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Abstract 8 

Organic residue analysis has been undertaken on an organic material found on a necklace 9 

with a pendant unearthed from a necropolis dated to the Early Iron Age (800-475 BC) and 10 

located in Eckwersheim (NE France). The molecular composition of the substance, which 11 

was investigated using gas chromatography coupled to mass spectrometry, points towards an 12 

adhesive used to stick two bronze half-spheres to form a pendant. The predominance of 13 

triterpenoids from the lupane series led to the identification of the adhesive as a birch bark tar 14 

and constitutes a rare example of the use of such a material in jewellery in the past. 15 

Keywords: birch bark tar, conifer resin, Early Iron Age, necklace, jewellery, lupane-related 16 

triterpenoids. 17 

1. Introduction18 

Archaeological evidence of birch bark tar, an adhesive substance obtained by dry pyrolysis of 19 

birch bark (e.g. Regert et al., 1998; Koller et al., 2001; Rageot et al., 2015), is abundantly 20 

documented in the literature. Considered as one of the first man-made organic material, birch 21 

bark tar is frequently present among archaeological finds dated from the Neolithic period in 22 

Europe and its first use by Neanderthalians is dated back to the Palaeolithic (Koller et al., 23 

* Corresponding author.
1 Present address : The British Museum, Great Russell Street, London WC1B 3DG 

E-mail addresses: BCourel@britishmuseum.org (B. Courel), p.schaef@unistra.fr (P. Schaeffer),

clement.feliu@inrap.fr (C. Féliu), yohann.thomas@inrap.fr (Y. Thomas), padam@unistra.fr (P. Adam).

Version avant révision

mailto:BCourel@britishmuseum.org
mailto:p.schaef@unistra.fr
mailto:clement.feliu@inrap.fr
mailto:yohann.thomas@inrap.fr
mailto:padam@unistra.fr


2001). This sticky and hydrophobic material has been used for many purposes such as the 24 

hafting of lithic or bone tools (e.g. Regert et al., 1998; Koller et al., 2001), the reparation and 25 

waterproofing of pottery (e.g. Binder et al., 1990; Charters et al., 1993; Connan et al., 2000; 26 

Urem-Kotsou et al., 2002; Rageot et al., 2015), the decoration of ceramics (e.g. Vogt, 1949; 27 

Trąbska et al., 2011; Rageot et al., 2015) and, more surprisingly, as chewing-gum (e.g. 28 

Aveling and Heron, 1999; van Gijn and Boon, 2006; Karg et al., 2014). The identification of 29 

birch bark tar mainly relies on the detection of lupane-related triterpenoids as diagnostic 30 

molecular biomarkers. These compounds possess indeed ideal features since lupane-related 31 

triterpenoids are abundant in birch tar and their assemblage can be considered as highly 32 

specific (Hayek et al., 1989; Schnell et al., 2014). In addition, these compounds are relatively 33 

resistant to various alteration processes such as biodegradation which probably accounts for 34 

their good preservation even in ancient archaeological samples dating back to the Palaeolithic 35 

and Mesolithic Periods (Koller et al., 2001; Aveling and Heron, 1998). 36 

We report here the investigation by gas chromatography-mass spectrometry (GC-MS) of the 37 

lipid content of a dark organic substance of unknown nature that has served to assemble two 38 

bronze half-spheres in order to form the pendant of a necklace (Fig. 1) dating to the Hallstatt 39 

D1 period (625-550 BC). Due to the predominance of lupane-related triterpenoids in the lipid 40 

extract, their origin (genuine biological compounds vs. triterpenes altered by natural or 41 

anthropic processes) is discussed in the light of the molecular investigation of reference 42 

samples of birch bark and birch bark tars. 43 

2. Materials and method 44 

2.1. Archaeological sample 45 

Sample A (INRAP - Institut National de Recherches Archéologiques Préventives - reference 46 

number: PRL BG 6008-02) corresponds to a dark substance found between two small bronze 47 
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half-spheres which were assembled to create the pendant of a necklace (Fig. 1). The jewellery 48 

was uncovered among the furniture and artefacts of the tomb 6008 unearthed at Eckwersheim 49 

(Alsace, NE France) by an INRAP team led by Dr. Clément Féliu and Dr. Yohann Thomas. 50 

The tomb was dated to the Early Iron Age and the necklace between 625 BC and 550 BC 51 

(Hallstatt D1 period). 52 

2.2. Reference samples 53 

The reference samples comprise: (1) the lipid extract of pieces of birch bark (Betula pendula) 54 

from a trunk in an advanced state of alteration (sample B); (2) the lipid extract of pieces of 55 

the same birch bark sample pyrolysed with a heat gun during 10 minutes under N2 56 

atmosphere (sample C); (3) a birch bark tar from Betula pendula prepared by descending 57 

distillation (sample D, reference number 162/5 20 18 00, Dr. Andreas Kurzweil, 58 

Museumsdorf Düppel, Berlin, Germany). 59 

2.3. Lipid analysis 60 

Samples A - D were extracted by sonication using a mixture of dichloromethane/methanol 61 

(CH2Cl2/CH3OH, 1:1, v/v) followed by filtration of the supernatant through celite and 62 

removal of the solvent under reduced pressure. An aliquot of the extract in CH2Cl2 was 63 

acetylated (Ac2O, N-methylimidazole, 30 min, ambient temperature) and, after removal of the 64 

solvents and excess reagents, treated with a solution of diazomethane in diethylether to 65 

methylate the carboxylic acids. The derivatised crude extract was fractionated on a silica gel 66 

column into an apolar fraction eluted with CH2Cl2/EtOAc (8:2, v/v) which was analysed by 67 

GC-MS and a more polar fraction eluted with CH2Cl2/ CH3OH (1:1, v/v) which was not 68 

further investigated. 69 

2.4. GC-MS 70 
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GC-MS analyses were carried out using a Thermo Trace gas chromatograph (Thermo 71 

Scientific) equipped with an autosampler Tri Plus, a programmed temperature vaporizing 72 

(PTV) injector and a HP5-MS column (30 m x 0.25 mm i.d. x 0.25 µm film thickness) using 73 

He as carrier gas (constant flow rate at 1.1 ml/min). Temperature program: 70 °C - 200 °C 74 

(10 °C/min), 200 °C - 300 °C (4 °C/min), isothermal at 300 °C (40 min). The mass 75 

spectrometer was operating in the electron ionization (EI) mode at 70 eV with a scan range of 76 

50 to 700 m/z. The data were investigated using Xcalibur Software and mass spectra were 77 

compared with the NIST library and literature data. 78 

3. Results and discussion 79 

3.1. Triterpenoids of the lupane series: birch bark as main ingredient 80 

GC-MS analysis of the organic extract of the substance from the pendant (sample A) led to 81 

the identification of specific triterpenoids from the lupane series, indicating a predominant 82 

contribution from an angiosperm source. These triterpenoids comprise, notably, lupeol 1 83 

(numbers refer to structures presented in the Appendix), betulin 2, lupenone 3, betulone 4, 84 

lupanone 5 and lupan-3,28-diol 6 (Fig. 2) which are important triterpenes of birch bark 85 

(Hayek et al., 1990; Krasutsky, 2006; Schnell et al., 2014). The predominance of the same 86 

compounds among the lipids of the reference birch bark samples B-D (Fig. 3) was thus not 87 

unexpected. Betulin 2, in particular, largely predominates the gas chromatogram of the lipids 88 

from the birch bark sample B, representing ca. 60 % of the apolar lipids. The identification of 89 

triterpenoids from the lupane series in the archaeological sample A points thus clearly to 90 

birch bark tar which may have been used as an adhesive material. It can be proposed that bark 91 

of either Betula pendula (silver bitch) or Betula pubescens (downy birch) served as raw 92 

material for the preparation of the adhesive since they are the most common Betula species in 93 

Europe (Beck et al., 2016). 94 
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3.2. Altered triterpenoids as markers for ageing and thermal treatment 95 

The distribution of the triterpenoids in the archaeological sample (Fig. 2) is, however, 96 

significantly different from that observed with fresh birch bark (Fig. 3). This can likely be 97 

explained by the various alteration processes affecting triterpenoids upon the thermal 98 

treatment used for the preparation of the substance, in addition to other processes induced by 99 

oxidative ageing and/or by diagenetic alteration during burial in the soil.  100 

Such processes may notably account for the lower proportion of betulin 2 in the 101 

archaeological sample as compared to the large predominance of 2 in fresh birch bark (Fig. 3; 102 

Hayek et al., 1989), as well as for the absence of betulonal 7 and betulinic acid 8 - two native 103 

triterpenoids from birch bark (cf. sample B; Fig. 3)- in the archaeological material (Fig. 2).  104 

In parallel with the absence of some genuine lupane-related triterpenoids from birch bark, 105 

three families of triterpenes likely resulting from alteration processes were detected in sample 106 

A. They comprise A-neo-triterpenoids (e.g., 9, 10), 
2
 triterpenoids (e.g., 12, 13), and 107 

allobetulane derivatives (e.g., 14-16). 
2 

lupane-derivatives 12 and 13 detected in samples A, 108 

C and D most likely originate from the thermally-induced dehydration of lupeol 1 and betulin 109 

2 and can be considered as typical pyrolytic compounds. Their formation was observed, 110 

notably, during a controlled pyrolysis experiment of birch bark by Regert et al. (2006) and 111 

they generally occur in archaeological birch bark tars (e.g. Binder et al., 1990; Charters et al., 112 

1993; Avelling and Heron, 1998; Regert et al., 2003; Rageot et al., 2015). 113 

Allobetulane derivatives (11, 14-16; mass spectra in Fig. S1) were also present in samples A, 114 

C and D. These compounds are postulated to be formed by an acid-catalysed intramolecular 115 

rearrangement of ring E (Green et al., 2007; Salvador et al., 2009). Since these compounds 116 

exclusively occur in tars (sample D) and not in birch bark (sample B), they are thus 117 

considered, like 
2 
derivatives, to be closely associated to the thermal alteration undergone by 118 

Version avant révision



birch bark during tar preparation (cf. Heron et al., 1999; Rageot et al., 2015). The acid 119 

catalysis necessary for the intramolecular rearrangement of ring E might have been provided 120 

by phenols formed by the pyrolytic degradation of lignin (Faix et al., 1990). 121 

The A-neo-triterpenoids found in sample A (9 and 10; MS data shown in Fig. S2 in 122 

Supplementary data) and in the reference thermally-treated samples C and D (9-11) derive, 123 

respectively, from lupeol 1, betulin 2 and allobetulin 16 by contraction of ring A. Their 124 

formation most likely involves the acid-catalysed loss of the C-3 alcohol moiety followed by 125 

a Wagner-Meerwein rearrangement (Salvador et al., 2009). To our knowledge, these 126 

compounds have not been reported from fresh birch bark and might have two distinct origins. 127 

They can be formed during the preparation of the tar as shown by Rageot (2015) in the case 128 

of birch bark tars prepared in the laboratory, the acid catalysis necessary for their formation 129 

being possibly induced, as mentioned above, by phenols formed upon lignin pyrolysis (Faix 130 

et al., 1990). In addition, Rageot (2015) has shown that their relative abundance is correlated 131 

with the experimental conditions, higher temperatures or longer heating periods likely 132 

favoring their formation. Nevertheless, the detection of A-neo-triterpenoids, even in small 133 

amounts, in the altered birch bark sample B indicates that natural alteration processes may 134 

also account to some extent for their formation (ten Haven et al., 1992).  135 

3.3. Input of conifer resin attested by diterpenoids 136 

Besides the predominant lupane-related triterpenoids reported above, GC-MS analysis of the 137 

organic extract of the substance from the pendant (sample A) revealed an additional 138 

contribution of small amounts of early eluted compounds corresponding to diterpenoids. 139 

They comprise di-dehydroabietic acid 17, dehydroabietic acid 18, 7-oxodehydroabietic acid 140 

19 along with the related compounds 20 and 21 bearing a hydroxyl function at C-15. All of 141 

them derive from abietic acid 22, a diterpenic acid ubiquitously found in conifer resins (Otto 142 
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and Wilde, 2001) and especially abundant in resins from Pinaceae (Otto et al., 2007). The 143 

contribution of these diterpenoids revealed thus the presence of conifer material in the 144 

archaeological substance which could either correspond to a raw resin or a tar made by dry 145 

distillation of conifer wood (e.g. Evershed et al., 1985; Connan and Nissenbaum, 2003; 146 

Bailly, 2015). However, in the case of conifer tars, aromatic diterpenoids like retene 23 147 

resulting from the thermal transformation of resinic acids upon pyrolysis are generally 148 

abundant. In the present case, such compounds could not be detected, suggesting that the use 149 

of a conifer tar can be ruled out. Thus, the ingredient corresponds most likely to a conifer 150 

resin. In addition, the identification of oxidized derivatives of 18, comprising compounds 151 

with a ketone at C-7 (19 and 21) or a hydroxyl group at C-15 (20 and 21), suggests that the 152 

resin was severely altered by oxidative processes during the ageing of the adhesive substance 153 

(Colombini et al., 2005; Osete-Cortina and Doménech-Carbó, 2005; Bailly, 2015). 154 

3.4. Mode of preparation of the adhesive - Origin of the conifer resin component 155 

The presence of lupane-related biomarkers which have obviously undergone thermal 156 

alteration (formation of 
2
-triterpenoids and allobetulane derivatives, notably; see above) in 157 

sample A clearly indicates that the organic substance corresponds to an adhesive material 158 

(birch bark tar) used to assemble the pendant. However, the contribution of small proportions 159 

of conifer resin raises the question whether the addition of the latter was intentional or was 160 

the result of a “contamination” during birch bark tar preparation. Indeed, a few examples of 161 

mixtures of archaeological birch bark tar containing additional substances have been reported 162 

by several authors. These substances comprise animal fat, beeswax, plant oil (Dudd and 163 

Evershed, 1999; Regert et al., 2003; van Gijn and Boon, 2006; Rageot et al., 2015) and, in 164 

some rare cases, conifer resin/tar (Stacey, 2004; Rageot et al., 2015). The input of additional 165 

substances can sometimes be intentional in order to improve the properties of the material. 166 
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For instance, the addition of beeswax to birch bark tar leads to a substance which is less 167 

brittle than pure birch bark tar (Regert et al., 2003; van Gijn and Boon, 2006). It is interesting 168 

also to note that Stacey (2004) and Rageot et al. (2015) reported the identification of 169 

adhesives very similar in molecular composition to sample A, and which consisted of small 170 

amounts of conifer resin mixed with birch bark tar. They were used, respectively, for gluing 171 

coral studs on strap unions from harness fittings (Stacey, 2004) and for the reparation of 172 

pottery (Rageot et al., 2015). This supports the hypothesis that the admixture of small 173 

amounts of conifer resin to birch bark tar might possibly improve its performances as an 174 

adhesive and that such mixtures have been prepared on purpose for this specific application.  175 

However, based on the relatively small contribution of the conifer resin as compared to the 176 

birch bark tar in the case of sample A, it cannot be excluded that the container used for the 177 

storage or the production of birch bark tar may have served previously to collect or store a 178 

conifer resin and might have thus contaminated the birch bark tar. It should however be 179 

mentioned that the relatively low proportion of diterpenes relative to triterpenes observed in 180 

sample A does not necessarily reflect the initial proportions of conifer resin and birch bark tar 181 

making up the adhesive. Indeed, resinic acids might be significantly more sensitive to 182 

oxidative alteration given the presence of reactive benzylic positions on dehydroabietic acid 183 

18 and related structures as illustrated by the detection of several oxidized dehydroabietic 184 

acid derivatives (19-21) in sample A. The presence of several oxygenated functionalities on 185 

these structures might thus be responsible for an enhanced water solubility as compared to 186 

lupane-related triterpenoids, thus favouring their progressive removal by leaching, notably 187 

after burial. 188 

4. Conclusion 189 
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Identification of triterpenoids from the lupane series in the organic material found on an 190 

archaeological necklace pendant clearly indicates that this substance was made 191 

predominantly of birch bark tar, together with a small contribution of conifer resin. This 192 

material likely corresponds to an adhesive that could have served to fix a decorative item on 193 

the pendant. The question remains regarding the role of the conifer resin which could either 194 

be part of the ingredients added intentionally to improve the quality of the adhesive material, 195 

or correspond to a “contamination” introduced during birch bark tar preparation. 196 

 197 
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 298 

Figure captions 299 

Figure 1. Necklace (a) with a pendant (b) found among the furniture and artefacts of a tomb 300 

dated to the Hallstatt D1 period (625-550 BC; Eckwersheim, NE France). Photos and 301 

drawing by ©Y. Thomas, INRAP.  302 

Figure 2. Gas chromatogram of the lipid extract of the adhesive of the necklace pendant 303 

(sample A). Bold numbers refer to the structures shown in Appendix. Alcohols are analyzed 304 

as acetates and carboxylic acids as methyl esters. 305 

Figure 3. Gas chromatograms of the organic extract of (a) altered birch bark sample (sample 306 

B); (b) altered birch bark sample after pyrolysis (sample C); (c) reference birch bark tar 307 

prepared by descending distillation (sample D). Bold numbers refer to the structures shown in 308 

Appendix. Alcohols are analyzed as acetates and carboxylic acids as methyl esters. 309 
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Supplementary materials 

 

 
 Figure S1: Mass spectra (EI, 70 eV) of allobetulane derivatives 11, 14-16. 

 

 
 Figure S2: Mass spectra (EI, 70 eV) of A-neo-triterpenoids of the lupane series 9 and 

10 found in the archaeological sample (sample A) and in the thermally-treated reference 

samples (samples B and C). 
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Figure S1: Mass spectra (EI, 70 eV) of allobetulane derivatives 11, 14-16. Bold numbers refer 
to the structures shown in the Appendix. 
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Figure S2: Mass spectra (EI, 70 eV) of A-neo-triterpenoids of the lupane series 9 and 10 found 
in the archaeological sample (sample A) and in the thermally-treated reference samples 
(samples B and C). Bold numbers refer to the structures shown in the Appendix. 
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