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BALANCED CYCLE AND CIRCUIT DESIGNS: EVEN CASES

J. €. Bermond*, C. Huang®* and D. Sotteau®

1. Introduction.

A k-cycle (or k-circuit) is a set of k distinct elements,

C = (cl, ¢ sees Ek}’ such that the two elements Cys Cyuq s

2!
i=1, 2, ¢o.; k and k+l =1 are linked by an edge {or by an arc

from ¢y to ) while any other two elements of C are unlinked.

Ci41
For undefined terms see [1].

A balanced cycle design, BCD (v,k,A) (or a balanced circuit

design, BCD* (wv,k,A) ) is an arrangement of v elements into b
k~cycles (or k-circuits) such that each element occurs in the same
number, say r, of k-cycles {or k-circuits) and any two distinct
elements x and y are linked in exactly } k-cycles (or linked by
an arc from x to y in A k-circuits and by an arc from y to X

in A ke-circuits as well) [71.

A BCD (v,k,A) (o; a BCD*(v,k,\)) is also called a
{v,k,A) Ck‘-design {or a {(v,k,A) 3gc«design} 741, and is essentially

an edge- (or arc~) disjoint decomposition of the complete {or complete
directed) multigraph with multiplicity A, AKV {or AKV*) into sub-
graphs isomorphic to a cycle Ck {or a circuit 3%) of length k.

it is easy to show that the number of k-cycles in a

a Av(v-1
BCD (v,k,A) is b = ~3§§——l

BCD%(v,k,x} is b = 5x£§:;i . We have (see {41},

and the number of k~circuits in a

PROPOSITION 1.1. The necessary conditions for the existence of a
BCD (v,k,A) are v 2= k, av{v-l) £ 0 (mod 2k} and A(v=1) = 0 (mod 2}.

ARS COMBINATORTIA, Vol. 5 (1978), pp. 293-318.



PROPOSITION 1.2. The necessary conditlons for the existence of a
BCD*(v,k,A) are v = k and Avi{v-1) 2 ¢ (mod k).

In this paper we assume that k is even. The case where k
ig odd 1s considered in [5]. Partial results concerning the case k

even have been obtained (see the survey in [4]). We are interested in
proving:

CONJECTURE I. Let %k be even. The necessary conditions of Propo~
sitions 1.1 and 1.2 are sufficient except for

(1) v=k =4, 2 odd, in Proposition 1.2
and (i1y v = k = 6, A =1, in Proposition 1.2,

In fact, we have only been able to reduce the problem to the
verification of a finite number of cases (for a given k). We prove

also the existence of such designs for some modulo classes and small
values of k,

Z.__General Constructions.

We list several lemmas which are useful in the construction

of BCD's and BCD*'s. Their proofs are either obvious, or given else-
where and hence are omitted here,

LEMMA 2.1, If a BCD (v,k,A,) and a BCD (v,k,A,} exist, then there
exists a BCD (v,k,pk1+~qlz), where p and q are non-negative

integers,
' Let RKVl vy denote the complete bipartite graph with
&

vertex set X1 U Xz with ixi[ =ve, i=1, 2, Xl n X2 =@ and any

vertex in Xl is joined by % edges to every vertex of XQ.

LEMMA 2.2, If kal v, can be decomposed into ecycles of length k
v 2

and if there exists a BCD (Vi,k,k) for 4 =
BCD (V1~+v2,k,k)a

1, 2, then there exists a

i es of length k
can be decomposed into cycles o
LEMMA 2.3. If KV19V2
and if there exists a BCD

BCD (vl+v2+l, ky A).

(vi~b1,k,k), i =1, 2, then there exlsts a

BC i ~cycles b
cimilar results hold for BCD*'s by replacing k=~cy ?

i directed bipartite graph
k-cirvcuits and AKvlaVZ by complete di

AR Relations between BCD's and BCD*'s are given in the

Vl,Vz
following lemmas.

LEMMA 2.4 Tf there exists a BCD (v,k,)), then there exists a
BCD* (v, k, 7).

The converse of the statement is not necessarily

Remark. ‘
exists ([31) but a BCD(8,8,1)

true, for example, a BCD*(8,8,1)
does not (the necessary conditions are not satisfied).

LEMMA 2.5 1f there exists a BCD*(v,k,)), then there exists a

BCD(v,k,21) .
Remark., The converse is again not true, for example, a

BCD(4,4,2) exists but a BCD#(4,4,1) does mot (see [3D),

In order to apply Lemmas 2.2 and 2.3 we need the following

results which have been obtained in [11].

K ig decompesable into cycles of lenmgth 2n if
VisV2 ‘

and only if vy and v, are even, Vl,VZ

LEMMA 2.6,

zn and V1Y, = 0 (mod Zn).

LEMMA 2.7 K* is decomposable inte circuits of length 2n

Y1272
i E d n).
if and only if VysVy zn and ViV, 0 (mod n)

7

% 7
All these lemmas enable us to construct BCD's and BCD*'s
i alues of
from smaller omes; to solve the existence problem for small valu
¥
v. we use a direct construction which is analagous to R. C. Bose's
b

method of symmetrically repeated differences.
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In this paper, the elements of a BCD (v,k,A\) , D, are
represented by residue classes modulo n, where n=v or v - 1.
In the latter case, the extra element is represented by . The set
of the n elements is denoted by Zn’

Let A be an automorphism of D. Twe cycles Ci and Cj
are said to be in the same orbit if AP(Ci) = Cj for some p 2 1,
An orbit can be represented by any one of its cycles, which will be
called a base cycle and the order of the base cycle is the cardinality
of the orbit it belongs to. Hence a collection of base cycles, one
frow each orbit, determines the whole design when automorphism 4 is
applied,. A BCD is said to be cyclic if A consists of a single

cyele of lemgth v, without loss of generality, let A = (0 1 2...{(v-1)).

Remark. We can define base circuits similarly.

To construct base cycles or base circuits, we need families
of differences. We will first comsider the directed case. If c; and
cj are linked in a eirecuit © by an arc from ey to ¢,, then
dij = cj -y 1s caliled the difference between ey and cj (it is
actually the arc from ey to cj). If Cj = o=  then dij = w{ and if
¢, == then dij = ~®, An element d of {1, 2, ..., n~1} U {4w, ~=}
is sald to occur p times as a difference in a base circuit ¢ of
order m if pn/m elements dij in € are of the value 4. WNotice
that dij'ﬁ are taken moduloe n and the element +» or == can

appear at most once as a difference dij in a circuic.

The family of base circuits Ci’ i ¢ I determine the whole
design if for each 4 4n {1, 2, ..., n-1} or
{1, 2, v.uy mel} oy {de, -}, depending on whether n=v or n=v-1,
z pg = A, where pg denotes the number of times the element 4
iel
occurs in the circuis Ci"
To comstruct a base cilreuit Ci’ it 18 sufficient to find

either a family D m'{dl, dz, caey dk}’ with
di € {1, 2, ..., n~1} such that

- 296 -~

k 8 ) .
140 <8<k,
1) T d, = 0 and I di # 0 for

i=1 i i=0

(a, BY # (1, K

i ted, for
and in this case, the base circuit can easily he construc ,

example .
i + ...+ dy 1)
€= (0, dy, dyHdys cves d;+d,+d, el

or a family D = {dl, dz, P, dk_z} , with

4y « {1, 2, <.., v-2} such that

ES Ly
(2) T 4. # 0 for L=a<B= k~2
i=n i

ey dyFdy e )

+d 1 2

and in this case, € = (v, 0, dl, d1 9

the method is similar; as the axc
are not distinguishable,

For the undirected case,

from ¢, to ¢ and the arc from ¢, to ¢,
: and Cj is defined to be

the difference between <,

dij = mim{‘ci-cji, n - ‘ci-cjl} .

joini and
4 ig sometimes called the edge length of the edge joining ¢
i3
e, .
J : ith
As we deal with collections of elements rather than w

we will denote by
to those of DZ

sets and we want to retain the multiplicities,

the result of adjoining the elements of Dl
In particular, =D will demote

s being increased B

Dl u D2

with total multiplicities retained.
a collection of elements of D with multiplicitie

2, waus B}
fo1d., Finally, we denmote by I, the set {1, 2, ’

v,

3, The Construction of BCD*{v,k,A), k even.

In this section, we give the constructions of balanced

nd
circuit designs, BCD% (v,kk,A) for some modulo classes of v a

even k.
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We obtain from Proposition 1.2,

LEMMA 3.1. Necessary conditions for the existence of a BCD*(v,k,\)
are v 2 ki and that there exist positive integers x,y,z such that
xyz = k, x{A, and v Z Ly (mod yz)} where 0 < 2 < z and if

L >0 Ly 2 1 (mod z).

?raofu If there exists a BCD*{v,k,A), then b = Aw(v-1)/k must

be integral. Let x be the g.c.d. of A and k, and put A = A'x
k= k'z. Then v(v-1}/k' is an integer. Let y be the g.c.d of’ v
and k', put k = wyz, v = yzt + 2y with t 20, ¢ <8 < Z, thP;

zf(yzt + 2y ~ 1) 1f 2 > 0.

. We will give the proof of the following theorem later.

THEOREM 3.2. If there exists a BCD*(VO,k,A) for v_ =% 4+ pyz

k = A= x ; ,
®yz amd A = %, vhere 0 < p < %=1, then there exists a

BCD* (v, k, A or =V

BCD* (v, k,A) for v = T 4 qyvz, k = xyz and A = 0 (mod %) for any

g2 0; k is even,

An important consequence of this theorem is that the
verifi f /| i i "
ication of Conjecture T (in directed case} Is reduced to a finite

number of cases, namaly,

COROLLARY. The necessary condition for the existence of a BCD* (v, k,A)
in Lemma 3.1 is also sufficient for k even if there exists a ”
BCD*(VQ,k,k) for v, = {(x+plyz + Ly, k = X¥Z, A = x where

C2p<x, 08 <2 and if g > O, 2y 21 (mod 2).

We have the following lemms [31,
LEMMA 3.3, There exists a BCD* (ktl,k,1) for any integer k

LEMMA 3.4, If there exists a BCD*(v,k,x), then there exists a
BCD* (vik k,x), where k is even,

Proof, Applying Lemma 2.1 to the result of Lemma 3.3, =&
o .
BCD*(k+l,k,x) exwists. By hypothesis, a BCD*(v,k,x) exists Then
apply Lemma 2.3 for the directed case with vy = v-l, v, =k, A = x
s = 2 = H

since K*
T1sV2

2.7)s a BOD*(vik,k,x) exists.

] 2
can be decomposed into cirecuits of length k {(Lemma

We can now return to Theorem 3.2,

Aseume that a BCD*(¥ + pyz,xyz.z} exists for
BCD* (T + pyz + k, xyz, %) exists .80 by Lemma
0, then we can p.ove the exist-

Proof of Theorem 3.2.
0 £p < x-1, then a

3.4, Now put q = sx + p where 82
= ¥ + sk + pyz, by

cnce of a BCD*(v,xyz,x), where v =¥ + qyz

induction on s . Lemma 2.1 is used to prove cases where A > X,

Note. Unless otherwiue :tated, k is always even in this
gection, furthermore, we only construct designs with minimal X, in

view of Lemma 2.1.

THEOREM 3.5. There exists a BCD*(tyz+1,xyz,A) for any t z x and
A =0 (mod x).
1f there exists a BUD*{tyz+ 1,xyz,x) the nuwber of

kecircuits is b = v, where v = tyz + 1; hence we will construct ¢

bage circuits Ci’ i=1, 2, ..., t, each of order v. In fact, we
will look for t collections of k elements each,

d, § eees d, T, 1 =1, 24 oy &

such that the elements satisfy condition (1), that is

k
Td,, =0

3 RASY
8

(&) b dij #0 for 1sa<Bsk, (0,8) # (1,k
j=a

and, in addition,

(5) U b, = xI
1sigt ¢ v-1

Consider the case when v is odd. Put
DT o= {1, 2, ..., (w1372, 1, 2, .ou, (v=1)/2, el
1y 2, wusy (w1372},

that is, x copies of I(v~l)/2 in the given order., Now let Sl
contain the first k/2 elements of D', Sz contain the following /2
elements and so on, so St contains the last k/2 elements. Then

reorder each Sj s0 that its elements are in a strictly increasing

order, that is,
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g, = ¢
j {ajly dj s cvey aj b owith
2 k/2
a, <a, <, < a
3 3 o’ i :
1 2 x/2
For 1 23 < ¢, put
D, = {a -8 a -
5 jl, 32, 33, ajf-’; vees iaj s *a, s +a .
/2 dx/2-r 0 Ixpaen
veoy @, -a, , ;a, } , where
150 Jl Ix/2 » e ajk/z and hence upper signs

are used when k = 2 {mod 4) and ~a

/2 and hence lower signs are
use%ﬁwhen k20 (mod 4).

#
L

It is easy to see tha
. 2 t the D.°* sabi s
(5) since 3 ¢ satisfy condition (3) and

“d,, TN o g
Ji g

To verlfy that the D 8 satisfy co 3
Py ndition 4 we use the iOllOwiﬂ

) ( ) g

p[,'(?Perty H let b" = b < vs < b be 8 element 8 of 2 . lhen
H 2 8 n

b b, - b B, - b, b b, =~b,. 4+ 1) +h I} if i
1 E 1 99 1 2 3 o869 rg 1 2 3 96 ee = ( B 8 8
Odda b if 8 18 eueﬁ) are all dif f@[ ent from zero and their

absolute value is strictly less than b
6"
For the case where v ig even, let

Dt o= {1,2 z 1 v
soee PR N S & v
T2 T ’2"‘Hlezswu?l‘*l,.,.,1,2,...,~—2—1}

tllat s = (:Opiﬁs or I fo lowin by w  Copies of I in
2 sz L g 2 \

the .
given order. Then we comstruct ¢ sets § and ¢ sézsl D

exactly as in the odd o
ase. Hence a BCD*(tya+l
the proof is complete, (y e eare and

Remark. 1) The desi
- gn  BOD*(tyz+l,xyz,A), A =
s A 20 (mod x n
in the last proof is cyelic. ) constructed

2
} We constructed a design for any t 2 x although Theorem

3.2 and its Coroll i
; ary imply that it suffic
es to prove i
for t, where x < t < Jx-1 ’ e xisence

THEOREM 3.
3.6. A BCD*(tyz,xyz,\} exists for all t 2 x and

A o= 0 (mod X) [ P
3§ xe hat a8 B ( a )
7 ept ¢ Ch# (4 4‘,}\ with A odd and a
BCD (6:67;1} do not existe,

- 300 ~

The existence of a BCD*(tyz,xyz,x) implies that we must

have b = x{tyz) (tyz - 1) /xyz = t{v~1) k-circuits. Hence we will

ase circuits, each of ordex v-~1.

Proof.

construct t b Represent the

elements of the design by 2 5 V {=}.

Again, we will look for x sets D, = {d, ,d, ,s..0,9, o
! 3 iy Jg-2
for 3= 1, 2y sves K which satisfy :
8
(&%) $d.. #0 for Lsa<Bs k=2
P
i=0
and for t-x sSets, Dj = {d, , 4, 5 se0s di 1, where
: i d2 Yk
§=x+1, x+2, .. t which satisfy (3), (4) and
5" U b, = xI_, .
1<ist o v-2
When v 1is even, putl
Df = {1,2,,.I,(v»2)/2%1,2,.,.,(v~2)/2,...,1,2,..»,(v-2)/2} »
that is, x copies of I(v~2)/2 in the given order.
x ;
When v 1is oid, let D' consist of F copies of ICle)/Z
followed by 5 copies of I(VwS)/z'
D' and

MNow let FJ contain the first %ﬁ~1 elements of

FZ contain the next %-l elements of D' and so on, for

F., F,5 oe.p F_ 3 then, let § contain the following k elements
3* T4 X ®+l * 2

of D' and so on, and finally St contains the last 5 elements of

§,, x+1 £ 3 5, we obtain the sets Dj which

p'. From the sets
od as in the proof

satisfy conditions (3) and (4) using the same meth

of Theorem 3.5,

Case 1: = even, In this case, we can partition the sets

X

< = S %o
Fi’ 1 €1 <x into consecutive pairs, ?2j~l u sz , 1213 5

1If an element a occurs twice in a union, then replace one of them by
and then reorder the elements in a strictly increasing order;

ye-l-a,
that is, (¥ UF, )= 1 with
( 2j""’l zj) {ajl) ajz, » ajkuz

a, €a, % ... %<8 . Then for 15 j s X t
1, <%, Byt E ieg.

}

“n oy

DZj~1 = {ajl, ~a32, aj3, ~ajk~2
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Again it 1s easy to see that the Dj‘s 153sx

(4"

Example.

X}@

#

F, o=

Hence B

F3u

Hence D

Also,

{a}

(b}

u.F, =

}

8 "B, 4 e.., @,
Jg~2
satisfy conditions

and that Dj s L 23 < t, satisefy (5'),

A BCD*(12,8,4)
=6,

exisrs., Here v = 12, k = and

{1,2,3,4,5,132,3,4,5,1?2,394,5’1’233’4’5}

{,19253}, }5"2 e {495,1}, 24‘3 = {2’3’4}, Fz; - {5’112}

E= {33;{59591} and S6 = {2?:“5*,5} i

2 {192}3!4§591}} {Fl u Fz)' = {1,2’33.[&,5210} .

v = 11,~2,3,+4,5,~10}, D, = {~1,2,~3,4,~5,10} .

F, o=

4 {2’3’49-‘5’192},

{?3 U Fé)' = {1,2,3,4,5,8} ,

= {I.,””293"’!4359"9}y D& = {‘”1,2,"3’4’-5’9}

3
D5 = {1,~3,4,45,w4,3,~1,5} and D6 = {2,*3,4,~5,~4,3,~2,5}
% odd.

The existence of a BCD* (tyz, vz, A)
that of a BCD*(yz,yz,1)

Case 2:
x=1, for any A follows

from by Theorem 3.2. The existence
of a
of K§ into hamiltonian circuits. It is known that the decompo~
sition is impossible for k=4 op 6 and it has been proved
recently [12] that a BCD*(k,k, 1) When
k=4, a BOD*(4,4,A) for A odd does not exist (see Lemma 4.2y,
However, a BCD#(8,4,1) exists ({23,
a BCDA{(4t,4,)) exists for any t = 2 When k=6,
a BCD*(6,6,1) does not exist ([31); but theve exists a
BCD*(6,6,2), (i.e. in Case 1) and a BCD*(6,6,3)
thus, by Lemma 2.1, a BCD*(6,6,4)
Furthermore 2z BCD*(12,6,1)

3.2, a BCD*(ﬁt,ﬁﬁk)

exlsts for all k = 8,

Hence, by Theorem 3.2,
and any A,
x= 2 (L2l
exists for any A 2 2.
exists ([21).
t2 2

Hence, by Theorem

exists for any and any A,

¥ 2 3. By Theorem 3.2, it suffices to show the existence of a

BCD*{tyz,xyz,x) for x < t s Zx~1l. For t=x%, this follows from

case (a), Thus we will suppese that x < ¢ < 2x-1; hence v isg

evern.
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BCD*(k,k,1} is equivalent to the existence of a decomposition

> e %
As in the counstruction for the case wher

partition D’

9
have an odd number of Fi S.

F.. Put F = Fl §] FZ U F3;

3

. %
from F, such that each Di

of the comstruction remains the same.

even, we

is

t-x% sels We now

¥
's and Sj 5.

sets F,
o d
Consider the first three, Fl’ Fz an
*  and DB*
The rest

into X

we will construct Dl*, D2
satisfies the condition (4;)u
o= = 3z~ nd we

Now |F| =f = 3(2 1) aund w

have three possibilities:

f 2(v-23/2, that is, F = 21(v-2)/2 which implies
b = ha 4 s ¥ o

(a) ‘ . N
Ixyz = 2tyz + 2. Now t = (3xyz ~ 2)/2yz being an integ
that RXyzZ = 5 « B o
implies that yz = 7 and t = (3x~1)/2, Hence k
v = 3x-1,

(22 -3y, -(2x-2)1},

- «dy ooy
Put D% = {1, =2, 3, . .
' : DT U {@x=2), ~(2x=1), ces (3%
Dok o= {=1, 2, =3, by aces N A
: - "(ZX'B)} u {(2){-‘1), - s @3
- DB* e 2. 3, satisfies (4').
It is easy to check that Dj*g i =1, 2, 3
i . Let
(b) . £ < v-2, that is, ¥« ZI(V«Z)/Q
A , 1 <p < (w-2)/2,
Fa={1,2,..., v22} U {1,2,+..5 P}, where P
: £ Y224 g1, 22, ..., tpl
and let G = U Di* = {21, %2, ...y T
- TTATe ., 2 v-2)1.
z {1, %2, ..y m}u{ﬁi*i%+lhu s
_ 3k-v-b
Note that 3(k-2) = v~2+2p dmplies that p = 5
—p-2-3, Hence 8 £ 7P
put q = k~-p~3 and g = 2k-p 5 3

= Togq-2) = k=2,
and p+ (g+1) = (p=-8) + (G-1) = s+ (5-4

and

T Ern,
D*”-"{(S+l)’ "(S+2)9 wsoy P}U{ 9 (2 )
3

*
)

If p and %~ are both even, put

If p .
v vy * &
Dl* = {1y =2, «ues ~(p~1), P} v {“‘(‘2'): (2+l),

v
, IOy
22, vees (0-1), mp} U G5a ~GHED, s GO

% cees (=21,
(=1, 2, .oy (=1), =s} U {(GGra+l), ~Gra+D,.., (v

N S S I

is odd and %< is even, put

o =GTOY

Y q+1), ~(H+q+2)
{(p"'S"‘l), ”(P‘5+2)s vess Pl U {(2+q+1)s 5 5

veny ={v=2)1
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and D % = f.
3 {1, 2, oov, =(p-8)) v v
P o STl U g - GrD, L w2

If A
P 4s even and 3 is odd, put

D% = Il -2

T 2 1), ) U ) U - (vmgD), (vq), ..
"(V’“Z)} 3

D% = {1, 2, ..., ~(g~

2 ; s ~(s-1), 8} u {-G+1), G+2),.

and D % = (.
3 {(~(e+1), a+2, ..., pl ¢ -3, (';,‘,"Fl), v -2}
5 voy - ..

Lastl i L
¥, if p and 5 are both odd, put

Dy* = {1, -2,

ok

rers ~(p-1), -, &
Gopbu -G Gy, L, -Erg),

Dy* o= {1, 2, ...,

- v
ShulGHa+ ), ~G+a+D), .., w-2)3,

and DB'«* = {(a+1), ~(s+2), ..., -p} u X ~(Zr ;
] 7 3 .«m,-—v..-Z)}.

() £ > v-2, th :
3 at is 31
w-2)/2 2 F 2 2y gy -

Put P+ o= {1, -2, 3, =4, ..., 5(.‘.’...1)}
. - 2
and Fo= -1, 2, -3, 4y sy -5}

where

v
£ = {115“2"iseven
v

-1 if 5 is odd

Now -a £ 9~1-a for 1 <

a £ v~2 dmplies
v v that P+
B -{'-—659 5(%4»1), .o, and

F ~(v~2}} are equivalent and
- and Bl s {5 X Lg¥aq

{8 5 6(2+1), «vor (v-2)} are equivalent.
Let p be such that

2 -
Pt (v-2) = IHk~2), and p = {3k ~ 2v 2/2 21
Pt = h

. Put

{1, =2
s s vees Op} and Pe = -1, 2, ..., ~8p}  where

8 m{l if p is odd
(-1 if p is even

4lso P+ is equivalent to P+' = {-8(v~1-p)
s soes

and P~ dis equivalent to P~' = (6(v-1-p) (v = 2)}
£l

soey V=231,
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°ep (V*q—Z)} N

The construction of Di*'s i1s similar to that in (b).

Here
3
G = uDi* = P+ Uy F- u F+' u P-' u P+ u P~
i=1

Let s be such that (%»1)+s+p = k-2, hence s = (v-Kk)}2 . '

If p and % are both even, then & 1s odd, put

¥ = P+ n {-(%+1), (%4- 2)y e —(%+s)} u P+,
Dy* = F- U {G+e+l), ~GHE ), s (3’5+2s)} u B,
e VY v
and D3* = F+' u {-;2'} u {=L, 2, oouy (k*"i""z)} .

If p is odd and % is even, then s 1is even, put
D% = B4y {~(Y2.—+1), (%«v 2Y, eees —(%»!»s-l)} u {(1?’»4—23)} U P4,
p* = F- v {GG+s), ~(GHet1)s ces ~(G+2s -1} v P

and D.* as above.

If p is even and % is odd, then & is even, put

D% = F+y {(-%"i-l), »(Yz«+2),.,,, («‘24+s»1)} v {-(Yius)} v P,
D,* = F- v {m(%-i-s), (%+s+1), vees (%+25-1)} y P
and Dy* = F+' N {—~‘2’e} UL, 2, aeos —-(kmyin)} .

Finally, let p and 15'- be both odd, then s is odd, put
. v v 3
D% = F+u {GG+1), ~GH2), s G+s)} v B+,

D = F-u {~(§+s+1), (-%1"54*2), —(§+zs)} u P

and D3* as in the last case.

Tt is a routine matter to check that Dl* and Dz* satisfy
condition (4'). As for 1)3* , we will show the circuit associated

‘with it. Let -% be even, then

. v 54 v v v
D3* = {"'iw (‘i'*']-)» “(iﬂ'z)’ ('i+3)9 sesy "'(V"'z)} 1] {"i} U

U1, 2, =3, 4y eee (km—%—-z)}.
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v, . v 3 v ¥ v
Let C, = {w, 3 0, F¥L v=2, 342, ..., -1, 5 7t 7,
¥ v v-k+4 ok
T2 gl e, T ,2) .

The elements in C3 ave distinct, since the set consists of

0, %’ %4_1, vees v-2 and X:%ﬁi’ EI%iﬁ, ey %-; furthermore, the

differences between two comsecutive elements of C3 are exactly

DB* U {+e, ~w}, Hence C, dis a base circuit of order v-1.

3
Similarly, if %* ig odd, put
3v-6  3vy-2 -2 )
’”Cg'“_' (m’ g, "‘zz"r v~2, %+1v vosy -'%;‘”a "'X[;"“s y‘f‘s y’z;'"s
v+2  v-l0  v+é k-4 vk
4 A $ 4 3 eeey 2 ® 2 ®

If k=4 then xyz=4 which implies that x=1, & contra-
diction, hence k 2 6,

The procf of Theorem 3.6 is complete.

We have also the following theorems,

THEOREM 3.7. If =y £ 2, there exists a BCD*(v,xyz,A) for all v

and ) satisfying the necessary conditions {cf Lemma 3.1).

Proof. If y=1,%x=1o0r 2, then % =1 and the existence of
such design has been proved (Theorem 3.5). If x=1, v = 2, then
£ = {z + 1}/2; by Theorem 3.2, it suffices to prove the existence of
a4 BCD*(32+1,22,1) with 2z odd, which has been done already
{Theorem 1.2.13 in [21). Hence the proof is complete.

THECOREM 3.8. If =xz < 2, there exists a BCD*(v,xyz,2) for all v
and X satisfying the necessary conditions (¢f Lemma 3,1).

Proof, If z =1, then % = 0 and the existence of such designs
have been proved in Theorem 3.6. Similarly, Theorem 3.6 proves the
case z =2 and £ = 0, So we assume that z = 2, x=1 and 2 =1,
hence vy d1s odd. The existence of such a design was conjectured in
1.2.16 of [2] and has been proved partially in [61. By Theorem 3.2,
it suffices to show the existence of a BCD*{3y,2y,1): we will divide
the comstruction into two cases.

(1) y=i4m+1, hence v = 12m+3 and b = 3(6m+1). Let

the elements be V = {w} y v, v Vv, where V = {0

1 1 115 21,--.;(6m)l]-
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] C t three base
vy (6m)2}. We will construc

- Vz m’{ozw 12, 22’ ircuits

such that they generate all the b ¢

circuits Gy Gy and C, . (gmgl)(oz Lyeee

= 1
of the design under the automorphism A (°°)(01 1

lo ém+1.
(6m)2). The elements are taken modulo

3 2 E3 ® 1) 5
1 1 5 2 1 2 LEES ] ( )] 3 ( )29 ( 1
Let C = (O (bm) 1 ] (6m”l) 2m 4m 4k

., (6m),, (2m),)
({’v'm"]—)za (‘Hlﬂ"?.)l, (4@:"2)29 seoy (m)l 2

When wn is even, put m=2n and

C, = (= T 35 o -3k “1) 45 0,50,51,5
( (3 )19( 3 )1’(3 l)l:( 3 1)1"'°9119( )1: 1.9 23 2
2 4

- Sud2) . . (90},
(-1)2,..o,(3nw1}2,(»3n+1)2,(Bn)z,( Bn)z,( at2) 9

L (Totl) )
(5n+3)1,(9n—1)2,.u.,(7n)l,(7n+2)2 whl)

- ,1,,0,,0
C, = (w (”3“)2,(3ﬂ)2,("‘3{?“1)2,(311'1)2,..g,( l>2 2) 2 13
3 s

- ,(3 s (70-1) 55
(’”1)1,117*"w("'Bn"'l)ls(sn"l)la( 31'01 ( n)l 2

g <13, (5m) ) .
(Bnﬁi)l,(7n—2)2,(5n+2)1,...,(Sn 1)1 { n)z

Wheﬁ m is odd, put m~ nt 1, O

wh Y S N N y

C, = (=, (3 2)13('31“1)19(3‘“'1)19'~°a("‘2)19219( )15 1*91°"2
A * ]

a2 s 3 +l) ,(“'3‘[1’"?»)2,(5114“4)1,
('—1)2912g(”2)2,22,.»-,( 3n 1)2 ( 13 2

=134
(9n+4)2,(5n+5)1,(9n+3)2,...,(7n)2,(7n N

o "3“""2 F} 31r 1 » In 1 3 In pgou e 2 2 ("‘"?.) 1 P ("’1) 2,
C3:"' ( a( - }Z ( }2 (‘“ _)Z ( )2 e 21 2
0 0 1 ~1 2 ("'2) g e ,,(3n-l 1)19("‘3n"1)1, (3n+2)1,
23) 1 3 1 9( )] 559 £ 1 ( )
71ﬂ'3 3ot 3 7ok 2 3'[1""4 2 .JU,’*‘?.) Sk 3 ) »
( )Zy( “)j’( )A2$( )]3 )( ]9 2
i . C and e are base Ci’tcuitﬁ, ne can
To verif that Cl, 2 3 0
d in he d = O h pa o] elements i, -
efine t iffer ence £ the iy 4 le (ot { a b } as b a

r in
then it suffices to verify that every intege

o s e difference of each of the

{1, 25 sees 6m}
following pairs of elements:

occurs exactly once as th

{3)3$ ]9 29 21 ,29

C2 or CB'
and b = 3(6m+4).

i = ce.,(6mt3).} and
Let ¥V = {=} U Vl and V2 where V1 {01,11, ‘ 1

base circuits Cl,
111 comstruct three
V2 = {02,12,...,(6m+3)2}. We wi

(1) v = 4m+3, hence v = L2m+9
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¢ and G such th&t thﬁ enerate all the b clr cuits d
v ungaer

A ( ) (Q i * e (33 3 0,,1 6m’"‘3 a The e emen e
® * ’-'a( ) )( *0 e
3 1 1 2’ 2! ’( )2) 1 ts are

€, = (0, (4rb2
1 ® P IS |
1 19 19(‘41!14—1)1321,(4111)1,-.u(2m+2)1,(2m+1)1,(2m+1)
29

2
(Bmt2) o ey (kL) 1, (it2) ,0,)
When m 48 even, put m = 2n and let
Cp = (=0 ,1 -1
2 L 1&( )1’219(—2)l,a.”(wn)l’(n‘ﬂ")l’nzi(n"“Z)l,(n«l)
(wt3), ... 2®
1¢ ‘ » (7&*‘2)19 (“‘5n~l)2p (“91‘1""2)2, (usnmz)z, (‘9!1”1)
e p— N 2’
. {~5n 3)2’°‘°’(”8“”3)2,(—6n~1) ),
and 2

Cy = (w,0,, (-1
3 L A4 )2’12’(——2)2”22’0..’n2’(anwl)zs("n)l,(wnuZ)
2°

(mn+1> s("‘ -3 -
o PR PR 7n—2)29(5n+1)1s(9n+2)1,(Sn+Z)l’
MI}l’(SMB)l""’(BME;)I;,({JM],}I) .

When m is odd, let m = Zn+1, put

C, = (e, 0
2 * » 1oy (=1 -
( v )19 fe RS EIRERE (-n);, (ntl),, Byo
ot} (n-1) ’
1 ‘ar (n’f‘3)19 veay (7“""5)19 ("51‘1*14)29 ("’91‘1“7)
99

(~51~5),, (~9n-6
20 (=906} 5, (~50-6),,...,(~8n-
and 2 2 s {-8n 7)2) (”61‘1«5)2)

Cy = (m,O :(“‘l) 1 -~
3 2 20 2;( 2)2’22’..b’nZ’(unml)zﬁc”n)la("n~2)2,

(ki) 5 (=03}, . -
{9 1 )2 n’s\( 7n~5)2’(5.n+4>19(9n“+7)1! (51‘]“5‘5)1,
i
631,{5n+6)1,..,,(8n+7)15(6n+5)1) .

4o BCD®{v k,A) fa: k_even, 4 Sk < 16

We Will prove, in this SeCtlonﬂ th‘at the [IECG‘ZSSar} Coﬂdition

fﬁ he e o
( 2 ) = 2
r : j( sten;:e of a BCD* (v i, A where i is even and 4 <k < 16

alread Some of the desi
¥ been proved to exist; for a list of these see [4] e peve

0 (mod k) with v
2 k, is :
for V&km["n_ A odd and vek=gf A l’ also SUfficlents
LI = Le

IHEOREM 4,1, A necessat? and suffiCie
( nt Conditioﬂ fOl‘ (:he e}(istence

H

0’or 1 (wmod 4) and v > 4 for A 2 1

Hi

Zor 3 (mod 4) or v = 4 for A even

~ 308 -~

The proof is straightforward: Theovem 3.6 implies the

existence of a BCD*(v,4,2) where v E 0 (mod &), v > & and

x = A = 1, where v = 4 or v 52 (mod 4) and x =} = 2; Theorem

3.5 implies the existence of a. BCD*(v,4,A) where v = 1 (mod 4)
and x = A = 1 and where v 2 3 (mod 4) and x = A = 2.

LEMMA 4.2, 4 BCD%(4,4,)) does not exist for A odd.

Proof. Assume that 8 BCD*(4,4,2) exists with X being odd.

Without loss of generality, let the elements be 0,1,2,3 and the

are (0,1) occur in circuits Cl = (0,1,2,3) and 02 = (0,1,3,2).

Let the multiplicity of Cl’ C2 be my and m, respectively, then

ml-i-xn2 = A. Similarly, the arc (1,2) oceurs in C1 and
03 = (1,2,0,3) which has wultiplicity Ty, hence m14~m3

But the arc (2,0) ocecurs only in a circuit

of type C2 or 03, hence mz—%!-m.3 = 2m2 = ), a contradiction; thus

a BCD*(4,4,2) cannot exist for A odd.

= A which

implies that Wy = Wye

The proofs of the rest of the theorems are similar to that
of Theorem 4.1, by applying Theorems 3.5 and 3.6. Exceptions, how-

aver, will be stated.

THEOREM 4.3. A necessary and sufficient condition for the existence

of a BCD*(v,6,X) 1is

H

0 or L (mod 3) and v > 6 for Azl
2 (wod 3) or v =6 for A2 0 (mod 3).

it

The only cases which we cannot prove by applying Theorems

4,% and 3,6 are:
(1) v =3 (mod 6), A = 1. But a BCD*(9,6,1) exists

(23 or [31). We can apply Theorem 3.2 by lecting vV, = g to prove

the existence of a BCD* (6t + 3,6,1) for t= 1.
(2) v £ 4 (mod 6), A = 1., Now x = 1, y=2 and 2z = 3
and the existence of BCD* (6t + 4,6,1) 1is proved in Theorem 3.7.

i

THEOREM 4.4. A necessary and sufficient condition for the existence

of a BCD¥*(v,8,A) is

4%

1
2 (mod &)

0 or 1 (mod 8) for A
v =0 orl (mod 4) for X
any v =z 8 for A 20 (mod 4).

HY

v

it
i

The proof is obtained by using Theorems 3.5 and 3.6.
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THEOREM 4,5 A pe
“ cessary and suffi
of & BCD*(v,10,)} ia clent condition for the existence The exceptions are Vv = 14t+7 in which case x =1, ¥ = 7,
0 z =2 and & =1; and v = 14t+ 8 in which case %X ™ 1, v = 24
v E
or 1 (mod 5) for Az 1 2 =7 and % = 4. Theorems 3.8 and 3. 7 respectively show their
any v 2 10 =
for X 20 (mod 5). existences.
The exceptions are:
(1) ve=
x=1l,y=5, z=2 ¢=1 and 10t+5, A = 1, in which case THEOREM 4.8. A necessary and sufficient condition for the existence
A =1, in which case x = 1,y aiply Theorem 3.8; (2) v = 106+6, ' of a BCD*(v,16,3%) 1is
3.7. » 2= 5, £ =3 and apply Theorem v £ 0 or 1 (mod 16) for Az 1
THEOREM 4.6. A necessary and sufficient condition f v = 0 or 1 (mod 8) for A =0 (mod 2)
of a BCD*(v,12,%) 1 on for the eXistence = =
8 v £ 0 or 1 (mod &) for M = 0 (wmod &)
= any v 2 1b for A =0 (mod 8)
@ vE0,1, 4dor9 (mod 12) for A 1 7
e = G
- or 1 (mod 4) for A 20 (mod 3) This theorem can be proved by either Theorem 3.5 or Theorem
vEDor 1l N
any v 2 1z(m0d ! for X =0 (mod 2) 3.6
v
for A =
0 (mod 6) 5. ‘The Construction of BCD(v,k,A) k even.

tn this section we consider balanced cycle designs rather

The exc
eptional cases are: v = 12¢+4
& the constructions of these

v o= 12¢+9 =% = 1l v 4 = 3 o= W + X =
y A 1 = 6t+3, A= x 2; and =6t44, A 2
=y = 2,

we will
- prove the existences with the aid of Theorem 3.2 wi
15, 21 and 16, 22 respectively, e 2 L

2 A= xo= l.
than balanced circuit desigus; however, a

two types of designs are similar, the proofs in this section are

The existence of BCD*(lé’lz’l) ghortened.

and hence BCD* ‘
D*#(16,12,2) and BCD*(21,12,1) and hemce BCD* ’ .
D*(21,12,2) Lemma 2.5 states that the existence of a BCD*{v,k,A)

are gi ~
given in [2]. The existence of a BCD*(15,12 2)
e in particular, we have

following base circuits:
(0,1,3,6,12,2,7,8,10,13,5,9) of order 7
(»,0,7,1,10,6 , |
and (207,1,10,6.3,2,13,0,4,12)  of exder 14, ;R
»U,12,10,3,2,8,13,1,4,5,9)  of order 14

is proved by the ~ implies the existence of a BCD{v,k,2)\);

PROPOSITION 5.1. A BCD(2tyz+ l,xyz,x) exists for =® even and

Proof. Let x = 2x'. By Theorem 3.3, a BCD*(t(Zy)z+l,x‘(Zy)z,x')

The existence of B
CD* p
(22,12,2) x', hence a BCD(2tyz+ 1,2x'yz,2x') exists for

base circuits:

is proved by the following exists for t =z

tzx'.

(Ong20’2’19’3’189491795316,m)9

0,2 ;
¢ 0’1’19’2’18’331794a16,5,w) and PROPOSITION 5.2. A BRCD(2tyz,xyz,x) exists for x even and

(0,4
(O, +19,5,18,6,17,8,16,9,15,11), all of order 21, and ‘ €2 x/2.
21,20,2,7,8,6,9,14,1 :
{0,20,1,19 ;ﬁ,l; £S ; 5’13?16)’ Proof. Let x = 2x'. Theorem 3.6 implies the existence of a
2 2ta 2
928943,15,12,7,6,8,5), both of order 7. : BOD*(t(2y)z,x'(2y)z,x") with t > %' or t =x'>1, hence a

BCD(2tyz,xyz,x) exists with © 2 %/2 or t=x/27% 1.

THEOREM 4.7, &
necessary and sufficient condition for the i
existence Let x =2 and t=x' =1, hence v =k = Zyz. A

of & BCD*(v,14,1)
is
BCD(2v2z,2y2,2) exists with elements Zoq Y {w} and the 2yz~-1

v E0orl (mod 7
sny v > 14 ) for A=z1 kwcycles generated by the following base cycle:
: for A 50 (mod 7). (o, 0, 1, ke2, 2, k=3, <.y K/2=1, K/2).

i
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It has been proved that when 3 <1 « 8, the NeCessary con-
dition for the existence of a BCD(v,k,0)  1g
for example [41, sy,

provide an alternative P

also sufficient (see,
These results, together with Theorem 3.6
roof to Proposition 5.2,

We now consider the case when ) is odd,

PROPOSITION 5.3, 4 BCD(2tyz+1,xyz,x)

k= xyz even and  (x+1)/2 < ¢ < X

exists for x odd,

Proof, A BCD(Ztyzi-l,xyz,x) must contain ph = t(2tys+ 1)
k-cyeles, hence we will construct

Let D = {1,2
vomt¥2} ,  that is,
of Ié§z

t base cycles, each of order v,
,...,Ztyz,l,z,...,Ztyz,.,.,l,z,a.e,ZCyz,l,Z,

(x~1)/2 copies of IZtyz followed by one copy
with the order preserved,
Case 1, Let k = 0 (med 4y,

Sl containg the first xyz el
and 80 on, and St

Partition the elements of p so that

ements, 32 the second xyz slements

contains the last xXyz elements of p,

Reorder the elements of g

3+ S0 that they are in z strictly
o3

increasing order, that ig,

5, = {a,

b iy

B

> 8: 5 coas @, } with a < a,

&y Jy 3 i
As k 4g even, we have g - a, =1 for 1 < ise,
dag Tipn
124 xk/s,

Consider Dj ={a , -

3 A, s ey & s & s &
37 T4, Yer-1” 30" Bigney
"2, senes a ~ay } ofor 1x J 2 t. These t getg satisfy
k/24+3 “k /241
condition (1}, since

k k/4 k/2
Zaﬁuﬂ Z (-1} +a + I (+1) - g =
1= =1 K/242  q=k/442 di/241

We can use these ¢ sets to construct

t k-cycles in the same manner
ag k-circuits were constructed,

Cage 2. Let %k = 2 (mod 43,

The elements of D arxe partitioned
into ¢ sets, § s

1+ S5 .eu, St’ but each Sj

satisfies g slightly
different condition:
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increasing order and &,
except for ome 17,
The pair f{a .

To each sequence 5,

a, } whexe ay 's are in a strictly
= a esoy @, ,
Sj {ajly jzﬂ Jk " . k/z
a = 3 for any i, 1 i
AP P Y] .
- a = 2.
it # (kt2)/4 with ajZi‘ Spira
a 1 4g called a hook.
jzi'
D,
we associate an ordexred set j

321"’-1 as follows:
g

AL 1

& 3 ""aj s
- P +2
Dy = oy s Ty e By’ e wan Yz
1
} 4f 1 s 1" € (k-2)/4, and
8.
Tt i e

o0 vy

-, ?
- » B * B XWA
Dy = {a, s P ajk/2’ Sz /243 K
I

a 1 Oif (k+6)/4 =i s ®/2 .
B TP P

It is eagy to ‘Jerify that the D 8 Satisf} CC)ﬂdlthﬂ (1) aﬂd the
j

e cycles.
cycles constructed from them are base cy

To ()b!aiz] the seque Ces s pax tition the elements of by
18 2

of length 2k, if t is even and

L ,
into ©/2 coliections ! f length 2k and a collection L of
o

llections L . is, let L
(=12 ch t is oddz this is dome trivially, that is, 1
length k

2k elements and 80
in the first 2k elements, Lz the second
contain

[+

and 8
we Can construct two sets SZj"l
P

1 g j < {:t/zja

2]
For each Lj

: for each 3,
1lowing manner: ! o
o hat is, each element of {1,2,...,
: . . Lj . ZIV”l’ : ’ U 2N where M, contains a
- o J
ozce or twice in Li' Put Lj 4 3 N e ieh
£ e]ement; which occurs once in | N !N I o
sequence © , pree iM i % j
cur twice in increasing order. i
oc

= 2tyz. Hence
n=2k, m+n
both even, m +
with m and n

= 2%
- =2x+3 and k i
. here m = 4, v

- > 4. 1In the case W -~ 41 > kf2,
m - x)iz 43,v~43+1, v-4j+2, v-54]+3} with v-4]

wmoAY - ]

We can alﬁiays choose four COﬂSE»QutiJe elements from }ij 3

=M'uP, UuQ
dd. Put M, = M, i°
+3} where q i1s o
M ' = {q, gtl, q¥2, q —4y/2, P, and Qj containing pairs of
where !le = ini = (m s 4

consecutive numbers.

occurs

hence Mj
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Now leét Sﬁj conglst of the elements of Nj U P, u {g,qgr2}

d
and Sijl that of Nj U Qj u {g+l,q+3}, in an increasing order.

Hence Mj“ provides a hook for §

23 and a hook for
to chocose M,', Pj and Qj

SZj~l' We have

so that the hooks do not occcur in the
middle of the sequences

Szj, 523~1; if m 2 8, this is always
possible; when m=4

» this is also possible since the elements of M
are all greater than k/2. We can obtadin D2j and D2j~l from 8§
and 52j~1 respectively; the elements of D . and D

23
condition (1), hence base cycles can be constructed,

23
24-1 satisfy

If t is even, the proof is complete;

now consider the case
where t is odd.

Here we are left with L, a collection of the last
k- elements of I, that is

L= I(v~1)/2 u {P, prl, ..., -1} 5

tyz £ tyz+ 1 (mod v), the sequence St
assoclated with L contains a hook {tyz-1, tyz+l} and hence the
rest follows fmmediately, except when tyz-

where p = (3t-x)yz + 1. As

2= {x~t)yz:

However, in this case,

(2t ~x)yz = 2 which implies that 2t = x+1 and vz = 2, hence

k=12%, v=>2:+3 and 2+l E x+2 (mod v}

that is,
the hook occurs in the middle of S,

and furthermore

D, = {l,~2,4,—5,69...,x—l,ux,x+4,~(x+5),x+6,...92x+l,
~{2x+2) , 3,242}

satisfies conditien {1). Hence the proof is complete,

Example. BCD(13,10,5). We have x = 3, y2 = 2, t = 3, Hence

D= {1,2,...,12,1,2,...,12,1,2,...,6}
Ly = 1{1,2,...,12,1,2,...,8}, L= {9,10,11,12,1,2,...,6} .

M1 = {9,10,11,12} and Nl = {1,2,..
9,11},

We get
++8} and hence 8 = {1,2,...,8,
S, = 11,2,...,8,10,12} and S, = 11,2,...,5,7,9,10,11,12} .
Put

nl = {13'2;3»’4’59"6y8»‘9,11,“7} 3

2 = {ls‘2»37‘4a5x“6’8a"10g12,”7} and

i
i

5 = {1,-2,4,-5, 9,-10,11,~12,-3,7}

Remark. In the case wvhere ¢ =
fact,

2k} .

x =1, the result is known already, in
a BCD(v,k,1} has been constructed for all %k and v = 1 (mod

- 314 -

k,%)
£ BCD(v,k,x) exists, then a BCD (v + (x+1)y2,K,
1 a 3By

k = xyz even and = odd.

LEMMA 5.4,
exists as well for

s 1 ShEd hence BCD (v +1 EYZ K)
Er001 Let v v 1 and 02 (X t ]) ) ( 1 3 »

Z4K)
thesis and BCD(vz,xy s
e must be even.

can be shown to be decomposable

exists by Proposition 5.3.

Also, x is odd implies that vy

n apply Lemma 2,3 1f =K Vg
We ca PP 1

i is the edge-
f length xyz; but this true since XKVlvVZ

into cycles ©

phic to ¥ , which can be

disjoint union of x+1 graphs isomor vy, Xy2Z

2.6.
decomposed into k~cycles by Lemma

The fol lowin theorem can be p!()\]ﬁd with the aid of Lemma
& ?

5. t e by iﬂduCtion in exac tl) the same way as Theoremn 3"2 was Proueda

. heorem for
iew of Lemma 2.1, it suffices to prove the t
Also, in view

A=K o

z be even and x be odd., If a BCDGF' PYZ,
o 0<ps (x-1)/2, then there exists a
0 (mod x).

THEOREM 5.3,
xyz,x) exists for each D, o
BCDGV+-2qyz,xyz,l) for any q = 0 am

rhe fOl‘LOWIng theorem 18 a CCXOllat} of EKOPCSltiOn 5"3 aﬂd

Theorem 5.5.

even,
+1,uyz,A) for xyz
exists a BCD(2tyz+1,%yz

THEQREM 5.6. There

2.
x odd, A £ 0 (mod %) and €2 (x+1)/

< 16,
6. BCD(v,k,A) for k even, 4 <k £1

wigtence v b is 7 4 k < i 6
. 8 T - j
Of a BCD ( gk F A) where k is even and >

for the e 0 (mod 2k) with v=k and A(v-1) =0 (mod 2),
E m

namely Av(v-1)
are also sufficient.

The f()llom.n two theorems have been px()VEd alreddy (See
g £

for example, [81).

THEOREM 6.1.
of & BCD(v,4,X) {8

= 1 (mod 8) for X = 1 or 3 (mod 4y,
Vo=

=0 or 1 (med 4) for AE 2 {(mod 4),

= 4 for A = 0 (mod 4) .
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THEOREM 6.2. A necessary and sufficient condition for the existence
of a BCD(v,6,)) is

v Elor % (mod 12) for A 2 1 or 5 (mod 6),
v =21 (mod 4) for A £ 3 (mod 6),

v 20 orl (mod 3) for A 2 2 or 4 (mod &)
vxe for X =0 {(mod 6) .

Lemma 2.5 states that the existence of a BCD*(v,k,A)
implies the existence of a BCD(v,k,2X); but the existence of a
BCD#(v,k,A) for k even and & < k £ 16 has been decided in
section 4, therefore in the following five theorems, we need only
consider the cases where X, and hence v, is odd.

T

THEOREM 6.3, A necessary and sufficient condition for the existence
of 2 BCD(v,8,)) is

v 21 (mod 16} for A = 1 (mod 2),
v £ 0or 1 {(mod §) for A £ 2 or 6 (mod 8),
v 20 or 1 (mod 4) for A 4 (mod 8),
vz 8 for X =0 (mod 8).

The existence nf a BCD(v,8,1) where v I 1 (mod 16) 1is
implied by Theorem 5.7, in fact, Theorem 5.7 implies that a BCD(v,k,1)
exists for k even and v = 1 {(wod 2k).

THEOREM 6.4. A necessary and sufficient condition for the existence
of a BCD(v,10,%2) is

v ELor 5 (mod 200 for A E1l, 3, 7 or 9 (mod 10),
v £ 0 or 1 (mod 5) for A £ 2, 4, 6 or 8 (mod 10),
v 2 1 (mod 4) for A F 5 (mod 10},
vz 10 for A = 0 (mod 10) .

Theorem 5.7 also implies the existence of a BCD with
A==x=5, v =1 {wod 4). The case v = 5 (mod 20} follows from
Theorem 5.6 with = = 1, ¥ + 2pyz = 25 if a BCD(25,10,1) can be

constructed; but a BCD(25,10,1) exists with the following base
cycles

{0,1,5,6,10,11,15,16,20,21) , of order 5, and
(0,2,24,4,23,5,22,7,21,9) of order 25.

The rest of the proofs are similar.
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THEOREM 6.5. A necessary and sufficient condition for the existence
of a BCD(wv,12,2) is

v 21 or 9 (mod 24) for A =1, 5, 7 or 11 (mod 12),
v 50,1, 4 or 9 (mod 12) for X E 2, 8 or 10 (mod 12),

v £ 1 (mod 8) for A E 3 or 9 (mod 12),

v z 0 or 1 (mod 3) for A E 4 (mod 12),

v 2 0 or 1 (mod 4) for A E 6 (mod 12),

v 2 12 for A = 0 (mod 12) .

A BCD(33,12,1) exists with a base cycle of order 1l
(0,1,6,13,11,12917,24,22,23,28,2) and a base cycle of order 33,
0,3,32,5,30,6,29,8,28,9,27,11).

THEOREM 6.6, _ A necessary and sufficient condition for the existence
of a BCD{v,14,A) is

v =1 or 21 (mod 28) for x =1, 3, 5, 9, 11 or 13 (mod 14),
vz 0 or 1 (mod 7) for A E 2, 4, 6, 8, 10 ox 12 (mod 14),
v =1 (mod &) for A = 7 (mod 14),
vz 14 fFor X = 0 (mod 14) .

A BCD(21,14,1) exists as follows: let the elements be

{=} wu \A where V, w‘{Oi, li’ Zi, Bi’ 41} and the three base

cycles, each of onder 5 be

=2
§

= (01,0,5,05,0,511,2452,,33,31,3,049535021505)

= (mggl,11,02,23,l3,24,04,31,03,44,12934,22) and

ot
N
i

B3 = (m’03,23,41,21,42,12,3131492494310253310&) B
Lastly, we have

THEOREM 6.7. A necessary and sufficient comdition for the existence

of a BCD(v,16,1) is

v 5 1 (mod 32} for A = 1 (mod 2},

v = 0orl (mod 16) for A =2, 6, 10, 12 or 14 (mod 16) .
v £ 0or 1 (mod 8) for A £ 4 (mod 16),

v =0 or 1 (mod &) for A = 8 (mod 16},

vz 16 for A 2 0 (mod 16) .
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f11
fz23
£31

[71

[8]

f91
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