation between the direct product and direct sum bases of
the representations involved,

e(μ12 ,ϵ12)

N = ∑
n1+n2=N+j

CN,j
n1 ,n2e

(μ1 ,ϵ1)
n1 ⊗ e(μ2 ,ϵ2)

n2 , (3.6)

where
μ12 = μ1 + μ2 + j + 1

2 , ϵ12 = ϵ1ϵ2(−1) j, j = 0, 1, 2, . . . . (3.7)

The Clebsch-Gordan coefficients of osp(1∣2) are given in terms of the dual -1 Hahn polynomials25 by

CN,j
n1 ,n2 = (−1)ϕ(n1 ,n2 ,j)( ϵ2

2
)
n1

¿
ÁÁÀ [n2]μ2 ! ρj(μ2,μ1,n1 + n2)
[n1]μ1 ![n1 + n2]μ2 ! ν0(μ2,μ1,n1 + n2)

Rn1(zj;μ2,μ1,n1 + n2) (3.8)
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with the μ-factorial defined by [n]μ! = [1]μ[2]μ ⋯ [n]μ. Here, we fix the phase factors to be

ϕ(n1,n2, j) = n1(n1 − 1)
2

+
j( j + 1)

2
+ n1(n1 + n2 + 1). (3.9)

The Clebsch-Gordan decomposition can also be used to recouple the multiple tensor product of irreducible representations in a pairwise
fashion. For instance, when considering the three-fold tensor product (μ1, ϵ1) ⊗ (μ2, ϵ2) ⊗ (μ3, ϵ3), there are two standard ways of doing this.
On the one hand, one can decompose the first two spaces into irreducible representations and then couple the resulting spaces with the third
component,

(μ1, ϵ1)⊗ (μ2, ϵ2)⊗ (μ3, ϵ3) =
∞

⊕
j12=0
(μ12, ϵ12)⊗ (μ3, ϵ3) =

∞

⊕
j12=0

∞

⊕
j(12)3=0

(μ123, ϵ123). (3.10)

On the other hand, it is possible to combine the last two spaces first and to bring in the first component subsequently,

(μ1, ϵ1)⊗ (μ2, ϵ2)⊗ (μ3, ϵ3) =
∞

⊕
j23=0
(μ1, ϵ1)⊗ (μ23, ϵ23) =

∞

⊕
j23=0

∞

⊕
j1(23)=0

(μ123, ϵ123). (3.11)

Focusing on the parameters μ, the following relations stem from the repeated use of (3.7):

μ123 = μ1 + μ2 + μ3 + 1 + j123 (3.12)
= μ12 + μ3 + j(12)3 (3.13)

= μ1 + μ23 + j1(23) (3.14)

and

μ12 = μ1 + μ2 + j12, μ23 = μ2 + μ3 + j23. (3.15)
Analogous relations can be found for the parameters ϵ. These equations imply that the five decomposition integers j are constrained,

j123 = j1(23) + j23 = j(12)3 + j12. (3.16)

While only three decomposition integers are independent, it will be convenient to use all five to simplify the notation especially when dealing
with indices. Now, to each of the two decomposition schemes, one can associate a basis. To the scheme, (3.10) corresponds

f j123 ,j12
n123 = ∑

n12+n3

Cn123 ,j(12)3
n12 ,n3 e(μ12 ,ϵ12)

n12 ⊗ e(μ3 ,ϵ3)
n3 (3.17)

= ∑
n12+n3

∑
n1+n2

Cn123 ,j(12)3
n12 ,n3 Cn12 ,j12

n1 ,n2 e(μ1 ,ϵ1)
n1 ⊗ e(μ2 ,ϵ2)

n2 ⊗ e(μ3 ,ϵ3)
n3 (3.18)

where the sums run over n123 + j123 = n12 + n3, n12 + j12 = n1 + n2, and to (3.11), the basis

g j123 ,j23
n123 = ∑

n1+n23

Cn123 ,j1(23)
n1 ,n23 e(μ1 ,ϵ1)

n1 ⊗ e(μ23 ,ϵ23)
n23 (3.19)

= ∑
n1+n23

∑
n2+n3

Cn123 ,j1(23)
n1 ,n23 Cn23 ,j23

n2 ,n3 e(μ1 ,ϵ1)
n1 ⊗ e(μ2 ,ϵ2)

n2 ⊗ e(μ3 ,ϵ3)
n3 (3.20)

where n123 + j123 = n1 + n23 and n23 + j23 = n2 + n3. The connection coefficients for these two bases are called the Racah coefficients. Explicitly,

f j123 ,j12
n123 =

j123

∑
j23=0

Rμ1 ,μ2 ,μ3
j12 ,j23 ,j123

g j123 ,j23
n123 . (3.21)

It has been shown in Ref. 26 that the Racah coefficients for the osp(1∣2) Lie superalgebra can be expressed in terms of Bannai-Ito polynomials
given in (2.22). One has

Rμ1 ,μ2 ,μ3
j12 ,j23 ,j123

= (−1)φϵj12
3

√
wj23

hj12

Bj12(xj23 ; μ2+μ3
2 , μ1+(−1)j123 μ123

2 , μ3−μ2
2 , (−1)j123 μ123−μ1

2 ), (3.22)

where the xk, wk, and hn are given in Eq. (2.30)–(2.33) where the parameters of the Bannai-Ito polynomials ρi, ri, and i = 1, 2 are assumed to
be the same as in the polynomial Bj12(x; ρ1, ρ2, r1, r2) above. The choice of the phase factor relevant for this paper is

φ = j123
( j12 − 1)j12

2
+ ( j123 + 1)( j23 +

( j12 + 1)j12

2
). (3.23)
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IV. CONVOLUTION IDENTITIES
The construction of convolution identities for orthogonal polynomials that we are proposing here will proceed along the following lines:

select an appropriate self-adjoint element X from the Lie superalgebra, construct its generalized eigenvectors in a given representation, and
study their overlaps in the tensor product of representations. In order to obtain orthogonal polynomials, this Lie superalgebra element should
act as a three-term recurrence operator in the chosen representation. Furthermore, the chosen element should generate a coideal subalgebra
to ensure proper behavior under the tensor product of representations. The self-adjoint element we consider here is

Xc = J+ + J− + cR (4.1)

in the osp(1∣2) Lie superalgebra depending on a single parameter c ∈ R. While this is not the most general self-adjoint element in osp(1∣2),
the addition of a J0 term would break the coideal property given in Eq. (4.11). Indeed, this property is nontrivial for algebras with a twisted
coproduct such as (3.3). See Ref. 3 for example, where this construction is done for su(1, 1) andUq(su(1, 1)), where the coproduct is untwisted
in the first case and twisted in the second.

With the element Xc at hand, we shall study its discrete series representations and compute its generalized eigenvectors in
Subsection IV A. In the subsequent ones, we will, respectively, consider the two-fold and three-fold tensor product of irreducible
representations and derive two convolution identities.

A. Action of X c in the positive discrete series representation
The operator Xc has a tridiagonal structure in the representation space (μ, ϵ) defined in (3.4). One has

Xce
(μ,ϵ)
n = [n + 1]1/2μ e(μ,ϵ)

n+1 + cϵ(−1)ne(μ,ϵ)
n + [n]1/2μ e(μ,ϵ)

n−1 . (4.2)

Let vcλ denote the eigenvector with eigenvalue λ of Xc. Then, there is an expansion of the form

vcλ =
∞

∑
n=0

ane
(μ,ϵ)
n , an ∈ R. (4.3)

Acting on both sides of this equation with the operator Xc gives the following 3-term recurrence relation on the expansion coefficients an:

λan = [n + 1]1/2μ an+1 + cϵ(−1)nan + [n]1/2μ an−1. (4.4)

There is a solution of the form an = Pn(λ) ⋅ a0, where Pn(λ) are orthogonal polynomials satisfying the recurrence relation

λPn(λ) = [n + 1]1/2μ Pn+1(λ) + cϵ(−1)nPn(λ) + [n]1/2μ Pn−1(λ). (4.5)

Comparing this equation with the recurrence relation (2.1), one sees directly that the Pn(λ) are specialized Chihara polynomials with the
following parameters:

Pn(λ) = Pn(λ;μ, cϵ). (4.6)

Taking into account the normalization factor in the orthogonality relation (2.4), the polynomials Pn(λ; μ, cϵ) are thus orthonormal with respect
to the weight function

W(λ,μ, cϵ) = w(λ,μ, cϵ)
2Γ(μ + 1

2)
(4.7)

in the interval F = (−∞, |c|) ∪ (|c|,∞), where the w(λ, μ, cϵ) are given in (2.5). If one asks that the eigenvectors vcλ be orthonormal, it is easy
to see that this implies a0 = 1 and that the generalized eigenvectors of Xc are

vcλ =
∞

∑
n=0

Pn(λ;μ, cϵ) e(μ,ϵ)
n . (4.8)

Note that the series in (4.8) does not converge in the representation space and should be considered as a formal eigenvector. We reformulate
this result in the following proposition.

Proposition 4.1. The unitary operator

Λ : ℓ2(Z+)→ L2(F,W(λ,μ, cϵ))

e(μ,ϵ)
n ↦ Pn(λ,μ, cϵ)

(4.9)

is an intertwiner of the operator Mλ which denotes multiplication by λ on L2(F, W(λ, μ, cϵ)) and the operator Xc acting in ℓ2(Z+),

MλΛ = ΛXc. (4.10)
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Proof. The unitarity of Λ is checked from the fact that it maps an orthonormal basis onto another one. The intertwining relation derives
directly from the above computation. ◽

B. Action on the tensor product space
We now wish to study the action of the coproduct of Xc on a tensor product of irreducible representations (μ1, ϵ1) ⊗ (μ2, ϵ2) and obtain

its generalized eigenvectors. A straightforward computation yields

Δ(Xc) = Xc ⊗ R + 1⊗ X0, (4.11)

where X0 denotes the operator Xc with its parameter set to zero. In view of how it acts on the first space in the tensor product, it is natural to
study the action of Δ(Xc) on vectors of the following form:

Δ(Xc)vcλ1 ⊗ e(μ2 ,ϵ2)
n2 = vcλ1 ⊗ (λ1R + X0)e(μ2 ,ϵ2)

n2 (4.12)

= vcλ1 ⊗ Xλ1e
(μ2 ,ϵ2)
n2 , (4.13)

where vcλ1
is an eigenvector of Xc given by (4.8) and Xλ1 is the operator (4.1) with parameter λ1. Consequently, the generalized eigenvectors of

Δ(Xc) are

vcλ1 ,λ2 =
∞

∑
n1 ,n2=0

Pn1(λ1;μ1, cϵ1)Pn2(λ2;μ2, λ1ϵ2) e(μ1 ,ϵ1)
n1 ⊗ e(μ2 ,ϵ2)

n2 (4.14)

with eigenvalues λ2. This allows us to establish the following proposition.

Proposition 4.2. The unitary operator

Υ : ℓ2(Z+)⊗ ℓ2(Z+)→ L2(G,W(λ1,μ1, cϵ1)W(λ2,μ2, λ1ϵ2))

e(μ1 ,ϵ1)
n1 ⊗ e(μ2 ,ϵ2)

n2 ↦ Pn1(λ1;μ1, cϵ1)Pn2(λ2;μ2, λ1ϵ2)
(4.15)

with
G = {(λ1, λ2) ∈ R ∣ ∣λ2∣ > ∣λ1∣ > ∣c∣}

is an intertwiner of the operator Mλ2 denoting multiplication by λ2 on L2(G, W(λ1, μ1, cϵ1)W(λ2, μ2, λ1ϵ2)) and the operator Δ(Xc) acting in
ℓ2(Z+)⊗ ℓ2(Z+),

Mλ2Υ = ΥΔ(Xc). (4.16)

Proof. The proof is similar to that of the previous proposition. Unitarity follows from the mapping of an orthonormal basis onto another
one and the intertwining relation is a restatement of the eigenvectors computed above. ◽

Now, in view of the Clebsch-Gordan decomposition (3.5) of (μ1, ϵ1) ⊗ (μ2, ϵ2) into irreducible representations, there exists another
orthonormal basis e(μ12 ,ϵ12)

N with N = 0, 1, . . . and

μ12 = μ1 + μ2 + j + 1
2 , ϵ12 = ϵ1ϵ2(−1) j, j = 0, 1, . . . , (4.17)

where j labels the irreducible subspaces of the form (μ12, ϵ12) in the tensor product space. This basis is often referred to as the coupled basis,
while the basis e(μ1 ,ϵ1)

n1 ⊗ e(μ2 ,ϵ2)
n2 is called the uncoupled basis. The operator Υ also maps the coupled basis to a set of orthonormal polynomials

in L2(G, W(λ1, μ1, cϵ1)W(λ2, μ2, λ1ϵ2)).

Proposition 4.3. In L2(G, W(λ1, μ1, cϵ1)W(λ2, μ2, λ1ϵ2)), we have

Υe(μ12 ,ϵ12)

N (λ1, λ2) = PN(λ2;μ12, cϵ12)Υe(μ12 ,ϵ12)

0 (λ1, λ2), (4.18)

Υe(μ12 ,ϵ12)

0 (λ1, λ2) = Kj(λ2;μ2,μ1; c) Jj(
ϵ2λ1

λ2
; 2μ2, 2μ1,− cϵ1ϵ2

λ2
) (4.19)

with

Kj(λ2;μ2,μ1; c) =

¿
ÁÁÁÀ(λ

2
2 − c2

2
)
j

( λ2 − cϵ1ϵ2

λ2 − (−1) jcϵ1ϵ2
)

Γ(μ1 + 1
2)Γ(μ2 + 1

2)
Γ(μ12 + 1

2)hj(2μ2, 2μ1)
, (4.20)

where the notation of Sec. II for the specialized Chihara and the Big -1 Jacobi polynomials is assumed.
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Proof. Use the intertwining relation (4.16) to write

λ2Υe(μ12 ,ϵ12)

N =Mλ2Υe
(μ12 ,ϵ12)

N = ΥΔ(Xc)e(μ12 ,ϵ12)

N . (4.21)

The action of Δ(Xc) on the irreducible spaces (μ12, ϵ12) is given by the relations (3.4). This yields a 3-term recurrence relation on N of the
same form as (4.4). Its solution is (4.18) where the initial condition Υe(μ12 ,ϵ12)

0 (λ1, λ2) remains to be determined. To obtain it, note that the
orthonormality of the vectors and the unitarity of Υ imply the following. Using the notation (4.17) and μ̃12 = μ1 + μ2 + 1

2 + j̃, ϵ̃12 = ϵ1ϵ2(−1)j̃,
one has

δN,Ñδj,̃j = ⟨e
(μ12 ,ϵ12)

N , e(μ̃12 ,ϵ̃12)

Ñ ⟩ = ⟨Υe(μ12 ,ϵ12)

N ,Υe(μ̃12 ,ϵ̃12)

Ñ ⟩

=∬
G
PN(λ2;μ12, cϵ12)PÑ(λ2; μ̃12, cϵ̃12)Υe(μ12 ,ϵ12)

0 (λ1, λ2)Υe(μ̃12 ,ϵ̃12)

0 (λ1, λ2)

×W(λ1,μ1, cϵ1)W(λ2,μ2, λ1ϵ2)dλ1dλ2.

(4.22)

Integrate first on λ1,

δN,Ñδj,̃j = ∫
G2

PN(λ2;μ12, cϵ12)PÑ(λ2; μ̃12, cϵ̃12)

× ∫
G1

Υe(μ12 ,ϵ12)

0 (λ1, λ2)Υe(μ̃12 ,ϵ̃12)

0 (λ1, λ2)W(λ1,μ1, cϵ1)W(λ2,μ2, λ1ϵ2)dλ1dλ2,
(4.23)

where

G1 = (−λ2,−∣c∣) ∪ (∣c∣, λ2), G2 = (−∞,−∣c∣) ∪ (∣c∣,∞). (4.24)

If we consider the special case j = j̃, the inner integral on λ1 must correspond to the orthogonality measure of the specialized Chihara
polynomials PN(λ2; μ12, cϵ12) since the corresponding moment problem is determined. This can be checked from the divergence of the
series ∑∞n=1[n]

−1/2
μ which satisfies one of Carleman’s conditions for determinacy.30 Furthermore, applying Υ on both sides of the Clebsch-

Gordan decomposition (3.6) with N = 0, one can deduce that Υe(μ12 ,ϵ12)

0 is a polynomial of degree j in the variables λ1 and λ2. Taking these
two observations into account, it is possible to identify Υe(μ12 ,ϵ12)

0 in terms of Big -1 Jacobi polynomials. Indeed, setting u = ϵ2λ1/λ2, it is
straightforward to identify the resulting weight factors with those of the Big -1 Jacobi polynomials given in (2.8) in the variable u. This gives
the result (4.19). The normalization factor (4.20) is obtained by comparing the weight function in the integral on λ2 with that of the specialized
Chihara polynomials PN(λ2; μ12, cϵ12) given in (2.5) and computing the integral. ◽

Thus, Eqs. (4.18) and (4.19) give us the action of Υ on the coupled basis. With these results in hand, it is now possible to obtain a
convolution identity for the specialized Chihara, Big -1 Jacobi, and dual -1 Hahn polynomials.

Proposition 4.4. In the notation of Sec. II for the specialized Chihara, Big -1 Jacobi, and dual -1 Hahn polynomials, the following
convolution identity holds:

Kj(λ2;μ2,μ1; c) PN(λ2;μ12, cϵ12)Jj(
ϵ2λ1

λ2
; 2μ2, 2μ1,− cϵ1ϵ2

λ2
)

= ∑
n1+n2=N+j

(−1)ϕ(n1 ,n2 ,j)( ϵ2

2
)
n1

¿
ÁÁÀ [n2]μ2 ! ρj(μ2,μ1,n1 + n2)
[n1]μ1 ![n1 + n2]μ2 ! ν0(μ2,μ1,n1 + n2)

× Rn1(zj;μ2,μ1,n1 + n2)Pn1(λ1;μ1, cϵ1)Pn2(λ2;μ2, λ1ϵ2).

(4.25)

Proof. Consider the Clebsch-Gordan decomposition (3.6) and apply the operator Υ on each side of the equation. Using (4.15), (4.18),
and (4.19), one obtains the above formula. ◽

Remark 1. It is also possible to obtain another convolution identity using the inverse basis expansion,

Pn1(λ1;μ1, cϵ1)Pn2(λ2;μ2, λ1ϵ2)

= ∑
N+j=n1+n2

(−1)ϕ(n1 ,n2 ,j)( ϵ2

2
)
n1

¿
ÁÁÀ [n2]μ2 ! ρj(μ2,μ1,n1 + n2)
[n1]μ1 ![n1 + n2]μ2 ! ν0(μ2,μ1,n1 + n2)

(4.26)

× Rn1(zj;μ2,μ1,n1 + n2)Kj(λ2;μ2,μ1; c) PN(λ2;μ12, cϵ12)Jj(
ϵ2λ1

λ2
; 2μ2, 2μ1,− cϵ1ϵ2

λ2
).
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Remark 2. Note that the Propositions 4.2 and 4.3 both define polynomials in two variables λ1, λ2 of the Tratnik-type that are orthogonal
with respect to the same measure W(λ1, μ1, cϵ1)W(λ2, μ2, λ1ϵ2) on G. In this picture, the convolution identities (4.25) and (4.26) provide
connection coefficients for these two sets of orthogonal polynomials. This is an interesting result especially since the generalization to multiple
variables of the Bannai-Ito scheme is still in its early stages. Note that Sec. IV C similarly gives orthogonal polynomials in three variables in
this class.

C. Action on the three-fold tensor product space
We now study how the operator Xc can be extended to the three-fold tensor product space (μ1, ϵ1) ⊗ (μ2, ϵ2) ⊗ (μ3, ϵ3). This will lead to

another convolution identity involving the Racah coefficients of osp(1∣2). One first computes

Δ2(Xc) ≡ (1⊗ Δ)Δ(Xc) = Δ(Xc)⊗ R + Δ(1)⊗ X0

= Xc ⊗ R⊗ R + 1⊗ X0 ⊗ R + 1⊗ 1⊗ X0.
(4.27)

The notation Δ2 is unambiguous because of the coassociativity of the coproduct, (1⊗Δ)Δ = (Δ⊗ 1)Δ. The eigenvectors of Δ2(Xc) can be found
by studying its action on vectors of the form vcλ1 ,λ2

⊗ en3 ,

Δ2(Xc)vcλ1 ,λ2 ⊗ en3 = (Δ(Xc)⊗ R + Δ(1)⊗ X0)vcλ1 ,λ2 ⊗ en3

= (1⊗ 1⊗ λ2R + 1⊗ 1⊗ X0)vcλ1 ,λ2 ⊗ en3

= (1⊗ 1⊗ Xλ2)v
c
λ1 ,λ2 ⊗ en3

= vcλ1 ,λ2 ⊗ Xλ2en3 .

(4.28)

It follows naturally that the generalized eigenvectors are

vcλ1 ,λ2 ,λ3 =
∞

∑
n1 ,n2 ,n3=0

Pn1(λ1;μ1, cϵ1)Pn2(λ2;μ2, λ1ϵ2)Pn3(λ3;μ3, λ2ϵ3) e(μ1 ,ϵ1)
n1 ⊗ e(μ2 ,ϵ2)

n2 ⊗ e(μ3 ,ϵ3)
n3 (4.29)

with eigenvalues λ3. This establishes the analog of Propositions 4.1 and 4.2.

Proposition 4.5. The unitary operator

Θ : ℓ2(Z+)⊗ ℓ2(Z+)⊗ ℓ2(Z+)→ L2(G(3),W(3)), (4.30)

e(μ1 ,ϵ1)
n1 ⊗ e(μ2 ,ϵ2)

n2 ⊗ e(μ3 ,ϵ3)
n3 ↦ Pn1(λ1;μ1, cϵ1)Pn2(λ2;μ2, λ1ϵ2)Pn3(λ3;μ3, λ2ϵ3), (4.31)

where

G(3) = {(λ1, λ2, λ3) ∈ R ∣ ∣λ3∣ > ∣λ2∣ > ∣λ1∣ > ∣c∣}

and

W(3) =W(λ1,μ1, cϵ1)W(λ2,μ2, λ1ϵ2)W(λ3,μ3, λ2ϵ3).

is an intertwiner of the operator Mλ3 on L2(G(3), W(3)) and the operator Δ2(Xc) acting in ℓ2(Z+)⊗ ℓ2(Z+)⊗ ℓ2(Z+),

Mλ3Θ = ΘΔ
2(Xc). (4.32)

Proof. The proof follows those of Propositions 4.1 and 4.2. Unitarity follows from mapping an orthonormal basis onto another one. The
intertwining relation comes from the computation of the generalized eigenvectors before Proposition 4.5. ◽

The idea is again to act with the operator Θ in different bases in order to obtain a new convolution identity. The bases of interest here
are the two that arise when decomposing the representation space (μ1, ϵ1) ⊗ (μ2, ϵ2) ⊗ (μ3, ϵ3) into irreducible components. As mentioned in
Sec. III, this can be done in two standard ways using the Clebsch-Gordan decomposition. This yields the bases f j123 ,j12

n123 and g j123 ,j23
n123 , respectively,

given in (3.17) and (3.19).
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Proposition 4.6. In L2(G(3), W(3)), we have

Θf j123 ,j12
n123 = Kj12(λ2;μ2,μ1; c) Jj12(

ϵ2λ1

λ2
; 2μ2, 2μ1,− cϵ1ϵ2

λ2
) (4.33)

× Kj(12)3(λ3;μ3,μ12; c) Jj(12)3(
ϵ3λ2

λ3
; 2μ3, 2μ12,− cϵ12ϵ3

λ3
)Pn123(λ3;μ123, cϵ123),

Θg j123 ,j23
n123 = Kj23(λ3;μ3,μ2; λ1) Jj23(

ϵ3λ2

λ3
; 2μ3, 2μ2,−λ1ϵ2ϵ3

λ3
) (4.34)

× Kj1(23)(λ3;μ23,μ1; c) Jj1(23)(
ϵ23λ1

λ3
; 2μ23, 2μ1,− cϵ1ϵ23

λ3
)Pn123(λ3;μ123, cϵ123).

Proof. The key to obtain the action of Θ on these two bases is to use the expansions (3.17) and (3.19) in terms of the basis e(μ1 ,ϵ1)
n1 ⊗

e(μ2 ,ϵ2)
n2 ⊗ e(μ3 ,ϵ3)

n3 , act with Θ as per Proposition 4.5, and resum the resulting polynomials by using the convolution identity (4.25) twice. Using
the notations of Proposition 4.3 and of Sec. II, one obtains the relations above. ◽

This leads to the following result.

Proposition 4.7. The convolution identity

Kj12(λ2;μ2,μ1; c)Jj12( ϵ2λ1
λ2

; 2μ2, 2μ1,− cϵ1ϵ2
λ2
)Kj(12)3(λ3;μ3,μ12; c)Jj(12)3( ϵ3λ2

λ3
; 2μ3, 2μ12,− cϵ12ϵ3

λ3
)

=
j123

∑
j23=0
(−1)φϵj12

3

√
wj23

hj12

Bj12(xj23 ; μ2+μ3
2 , μ1+(−1)j123 μ123

2 , μ3−μ2
2 , (−1)j123 μ123−μ1

2 ) (4.35)

× Kj23(λ3;μ3,μ2; λ1)Jj23( ϵ3λ2
λ3

; 2μ3, 2μ2,− λ1ϵ2ϵ3
λ3
)Kj1(23)(λ3;μ23,μ1; c)Jj1(23)( ϵ23λ1

λ3
; 2μ23, 2μ1,− cϵ1ϵ23

λ3
)

holds with the relations (3.16) between the j12, j23, j(12)3, j1(23), j123, the notation for the polynomials of Sec. II and Eq. (4.20).

Proof. This formula is obtained by acting with Θ on both sides of the Racah decomposition (3.21). The factors Pn123(λ3;μ123, cϵ123) on
the left and on the right cancel out. This is just the manifestation of the well-known Wigner-Eckart theorem in this context. ◽

Remark 3. It is also possible to obtain a similar convolution identity using the orthogonality of the Racah coefficients,

Kj23(λ3;μ3,μ2; λ1)Jj23( ϵ3λ2
λ3

; 2μ3, 2μ2,− λ1ϵ2ϵ3
λ3
)Kj1(23)(λ3;μ23,μ1; c)Jj1(23)( ϵ23λ1

λ3
; 2μ23, 2μ1,− cϵ1ϵ23

λ3
)

=
j123

∑
j12=0
(−1)φϵj12

3

√
wj23

hj12

Bj12(xj23 ; μ2+μ3
2 , μ1+(−1)j123 μ123

2 , μ3−μ2
2 , (−1)j123 μ123−μ1

2 ) (4.36)

× Kj12(λ2;μ2,μ1; c)Jj12( ϵ2λ1
λ2

; 2μ2, 2μ1,− cϵ1ϵ2
λ2
)Kj(12)3(λ3;μ3,μ12; c)Jj(12)3( ϵ3λ2

λ3
; 2μ3, 2μ12,− cϵ12ϵ3

λ3
),

where the relations (3.16) and the same notation are still assumed.

V. BILINEAR GENERATING FUNCTION
In this section, we consider a realization of osp(1∣2) in terms of Dunkl operators. This leads to a generating function for the specialized

Chihara polynomials. Additionally, the convolution identity from Proposition 4.4 is used to derive a bilinear generating function for the Big
-1 Jacobi polynomials.

We introduce the following realization in terms of Dunkl operators of the osp(1∣2) Lie superalgebra:

J+ = z, J− = ∂z +
μ
z
(1 − Rz), J0 = z∂z + μ + 1

2 , R = Rz , (5.1)

where Rz is just the reflection operator acting on the variable z by Rzf (z) = f (−z). These operators verify the relations (3.4) when acting on the
orthonormal basis vectors e(μ,ϵ)

n = ([n]μ!)−1/2 zn.
We shall make use of this model to derive generating functions for the specialized Chihara polynomials Pn(λ; μ, cϵ). First, recall Eq. (4.8)

giving the generalized eigenvectors of the operator Xc and insert the realization (5.1) above to obtain
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vcλ(z,μ, ϵ) =
∞

∑
n=0

Pn(λ;μ, cϵ) zn

[n]1/2μ !
. (5.2)

If one can obtain an explicit formula for vcλ(z,μ, ϵ) in terms of special functions, this equation will yield the desired generating function. This
can be done through the following steps. First, split the sum in the RHS over the even and the odd values of n:

vcλ(z,μ, ϵ) =
∞

∑
k=0

P2k(λ;μ, cϵ) z2k

[2k]1/2μ !
+
∞

∑
k=0

P2k+1(λ;μ, cϵ) z2k+1

[2k + 1]1/2μ !
. (5.3)

Then, rewrite the μ-factorial in terms of Pochhammer symbols with

[2k]μ! = 4kk!(μ + 1
2)k, [2k + 1]μ! = 2(μ + 1

2)4
kk!(μ + 3

2)k (5.4)

and express the polynomials P2k(λ) and P2k+1(λ) in terms of Laguerre polynomials using Eq. (2.2) to get

vcλ(z,μ, ϵ) =
∞

∑
k=0

(− 1
2 z

2)k

(μ + 1
2)k

L
(μ− 1

2 )

k (λ
2 − c2

2
) +

z(λ − cϵ)
2μ + 1

∞

∑
k=0

(− 1
2 z

2)k

(μ + 3
2)k

L
(μ+ 1

2 )

k (λ
2 − c2

2
). (5.5)

Now, each sum can be reframed in terms of hypergeometric functions with the help of a generating function for the Laguerre polynomials
(see Eq. 1.11.11 of Ref. 13),

∞

∑
n=0

tn

(α + 1)n
L(α)n (x) = et 0F1[

−
α + 1

;−xt]. (5.6)

Inserting the result into Eq. (5.2) leads to the following generating function for the specialized Chihara polynomials.

Proposition 5.1. The specialized Chihara polynomials possess the generating function

∞

∑
n=0

Pn(λ;μ, cϵ) zn

[n]1/2μ !
= e−z

2
/2(0F1[

−
μ + 1

2
;
z2(λ2 − c2)

4
] +

z(λ − cϵ)
2μ + 1 0F1[

−
μ + 3

2
;
z2(λ2 − c2)

4
]). (5.7)

Proof. This result follows from the preceding computation. ◽

Remark 4. It is also possible to re-express the hypergeometric functions in terms of the modified Bessel functions of the first type Iα(x)
to obtain

∞

∑
n=0

Pn(λ;μ, cϵ) zn

[n]1/2μ !
=

e−z
2
/2Γ(μ − 1

2)
( z2)μ−1/2(λ2 − c2)

μ
2 + 1

4

[(λ2 − c2)
1
4 Iμ− 1

2
(z√λ2−c2) + 2μ−1

2μ+1 Iμ+ 1
2
(z√λ2−c2)]. (5.8)

Remark 5. Note that this explicit expression for the generalized eigenvectors vcλ(z,μ, ϵ) in terms of special functions in the realization
(5.1) can also be obtained by solving the difference-differential equation Xcv

c
λ(z,μ, ϵ) = λvcλ(z,μ, ϵ). This also requires the separation of the

function vcλ(z,μ, ϵ) into an even and an odd part and leads to a system of two coupled first order ordinary differential equations.

Focusing now on obtaining a bilinear generating function, we consider how the generating function given above carries to the tensor
product of representations. In fact, the extension of the generalized eigenvectors to the tensor product of two representations in the realization
(5.1) is immediate. Explicitly, the generalized eigenvectors of Δ2(Xc) are

vcλ1(z1,μ1, ϵ1)vλ1
λ2
(z2,μ2, ϵ2) =

∞

∑
n1 ,n2=0

Pn1(λ1;μ1, cϵ1)Pn2(λ2;μ2, λ1ϵ2)
zn1

1 zn2
2

[n1]1/2μ1 ![n2]1/2μ2 !
, (5.9)

where each vcλ(z,μ, ϵ) admits an expression in terms of special functions as before. The monomials can be cast in the coupled basis by the
inverse expansion of (3.6),

zn1
1 zn2

2

[n1]1/2μ1 ![n2]1/2μ2 !
= ∑

N+j=n1+n2

CN,j
n1 ,n2e

(μ12 ,ϵ12)

N (z1, z2), (5.10)

to obtain

vcλ1(z1,μ1, ϵ1)vλ1
λ2
(z2,μ2, ϵ2) =

∞

∑
n1 ,n2=0

Pn1(λ1;μ1, cϵ1)Pn2(λ2;μ2, λ1ϵ2) ∑
N+j=n1+n2

CN,j
n1 ,n2e

(μ12 ,ϵ12)

N (z1, z2).
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Inverting the order of summation, one gets

vcλ1(z1,μ1, ϵ1)vλ1
λ2
(z2,μ2, ϵ2) =

∞

∑
N,j=0

e(μ12 ,ϵ12)

N (z1, z2) ∑
n1+n2=N+j

CN,j
n1 ,n2Pn1(λ1;μ1, cϵ1)Pn2(λ2;μ2, λ1ϵ2)

where the second sum now corresponds directly to the first convolution identity (4.25). Using this gives

vcλ1(z1,μ1, ϵ1)vλ1
λ2
(z2,μ2, ϵ2) =

∞

∑
j=0

Kj(λ2;μ2,μ1; c)Jj( ϵ2λ1
λ2

; 2μ2, 2μ1,− cϵ1ϵ2
λ2
)

×
∞

∑
N=0

PN(λ2;μ12, cϵ12)e(μ12 ,ϵ12)

N (z1, z2).
(5.11)

If one obtains an expression for the second sum in terms of special functions, then a generating function for the Big -1 Jacobi polynomials
follows immediately. We first look for an explicit realization of the coupled basis vectors e(μ12 ,ϵ12)

N (z1, z2). Consider its expansion in terms of
the uncoupled basis given in (3.6) in the realization (5.1) and substitute n2 = N + j − n1,

e(μ12 ,ϵ12)

N (z1, z2) =
N+j

∑
n1=0

CN,j
n1 ,N+j−n1

( z1
z2
)n1

[n1]1/2μ1 ![N + j − n1]1/2μ2 !
zN+j

2 . (5.12)

The sum on the RHS corresponds to the generating function for the osp(1∣2) Clebsch-Gordan coefficients.23 Taking into account the choice
of normalization and the phase factor made in Sec. III, this gives

e(μ12 ,ϵ12)

N (z1, z2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z2
1 + z2

2)
N/2

[N]1/2μ12 !
fe( j) if N even,

(z2
1 + z2

2)
N/2

[N]1/2μ12 !
fo( j) if N odd,

(5.13)

where f e(j) and f o(j) are functions of j. Let j = 2je + jp with jp ∈ {0, 1} and je ∈ N; then,

fe( j) = (−1)je+jp z j2
[j]1/2μ2 !

[
( 1

2 + μ1)je+jp
( je + jp + 1 + μ1 + μ2)je+jp

]
1/2

(5.14)

× (2F1[
−je, 1

2 − je − jp − μ2
1
2 + μ1

;−( z1
z2
)2] +

(−1)jpz1( j + 2μ2jp)
z2ϵ2(1 + 2μ1) 2F1[

1 − je − jp, 1
2 − je − μ2

3
2 + μ1

;−( z1
z2
)2])

and

fo( j) = (−1)je+jp( z
2
1

z2
2

+ 1)
−1/2 z j2
[j]1/2μ2 !

[
( 1

2 + μ1)je+jp
( je + jp + 1 + μ1 + μ2)je+jp

]
1/2

(5.15)

× (2F1[
−je − jp, − 1

2 − je − μ2
1
2 + μ1

;−( z1
z2
)2] + (−1)jp z1( j+1+2μ1+2μ2jp)

z2ϵ2(1+2μ1)
2F1[
−je, 1

2−je−jp−μ2
3
2 + μ1

;−( z1
z2
)2]).

Separating the sum over N according to parities in (5.11) and substituting (5.13) gives

vcλ1(z1, μ1, ϵ1)vλ1
λ2
(z2,μ2, ϵ2)

=
∞

∑
j=0

Kj(λ2;μ2,μ1; c)Jj( ϵ2λ1
λ2

; 2μ2, 2μ1,− cϵ1ϵ2
λ2
)

×
⎛
⎜
⎝
fe( j)

∞

∑
k=0

P2k(λ2;μ12, cϵ12)
(z2

1 + z2
2)

2k
2

[2k]1/2μ12 !
+ fo( j)

∞

∑
k=0

P2k+1(λ2;μ12, cϵ12)
(z2

1 + z2
2)

2k+1
2

[2k + 1]1/2μ12 !

⎞
⎟
⎠

.
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The two sums over k have precisely the form of the sums appearing in Eq. (5.3). It is thus possible to re-express both of them in terms of a
hypergeometric function by using the generating function of the Laguerre polynomials. This yields

vcλ1(z1,μ1, ϵ1)vλ1
λ2
(z2,μ2, ϵ2)

= exp(− z
2
1 + z2

2

2
)
∞

∑
j=0

Kj(λ2;μ2,μ1; c)Jj( ϵ2λ1
λ2

; 2μ2, 2μ1,− cϵ1ϵ2
λ2
)

×
⎛
⎝
fe( j)0F1[

−
μ12 + 1

2
; (z

2
1 +z2

2)(λ
2
2−c

2
)

4 ] + fo( j)
(z2

1 + z2
2)

1
2 (λ2 − cϵ12)

2μ12 + 1 0F1[
−

μ12 + 3
2

; (z
2
1 +z2

2)(λ
2
2−c

2
)

4 ]
⎞
⎠

.

Using Proposition 5.1 to express both eigenvectors on the LHS in terms of special functions, the previous equation becomes a generating
function for the Big -1 Jacobi polynomials.

Proposition 5.2. The Big -1 Jacobi polynomials satisfy the bilinear generating function

(0F1[
−

μ1 + 1
2

;
z2

1(λ2
1 − c2)
4

] +
z1(λ1 − cϵ1)

2μ + 1 0F1[
−

μ1 + 3
2

;
z2

1(λ2
1 − c2)
4

])

× (0F1[
−

μ2 + 1
2

;
z2

2(λ2
2 − λ2

1)
4

] +
z2(λ2 − λ1ϵ2)

2μ2 + 1 0F1[
−

μ2 + 3
2

;
z2

2(λ2
2 − λ2

1)
4

])

=
∞

∑
j=0

Kj(λ2;μ2,μ1; c)Jj( ϵ2λ1
λ2

; 2μ2, 2μ1,− cϵ1ϵ2
λ2
)

×
⎛
⎝
fe( j)0F1[

−
μ12 + 1

2
; (z

2
1 +z2

2)(λ
2
2−c

2
)

4 ] + fo( j)
(z2

1 + z2
2)

1
2 (λ2 − cϵ12)

2μ12 + 1 0F1[
−

μ12 + 3
2

; (z
2
1 +z2

2)(λ
2
2−c

2
)

4 ]
⎞
⎠

,

where μ12 = μ1 + μ2 + 1
2 + j and f e(j), f o(j), and K j(λ2; μ1, μ2; c) are given by the formulas (5.14), (5.15), and (4.20).

Proof. The result follows from the analysis provided before the statement of this proposition. ◽

VI. CONCLUSION
We considered the discrete series representations of the superalgebra osp(1∣2) and singled out a self-adjoint element Xc. We constructed

the generalized eigenvectors of this special element in the representation spaces and in their two- and three-fold tensor products. Looking at
different bases and their overlaps led to our main results: Propositions 4.4 and 4.7 which provide convolution identities for −1 orthogonal
polynomials and also connection coefficients for two-variable Dunkl polynomials orthogonal with respect to the same measure. This was
further used to obtain a bilinear generating function for the Big -1 Jacobi polynomials. This led to interpretations and connections between
the specialized Chihara, the dual -1 Hahn, the Big -1 Jacobi, and the Bannai-Ito polynomials.

This study suggests a number of future research questions. A natural extension would be to look at higher dimensional spaces via
the n-fold tensor product of representations. This was done for su(1, 1) in Ref. 31. This should lead to new convolution identities and to
multivariate Dunkl orthogonal polynomials of the Tratnik type. In fact, it is straightforward to extend the unitary operators from Proposi-
tions 4.1, 4.2, and 4.5 to an arbitrary n-fold tensor product; the main difficulty is to find interesting bases and overlaps. It should be noted
however that some investigations on this last point have already been done.29,32 Another avenue to explore would be how the convolution
identities obtained here could be used to derive different generating functions and Poisson kernels. Interesting constructions pointing in
this direction have been presented in Refs. 4 and 5 for the Lie algebras su(1, 1) and Uq(su(1, 1)). Finally, a broader project would be to
revisit the construction with different representations and realizations. We mention as examples Refs. 33 and 34 where similar questions are
considered.
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