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Abstract— The secondary electron emission phenomenon 

lays down the principle of operation of many physical devices 

and processes. Although it is fairly well described in the case of 

irradiation of metals there is still lack of information on the 

secondary electron emission when originating from dielectrics. 

In this work we report on the secondary electron emission 

resulting from very thin layers. It is found that for dielectric 

SiO2 layers of less than 100 nm of thickness a departure from 

the general behaviour occurs for incident primary electrons 

with energy of around 1 keV. The departure in the electron 

emission yield heavily depends on the layer thickness. The case 

of nanostructured layers – dielectric matrices containing metal 

nanoparticles is also considered in the study.  

I. INTRODUCTION 

Secondary electron emission is a process of release of 
electrons from materials. It results from the energy transfer 
of impinging energetic particles (electrons, ions, photons) to 
the material surface. This physical phenomenon is largely 
involved in scanning electron microscopy (SEM) [1], plasma 
physics [2], space applications [3, 4], particle accelerator [5], 
etc. Given the large number of devices using secondary 
electron emission for their operation a lot of effort was made 
during the last century to determine the electron emission 
yield (EEY) from different materials, conducting and/or 
insulating ones [6]. The secondary electron emission is a 
complex phenomenon that depends on many parameters 
related to the primary particles (electrons, ions, their energy, 
incident angle distribution, etc.) or to the nature of the 
studied material, especially when dealing with insulators due 
to the charging effect for low energy primary electrons [6, 7]. 
Without loss of generality we limit our study to EEY 
generated by electron impact. 

This work represents a new insight in the secondary 
electron emission from very thin dielectric layers and opens 
the discussion on nanostructured layers with metallic 
nanoparticles embedded in dielectric matrices. The study of 
nanostructured layers aims to account for the gradually 
increased conductivity of the layer up to a conductive one. 
To prevent from target charging and consequently to 
determine the real secondary electron emission yield a short 
pulse irradiation by primary electrons (PE) was applied. 
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II. EXPERIMENTAL PART 

A. Samples elaboration 

Thin silica (SiO2) layers, 100 nm-thick, were thermally 
grown on Si-substrates at 1100°C under slightly oxidizing 
atmosphere using a N2-O2 gas mixture containing 1.0% of 
O2. The targeted thicknesses were obtained after chemical 
etching of the SiO2 layers using hydrofluoric acid (HF). The 
samples were then abundantly rinsed with deionized water. 

A single layer of silver nanoparticles (AgNPs) was 
deposited on the surface of SiO2 layer in the plasma of 
axially-asymmetric capacitively-coupled RF discharge. The 
discharge powered electrode (smaller electrode) was Ag-
made target to bear the silver sputtering. The plasma was 
maintained in pure argon at low pressure (p = 5.4 Pa) with 
RF power of P = 80 W (Vdc = −1000 V). The sputtering time 
was fixed to 5 s. More details about the plasma process are 
given elsewhere [8]. 

B. Characterization methods 

The thicknesses of SiO2 layers were determined by 

spectroscopic ellipsometry using a SOPRA GES-5 

ellipsometer in the range 250–850 nm. The recorded spectra 

were modeled with Bruggeman’s model to extract the SiO2 

layer thicknesses. The monolayer of AgNPs was observed 

by SEM. The size and density of AgNPs were obtained after 

image processing. 

 
The EEY, encompassing backscattered and SE emissions, 

was studied in the low energy range, from few eV up to 
2000 eV. The measurements were performed under high 

vacuum (5  10
-7

 Pa). The sample surface was monitored by 
Auger electron spectroscopy to account for impurities. All 
experiments were performed with very low contamination 

On the secondary electron emission phenomenon when originating 

from very thin layers* 

K. Makasheva, Member, IEEE, M. Belhaj, G. Teyssedre, Member, IEEE,  

C. Rigoudy, S. Dadouch and L. Boudou 

 
Fig. 1. Recorded ellipsometric spectra (dots) and the simulated spectra 
(lines) for the studied SiO2 layers. 
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level. The experimental arrangement and the applied 
procedure are described elsewhere [9]. 

III. RESULTS AND DISCUSSION 

The recorded spectroscopic ellipsometric spectra, 

alongside with the simulated spectra, are presented in Fig. 1 

for the three SiO2 layers. The obtained layer thicknesses are 

of 9.6, 59.7 and 89.9 nm. Keeping the thickness of the silica 

layers less than 100 nm allows for study of the SE features 

in correlation to PE penetration depth and of the cascade of 

events following the energy deposition. 

 
Figure 2 represents the EEY from the SiO2 layers in the 

low energy range up to 2 keV. As typical for dielectric 

materials the EEY is much higher than unity. The maximum 

yield Ym = 4.0 is achieved for energy of the PE of 500 eV. 

The obtained value is in accordance with reported in the 

literature data [7]. For PE of energy Em  1 keV we observe 

a departure from the general trend of EEY. The obtained dip 

is heavily dependent on the layer thickness. Such behavior 

can be related with increased conductivity of the layer, 

suggesting radiative induced conductivity.  

 
The obtained monolayer of AgNPs is shown in Fig. 3. 

After processing of the SEM images taken in plane view we 

obtained mean size of the AgNPs of 20 nm and a density of 

3.6  10
11

 cm
-2

. The AgNPs are isolated and the inter-

particle distance is of about 5 nm. 

Figure 4 shows that the EEY from isolated AgNPs 

deposited on SiO2 thin layer combines properties of metallic 

silver and the underlying dielectric layer. The maximum yield 

is reduced to the value of a continuous silver surface and the 

modulation depth is lowered as the conductivity of the surface 

is increased through charge transport in the plane.  

 

IV. CONCLUSION 

In this contribution we have reported on the EEY from 

very thin layers. It is found that for dielectric SiO2 layers of 

thickness less than 100 nm a departure from the general 

behaviour occurs for incident electrons with energy of 

around 1 keV. The departure in the electron emission yield 

heavily depends on the layer thickness. The case of 

nanostructured layers containing metal nanoparticles shows 

smooth transition when increasing the layer conductivity. 
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Fig. 2. EEY from very thin silica layers. 
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Fig. 3. SEM image (tilted at 30°) of the monolayer of AgNPs 

deposited on thermally grown silica layer. 
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Fig. 4. Comparison of the EEY from SiO2 (d2 = 59.7 nm), silver 

surface (adapted from [9]) and a structure of monolayer of AgNPs 

deposited on SiO2 (59.7 nm) on Si-substrate. 
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