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WiMorse: A Contactless Morse Code Text Input
System using Ambient WiFi Signals

Kai Niu, Fusang Zhang, Yuhang Jiang, Jie Xiong, Qin Lv, Youwei Zeng, Daqing Zhang, Fellow, IEEE

Abstract—Recent years have witnessed advances of Internet
of Things (IoT) technologies and their applications to enable
contactless sensing and human-computer interaction in smart
homes. For people with Motor Neurone Disease (MND), their
motion capabilities are severely impaired and they have difficul-
ties interacting with IoT devices and even communicating with
other people. As the disease progresses, most patients lose their
speech function eventually which makes the widely adopted voice-
based solutions fail. In contrast, most patients can still move
their fingers slightly even after they have lost the control of their
arms and hands. Thus we propose to develop a Morse code
based text input system, called WiMorse, which allows patients
with minimal single-finger control to input and communicate
with other people without attaching any sensor to their fingers.
WiMorse leverages ubiquitous commodity WiFi devices to track
subtle finger movements contactlessly and encode them as Morse
code input. In order to sense the very subtle finger movements,
we propose to employ the ratio of the Channel State Information
(CSI) between two antennas to enhance the Signal to Noise
Ratio. To address the severe location dependency issue in wireless
sensing with accurate theoretical underpinning and experiments,
we propose a signal transformation mechanism to automatically
convert signals based on the input position, achieving stable
sensing performance. Comprehensive experiments demonstrate
that WiMorse can achieve higher than 95% recognition accuracy
for finger generated Morse code, and is robust against input
position, environment changes, and user diversity.

Index Terms—CSI ratio, Morse code, text input, finger gesture,
contactless wireless sensing.

I. INTRODUCTION

Internet of Things (IoT) technologies have attracted signifi-
cant attention in recent years, playing an important role in the
development of various applications, such as activity and ges-
ture recognition [1], [2], [3] and human-computer interaction.
To support these applications, the capabilities of contactless
sensing have been explored in various smart IoT devices, such
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as smartphone [4], WiFi device [5], [6] and smart speaker [7].
For patients with Motor Neurone Disease (MND), they have
difficulty moving their arms or hands, and even their speech
function is severely affected, hindering their communication
with these IoT devices and other people. Worldwide, around
half million people suffer from MND, including more than
12,000 living in the U.S. [8]. For example, Stephen Hawking
had an early-onset slow-progressing form of MND, and he
could only move three of his fingers for a long period of time.
The very essential communication need becomes a luxury for
patients with MND and there is a desperate demand from
these patients to have some means of communication with
other people. Traditional communication means such as speech
and gesture do not work for MND patients. However, it is
noticed that even a patient in the later-stage of MND can
still slightly move his/her fingers and eyeballs [9]. An eyeball
tracking system was designed to help Stephen Hawking to
interact with computer and communicate with people. But
vision-based eyeball tracking systems are usually complex
and expensive. In this paper, inspired by the tiny movement
characteristic of Morse code, we propose a contactless Morse
code based text input system named WiMorse to help MND
patients communicate with other people through single-finger
movement. Morse code is an ideal candidate for MND patients
as it requires very small movements. Given recent advances in
IoT technologies and wireless sensing, we propose to employ
the pervasive WiFi signals to track finger movement without a
camera or a dedicated sensor attached to the finger for input,
which has the advantages of being both non-intrusive and
privacy-preserving.

In the past few years, WiFi signals have been exploited for
localization [10], [11], [12], [13], [14], activity tracking [5],
[6], [15], [16], [17], [18], [19], gesture recognition [20],
[21], [22], [23] and recently more fine-grained respiration
monitoring [24], [25], [23], [26] and material sensing [27].
Even though non-periodical fine-grained activities such as
keystrokes, finger gestures and mouth speaking have been
reported to be sensed using WiFi Channel State Information
(CSI), they all rely on one assumption that the position of the
moving target relative to the WiFi transceivers is fixed such
that the same movement would lead to similar signal change
patterns in different rounds. These systems collect training data
and conduct sensing experiments with the subjects located
at exactly the same positions. However, such fixed-position
assumption is not practical in real-world applications, since it
is very difficult to ensure the same relative position between
the tracking target and the WiFi transceivers. In real life, a
small change in the transceivers’ or target’s location would

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2019.2934904

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, AUGUST 2019 2

lead to a change of the received signal pattern, making the
collected training data inconsistent with the test data. This
problem is referred to as the location dependency issue.
Another big challenge lies in sensing the subtle movement
of a small target such as a finger. The reflection area of a
finger is very small and thus the finger-reflected signal is
very weak, making finger tracking even more challenging than
fine-grained respiration sensing. The movement-induced signal
change can be easily buried in noise and we name it Signal
to Noise Ratio (SNR) issue.

This work addresses the above two key challenges and
prototypes WiMorse, a real-time Morse code based text input
system. WiMorse allows a user to type Morse code at any place
within the sensing area without the need of tedious offline data
collection and training.

First, to capture the very small signal variation induced by a
finger gesture, we propose to employ the ratio of the Channel
State Information (CSI) between two antennas at the same
WiFi receiver to enhance SNR, which effectively eliminates
signal noise because the two antennas on the same hardware
share very similar hardware noise and phase offsets. Second, to
deal with the location dependency issue, we analyze the under-
lying reason and propose a signal transformation mechanism to
rotate the original signal space by automatically determining
the optimal transformation vector based on the initial input
position. As a result, WiMorse can be robust against input
position, environment changes, and user diversity.

We have conducted comprehensive experiments to evaluate
WiMorse in different environments (home, office, and meet-
ing room) with different users. Our results demonstrate that
WiMorse achieves an overall accuracy of over 95% and is
robust against input position, environment changes, and user
diversity. We also show that supporting abbreviations of Morse
code can significantly improve the input speed of WiMorse,
making it feasible for real-world use. A demo video is avail-
able at: https://youtu.be/xGOdSJS2dWk. The contributions of
this paper are summarized as follows:
• We propose WiMorse, a Morse code based text input

system for MND patients, which only requires subtle
single-finger movement. By combining Morse code with
contactless WiFi sensing, WiMorse can accurately recog-
nize finger input of letters, numbers, words and sentences
without attaching any sensor to the finger.

• We propose to employ the ratio of the Channel State
Information (CSI) between two antennas on the same
WiFi card to enhance the SNR, which can sense subtle
finger movements that are otherwise impossible when
using a single antenna. We empirically study and verify
the properties of CSI ratio and employ them to guide the
Morse code sensing design.

• We propose a signal transformation mechanism to tackle
the location dependency issue, rectifying the induced
signal patterns such that they are unique and stable for the
same finger gesture, independent of the input position. We
verify this mechanism through both theoretical analysis
and benchmarking experiments.

• We prototype WiMorse using commodity WiFi devices
and evaluate it in different environments with differ-

ent users. Extensive experimental results show that the
proposed transformation mechanism can significantly in-
crease the recognition accuracy from 48% to over 95%.
The text input speed can reach 2.94 Words Per Minute
(WPM) on average, which is comparable to other Morse
code based input system.

II. FINGER GESTURE DESIGN FOR MORSE CODE

In this section, we first introduce the basics of Morse
code and its applications, especially in assisting patients with
speech and motion impairments. Then, leveraging the unique
characteristics of Morse code, finger gestures are carefully
designed to enable efficient input of letters, numbers, and
punctuation marks. To verify the feasibility of recognizing
subtle finger gestures using commodity WiFi hardware, we
conduct extensive experiments empirically and summarize our
observations.

A. Getting Started with Morse Code

Morse code is one of the simplest and most versatile
character encoding scheme used in telecommunication. It
encodes text characters as standardized sequences of just two
signal durations called dot (·) and dash (-). The dot duration
is the basic unit of time measurement in Morse code. The
duration of a dash is three times the duration of a dot. Each
dot or dash within a character is followed by a period of
input absence, called a space, equal to one dot duration. Two
adjacent letters in a word are separated by a longer space
of duration equal to three dots, and two adjacent words are
separated by a space duration of seven dots. Morse code has
been developed and used for many languages such as English,
Greek, and so on. Figure 1 shows the International Morse
Code, which encodes the ISO (International Organization for
Standardization) basic Latin alphabet and Arabic-numerals.
Morse code can be memorized in a few hours for most
people [28] and trained personnel can accurately interpret the
signaling of Morse code.

Fig. 1: The International Morse Code.

Morse code can be easily transmitted by any on-off keying
of an information carrying medium such as electric current,
radio waves, visible light and sound waves. It has been widely
used in lots of applications. In aviation, the station usually
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transmits a unique set of identification letters in Morse code
through radio wave to ensure that the station is available for
the pilots. Another application of Morse code in daily life is
signaling “SOS” for help with simple three dots, three dashes,
and three dots as regulated in international treaties.

Morse code has also been employed to help people with
speech and motion impairments to communicate. One big
advantage of Morse code is that it requires minimal amount of
motion control. It was reported that a shipboard radio operator
who had a stroke and lost the ability to speak or write is still
able to communicate with his physician through Morse code
by blinking his eyes [29]. Recently, Google cooperates with
Morse code expert Tania Finlayson to develop Gboard [30],
which allows users to input text using Morse Code as an
alternative to keypad and handwriting recognition.

B. WiFi Based Finger Gesture Design for Morse Code Input

Channel State Information (CSI) is traditionally used to
quantify the wireless channel between the transmitter-receiver
(Tx-Rx) pair. Compared with Received Signal Strength (RSS),
subcarrier-based CSI readings are more sensitive to small
movements which result in changes of CSI amplitude and
phase. In this work, we carefully design the finger gestures
based on the characteristics of Morse code to further reduce
the amount of finger movements for MND patients.

As described in Section II-A, the basic elements of Morse
code are dot and dash with different time durations. We notice
that for a finger to perform the dash operation, the whole hand
needs to slightly move horizontally, which is challenging for
MND patients. We thus modify the Morse code gesture to
avoid hand movement and only require one finger to move
up and down. As shown in Figure 2, the finger gesture down-
up corresponds to dot (Figure 2b), while the finger gesture
down-up-down-up corresponds to dash (Figure 2c). Different
from the original Morse code design which separates letters
and words by different periods of time that requires longer
pause time, we design the up finger gesture (Figure 2a) as
Start and the down finger gesture (Figure 2d) as End. This
design properly utilizes the natural finger actions for users, as
the finger movements “up” and “down” correspond directly to
the “Start” and “End” operations. With these four basic finger
gestures, we can easily input letters, numbers, and punctuation
marks using Morse code.

(a) Gesture 1: Start (b) Gesture 2: Dot

(c) Gesture 3: Dash (d) Gesture 4: End

Fig. 2: Finger gesture design for Morse code. (a)up: Start
character input, (b)down-up: corresponds to Dot in Morse
code, (c)down-up-down-up: corresponds to Dash in Morse
code, and (d)down: End character input.

We apply our finger gesture design to encode the ISO
basic Latin letters, the Arabic numerals, and a small set of
punctuation marks. The full list of designed finger gestures

are shown in Figure 3. To increase the speed of text input, we
adopt the following two schemes. First, we employ shorter-
length gestures to represent those more frequently used letters.
For instance, “E” is the most frequently used letter in En-
glish [31] and has the shortest finger gesture in our design: up-
down-up-down. Second, frequently-used abbreviations (shown
in Figure 3) are applied to accelerate the input speed. For
example, “GM” means “Good Morning”. Specifically, for
inputting numbers, we also design the short codes with a
preamble to start and end inputting numbers.

CHAR Finger gesture CHAR Finger gesture CHAR Finger gesture 

Letter 

A _ _  _    _ _ B _ _    _  _  _  _ _ C _ _    _  _    _  _ _ 

D _ _    _  _  _ _ E _ _  _ _ F _ _  _  _    _  _ _ 

G _ _    _    _  _ _ H _ _  _  _  _  _ _ I _ _  _  _ _ 

J _ _  _    _    _    _ _ K _ _    _  _    _ _ L _ _  _    _  _  _ _ 

M _ _    _    _ _ N _ _    _  _ _ O _ _    _    _    _ _ 

P _ _  _    _    _  _ _ Q _ _    _    _  _    _ _ R _ _  _    _  _ _ 

S _ _  _  _  _ _ T _ _    _ _ U _ _  _  _    _ _ 

V _ _  _  _  _    _ _ W _ _  _    _    _ _ X _ _    _  _  _    _ _ 

Y _ _    _  _    _    _ _ Z _ _    _    _  _  _ _   

Number 

0 _ _    _    _    _    _    _ _ 1 _ _  _    _    _    _    _ _ 2 _ _  _  _    _    _    _ _ 

3 _ _  _  _  _    _    _ _ 4 _ _  _  _  _  _    _ _ 5 _ _  _  _  _  _  _ _ 

6 _ _    _  _  _  _  _ _ 7 _ _    _    _  _  _  _ _ 8 _ _    _    _    _  _  _ _ 

9 _ _    _    _    _    _  _ _     

Abbreviated Number 
0 _ _    _ _ 1 _ _  _    _ _ 2 _ _  _  _    _ _ 

3 _ _  _  _  _    _ _ 4 _ _  _  _  _  _    _ _ 5 _ _  _ _ 

6 _ _    _  _  _  _  _ _ 7 _ _    _  _  _  _ _ 8 _ _    _  _  _ _ 

9 _ _    _  _ _ Pre _ _  _  _  _  _  _  _ _   

Punctuation 
. _ _  _    _  _    _  _    _ _ : _ _    _    _    _  _  _  _ _ , _ _    _    _  _  _    _    _ _ 

; _ _    _  _    _  _    _  _ _ ? _ _  _  _    _    _  _  _ _ = _ _    _  _  _  _    _ _ 

' _ _  _    _    _    _    _  _ _ / _ _    _  _  _    _  _ _ ! _ _    _  _    _  _    _    _ _ 

━ _ _    _  _  _  _  _    _ _ _ _ _  _  _    _    _  _    _ _ " _ _  _    _  _  _    _  _ _ 

( _ _    _  _    _    _  _ _ ) _ _    _  _    _    _  _    _ _ $ _ _  _  _  _    _  _  _    _ _ 

& _ _  _    _  _  _  _ _ @ _ _  _    _    _  _    _  _ _ + _ _  _    _  _    _  _ _ 

Abbreviation for Daily Phrases 
GM _ _    _    _  _ _ _    _    _ _ GN _ _    _    _  _ _ _    _  _ _ IM _ _  _  _ _ _    _    _ _ 

TS _ _    _ _ _  _  _  _ _ EM _ _  _ _ _    _    _ _ IS _ _  _  _ _ _  _  _  _ _ 

NM _ _    _  _ _ _    _    _ _ NP _ _    _  _ _ _  _    _    _  _ _ WA _ _  _    _    _ _ _  _    _ _ 

HA _ _  _  _  _  _ _ _  _    _ _ WD _ _  _    _    _ _ _    _  _  _ _ HD _ _  _  _  _  _ _ _    _  _  _ _ 

IN _ _  _  _ _ _    _  _ _ WU _ _  _    _    _ _ _  _  _    _ _ WM _ _  _    _    _ _ _    _    _ _ 

IW _ _  _  _ _ _  _    _    _ _     

 

Fig. 3: Finger gestures for the International Morse code which
encodes letters, numbers, punctuations and general-use Morse
code abbreviations. Pre: Preamble to start and end inputing
numbers, GM: Good Morning, GN: Good Night, IM: I’m/I
am, TS: Thanks/Thank you, EM: Excuse Me, IS: I’m Sorry,
NM: Never Mind, NP: NO Problem, WA: What are, HA: How
are, WD: What do/does, HD: How do/does, IN: I’m not/I don’t
understand, WU: Where are you from, WM: What do/does
mean, IW: I am/will be with. “↑” and “↓” mean “Start” and
“End” finger gestures, while “V” with arrow and “W” with
arrow mean “Dot” and “Dash” finger gestures. “ ” means
pause between finger gestures.

C. Empirical Study

Now we verify with benchmark experiments the feasibility
of recognizing the four basic finger gestures (shown in Fig-
ure 2) with WiFi signals from commodity WiFi devices.

1) Experimental Setup: We employ commodity WiFi router
and Gigabyte Mini-PC equipped with the Intel 5300 802.11n
Network Interface Card (NIC) to collect CSI readings [32].
The experiments were conducted in an ordinary home environ-
ment with a Wi-Fi access point (e.g., TP-Link router) as shown
in Figure 4. The user sits in her wheelchair with one WiFi
receiver (Mini-PC) placed on the tray table in front of her.
The receiver is equipped with two commonly-used vertically
polarized antennas and receives packets from the router. The
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Rx

Router

Finger

Fig. 4: Experimental setup.

central carrier frequency is set as 5.24GHz. The user performs
the four basic finger gestures on the desk surface at different
locations1. We monitor the CSI amplitude variation during the
process. We notice that when there is no finger movement,
the CSI amplitude is relatively steady. When a user performs
finger gestures, the finger movements result in CSI amplitude
variations.

2) Results Analysis: In this subsection, we analyze the
signal variation patterns induced by the finger gestures and
identify the practical issues which affect the performance of
recognition.

Observation 1: The small signal variation induced by sub-
tle finger movements can be easily buried in noise. As shown
in Figure 5, the finger movement induced signal variation is
small while the noise level of the CSI readings is high. When
the receiver is close to the transmitter (e.g., 1m), the gesture-
induced signal pattern could be (roughly) observed, as shown
in Figure 5a. However, when the receiver moves further away
from the transmitter (e.g., 2m), the signal pattern can hardly
be detected, as shown in Figure 5b.

(a) Close to the transceivers (b) Far from the transceivers

Fig. 5: The signal for gesture “A” (↑ ↓↑ ↓↑↓↑ ↓) is
submerged by noise and not easy to detect, especially when
the finger is further away from the transceivers.

Observation 2: The signal pattern for the same finger
gesture is inconsistent at different locations. When the finger is
close to the transceivers, at one particular location, the signal
patterns for “Start”, “End”, “Dot” and “Dash” are unique and
stable as shown in Figure 6a-6g, which can be accurately
identified. However, when we perform these gestures at dif-
ferent locations, we observe that the signal patterns for the
same gesture are inconsistent. As shown in Figure 6c, the
same “Dot” input induces a signal pattern that is dramatically
different from that in Figure 6d when the input location is
changed.

1Our system does not require the finger to touch a surface, which can be
useful in certain scenarios, e.g., hand hanging from an armrest.

(a) “Start” signal at location 1 (b) “Start” signal at location 2

(c) “Dot” signal at location 1 (d) “Dot” signal at location 2

(e) “Dash” signal at location 1 (f) “Dash” signal at location 2

(g) “End” signal at location 1 (h) “End” signal at location 2

Fig. 6: Signal patterns for the same finger gesture are incon-
sistent at different locations (left column vs. right column).

D. Challenges

To accurately recognize the fine-grained finger gestures
for Morse code input using commodity WiFi devices, we
must overcome the following challenges in the design and
implementation of our system:

How to detect subtle finger movements accurately amid
large hardware and environmental noises? As shown previ-
ously, the signal variations introduced by subtle finger move-
ments are very small. As such, the finger movement-induced
signal variations can be easily buried in noise and become
undetectable. To sense such small signal variations with high
accuracy, the noise issue need to be carefully addressed.

How to handle the signal pattern inconsistency caused
by location difference? To accurately recognize each finger
gesture, the signal variation pattern should be consistent for
the same gesture at various input locations. And the above
consistency should also be maintained for different users
without requiring user-specific calibration.

III. WIMORSE SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present in detail how we address the
challenges identified in Section II-D. We first propose the use
of CSI ratio between two antennas in the same WiFi card,
analyze its properties and verify that it provides better signal
measurement than the amplitude of CSI. We also propose a
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signal transformation mechanism to rectify inconsistent signal
patterns due to location variations and verify its effectiveness.
Finally, we present the overall design and implementation of
WiMorse, a real-time contactless Morse code input system
using commodity WiFi devices.

A. CSI Ratio: A Better Base Signal

As noted earlier, commodity WiFi devices have large CSI
amplitude noises, which can easily mask the signal induced by
fine-grained finger gestures. Therefore, a better base signal is
needed in order to adequately capture subtle finger movements.
Here, we first give a quick introduction of CSI, then analyze
in detail the proposed CSI ratio as a better base signal.

1) Channel State Information: Channel State Information
(CSI) describes properties of a wireless communication link.
It characterizes how a signal propagates from the transmitter
(Tx) to the receiver (Rx) and captures the combined effects of
reflecting, scattering and fading with distance. The complex
valued CSI H(f, t) of a carrier with frequency f at time t
satisfies the relationship Y (f, t) = H(f, t) × X(f, t), where
X(f, t) and Y (f, t) are the frequency domain representa-
tions of the transmitted and received signals, respectively.
Specifically, a WiFi signal transmits from Tx to Rx through
multiple paths, which can be grouped into static paths and
dynamic paths[33], [25]. The static paths are composed of
the LoS path and reflected paths from the walls and static
objects in the environment, which do not change with time.
While the dynamic paths are the signal paths induced by the
moving targets, we assume there is only one reflection path
corresponding to human target’s movement. Furthermore, due
to the fact that Tx and Rx are not clock-synchronized, the
received CSI can be denoted as:

H(f, t) = e−i·(2π∆ft+θl+θs+θd)(Hs(f, t) +Hd(f, t))

= e−i·(2π∆ft+θl+θs+θd)(Hs(f, t) + ~a(f, t) · e−i2π
d(t)
λ )

(1)

where ∆f is Central Frequency Offset (CFO), θl, θs and θd
are phase errors introduced by Phase Locked Loop (PLL),
Sampling Frequency Offset (SFO) and Packet Boundary De-
tection (PBD) uncertainty, respectively. Hs(f, t) is the static
path component which is the sum of static paths, while ~a(f, t)
is the complex valued representation of attenuation and initial
phase offset of the dynamic path component Hd(f, t) which
varies with dynamic path length d(t). λ is the wavelength for
the carrier with frequency f .

The amplitude of CSI |H(f, t)| fluctuates due to phase
offsets caused by CFO, PLL, SFO and PBD. Among all
the random phase offsets, the CFO phase offset caused by
unsynchronized clocks of Tx and Rx has the most serious
influence on CSI phase. Due to the frame aggregation mech-
anism in 802.11n, commercial WiFi devices can continuously
transmit at most 4000 frames per second. Even with the highest
transmission rate, the CFO phase offset can be as large as
50π between consecutive CSI values [33]. The PLL phase
offset θl is fixed after the devices are started. The SFO phase
offset θs is caused by the offset of the sampling frequencies
of Tx and Rx [34]. The PBD phase offset is caused by the
time shift from the packet boundary uncertainty and follows

a Gaussian distribution with the zero mean. To obtain a clear
signal induced by fine-grained finger movements, we need to
effectively eliminate these phase offsets.

2) CSI Ratio: Modern WiFi devices that support IEEE
802.11n/ac standards typically consist of multiple transmit-
ting and receiving antennas, thus supporting Multiple-Input
Multiple-Output (MIMO). Since the different antennas in the
same WiFi NIC adapter share the same clock, they have the
same CFO, PLL, SFO, and PBD phase offsets. This offers us
an opportunity to eliminate the influence of various CSI phase
offsets. Based on this key observation, we propose the use of
CSI ratio between two antennas, which is defined as follows:

QCSI =
Hant1(f, t)

Hant2(f, t)

=
Hs1(f, t) + ~a1(f, t) · e−i2π

d(t)
λ

Hs2(f, t) + ~a2(f, t) · e−i2π
d(t)+∆d

λ

(2)

where Hant1(f, t) and Hant2(f, t) are the CSIs received by
two different antennas in the same NIC adapter, respectively.
Hs1(f, t) and Hs2(f, t) are the static path components of these
antennas, while ~a1(f, t) and ~a2(f, t) are the attenuation and
initial phase offsets of the antennas’ dynamic path compo-
nents. ∆d is the dynamic path length difference between the
two antennas due to their different physical locations. Please
note that for a small-scale movement, ∆d can be considered
as a constant.

In Equation 2, each part of QCSI is a complex valued
representation. As such, QCSI satisfies the linear fractional
transformation form [35], also referred to as Möbius trans-
formation, which has the conformal property (i.e., linear
fractional transformation can preserve angles and generalized
circles). Based on these properties, we can rewrite QCSI in
Equation 2 as follows:

QCSI = F (z) + ~a (3)

where z = e−i2π
d(t)
λ , F (◦) is a linear fractional transformation

function, its domain z is a unit circle and its range is also
a circle. ~a is the static component of QCSI and is a con-
stant complex value. When the dynamic path length changes
continuously (e.g., due to finger movement), the phase of z
also changes continuously. As such, vector z rotates, and F (z)
rotates with respect to ~a. F (z) is thus the dynamic component
of QCSI . As illustrated in Figure 7, the green line is the static
component ~a, the (dashed) red line is the dynamic component
F (z), and the (dashed) blue line is the combined CSI ratio
QCSI . Given a small-scale movement, QCSI has roughly fixed
amplitude with varying phase. Then the amplitude of CSI ratio
can be calculated as follows:

|QCSI | =
√
|F (z)|2 + |~a|2 + 2|F (z)||~a| cosα (4)

where α is the phase difference between F (z) and ~a.
3) Understanding CSI Ratio with Benchmark Experiments:

As shown in Figure 8, we use a metal plate (the ideal signal
reflector) as the moving target to reveal the properties of CSI
ratio in a meeting room. The WiFi transceivers are placed 1m
apart and the antennas are positioned at 20cm above the table.
The transmitter is equipped with one omni-directional antenna
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Fig. 7: Vector representation of CSI ratio.

Metal plate
35cm*40cm

Tx Rx

LoS=1m

Sliding track

Fig. 8: Experimental setup to verify CSI ratio. The transceivers are
equipped with Intel 5300 NIC adapter. The size of the metal plate is
35cm× 40cm.

while the receiver is equipped with two omni-directional
antennas that are 5cm apart. The metal plate has a size of
35cm ∗ 40cm and moves along the perpendicular bisector of
the two transceivers on top of a 1.5m-long sliding track which
is controlled by Raspberry Pi 3 Model B. The WiFi signal is
transmitted in the 5.24GHz frequency band with a channel
bandwidth of 40MHz.

Experiment 1: Verify that the amplitude of CSI ratio is
a better base signal. We move the metal plate from 105cm to
125cm 2 at a speed of 2cm/s. As can be seen in Figure 9a and
Figure 9b, both the amplitude of CSI ratio and the amplitude of
CSI show clean patterns. And the amplitude of CSI ratio has
smaller noise. When we move the metal plate from 610cm
to 630cm at the same speed, Figure 9c and 9d show the
corresponding raw CSI amplitude and the amplitude of the
CSI ratio, respectively. Note that the raw CSI amplitude is
noisy and can not identify the target movements from a long
distance. Whereas the amplitude of the CSI ratio still shows
the periodic variations clearly. Besides, we observe that the
phase of raw CSI is random, while the phase of CSI ratio has
similar patterns as shown in Figure 9d. In summary, compared
with the raw CSI signal, the CSI ratio is a better base signal
for capturing fine-grained movements.

Experiment 2: Verify that the dynamic component of
CSI ratio rotates with respect to the static component.
We move the metal plate from 105cm to 114.4cm away from

2The distance is measured from the metal plate to the LoS path of the
transceiver pair.

(a) Amplitude of CSI (105cm to
125cm)

(b) Amplitude of CSI ratio (105cm
to 125cm)

(c) Amplitude of CSI (610cm to
630cm)

(d) Amplitude of CSI ratio (610cm
to 630cm)

Fig. 9: Comparison between amplitude of CSI and amplitude
of CSI ratio. The latter shows smaller noise and cleaner
pattern.

Line of Sight (LoS) at a speed of 2cm/s. According to the
vector representation model described in Section III-A2, the
dynamic component rotates with the static component. When
the dynamic path length changes by λ, the dynamic component
rotates 360◦, corresponding to a complete sinusoidal cycle.
The results are shown in Figure 10 and we can see that
the dynamic component generates close to perfect circles,
demonstrating the correctness of the property. In Figure 10a,
the red dot is the origin of the coordinates. We can see
that the dynamic component (red line) rotates clockwise with
respect to the static component (green line), and the rotation
phase exactly matches the theoretical rotation phase 1080◦

(3 circles), corresponding to three complete sinusoidal cycles
in Figure 10b. Furthermore, the magnitude of the dynamic
component remains approximately the same within a short
movement distance. In Figure 10b, the blue line is the raw
signal, and the red line is the filtered signal (using Savitzky-
Golay filter which will be explained in detail in Section III-C).

Static Component

 ā 

Dynamic 

Component

F(z)

Combined CSI Ratio

QCSI

(0,0)

(a) I/Q of CSI ratio (b) CSI ratio amplitude

Fig. 10: Verification experiment showing that (a) the dynamic
component (red line) rotates (3 circles) clockwise with respect to the
static component; and (b) the amplitude of CSI ratio is a sinusoidal-
like wave.

Experiment 3: Verify that fine-grained movements result
in signal variations corresponding to a fragment of a si-
nusoidal cycle. In this experiment, the metal plate repetitively
moves along the sliding track at a small scale (1cm forward
and then 1cm backward) to mimic tiny movements of a human
body. The initial position is at 51cm from the LoS path. The
metal plate performs 2 repetitive cycles of movements. In
Figure 11a, we can see that the dynamic component (red line)
rotates with respect to the static component (green line) in
less than a circle. Therefore, the generated amplitude of CSI
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ratio signal in top figure of Figure 11b is a fragment of the
complete sinusoidal cycle in bottom figure of Figure 11b.

Static Component ā 

Dynamic 

Component

F(z)

Combined 

CSI Ratio

QCSI

(0,0)

(a) I/Q of CSI ratio

Fragment

(b) CSI ratio amplitude

Fig. 11: Verification experiment showing that when the dynamic
path length change is less than λ, (a) the dynamic component (red
line) rotates with respect to the static component (green line) in less
than a circle; and (b) the amplitude of CSI ratio (Top) induced by
fine-grained movement is a fragment of the complete sinusoidal cycle
(Bottom).

4) Key Properties of CSI Ratio: Based on the above ob-
servations, we highlight the key properties of CSI ratio as
follows:
(1) The amplitude of CSI ratio removes the random phase

offsets of CSI signal by using two different antennas in
the same NIC adapter, resulting in a better base signal
than the amplitude of CSI.

(2) When an object moves along the same direction, the
dynamic component of CSI ratio rotates with respect to
the static component. As such, the amplitude of CSI ratio
shows a continuous sinusoidal-like wave.

(3) The moving object induces path length change of the
reflection signal. When the length of the dynamic path
changes by λ, the phase of the dynamic component
of CSI ratio will change by 2π, generating a complete
sinusoidal cycle in the amplitude signal. If the dynamic
path length change is less than λ, then the generated
CSI ratio amplitude signal represents a fragment of the
complete sinusoidal cycle.

B. Signal Transformation: Addressing Inconsistent Pattern
due to Location Variation

As discussed in Section III-A, the dynamic component of
CSI ratio rotates with respect to the static component and

for fine-grained movements, the rotation is less than a full
circle. As a result, the induced amplitude of CSI ratio is only
a fragment of the complete sinusoidal cycle. Depending on
where the finger is positioned relative to the Tx and Rx,
the fragmented cycle will induce different signal patterns.
Recognizing each gesture with very different signal patterns
is infeasible for practical use. Instead, an automated signal
transformation mechanism is needed to convert different signal
patterns of the same gesture to one waveform.

1) Signal Pattern Inconsistency: Let’s first analyze why the
same gesture may induce inconsistent signal patterns. Consider
for example the “Dot” finger gesture. When the finger moves
“down-up”, the ideal signal pattern is shown in Figure 12.
Specifically, as illustrated in Figure 13(b), when the finger
moves “down”, the dynamic component F (z) rotates from
the solid red arrow position to the dashed arrow one, scanning
a sector area with angle β; and F (z) rotates back from the
dashed arrow position to the solid one when the finger moves
“up”. As a result, we observe one valley of the signal for the
“Dot” finger gesture.

However, when the finger gesture is performed at different
positions, the fragments may be extracted from different parts
of the circle, as shown in Figure 13. Essentially, the specific
signal pattern is determined by the phase difference α between
the average dynamic component 3 and the static component
~a. When α = 0◦ (Figure 13a), the fragment appears at the
top portion of the circle and the observed signal pattern has
two peaks. If the finger is positioned slightly to the right and
α = 90◦(Figure 13b), we can observe the signal pattern with
one valley. If the finger is positioned further to the right, the
dynamic component continues to rotate to the right, arriving
at α = 180◦(Figure 13c). Then the observed signal pattern
has two valleys. Finally, when the dynamic component rotates
to α = 270◦, the signal pattern has one peak. This explains
why the same finger movement may induce different signal
patterns at different positions.

2) Signal Transformation-Key Idea: Requesting users to
position their fingers precisely at certain locations is incon-
venient and even infeasible in real-world usage scenarios.
Instead, an automated signal transformation mechanism is
essential in order to rectify the inconsistent signal patterns
relative to their positions and map them to the true finger

3Since the dynamic component F (z) has a starting point and an ending
point, we use the average of the two points to represent the sector.

Finger gesture

Signal pattern

Fig. 12: Ideal signal pattern
for the “Dot” finger gesture.

                     

āQCSI

I

I

(a) (b) (c)

F(z)

(d)

āQCSI

I

I

ā

I

I

QCSI

Signal pattern

Vector 

representation

ā
I

I

QCSI

OO OO

α=0° α=270° α=90° α=180° 

F(z)

F(z) F(z)

β  

β  

β  

β  

Fig. 13: Inconsistent signal patterns (amplitude of CSI ratio) for the same “Dot” finger gesture
at different locations: (a) two peaks, (b) one valley, (c) two valleys, and (d) one peak.
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Fig. 14: The key idea of the proposed signal transformation
mechanism: (a) Original IQ vector space and (b) New I’Q’
vector space after transformation by introducing a static com-
ponent ~e.

gesture. Intuitively, since the signal pattern inconsistence is
caused by the relative position of the dynamic component and
the static component in the original IQ space, the key is to
identify that relative position and rotate the original IQ space
accordingly to match the ideal case. This can be accomplished
by introducing a static component that is determined by
the initial position of the finger relative to the transceivers.
As illustrated in Figure 14, when a static component ~e is
introduced, the original IQ vector space transforms to the
new I’Q’ vector space. When the original static component
is rotated by η phase, from ~a to ~anew, the vector space also
rotates by η phase. We want to choose η such that the signal
pattern matches the ideal finger gesture movement in the new
vector space, .

3) Signal Transformation-The Design: Based on the anal-
ysis above, we propose an automated signal transformation
mechanism to determine the static component to add and trans-
form IQ to a new vector space. As illustrated in Figure 14b, we
construct a triangle (shown in purple) to calculate the added
static component ~e. Mathematically, the CSI ratio in the new
vector space can be denoted as

Q̂CSI = F (z) + ~a+ ~e (5)

where ~e is the newly-added static component, which is rep-
resented as a complex value. For a given phase shift η, the
amplitude of the added static component ~e can be calculated
using the law of cosines as follows:

|~e| =
√
|~a|2 + |~anew|2 − 2|~a||~anew| cos η (6)

To obtain the phase of the added static component ~e, we
employ the theorem |~e|

sin η = |~anew|
sin ρ . The phase between the

original static component and the added static component ρ is
calculated as arcsin sin η|~anew|

|~e| . Thus the phase of the added
static component is calculated as follows:

θ~e = θ~a + arcsin
sin η|~anew|
|~e|

− π (7)

Given a sequence of original CSI ratio values Q =
{CSI1, CSI2, · · · , CSIL}, the original static component ~a
can be roughly estimated using the average CSI ratio, i.e.,

~a = mean{CSI1, CSI2, · · · , CSIL}. To maintain the com-
parability of the original vector space and the new vector
space, we keep the amplitude of the new static component
~anew to be the same as the amplitude of the original static
component ~a, i.e., |~anew| = |~a|.

Now, for a given phase shift η, we can compute the added
static component using the formulas above. To determine the
optimal ~e, we utilize a searching scheme to transverse all
possible phase shifts η. Let phase shift η vary from 0 to 2π
with a fixed step size, e.g., π

180 , then the phase difference α
also varies between 0 and 2π. For each η, we compute the
corresponding ~e, and use it to transform the CSI ratio signal.
The optimal transformation is obtained when the transformed
signal matches the ideal case (e.g., Figure 12 for the “Dot”
finger gesture). Since each character begins with the “Start”
gesture (Figure 2) and the finger position is relatively stable
during the input of each character, we use the ideal signal of
the “Start” gesture (referred to as the “reference signal”) to
choose the optimal ~e for signal transformation.

(a) Dot, location 1, original (b) Dot, location 1, transform

(c) Dot, location 2, original (d) Dot, location 2, transform

(e) Dash, location 1, original (f) Dash, location 1, transform

(g) Dash, location 2, original (h) Dash, location 2, transform

Fig. 15: Comparison of CSI ratio amplitude before and after signal
transformation for two different finger gestures (Dot and Dash) at
two different locations.

4) Signal Transformation-Verification: To verify the effec-
tiveness of our proposed signal transformation mechanism, we
performed two different finger gestures (“Dot” and “Dash”)
at different locations. The results are shown in Figure 15.
For the “Dot” finger gesture, the original signal pattern at
location 1 is not clear (Figure 15a). After transformation, the
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Fig. 16: Overview of the WiMorse system.

Real-time videoSegmented signal

Fig. 17: The web-based user interface for WiMorse: (Top-left)
original and transformed signals (amplitudes of CSI ratio);
(Top-right) real-time video of finger gestures.

down-up signal pattern becomes clear in the new vector space
(Figure 15b). For location 2, the original signal pattern of
the “Dot” finger gesture was flipped (Figure 15c), and our
transformation mechanism can also correct it to the right signal
pattern down-up(Figure 15d). For the “Dash” finger gesture,
the transformation mechanism also worked well, correcting
inconsistent signal patterns in Figure 15e and Figure 15g
into the right signal patterns in Figure 15f and Figure 15h,
respectively.

C. System Implementation

Figure 16 gives an overview of the WiMorse system, which
consists of four core modules: (1) real-time data acquisition,
(2) data preprocessing, (3) pattern transformation, and (4)
gesture identification and decoding. We have also developed a
web-based user interface to show the signals, text input along
with real-time video as shown in Figure 17. A real-time demo
video is provided together with this manuscript and also at
link: https://youtu.be/xGOdSJS2dWk.

Real-time data acquisition. In WiMorse, the transmitter is
a wireless Access Point (AP), e.g., a router or a laptop. The
receiver can be a smart device, e.g., a laptop or a mobile phone.
In our system implementation, we employ a TP-Link router as
transmitter and one Gigabyte MiniPC equipped with Intel 5300
NIC adapter as the receiver. The receiver is equipped with
two omni-directional antennas (5cm apart) for the purpose of
obtaining CSI ratio. The antennas run on the 5.24GHz channel
with a 40MHz channel bandwidth in an IEEE 802.11n WiFi
network. When using the system, the MiniPC continuously
receives wireless packets from the router. These packets are
sampled at the receiver side to extract CSI values. We collect
CSI readings from the WiFi adapter using the CSI-tools [32].
The packet transmission rate is 100 packets per second. A
Dell laptop (Precision 5520) with Xeon CPU and 16G RAM
is connected to the receiver via an Ethernet cable to collect
CSI packet samples (20 packets every 0.2s) and process the
data in real time.

Data preprocessing. From each sampled packet, we can
obtain two CSI streams simultaneously (one from each re-
ceiving antenna) to calculate CSI ratio. To refine the CSI
stream for fine-grained finger gesture recognition, WiMorse
first denoises the raw amplitude of the CSI ratio signal using
a least-square smoothing filter named Savitzky-Golay filter,
which fits successive subset of adjacent data points with a
polynomial by the linear least square method [36]. Figure 15
shows the raw CSI ratio amplitude signal (blue line) and the
smoothed signal after applying the filter (red line). We can see
that the filter effectively removes the small random variations
while maintaining the large signal variations caused by finger
movements.

1 2 3 4 5
pause

finger
gesture

Fig. 18: Determining the starting and ending time points
of each finger gesture. The top figure shows the signal of
finger gestures, while the bottom figure shows the amplitude
difference and threshold for segmenting the finger gestures.

Pattern transformation. As mentioned in Section III-B,
the signal patterns are inconsistent when performing the same
finger gesture at different locations, and we propose a sig-
nal transformation mechanism to convert the signal patterns
at different locations to one waveform. To segment finger
gestures in the character after transformation, we detect the
pause between consecutive finger gestures by leveraging the
variance of CSI ratio amplitude, which is very sensitive to
subtle movements. As shown in Figure 18, the top subfigure
shows amplitude of CSI ratio for finger gestures of character
“G”, while the bottom subfigure shows the difference between
the maximum and minimum amplitude of the CSI ratio signal
in each 0.7s sliding window with a step size of 0.35s 4. As
we can see in the figure, the difference between the maximum
and minimum amplitude within the pause period is very small.
We thus employ a threshold-based method to detect the pause

4The window size and step size are carefully selected to capture individual
finger gestures.
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and accordingly segment the finger gestures. The threshold
is set to 0.045 in our experiments, and is denoted as the
horizontal red line in the bottom subfigure of Figure 18. The
state transition of the movements is utilized as a parameter to
identify the starting and ending points of the finger gestures,
shown by the purple circled numbers and arrows in Figure 18.
Specifically, the first finger gesture (purple circled number 1)
and the last finger gesture (purple circled number 5) are the
“Start” finger gesture and “End” finger gesture to segment
characters, respectively. The second and third finger gestures
are “Dash” finger gestures in character “G”, while the fourth
finger gesture is “Dot” finger gesture.

Based on the observation that the optimal vector space
of one finger gesture should work for all finger gestures
performed at the same location, we employ the “Start” finger
gesture as the reference gesture to compute the optimal static
vector to add for signal transformation. The “Start” gesture
is the first gesture for each character, so the optimal vector
space for the “Start” gesture can be used by other finger
gestures in the same character at the same location. By
comparing the segmented signal with the reference signal of
the “Start” gesture (Figure 19a), the optimal vector space can
be determined. To unify the signal patterns, both the segmented
signal and the reference signal are normalized to the range of
0 to 1.

(a) “Start” gesture (b) “Dot” gesture

(c) “Dash” gesture (d) “End” gesture

Fig. 19: Signal patterns for four different finger gestures. (a)
up signal pattern for the “Start” gesture, (b) down-up signal
pattern for the “Dot” gesture, (c) down-up-down-up signal
pattern for the “Dash” gesture, and (d)down signal pattern for
the “End” gesture.

Gesture identification and decoding. Using the proposed
signal transformation mechanism, we can guarantee that (1)
the same finger gestures performed at different locations have
a consistent signal pattern; and (2) different finger gestures
performed at the same location have unique signal patterns. In
WiMorse, the segmented signal for each finger gesture is first
normalized to the range of 0 to 1. We then employ the DTW
(Dynamic Time Warping) algorithm to calculate the similarity
between the normalized segmented signal and the normalized
reference signals (some examples are shown in Figure 19).
The best-matching (i.e., highest similarity) reference signal
pattern is selected as the finger gesture performed. If the finger

gesture is the “Start” gesture, then Morse code encoding is
started. For the “Dot” and “Dash” finger gestures, they are
encoded to Morse code, respectively. When the “End” finger
gesture is detected, the cumulative Morse code is mapped to
the corresponding input character.

IV. EVALUATION

To evaluate the performance of WiMorse, we have imple-
mented the real-time Morse code input system using com-
modity WiFi devices and conducted comprehensive experi-
ments to demonstrate the capability of WiMorse in various
environments with multiple participants. In this section, we
first present the experimental setup, then report the overall
performance and discuss the factors that may impact the
performance of WiMorse.

A. Experimental Setup

We have conducted experiments in three practical scenarios:
home, office, and meeting room, as shown in Figure 20. We
have recruited seven volunteers (one female and six male)
to perform the Morse code finger gestures for all the 54
characters (26 letters, 10 numbers, and 18 punctuations). Each
volunteer performed each finger gesture 9 times, resulting in
63 instances for each finger gesture and 3402 instances in
total. We also generated 30 daily expressions with varying
length sentences 5, and each user chose 5 sentences to input.
WiMorse captures the CSI streams in real time and decodes
them into corresponding Morse code text.

(a) Home (b) Office (c) Meeting room

Fig. 20: Three different experimental environments. (a) The
home has a size of about 4m× 6m with two sofas, one table
and a Tv. (b)The office has a size of 4m × 4.5m with one
sofa, two tables and one bookcase. (c) The meeting room has
a size of 5.1m× 6.9m with three tables and several chairs.

We use the following metrics to evaluate the performance
of WiMorse:

Recognition accuracy is the percentage of basic finger
gestures (Start, Dot, Dash, and End) or characters that are
correctly identified by our system.

Input speed is the Morse code text input speed, which can
be measured as Characters Per Minute (CPM) and Words Per
Minute (WPM). Since characters vary by length (i.e., numbers
of dots and dashes), we present statistics on the mean time
and time distribution when users input sentences. Words also
vary in length, even when they contain the same number of
characters. Following previous practice [37], we employ two
methods to calculate WPM. The first method assumes that all

5The daily expressions were generated using website https://www.fluentu.
com/blog/english/basic-english-phrases/.
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characters occur with the same probability in each word and
WPM is calculated as follows:

WPM1 =
S

T
× 60× 1

Navg
(8)

where S is the length of all characters and T is the time in
seconds to finish inputting all the characters. 60 refers to the
number of seconds in a minute. Navg is the average length of a
word, and is typically set to 5. In reality, different characters
occur with different probabilities in each word. Taking this
into consideration, we consider the length of each character
to be approximately inverse to the frequency of that character
occurring in English text. Then WPM is computed as follows:

WPM2 =
60∑

c∈C pcTc
× 1

Navg
(9)

where C is the set of all characters, pc is the probability of
character c(c ∈ C) occurring in English text, and Tc is the time
duration in seconds to enter character c. Navg is the average
length of a word, and is typically set to 5.

B. Overall Performance

Character recognition accuracy. Figure 21 shows the
recognition accuracy for all letters before and after signal
transformation. We can see that WiMorse achieves high ac-
curacy for all letters, and our proposed signal transformation
mechanism significantly improves the recognition accuracy
from 48% to 96.6%. Furthermore, Figure 22 shows the
confusion matrix for all 54 characters, where the dark blue
color indicates higher recognition accuracy while the white
color means (close to) zero misclassification. We observe that
WiMorse achieves an overall recognition accuracy of more
than 95% with a standard deviation of around 2%.

Fig. 21: Recognition accuracy for letters.

Gesture recognition accuracy. Since each character is
entered using a combination of the four basic finger gestures
(Start, Dot, Dash, and End), we also evaluate the recognition
accuracy of these basic gestures. Figure 23 shows the con-
fusion matrix of the four basic finger gestures. We can see
that WiMorse performs well for all four basic finger gestures,
achieving 99%, 98%, 96%, and 99% recognition accuracy for
Start, Dot, Dash, and End, respectively.

Effectiveness of CSI ratio and signal transformation.
WiMorse has two key design innovations: CSI ratio and
signal transformation. To evaluate the effectiveness of each
mechanism, we compare WiMorse with two baseline methods:
(1) amplitude of CSI, which directly uses the amplitude of CSI
as the base signal; and (2) amplitude of CSI ratio, which uses
the proposed amplitude of CSI ratio as the base signal but
does not use the proposed signal transformation mechanism.

Fig. 22: Confusion matrix showing high average accuracy per
character and low misclassification rates.

Gesture Start Dot Dash End 
Start 0.99 0.01 0 0 
Dot 0.01 0.98 0.01 0 
Dash 0 0.02 0.96 0.02 
End 0 0 0.01 0.99 

 
Fig. 23: Confusion matrix of
four basic finger gestures.

Fig. 24: Comparison of ges-
ture recognition accuracy
using different methods.

Figure 24 compares the recognition accuracy of the four basic
finger gestures using each of the three methods. We see that
each method performs consistently across all four gestures.
The amplitude of CSI method achieves the lowest recognition
accuracy (18%), which is improved to 34% when using the
amplitude of CSI ratio method, while WiMorse achieves more
than 96% accuracy. These results demonstrate the effectiveness
of both CSI ratio and signal transformation, as proposed in
Section III.

Recognition accuracy in sentences. To evaluate WiMorse
in real-world sentences input, we collected CSI data for six
different sentences from previous literatures [38], [39]: S1 =
“the quick brown fox jumps over the lazy dog”, S2 = “nobody
knew why the candles blew out”, S3 = “the autumn leaves
look like golden snow”, S4 = “nothing is as profound as
the imagination”, S5 = “my small pet mouse escaped from
his cage” and S6 = “the most profound technologies are
those that disappear”. Each sentence is typed 3 times without
spaces. As shown in Figure 25, WiMorse achieves an average
character recognition accuracy is 94.66% in continuously
typed sentences. Thus, we conclude that there is no significant
difference in character recognition accuracy between character
input and sentence input.

Text input speed. To evaluate the speed of continuous
text input using WiMorse, we collected CSI values for the
daily expressions performed by different users as described
in Section IV-A. Figure 26a shows the min, average, and
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Fig. 25: Character recognition for different sentences.

max input time for each individual character across different
users. Figure 26b shows the text input speed for words when
considering different metrics (WPM1 using equal character
probability and WPM2 using statistical probability) and
Abbr. that leverages abbreviations (e.g., input “GM” for “Good
morning”) and is measured using WPM2. As shown in the
figure, the word input speed is only 1.38 WPM when using the
WPM1 metric and 2.3 WPM when using the WPM2 metric.
WiMorse also supports abbreviations for common phrases,
which further increases the word input speed to 2.94 WPM.

(a) Character input speed (b) Word input speed

Fig. 26: Text input speed for characters and words.

We also compare the input speed of WiMorse with existing
Morse code based input systems hosted on mobile devices
(e.g., mobile phone and tablet). Two popular systems are
selected: Morse Code APP and Gboard. As shown in Fig-
ure 27, Morse Code APP (Figure 27a) employs only one
button to input dot and dash with different press time in Morse
code, and another button to input space. Figure 27b shows
the user interface of Gboard developed by Google, which
employs one dot button and one dash button to input dot and
dash in Morse code. Figure 27c shows the speed of Morse
Code APP and Gboard are 4.07 and 5.16 words per minute,
respectively. Note that both these systems require the users
to slightly move their hands. On the other hand, the MND
patients have difficulties moving their hands. Without a need
of hand movement, WiMorse is able to achieve 2.94 WPM for
MND patients.

(a) Morse Code UI (b) Gboard UI (c) Word input speed

Fig. 27: Speed comparison with other Morse code input
systems.

C. Factors Impacting the WiMorse System Performance

In real-world usage scenarios, the performance of WiMorse
may be impacted by multiple factors such as location, user di-
versity, environments, and other factors. Therefore, we conduct

various experiments to evaluate the impact of these factors on
WiMorse.

Impact of location. Figure 28 shows the character recog-
nition accuracy at six different locations (Figure 28a) before
and after applying the proposed signal transformation mecha-
nism. We observe that WiMorse can achieve high recognition
accuracy at all six locations. Furthermore, using the original
CSI ratio (before transformation) resulted in different recog-
nition accuracies at different locations (varying from 38%
to 78%), because the original CSI ratio induces inconsistent
signal patterns at different locations. However, our proposed
signal transformation mechanism can effectively address such
location-dependency and improve the character recognition ac-
curacy from 49.7% to 94.1%, nearly doubling the recognition
performance.

❶ ❷ ❸

❹ ❺ ❻
Table

(a) Experiments at six different
locations

(b) Character recognition ac-
curacy by location

Fig. 28: Impact of location on character accuracy and effec-
tiveness of WiMorse in addressing such location dependency.

Impact of user diversity. As mentioned earlier, we have
recruited seven volunteers to perform all the characters (9
times by each volunteer to get 63 instances per character).
Based on our results, there is no obvious difference among
the character recognition accuracies for different volunteers.
However, the users do vary in terms of text input speed. As
shown in Figure 29a, volunteer 1 has the highest input speed,
since he knows Morse code and has a bit more experience
inputting Morse code than others. For other volunteers, the
speed is more than 1.6 WPM without any training, and Morse
code can be memorized through training, resulting in higher
input speed.

Impact of environment. Figure 29b shows the character
recognition accuracy in three different environments including
home, office, and meeting room. While the environments are
different in terms of layouts and setup, WiMorse is able to
achieve similarly high accuracy across all three environments,
ranging between 92% and 96%. This indicates that WiMorse
is robust against environments.

Impact of LoS and height. We also evaluate the impact
of LoS and the height of transceivers on the performance of
WiMorse. Figure 29c shows the character recognition accuracy
under different LoS distances. We see that the accuracy
dropped slightly when LoS increases from 1m to 1.5m, and
there is a bigger drop when LoS is set to 2m. Figure 29d
shows the character recognition accuracy when the transceivers
are positioned at different heights above the table. Again, the
performance dropped slighted when the height increases from
20cm to 30cm, and there is a bigger drop when the height
is set to 40cm. These results indicate that smaller LoS and
height are needed to detect fine-grained finger gestures.
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(a) Impact of user diversity (b) Impact of environment

(c) Impact of LoS (d) Impact of height

Fig. 29: Evaluation of different impact factors for the WiMorse
system.

D. Discussion

In this paper, we have designed WiMorse, a WiFi-based
contactless text input system using Morse code for MND
patients, which requires only subtle movement of a single
finger. Our evaluations show that WiMorse is able to detect
fine-grained finger gestures with high accuracy under various
environments and with multiple participants. Still, there are
several practical issues which need to be addressed in our
future work.

Interference from surrounding people. In real-world us-
age scenarios, there may be other people in the surrounding
area, which introduces interference for WiFi sensing. Note
that the received signal is affected by the target and sur-
rounding objects. Thus, whether the finger movements can
be sensed depends on the signal noise ratio (SNR), which
means the surrounding objects’ distance and their motion
displacements are not comparable with target movement we
are interested. We observe that the interference caused by
surrounding people’s movements is quite limited if the target
is close to the transceiver pair. Our experimental results show
that surrounding interference is minimum beyond a distance
of 1.5m, which is reasonable for MND patients.

Leveraging surrounding WiFi devices. Although the pro-
posed use of CSI ratio significantly improves the signal noise
ratio, fine-grained finger movement can not be well sensed
when the transceiver pair is placed far apart. Our experiments
show that the performance drops when the LoS is longer than
2m or the height is above 40cm. Thus a dedicated pair of WiFi
devices are needed to support the application. Actually the
proposed approach can be applied to a 4/5G enabled mobile
device with two antennas, where only the device needs to be
placed near user’s hands to achieve the goal of WiMorse.

V. RELATED WORK

The research problem and methodologies presented in this
paper are closely related to the following three research areas:
traditional text input methods, text input for people with
disabilities, and WiFi based fine-grained activity sensing.

Traditional text input methods: Traditional text input is
usually based on either typing or handwriting. For typing-
based text input, users type on a real or virtual keyboard, and
the keyboard allows users to type in letters and digits [40],
[41], [42]. For handwriting-based text input, users utilize a
pen or touch interface to input text [43], [44]. The recent work
RF-Copybook proposes a Chinese calligraphy recognition sys-
tem [45]. Using two RFID tags attached to the brush pen and
three antennas equipped at the RFID reader, RF-Copybook
can track the pen’s movement and monitor the handwriting
process. These text input methods described above typically
require users to move their hands and arms, which are not
feasible for patients with MND.

Text input for people with disabilities: For people who
cannot speak or write, they could still communicate through
Morse code by blinking their eyes or moving their heads [46].
However, vision-based eyeball tracking systems are usually
complex and expensive and the head tracking method works
with an extra head touch sensor. When inputting text, patients
are required to shake their heads left or right all the time 6.
SpeechTexter [47] is a voice-based text input system developed
to type with voice. However, the recognition accuracy is not
high enough, and people with MND will lose their speech
function eventually. Meanwhile, Google brings Morse code to
Gboard [30], which uses two buttons: a dot “.” and a dash
“−” on the phone and allows users to customize the keyboard
to their unique input needs. Besides requiring the operation of
a mobile phone, constantly shifting finger between the two
buttons and touching the screen may be cumbersome and
even infeasible for MND patients. A promising approach for
MND patients is contactless text input, which does not require
patients to carry or wear any device. To facilitate text input
for people with MND, this paper proposes Morse code based
text input via contactless WiFi sensing, which exhibits clear
advantages in terms of cost and the amount of finger motion
required.

WiFi based fine-grained activities sensing: With the avail-
ability of CSI readings from commodity WiFi devices [32],
significant progresses have been made for contactless sensing,
enabling new fine-grained activity sensing applications such as
keystroke identification [48], hand gesture recognition [20],
[21], [49], [50], vital sign monitoring [51], [52], [53], [24],
[25], [54], [55], and speaking tracking [56]. For non-periodical
activity recognition, WiHear was developed as a lip-reading
system that uses WiFi CSI to recognize lip movements,
which requires directional antennas and is very sensitive to
environment changes [56]. WiKey utilizes WiFi CSI readings
to recognize finger keystrokes, while WiSee is a gesture recog-
nition system that exploits the Doppler shift in narrow bands
extracted from wide-band OFDM transmissions to recognize
nine human gestures [57]. WiFinger aims to recognize finger
gestures (e.g., digits 1−9 in ASL or specific eight finger
gestures) using WiFi signals [20], [22]. Due to the location
dependency issue, these activity recognition systems need to
fix the positions of the transceivers and can only recognize the
activities under the same setting when training data are collect-

6https://vimeo.com/269745382
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ing. However, in reality, the location and environment changes
would lead to a changes in the received signal patterns, making
the collected training data inconsistent with the test data. In
contrast, WiMorse leverages a novel signal transformation
mechanism to automatically address the location dependent
issue without training, which makes accurate and robust fine-
grained finger-tracking feasible in a real-world application.

VI. CONCLUSION

In this work, we have designed a WiFi-based contactless
text input system using Morse code for MND patients, which
allows patients with minimal finger control to input and thus
communicate with other people without attaching any sensor
to the finger. Through an in-depth analysis and understand-
ing of the drawbacks of CSI readings provided by existing
commodity WiFi devices for sensing, we identify the CSI
ratio of two antennas as a better base signal than the CSI
from any single antenna in terms of motion capture, especially
for sensing the subtle motion of finger gestures. In order to
address the challenging issue that the same finger gesture
may induce different signal patterns at distinct input locations,
we propose a training-free signal transformation mechanism
to automatically map very different signal patterns due to
location variation to the same gesture pattern for accurate
gesture recognition. Extensive experiments in different envi-
ronments with different users demonstrate that WiMorse works
effectively for Morse code based finger gesture recognition,
achieving over 95% character recognition accuracy for all
the subjects. We further show that WiMorse could enable
reasonable text input speed with abbreviations of Morse code,
and a single 4/5G mobile device could be placed near user’s
hands to achieve the same functionality.
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