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Stable limit theorems on the Poisson space

Ronan Herry∗

Institut für Angewandte Mathematik, Universität Bonn.

October 22, 2019

Abstract

We prove limit theorems for functionals of a Poisson point process using the Malliavin
calculus on the Poisson space. The target distribution is conditionally either a Gaussian
vector or a Poisson random variable. The convergence is stable and our conditions are
expressed in terms of the Malliavin operators. For conditionally Gaussian limits, we also
obtain quantitative bounds, given for the Monge-Kantorovich transport distance in the
univariate case; and for another probabilistic variational distance in higher dimension. Our
work generalizes several limit theorems on the Poisson space, including the seminal works
by Peccati, Solé, Taqqu & Utzet [32] for Gaussian approximations; and by Peccati [33] for
Poisson approximations; as well as the recently established fourth-moment theorem on the
Poisson space of Döbler & Peccati [8]. We give an application to stochastic processes.

Keywords: Limit theorems; Stable convergence; Malliavin-Stein; Poisson point process.
MSC Classification: 60F15; 60G55; 60H05; 60H07.

Introduction

One of the celebrated contributions of Rényi [40, 41] is a refinement of the notion of conver-
gence in law, commonly referred to as stable convergence. Stable convergence is tailored for
studying conditional limits of sequences of random variables. Thus, a stable limit is, typically,
a mixture, that is, in our terminology: a random variable whose law depends on a random
parameter; for instance, a centered Gaussian random variable with random variance, or a
Poisson random variable with random mean. In the setting of semi-martingales, one book
by Jacod & Shiryaev [15] summarizes archetypal stable convergence results involving such
mixtures. More recently, results by Nourdin & Nualart [25]; Harnett & Nualart [13]; and Nour-
din, Nualart & Peccati [26] give sufficient conditions and quantitative bounds for the stable
convergence of functionals of an isonormal Gaussian process to a Gaussian mixture. Typically,
applications of such results study the limit of a sequence of quadratic functionals of a frac-
tional Brownian motion. The three references [25, 13, 26] make a pervasive use of the Malli-
avin calculus to prove such limit theorems. Earlier works by Nualart & Ortiz-Latorre [29] and
by Nourdin & Peccati [28] initiate this approach: they use Malliavin calculus in order to prove
central limit theorems for iterated Itô integrals initially obtained by Nualart & Peccati [31] with
different tools. These far-reaching contributions form a milestone in the theory of limit theo-
rems and inaugurate an independent field of research, known as the Malliavin-Stein approach
(see the webpage of Nourdin [24] for a comprehensive list of contributions on the subject).

The trendsetting work of Peccati, Solé, Taqqu & Utzet [32] extends the Malliavin-Stein ap-
proach beyond the scope of Gaussian fields to Poisson point processes. Despite being a very
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active field of research, the considered limit distributions are, most of the time, Gaussian [18,
17, 20, 39, 34, 37, 42, 8, 9, 5] or, sometimes, Poisson [33] or Gamma [35]; to the best of our knowl-
edge, prior to the present work, mixtures, have not been considered as limit distributions. The
aim of this paper is to tackle this problem, by proving an array of new quantitative and stable
limit theorems on the Poisson space, with a target distribution given either by a Gaussian mix-
ture, that is the distribution of a centered Gaussian variable with random covariance; or a Pois-
son mixture, that is the distribution of a Poisson variable with random mean. We rely on two
standard techniques to obtain our limit theorems: the characteristic functional method, to obtain
qualitative results; and an interpolation approach, known as smart path, for the quantitative re-
sults. In the two cases, we build upon various tools from stochastic analysis for Poisson point
processes, such as the Malliavin calculus, integration by parts for Poisson functionals, and a
representation of the carré du champ associated to the generator of the Ornstein-Uhlenbeck
semi-group on the Poisson space. Provided mild regularity assumptions on the functional un-
der study, our approach allows us to deal, in Theorems 3.1 and 3.5, with any target distribution
of the form SN , where S is a matrix-valued random variable (measurable with respect to the
underlying Poisson point process) and N is a Gaussian vector independent of the underlying
Poisson point process. In the same way, in Theorem 3.2, we can consider any target distribution
of the form of a Poisson mixture, whose precise definition is given below.

Let us now give a more detailed sample of the main results. Throughout the paper, we
study the asymptotic behaviour of a sequence {Fn = fn(η)} of square-integrable functionals of
a Poisson point process η. Here, η is a Poisson point process on an arbitrary σ-finite measured
space (Z,Z, ν) (for the moment, we simply recall that η is a random integer-valued measure
on Z satisfying some strong independence properties and such that Eη = ν). Moreover, we
assume that the Fn’s are of the form Fn = δun, where δ is the Kabanov stochastic integral and
un = {un(z); z ∈ Z} is a random function on Z (for the moment, one can think of the slightly
abusive definition of δ as the following pathwise stochastic integral δu =

´
u(z)(η − ν)(dz)).

As we will see, assuming that Fn = δun is not restrictive, as, provided EFn = 0, this equation
always admits infinitely many solutions. An important object in our study is the Malliavin
derivative of Fn given by DzFn = fn(η + δz) − fn(η). The crucial tool to establish our results
is a duality relation (also referred to as integration by parts) between the operators D and δ:
EFδu = Eν(uDF ). This relation is at the heart of the Malliavin-Stein approach to obtain limit
theorems both in a Gaussian [27, Chapter 5] and in a Poisson setting [32]. For instance, we
have the following result in our Poisson setting.

Theorem 0.1 ([32, Theorem 3.1]). Let the previous notation prevails, and assume that:

(0.1) ν(unFn)
L 1(P)−−−−→
n→∞

σ2,

and

(0.2) E
ˆ
|un(z)||D+

z Fn|
2
ν(dz) −−−→

n→∞
0.

Then1, we have that Fn
law−−−→
n→∞

N(0, σ2).

By integration by parts, we see that Eν(unDFn) = EF 2
n and, at the heuristic level, the quantity

ν(unDFn) controls the asymptotic variance of Fn. The condition (0.2) arises from the non-
diffusive nature of the Poisson process. Following our heuristic, it is very natural to ask what
happens to the conclusions of Theorem 0.1 when ν(unDFn) converges to a non-negative ran-
dom variable S2. Theorem 3.1 states that, in this case, provided (0.2) and a condition of asymp-
totic independence hold, (Fn) converges stably to the Gaussian mixture N(0, S2). In fact, in

1To be precise, the theorem of [32] chooses one particular solution of Fn = δun but we do not enter into too
many technical details in this introduction.

2



Theorem 3.1, we are also able to deal with vector-valued random variables. In the same fash-
ion, Theorem 3.2 gives sufficient conditions involving un and DFn to ensure the convergence
of (Fn) to a Poisson mixture (thus generalizing a result by Peccati [33] for convergence to
Poisson random variables). When targeting Gaussian mixtures, we are also able to provide
quantitative bounds in a variational distance between probability laws (Theorem 3.5 for the
multivariate case, and Theorem 3.8 for the univariate case).

Following a recent contribution by Döbler & Peccati [8], we derive from our analysis a
stable fourth moment theorem: a sequence of iterated Itô-Poisson integrals converges stably
to a Gaussian (with deterministic variance) if and only if its second and fourth moment con-
verge to those of Gaussian (Proposition 4.1). For the limit of a sequence of order 2 Itô-Poisson
stochastic integrals to be a Gaussian or Poisson mixture, we obtain sufficient conditions ex-
pressed in terms of analytical conditions on the integrands (Theorems 4.2 and 4.3). We also
apply our results to study the limit of a sequence of quadratic functionals of a rescaled Poisson
process on the line (Theorem 5.2); hence, adapting to the Poisson setting a theorem of Peccati
& Yor [36] for a standard Brownian motion (generalized by [26] to the setting of a sufficiently
regular fractional Brownian motion using Malliavin-Stein techniques; and generalized to any
fractional Brownian motion by [38] using ad-hoc computations).

The paper is organized as follows. Each section starts with its own short introduction that
presents its structure and that recalls, if necessary, the context and the definition of the main
objects under study. Section 1 fixes the notations for the rest of the paper; recalls the defini-
tions of probabilistic distances and of the Poisson point process; and gives more information
on Gaussian and Poisson mixtures that serve as target distributions in our limit theorems. We
present, in Section 2, extended material about stochastic analysis for Poisson point processes
with a focus on Poisson integrals, Malliavin operators, and Dirichlet forms. We prove several
intermediary results of independent interest regarding stochastic analysis for Poisson point
processes. In particular, Proposition 2.2 establishes a complete representation of the carré du
champ operator on the Poisson space (generalizing the one of [8]). We present in Section 3
the main results of this paper: Theorems 3.1, 3.2 and 3.5; they contain bounds and stable limit
theorems for Poisson functionals. In Section 3.2.2, we refine our results when the Fn’s are
univariate, and we establish, in Theorem 3.8, a bound in the Monge-Kantorovich transport
distance. A detailed comparison of these results with the aforementioned works on the Gaus-
sian space of [25, 13, 26], as well as with limit theorems on the Poisson space [18, 17, 32, 33],
follows in Section 3.3. A special attention is paid to stochastic integrals in Section 4. From
our main results, we deduce: Proposition 4.1, a stable version of the recently proved fourth
moment theorem on the Poisson space of [8, 9]; Theorems 4.2 and 4.3, giving analytical criteria
for conditionally normal or Poisson limit for order 2 Itô-Wiener stochastic integrals. Section 5
contains the application to quadratic functionals of rescaled Poisson processes on the line.
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1 Preliminaries

1.1 Notations

Sets

The symbols R, R+, N, and N>0 always designate the set of real numbers, of non-negative real
numbers, of non-negative integers, of and positive integers respectively. For p and q ∈ N>0

with p ≤ q, we write: [q] = {1, . . . , q}, [p, q] = {p, . . . , q}, and [0] = ∅.

Norms

For x, y ∈ Rd, we write 〈x, y〉`2 for the standard scalar product of x and y, and |x|`2 for the
induced norm. We call p-tensor every p-linear form T : (Rd)p → R. Recall that a tensor is
canonically identified with an element of (Rd)p whose coordinate (i1, . . . , ip) ∈ [d]p is given
by T (e1, . . . , ep), where {ei; i ∈ [d]} is the canonical basis of Rd. 1-tensors are vectors via
the identification x 7→ 〈x, ·〉`2 ; 2-tensors are square matrices via the identification A 7→ 〈·, A·〉`2 .
Consistently with the notation introduced before, we use 〈·, ·〉`2 for tensors. In particular, given
two matrices A and B of size d× d, we write 〈A,B〉`2 for tr(ATB), and |A|2`2 for 〈A,A〉`2 .
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Derivatives

For k ∈ N ∪ {∞}, we denote the space of k times continuously differentiable functions from
Rd to R by C k(Rd). If, moreover, the derivatives up to k are bounded, we write C k

b (Rd). For
φ ∈ C k(Rd), we write ∇kφ for the k-th derivative that we identify with a k-form over Rd. In
particular, for all x ∈ Rd, ∇kφ(x) is a k-tensor whose coordinates (in the canonical basis) are
written {∂ki1,...,ikφ(x), i1, . . . , ik ∈ [d]}. We write∇ = ∇1. We let

(1.1) |∇kφ|`2,∞ = sup
x∈Rd

|∇kφ(x)|`2 = sup
x∈Rd

 ∑
i1,...,ik≤d

|∂ki1,...,ikφ(x)|2
1/2

.

Lipschitz functions

We say that a function φ : Rd1 → Rd2 is Lipschitz if

(1.2) Lip(φ) := sup
x,y

|φ(x)− φ(y)|`2
|x− y|`2

<∞.

Recall that if φ is differentiable,

(1.3) Lip(φ) = sup
x∈Rd1

|φ′(x)|`2√
d1

.

The space of Lipschitz functions from Rd to R is denoted by Lip(Rd). The space of bounded
Lipschitz functions from Rd to R is denoted by W 1,∞(Rd); it is a Banach space for the norm

(1.4) |φ|W 1,∞(Rd) = |φ|∞ + Lip(φ),

where |φ|∞ is the supremum norm of φ.

Lebesgue spaces

Let Z be a measurable space with its σ-algebra Z. Given a measure ν and a non-negative (or
ν-integrable) function f , we write ν(f) or

´
Z f(x)ν(dx) to designate the Lebesgue integral of

f with respect to ν. For p ∈ [1,∞], the space of (equivalence classes of ν-almost everywhere
equal) measurable functions f such that ν(|f |p) < ∞ (or esssup(|f |) < ∞, when p = ∞) is
denoted by L p(Z,Z, ν) and is equipped with its standard Banach structure. We commonly
abbreviate this notation to L p(Z) or L p(Z) or L p(ν). Unless otherwise specified, identities
between elements of some L p(ν) are always understood in an ν-almost everywhere sense. We
simply write νq for the q-th tensor power of ν.

Symmetric functions

For f ∈ L p(νq), we denote by fσ the symmetrization of f , that is:

(1.5) fσ(x1, . . . , xq) = q!−1
∑
σ∈Σq

f(xσ(1), . . . , xσ(q)),

where Σq is the group of permutations of [q]. We say that f ∈ L p
σ (νq) if f ∈ L p(νq) and fσ = f .

Probability space

Every random element lives in a sufficiently big probability space (Ω,O,P). Unless otherwise
specified, equality between random objects is always understood in an almost sure sense. By
convention, we reserve the term random variable to designate a random object with value in Rd.

5



1.2 Probabilistic approximations and limit theorems

Stable convergence

(See [15, § VIII.5c].) Let W be a sub-σ-algebra of O. A sequence of W-random variables (Fn) is
said to converge stably to a O-random variable F∞ whenever, for all Z ∈ L∞(W):

(1.6) (Fn, Z)
law−−−→
n→∞

(F∞, Z).

This convergence is denoted by

(1.7) Fn
stably−−−→
n→∞

F∞.

Of course, stable convergence implies convergence in law but the reverse implication does not
hold. In practice, we use the following characterisation of stable convergence.

Proposition 1.1. Let (Fn) be a sequence of W-measurable random variables, and F∞ be O-measurable.
Let I ⊂ L 1(W) be a linear space, and G ⊂ L∞(W). Assume that σ(I ) = σ(G ) = W. The
following are equivalent:

(i) Fn
stably−−−→
n→∞

F∞;

(ii) for all φ ∈ Cb(Rd): φ(Fn)
σ(L 1(W):L∞(W))−−−−−−−−−−−−→

n→∞
E[φ(F∞)|W];

(iii) for all G ∈ G and for all λ ∈ Rd: E ei〈λ,Fn〉`2 G −−−→
n→∞

E e〈λ,F∞〉`2 G;

(iv) for all I ∈ I d and for all λ ∈ Rd: E ei〈λ,Fn+I〉`2 −−−→
n→∞

E ei〈λ,F∞+I〉`2 .

Proof. Stable convergence is equivalent to (ii) by [15, Proposition VIII.5.33.v]. Thus, stable
convergence is also equivalent with (iii) since G generates W. By linearity of I , (iv) implies
that for all J ∈ I , all t ∈ R, and all λ ∈ Rd, as n→∞: E eitJ ei〈λ,Fn〉`2 → E eitJ ei〈λ,F∞〉`2 . Letting
t → 0 in (1 − eitJ)t−1 → iJ , shows that EJ ei〈λ,Fn〉`2 → EJ ei〈λ,F∞〉`2 , when n → ∞. Since I
generates W, we conclude that (iv) implies stable convergence. The converse implication is
immediate.

Probabilistic variational distances

The Monge-Kantorovich distance between two Rd random variables X and Y is defined by

(1.8) d1(X,Y ) = inf
{
E|X̃ − Ỹ |`2 , X̃ ∼ X, Ỹ ∼ Y

}
.

Due to the Kantorovich duality, the Monge-Kantorovich distance (see [12, Theorem 2.1]) be-
tween the laws of two integrable Rd-valued random variables X and Y can be rewritten:

(1.9) d1(X,Y ) = sup
{
Eφ(X)− Eφ(Y ), φ ∈ Lip(Rd), Lip(φ) ≤ 1

}
.

In the same spirit, the Fortet-Mourier distance between the laws of two Rd-valued random vari-
ables X and Y is

(1.10) d0(X,Y ) = sup
{
Eφ(X)− Eφ(Y ), φ ∈ W 1,∞(Rd), |φ|W 1,∞(Rd) ≤ 1

}
.
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For Poisson functionals, the Malliavin-Stein methods typically yield bounds in a distance
weaker than the Monge-Kantorovich or the Fortet-Mourier distance. In this paper, we con-
sider a distance first considered by Peccati & Zheng [37], whose variational formulation for
two integrable Rd-valued random variables X and Y is given by

(1.11) d3(X,Y ) = sup
{
Eφ(X)− Eφ(Y ), φ ∈ C 3(Rd), φ ∈ F3

}
,

where F3 is the space of functions φ ∈ C 3(Rd) with the second and third derivatives bounded
by 1.

Link with the convergence in law

These three distances depend on X and Y only through their laws. If Y ∼ ν, we sometimes
write di(X, ν) for di(X,Y ) (i ∈ {0, 1, 3}). The Monge-Kantorovich distance induces a topology
on the space of probability measures that corresponds to the convergence in law together with
the convergence of the first moment [44, Theorem 6.9]. The Peccati-Zheng distance induces
a topology on the space of probability measures which is strictly stronger than the topology
of the convergence in law. The Fortet-Mourier distance induces, on the space of probability
measures, the topology of the convergence in law [10, Theorem 11.3.3].

1.3 Definition of Poisson point processes

Given some measurable space (Z,Z), we define MN̄(Z) to be the space of all countable sums
of N-valued measures on (Z,Z). The space MN̄(Z) is endowed with the σ-algebra MN̄(Z),
generated by the cylindrical mappings

(1.12) ξ ∈MN̄(Z) 7→ ξ(B) ∈ N ∪ {∞}, B ∈ Z.

Let ν be a σ-finite measure on (Z,Z). A random variable η = ην with values in MN̄(Z) is a
Poisson point process (or Poisson random measure) with intensity ν if the following two properties
are satisfied:

1. for all B1, . . . , Bn ∈ Z pairwise disjoint, η(B1), . . . , η(Bn) are independent;

2. for B ∈ Z with ν(B) <∞, η(B) is a Poisson random variable with mean ν(B).

Poisson processes with σ-finite intensity exist [21, Theorem 3.6]. We let W be the σ-algebra
generated by η. Our definition of η implies that W ⊂ O, and we often tacitly assume that
(Ω,O,P) also supports random objects (such as a Brownian motion) independent of η. We
always look at stable convergence with respect to W. However, for simplicity, unless otherwise
specified, we assume that random variables are W-measurable. In particular, we write L 2(P)
for L 2(Ω,W,P). The compensated Poisson measure is defined as the mapping

(1.13) A 7→ η̂(A) = η(A)− ν(A), ∀A ∈ Z, such that ν(A) <∞.

1.4 Gaussian and Poisson mixtures

As anticipated, we shall be interest in the stable convergence (with respect to W) of a sequence
of Poisson functionals (Fn) to conditionally Gaussian and Poisson random variables. Infor-
mally, we refer to such objects as Gaussian mixture and Poisson mixture. Let N be standard
Gaussian vector independent of η and S ∈ L 2(W). We denote by N(0, S2) the law of the
Gaussian mixture SN . Similarly, for N a Poisson process on R+ (with intensity the Lebesgue
measure) independent of η and M ∈ L 2(W) non-negative, we write Po(M) for the law of the

7



(compensated) Poisson mixture N(1[0,M ]) −M . We have a characterisation of these two laws
in term of their conditional Fourier transforms: F ∼ N(0, S2) if and only if

(1.14) E[eiλF |η] = exp

(
−S2λ

2

2

)
;

while F ∼ Po(M) if and only if

(1.15) E[eiλF |η] = exp
(
M(eiλ−iλ− 1)

)
.

2 Further results on the Poisson space

Outline

In this section, we recall basic definitions regarding Poisson point process on an arbitrary mea-
sured space. We then carry out an extensive review of different tools about stochastic anal-
ysis on the Poisson space: the Itô-Poisson stochastic integrals; the Malliavin derivative; the
Skorokhod-Kabanov divergence; the Ornstein-Uhlenbeck generator; the Dirichlet form on the
Poisson space; and the energy bracket, a object that we invented. We establish several lemmas
in the process. We end the section by deriving some rules of calculus for the Malliavin deriva-
tive and Kabanov-Skorokhod divergence. Using the formalism of the Dirichlet form and the
energy bracket, we can derive some integration by parts formula on the Poisson space used in
Section 3. In particular, Proposition 2.2 gives a complete description of the carré du champ on
the Poisson space. The reader can refer to the three monographs by Kingman [16]; Peccati &
Reitzner [34]; and Last & Penrose [21] for more information about Poisson point processes.

2.1 Stochastic analysis for Poisson point processes

The Mecke formula

According to [21, Theorem 4.1], we have for all measurable f : MN̄(Z)× Z → [0,∞]:

(2.1) E
ˆ
f(η, z)η(dz) =

ˆ
Ef(η + δz, z)ν(dz).

If f is replaced by a measurable function with value in R the previous formula still holds
provided both sides of the identity are finite when we replace f by |f |.

Proper measures and their factorial power

A measure m ∈ MN̄(Z) is proper whenever there exists I ⊆ N and zi ∈ Z (i ∈ I) such that
m =

∑
i∈I δzi . As we are only concerned with properties in law of η, according to [21, Corollary

3.7], without loss of generality, we assume that our Poisson point process η is almost surely
proper. Given I ⊆ N, we define its factorial power of order q ∈ N, noted I(q), by

(2.2) I(q) = {(i1, . . . , iq) ∈ Iq, such that il 6= il′ , ∀l 6= l′ ∈ [q]}.

Note that I(q) = ∅, for all q > |I|. Given m =
∑

i∈I δxi a proper element of MN̄(Z), we define
the q-th factorial power of m, noted m(q), as

(2.3) m(q) =
∑

(i1,...,iq)∈I(q)
δ(xi1 ,...,xiq ).

In the previous formula and in the rest of this article, summation over the empty set is under-
stood as the zero measure. According to [21, Proposition 4.3], η(q) is also a random variable
(with respect to W).
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Stochastic integrals

In a seminal contribution, Itô [14] introduces the stochastic integrals with respect to a Poisson
measure (see also [43]). We follow here the presentation of [21, Chapter 12]. For q ∈ N and a
function f ∈ L 1(νq), the multiple Wiener-Itô Poisson stochastic integral of order q, or, for short,
Poisson integral of order q, noted Iq(f), is defined pointwise as

(2.4) Iq(f) =
∑
J⊂[q]

(−1)q−|J |
ˆ
f(x)η(|J |)(dxJ)νq−|J |(dx[q]\J).

Here, xJ is the ordered vector of R|J | ⊂ Rd given by (xj)j∈J , where the order is inherited from
[q]. We extend the mapping Iq (restricted to L 2(νq) ∩ L 1(νq)) to a mapping (still denoted
by Iq) on L 2(νq) and (2.4) holds on a dense subset of L 2(νq). Whenever f ∈ L 2(νq) and
g ∈ L 2(νq

′
), we have the following isometry property

(2.5) EIq(f)Iq′(g) = q!〈fσ, gσ〉L 2(νq)1q=q′ ,

where fσ is the symmetrized version of f .

Product formulae and contractions

Given f ∈ L 2
σ (νp) and g ∈ L 2

σ (νq) such that Ip(f) and Iq(g) belong to L 4(P), then by [6,
Lemma 2.4] there exists hr ∈ L 2

σ (νr) such that

(2.6) Ip(f)Iq(g) =

p+q∑
r=0

Ir(hr).

For f ∈ L 2
σ (νp) and g ∈ L 2

σ (νq), we define the star contraction of order (l, r), r ∈ {0, . . . , p ∧ q}
and l ∈ {0, . . . , r} by

(2.7) f ?lr g(x1, . . . , xp+q−r−l) =

ˆ
f(y[l], x[p−l])g(y[l], x[r−l], x[p−l+1,p+q−r−l])ν

l(dy[l]).

Then ([19, Proposition 5]) for f ∈ L 2
σ (νp) and g ∈ L 2

σ (νq) such that f ?lr g ∈ L 2(νp+q−r−l),

(2.8) Ip(f)Iq(g) =

p∧q∑
r=0

r∑
l=0

r!

(
p

r

)(
q

r

)(
r

l

)
Ip+q−r−l(f ?

l
r g).

The representative of a functional

For every random variable F measurable with respect to η we can write F = f(η), for some
measurable f : MN̄(Z) → R uniquely defined P ◦ η−1-almost surely on (MN̄(Z),MN̄(Z)). We
call such f a representative of F . In this section, F denotes a random variable, measurable with
respect to σ(η), and f denotes one of its representatives.

The add and drop operators

Given z ∈ Z, we let

D+
z F = f(η + δz)− f(η);(2.9)

D−z F = (f(η)− f(η − δz))1z∈η.(2.10)

The operator D+ (resp. D−) is called the add operator (resp. drop operator). Due to the Mecke
formula (2.1), these operations are well-defined on random variables (that is, D+ and D− do
not depend on the choice of the representative of F ).
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Lemma 2.1. Let F ∈ L∞(P), then D+F ∈ L∞(P⊗ ν).

Proof. First of all, δ : Z 3 z 7→ δz ∈ MN̄(Z) is measurable (if A is of the form {η(B) = k} for
some B ∈ Z, then the pre-image by δ of A is B, if k = 1; and the pre-image is empty, if k > 1).
Hence, D+F is bi-measurable. Now let

U = {t ∈ R, such that P(F ≥ t) = 0};(2.11)
V = {t ∈ R, such that (P⊗ ν)(F +D+

z F ≥ t) = 0}.(2.12)

By assumption U 6= ∅, and we want to show that V 6= ∅. Take t ∈ U , by the Mecke formula
(2.1), we have that

(2.13) E
ˆ

1{F+D+
z F≥t}ν(dz) = E

ˆ
1{F≥t}η(dz) = 0.

Hence t ∈ V , this concludes the proof.

Based on (2.4), it is easy to check (see also [19, Theorem 3]) that, for all h ∈ L 2
σ (νq) and z ∈ Z:

D+
z Iq(h) = qIq−1(h(z, ·)).

The Itô-Poisson isometry

In [22, Theorem 1.3], it is proved that, for F ∈ L 2(P), the mapping TqF : Zq 3 (z1, . . . , zq) 7→
ED+

z1 . . . D
+
zqF belongs to L 2(νq), and that

(2.14) F =
∑
q∈N

1

q!
Iq(TqF ).

Together with Itô’s isometry (2.5), this implies the isometric orthogonal decomposition

(2.15) L 2(P) '
⊕
q∈N

L 2
σ (νq).

Malliavin derivative

For a random variable F , we write F ∈ DomDq whenever: F ∈ L 2(P) and

(2.16) |F |p :=

ˆ
Zp

E(D+
z1...zpF )

2
νp(dz) <∞, ∀p ∈ [q].

In view of what precedes, we have that F ∈ DomD if and only if

(2.17)
∑
q∈N

qIq−1(TqF ) ∈ L 2(P⊗ ν).

The space DomDq is Hilbert when endowed with the norm

(2.18) | · |DomDq = | · |L 2(P) +

p∑
i=1

| · |p.

Given F ∈ DomDq, we write DqF to denote the random mapping DqF : Zq 3 (z1, . . . , zq) 7→
D+
z1 . . . D

+
zqF . We setD = D1 for simplicity. We regardDq as an unbounded operator L 2(P)→

L 2(P⊗ νq) with domain DomDq.
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The divergence operator

We consider the divergence operator δ = D∗ : L 2(P⊗ν)→ L 2(ν), that is the unbounded adjoint
of D. Its domain Dom δ is composed of random functions u ∈ L 2(P⊗ ν) such that there exists
a constant c > 0 such that

(2.19)
∣∣∣∣Eˆ D+

z Fu(z)ν(dz)

∣∣∣∣ ≤ c√EF 2, ∀F ∈ DomD.

For u ∈ Dom δ, the quantity δu ∈ L 2(P) is completely characterised by the duality relation

(2.20) EGδu = E
ˆ
u(z)DzFν(dz), ∀F ∈ DomD.

If h ∈ L 2(ν), then h ∈ Dom δ and δh = I1(h). From [19, Theorem 5], we have following
Skorokhod isometry. For u ∈ L 2(P⊗ ν), u ∈ Dom δ if and only if E

´
(D+

z u(z′))
2
ν(dz)ν(dz′) <

∞ and, in that case:

(2.21) E(δu)2 = E
ˆ
u(z)2ν(dz) + E

ˆ
D+
z u(z′)D+

z′u(z)ν(dz)ν(dz′).

The Skorokhod isometry implies the following Heisenberg commutation relation. For all u ∈
Dom δ, and all z ∈ Z such that z′ 7→ D+

z u(z′) ∈ Dom δ:

(2.22) Dzδu = u(z) + δD+
z u.

From [19, Theorem 6], we have the following pathwise representation of the divergence: if
u ∈ Dom δ ∩L 1(P⊗ ν), then

(2.23) δu =

ˆ
(1−D−z )u(z)η(dz)−

ˆ
u(z)ν(dz).

Note that Dom δ ∩L 1(P⊗ ν) is dense in Dom δ.

The Ornstein-Uhlenbeck generator

The Ornstein-Uhlenbeck generator L is the unbounded self-adjoint operator on L 2(P) verifying

(2.24) DomL = {F ∈ DomD, such that DF ∈ Dom δ} and L = −δD.

Classically, DomL is endowed with the Hilbert norm EF 2 + E(LF )2. The eigenvalues of L
are the non-positive integers and for q ∈ N the eigenvectors associated to −q are exactly the
random variables of the form Iq(h) for some h ∈ L 2(νq). This yields for F ∈ DomL:

(2.25) LF = −
∑
q∈N

q

q!
Iq(EDqF ) = −

∑
q∈N

1

(q − 1)!
Iq(EDqF ).

The kernel of L coincides with the set of constants and the pseudo-inverse of L is defined on the
quotient L 2(P) \ kerL, that is the space of centered square integrable random variables. For
such F , we have that

(2.26) L−1F = −
∑
q∈N>0

1

q!q
Iq(EDqF ).

For F ∈ L 2(P) with EF = 0, we have LL−1F = F . Moreover, if F ∈ DomL, we have
L−1LF = F . As a consequence of (2.21), DomD2 = DomL. In particular, if F has a vanishing
expectation, then L−1F ∈ DomD2.
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The Dirichlet form

We refer to [3, Chapter 1] for more details about the formalism of Dirichlet forms. The in-
troduction of [1] also provides an overview of the subject. For every F,G ∈ DomD, we let
E(F,G) = E

´
D+
z FD

+
z Gν(dz). Since by [19, Lemma 3], the operator D is closed, E is a Dirich-

let form with domain Dom E = DomD. Moreover, in view of the integration by parts (2.20),
the generator of E is given by L. By [3, Chapter I Section 3], A := DomD ∩ L∞(P) is an
algebra with respect to the pointwise multiplication; DomD and A are stable by composition
with Lipschitz functions; A is stable by composition with C k(Rd) functions (k ∈ N̄).

The carré du champ operator

For every F ∈ A , we define the functional carré du champ of F as the linear form Γ(F ) on A ,
defined by

(2.27) Γ(F )[Φ] = E(F, FΦ)− 1

2
E(F 2,Φ), for all Φ ∈ A .

From [3, Proposition I.4.1.1],

(2.28) 0 ≤ Γ(F )[Φ] ≤ |Φ|L∞(P)E(F ), for all F,Φ ∈ A .

This allows us to extend the definition of the linear form Γ(F ) to all F ∈ Dom E . For F ∈
Dom E , we write that F ∈ Dom Γ if the linear form Γ(F ) can be represented by a measure
absolutely continuous with respect to P; in that case we denote its density by Γ(F ). In other
words, F ∈ Dom Γ if and only if there exists a non-negative Γ(F ) ∈ L 1(P) such that

(2.29) Γ(F )[Φ] = EΓ(F )Φ, for all Φ ∈ A .

From the general theory, we know that Dom Γ is a closed sub-linear space of Dom E . In the
Poisson case, the following representation of the carré du champ follows from Lemma 2.7.

Proposition 2.2. We have that Dom Γ = DomD and, for all, F ∈ DomD:

(2.30) Γ(F ) =
1

2

ˆ
(D+

z F )
2
ν(dz) +

1

2

ˆ
(D−z F )

2
η(dz).

We extend Γ to a bilinear map

(2.31) Γ(F,G) =
1

2

ˆ
D+
z FD

+
z Gν(dz) +

1

2

ˆ
D+
z FD

+
z Gη(dz), ∀F,G ∈ DomD.

Remark 1. This representation of Γ using the add-one and drop-one operators is, at the formal
level, well-known in the literature: it appears without a proof in the seminal paper [2, p. 191].
One of the main assumption of [2] is the existence of an algebra of functions contained in
DomL, the so called standard algebra. In the case of a Poisson point process, it is not clear what
to choose for the standard algebra (note that A = Dom E ∩L∞(P) is not included in DomL).
[8] derives the formula without relying on the notion of standard algebra. However, since [8]
follows the strategy of [2], [8] has to assume a restrictive assumption on F : F ∈ DomL and
F 2 ∈ DomL. In particular, the authors of [8] did not obtain that Dom Γ = Dom E . This is
why, following [3], we use the formalism of Dirichlet forms to compute the carré du champ
and obtain a representation for the carré du champ under minimal assumptions.
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The energy bracket

Given two elements u ∈ L 2(ν ⊗ P) and v ∈ L 2(ν ⊗ P) (possibly vector valued), we define the
energy bracket of u and v: it is the random matrix

(2.32) [u, v]Γ =
1

2

ˆ
u(z)⊗ v(z)ν(dz) +

1

2

ˆ
(1−D−z )u(z)⊗ (1−D−z )v(z)η(dz).

In the paper, we also consider the two other related objects:

[u, v]ν =

ˆ
u(z)⊗ v(z)ν(dz);(2.33)

[u, v]η =

ˆ
(1−D−z )u(z)⊗ (1−D−z )v(z)η(dz).(2.34)

If u and v are real-valued, then [u, v]ν is simply the scalar product of u and v in L 2(ν). By the
Cauchy-Schwarz inequality [u, v]ν ∈ L 1(P), and by the Mecke formula:

(2.35) E[u, v]Γ = E[u, v]ν = E[u, v]η.

Moreover, if F and G ∈ DomD, we have that

(2.36) Γ(F,G) = [DF,DG]Γ.

This identity is our main motivation for introducing the energy bracket. We denote by [̃u, v]β
the symmetrization of the matrix [u, v]β (β ∈ {Γ, ν, η}).

Test functions

We say that a measurable function ψ : Z → R+ such that ν(ψ > 0) < ∞ is a test function. We
let G ⊂ L∞(P) be the linear span of the random variables of the form e−η(ψ), where ψ is a test
function. Observe that G is a sub-algebra of A and that DomD is stable by multiplication by
elements of G . In view of [22, Lemma 2.2] and its proof, we have that

Proposition 2.3. The set G is dense in L 2(P) (and in fact in every L p(P), 1 ≤ p < ∞). Moreover,
the σ-algebra generated by G coincides with W.

Extended Malliavin operators

As mentioned above, we assume that O is bigger than W. However, every O-random variable
F can be written F = f(η,Ξ), where Ξ is an additional randomness independent of η. We
define for every such F the quantity D+

z F = f(η + δz,Ξ) − f(η,Ξ). It is an (easy) exercise to
check that we can accordingly modify all the operators and functional spaces defined above,
and that their properties are left unchanged. Remark that our definition implies that, if F
is independent of η, then D+F = 0, and that, if F = ab with a independent of W and b
measurable with respect to W, D+F = aD+b.

2.2 Chain rules and integration by parts formulae

Substitute for the chain rule

The Markov generator L is not a diffusion (see [23, Equation 1.3]). Likewise, the add operator
D+ and drop operator D− are not derivation (see [4, Chapter III Section 10] for details on
derivations). In particular, the classical chain rule does not apply. However, writingD+

z φ(F ) =
φ(F+D+

z F )−φ(F ) and applying the fundamental theorem of calculus we obtain the following
substitute for the chain rule.
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Lemma 2.4. Let φ ∈ C 2(Rd). For F ∈ L 2(P) and z ∈ Z, we define for all i and j ∈ [d]:

R̂i,j(F, z, φ) =

ˆ 1

0

ˆ 1

0
α∂ijφ(F + αβD+

z F )dαdβ;(2.37)

Ři,j(F, z, φ) =

ˆ 1

0

ˆ 1

0
α∂ijφ(F − αβD−z F )dαdβ.(2.38)

We have that

D+
z φ(F ) =

〈
∇φ(F ), D+

z F
〉
`2

+
〈
R̂(F, z, φ), (D+

z F )
⊗2
〉
`2

;(2.39)

D−z φ(F ) =
〈
∇φ(F ), D−z F

〉
`2
−
〈
Ř(F, z, φ), (D−z F )

⊗2
〉
`2
.(2.40)

In particular (taking φ : R 3 x 7→ x2 ∈ R), we have that

D+
z F

2 = 2FD+
z F + (D+

z F )
2
;(2.41)

D−z F
2 = 2FD−z F − (D−z F )

2
.(2.42)

Proof. Simply write the Taylor expansion up to order 2 of D+
z φ(F ) = φ(F +D+

z F )− φ(F ) and
similarly for D−z φ(F ). Details are left to the reader.

Taylor formula for difference operators

Another application of Taylor’s formula gives us the following discrete counterpart of the
chain rule.

Lemma 2.5. Let φ ∈ C 2(R). For F ∈ L 2(P), we have that

(2.43) D+φ(F ) = D+F (φ(F+1)−φ(F ))+D+F (D+F−1)

ˆ 1

0

ˆ 1

0
αφ′′(F+αβ(D+F−1))dαdβ.

Remark 2. It is to obtain a similar formula for D− or on Rd but we have no use for it.

Proof. Apply the fundamental theorem of calculus on φ(x+h)−φ(x)−h(φ(x+ 1)−φ(x)) and
take x = F and h = D+F .

A formula for the divergence

Since the operatorD is not a derivation, [30, Proposition 1.3.3] (obtained in the setting of Malli-
avin calculus for Gaussian processes) does not hold. We however have the following Poisson
counterpart.

Lemma 2.6. Let F ∈ DomD and u ∈ Dom δ such that Fu ∈ Dom δ. Then,

(2.44) δ(Fu) = Fδu− [DF, u]η.

Proof. LetG ∈ A = DomD∩L∞(P), and assume moreover that u ∈ L 1(P⊗ν). By integration
by parts and the Mecke formula, we find that

(2.45) EGδ(Fu) = E
ˆ
FuzDzGν(dz) = EG

ˆ
(1−D−z )(Fuz)η(dz)− EG

ˆ
Fuzν(dz).

Using that (1−D−z )(Fuz) = F (1−D−z )uz −D−z F (1−D−z )uz , we conclude by (2.23) that

(2.46) EGδ(Fu) = EGFδu− EG[DF, u]η.

We conclude by density.
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An integrated chain rule for the energy

Recall that we write A for the algebra Dom E ∩L∞(P). We now remark that even if D is not
a derivation, the Dirichlet energy E acts as a derivation.

Lemma 2.7. Let F and G ∈ A , and u ∈ L 2(P⊗ ν). Then,

(2.47) E[D(FG), u]Γ = EF [DG,u]Γ + EG[DF, u]Γ.

In particular, with H ∈ DomD:

(2.48) E(FG,H) = EF [DG,DH]Γ + EG[DF,DH]Γ.

This establishes Proposition 2.2.

Remark 3. The formula (2.48) for E cannot be iterated. In particular, consistently with the fact
that L is not a diffusion, (2.48) does not imply E(φ(F ), G) = Eφ′(F )[DF,DG]Γ.

Proof. Since F ∈ L∞(P), by Lemma 2.1, we have that DF ∈ L∞(P ⊗ ν); and by assumption,
DF ∈ L 2(P⊗ ν). A similar result holds for G, and we find that DF ⊗DG is square integrable.
By the Mecke formula, and (2.41) and (2.42), we can write:

E[D(FG), u]Γ = EF [DG,u]Γ + EG[DF, u]Γ

+
1

2
E
ˆ
D+
z F ⊗DG⊗ u(z)ν(dz)

− 1

2
E
ˆ

(1−D−z )F (1−D−z )G(1−D−z )u(z)η(dz).

(2.49)

By the Mecke formula, the two terms on the two last lines cancel out. This proves the first part
of the claim. To establish Proposition 2.2, we simply write, for F and Φ ∈ A :

(2.50) E(F, FΦ)− 1

2
E(F 2,Φ) = EF [DF,DΦ]Γ + EΦ[DF,DF ]Γ − EF [DF,DΦ]Γ.

This shows that Dom Γ ⊃ A and that

(2.51) Γ(F )[Φ] = E[DF,DF ]ΓΦ.

We extend this expression to Dom E = DomD. This concludes the proof.

Integration by parts formulae

Most of our analysis relies on integration by parts formulae at the level of the Poisson space
based on Malliavin calculus.

Lemma 2.8. Let F = (F1, . . . , Fd) ∈ DomD and let u = (u1, . . . , ud) ∈ Dom δ. LetG ∈ G . Let φ ∈
C 3
b (Rd). We write R̂(F, z,∇φ) for the (non-symmetric) 3-tensor whose coordinate (i, j, k) is given by

R̂jk(F, z, ∂iφ), and we do the same for Ř. Assume that, for l ∈ {1, 2},
´
|u(z)|`2 |D+

z F |
l
`2ν(dz) < ∞.

Then:

E〈∇φ(F )G, δu〉`2 =
1

2
EG

〈
∇2φ(F ), [u,DF ]Γ

〉
`2

+
1

2
E 〈∇φ(F ), [u,DG]Γ〉`2

+
1

4
EG
ˆ 〈

u(z)⊗ (D+
z F )

⊗2
, R̂(F, z,∇φ)

〉
`2
ν(dz)

− 1

4
EG
ˆ 〈

(1−D−z )u(z)⊗ (D−z F )
⊗2
, Ř(F, z,∇φ)

〉
`2
η(dz).

(2.52)
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Proof. We write A = 〈∇φ(F ), δu〉`2 , and

(2.53) B =
1

2
G
〈
∇2φ(F ), [u,DF ]Γ

〉
`2
.

Write C = 〈∇φ(F ), [u,DG]Γ〉`2 and

R+ =
1

4
G

ˆ 〈
u(z)⊗ (D+

z F )
⊗2
, R̂(F, z,∇φ)

〉
`2
ν(dz);(2.54)

R− =
1

4
G

ˆ 〈
(1−D−z )u(z)⊗ (D−z F )

⊗2
, Ř(F, z,∇φ)

〉
`2
η(dz).(2.55)

First, let us check that every term is well defined. Since φ ∈ C 3
b (Rd), ∇φ is Lipschitz. Since

F ∈ DomD, we find that ∇φ(F ) ∈ DomD and G∇φ(F ) ∈ DomD. Since u ∈ Dom δ, we have
that δu ∈ L 2(P) and, then, A ∈ L 1(P). Applying the Cauchy-Schwarz inequality and the
Mecke formula, we find, in view of the assumptions

E|B| ≤ |∇2φ|`2,∞|G|L∞(P)E
ˆ
|u(z)|`2 |D

+
z F |`2 <∞;(2.56)

E|C| ≤ |∇φ|`2,∞E
ˆ
|u(z)|`2 |D

+
z G|`2ν(dz) <∞;(2.57)

E|R+|+ E|R−| ≤ |∇3φ(F )|`2,∞|G|L∞(P)E
ˆ
|u(z)|`2 |D

+
z F |

2
`2ν(dz) <∞.(2.58)

These estimates also justify the use of the Mecke formula on non-necessarily non-negative
quantities that we do in the rest of the proof. Now, we prove the equality (2.52). Let D =
B + C +R+ −R−. By integration by parts (2.20), we find

(2.59) EA = E
ˆ 〈

D+
z (∇φ(F )G), u(z)

〉
`2
ν(dz).

By the Mecke formula (2.1), we get

(2.60) 2EA = E[D(∇φ(F )G), u]Γ.

Applying Lemmas 2.4 and 2.7, in the previous identity immediately yields EA = EB. This
concludes the proof.

When G = 1, we can directly apply Lemma 2.4 in (2.59), this yields the following integration
by parts involving [·, ·]ν rather than [·, ·]Γ.

Lemma 2.9. Under the same assumptions as for Lemma 2.8, it holds

E〈∇φ(F ), δu〉`2 = E
〈
∇2φ(F ), [u⊗DF ]ν

〉
`2

+
1

2
E
ˆ 〈

u(z)⊗ (D+
z F )

⊗2
, R̂(F, z,∇φ)

〉
`2
ν(dz).

(2.61)

3 Main abstract results

Outline

Theorem 3.1 gives sufficient conditions for the stable convergence of a sequence of Poisson
functionals to a Gaussian mixture. While Theorem 3.2 gives sufficient conditions for the sta-
ble convergence of a sequence of Poisson functionals to a Poisson mixture. Theorem 3.5 is
the quantitative counterpart of Theorem 3.1 and provides bounds on the distance d3 between
the distribution of a Poisson functional and that of a Gaussian mixture. We are not able to
obtain a quantitative estimates for the convergence to a Poisson mixture. Theorem 3.8 is an
improvement of our bound from the d3 distance to the d1 distance, when (Fn) is a sequence of
univariate random variables.
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3.1 Main qualitative results

Thanks to our integration by parts formulae, we derive sufficient conditions to ensure that
a sequence of Kabanov integrals converges to a Gaussian mixture or a Poisson mixture. In
Section 3.2, we derive quantitative bounds for the convergence to a Gaussian mixture only.
However, in the case of Gaussian mixture, obtaining a quantitative estimates requires to con-
trol additional terms. This is why we treat first the simple qualitative bound both for Gaussian
and Poisson mixtures.

3.1.1 Convergence to a Gaussian mixture

Recall that we study asymptotic for (possibly multivariate) random variables of the form Fn =
δun. In this setting, let us state the multivariate equivalent of (0.2):

(R3) E
ˆ
|un(z)|`2 |D

+
z Fn|

2
`2ν(dz) −−−→

n→∞
0.

We also consider

(R4) E
ˆ
|D+

z Fn|
4
`2ν(dz) −−−→

n→∞
0.

Remark that provided (un) is bounded in L 2 (P⊗ ν), by the Cauchy-Schwarz inequality (R4)
implies (R3). Several works about normal approximation of Poisson functionals (for instance,
[32, 18, 17, 39]) also consider conditions such as (R3) and (R4). The random variable un =
−DL−1Fn is always a solution of the equation δun = Fn (other choices are possible). Following
[32, Theorem 3.1] or [8, Theorem 4.1], let us consider

(3.1) − ν(DL−1FnDFn) = [un, DFn]ν
L 1(P)−−−−→
n→∞

σ2;

or

(3.2) − Γ(L−1Fn, Fn) = [un, DFn]Γ
L 1(P)−−−−→
n→∞

σ2.

Then, we have that (R3) with either (3.1) or (3.2) imply that Fn
law−−−→
n→∞

N(0, σ2). In our setting
of random variance it is thus very natural to consider one of the following condition:

(Sν) [un, DFn]ν
L 1(P)−−−−→
n→∞

SST ;

or

(SΓ) [un, DFn]Γ
L 1(P)−−−−→
n→∞

SST ;

for some S ∈ L 2(P). Since we deal with stable convergence we need a condition that provides
some form of asymptotic independence. It has one of the following form

(Wν) [un, h]ν
L 1(P)−−−−→
n→∞

0, ∀h ∈ L 2(ν);

or

(WΓ) [un, DG]Γ
L 1(P)−−−−→
n→∞

0, ∀G ∈ G .

Our first statement regarding stable limit theorems on the Poisson space is the following qual-
itative generalization of the results of [32, 8] to consider Gaussian mixtures in the limit.
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Theorem 3.1. Let {Fn = (F
(1)
n , . . . , F

(d)
n ); n ∈ N} ⊂ DomD. Assume that, for all n ∈ N, there

exists un ∈ Dom δ such that Fn = δun and that (R3) hold. Let S = (S1, . . . , Sd) ∈ L 2(P). Assume

that either (Wν) and (Sν) holds; or (WΓ) and (SΓ) holds. Then Fn
stably−−−→
n→∞

N(0, S2).

Remark 4. The condition (SΓ) is a priori more involved than (Sν): indeed integrating with re-
spect to η adds some randomness to the object. However, in Section 4.1 we need the result
involving [·, ·]Γ in order to obtain a stable version of the fourth moment theorem of [8]. On
the other hand for the practical applications in Section 5, conditions of type (Sν) and (Wν) are
easier to manipulate.

3.1.2 Convergence to a Poisson mixture

Here we only consider univariate random variables. Convergence in law of Poisson function-
als to a Poisson distribution represents another archetypal limit theorem. In the setting of the
Malliavin-Stein method, [33] proves that the two conditions:

(3.3) − ν(D+L−1FnD
+Fn) −−−→

n→∞
m,

and

(3.4) E
ˆ
|D+

z L
−1FnD

+
z Fn(D+

z Fn − 1)|ν(dz) −−−→
n→∞

0,

imply that Fn
law−−−→
n→∞

Po(m)2. It is thus very natural to replace (R3) by the following asymptotic
conditions for Fn = δun (here we only considered scalar-valued random variables):

(P3) E
ˆ
|un(z)D+

z Fn(D+
z Fn − 1)|ν(dz) −−−→

n→∞
0.

We also consider the Poisson version of (R4):

(P4) E
ˆ
|D+

z Fn|
2|D+

z Fn − 1|2ν(dz) −−−→
n→∞

0.

Again, provided (un) is bounded in L 2(P), we see that (P4) implies (P3). With this notation,
we have the following qualitative result for convergence to a Poisson mixture.

Theorem 3.2. Let (Fn) ⊂ DomD. Let M ∈ L 1(P) with M ≥ 0. Assume that, for all n ∈ N, there
exists un ∈ Dom δ such that Fn = δun and that (P3) and (Wν) hold, and moreover assume that

(Mν) [un, DFn]ν = 〈un, DFn〉L 2(ν)
L 1(P)−−−−→
n→∞

M.

Then Fn
stably−−−→
n→∞

Po(M).

Remark 5. (Mν) is formally equivalent to (Sν) (we can always write S2 = M ). However, it
is important to note that our theorem cannot be true if we replace the scalar product by the
energy bracket in (Mν), that is that we work with the condition:

(MΓ) [un, DFn]Γ
L 1(P)−−−−→
n→∞

M.

Indeed take F = η(A) − ν(A), with A ∈ Z, ν(A) < ∞. We can write F = δ1A, and DF = 1A,
hence (P3) is satisfies, since we have

(3.5)
ˆ
A
|1A − 1|dν = 0.

2[33] works with non-centered random variables but the result is equivalent.
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On the other hand, we have that

(3.6) [1A, 1A]Γ =
1

2
(ν(A) + η(A)) = M.

Let F ∼ Po(M), then

E eiλF = E exp(M(eiλ−iλ− 1))

= exp

(
1

2
ν(A)(eiλ−iλ− 1)

)
exp

(
ν(A)

2

(
exp(eiλ−iλ− 1)− 1

))
.

(3.7)

Hence, we see that the law of F is not the one of η(A) − ν(A). Remark that (SΓ) and (MΓ) are
also formally equivalent. At a more structural level, [6] proves that if a sequence of Poisson
stochastic integrals satisfies a deterministic reinforcement of (SΓ), that is:

(3.8) [un, DFn]Γ = −Γ(L−1Fn, Fn)
L 2(P)−−−−→
n→∞

σ2,

where un = −DL−1Fn, then, without further assumptions, the sequence converges in law to a
Gaussian.

3.1.3 Proofs

Proof of Theorem 3.1. We first prove the theorem under (WΓ) and (SΓ). By (SΓ), we have that

(3.9) EFnF Tn = E[un, DFn]Γ −−−→n→∞
ESST <∞.

So (Fn) is bounded in L 2(P). Let G ∈ G . For all n ∈ N, we let ξn = (Fn, G). Since (Fn) is
bounded in L 2(P), (ξn) is tight. We can extract a subsequence (still denoted (ξn)) such that
(ξn) converges in law to (F∞, G). Let ψn(λ) = EG ei〈λ,Fn〉`2 , and ψ∞(λ) = EG ei〈λ,F∞〉`2 . By

convergence in law, we have that ψn
C 0(0,1)−−−−→
n→∞

ψ∞. Since (ξn) is bounded in L 2(P) it is also
uniformly integrable, and we find that

(3.10) ∇ψn(λ) = iEFnG ei〈λ,Fn〉`2 −−−→
n→∞

iEF∞G ei〈λ,F∞〉`2 = ∇ψ∞(λ).

By Lemma 2.8, we also have that

∇ψn(λ) = iEG
[
un, D

(
eiλFn

)]
Γ

+ iE ei〈λ,Fn〉`2 [un, DG]Γ

= −λEG ei〈λ,Fn〉`2 [un, DFn]Γ + iE ei〈λ,Fn〉`2 [un, DG]Γ +Rn,
(3.11)

where

(3.12) |Rn| ≤ λ2E
ˆ
|un(z)|`2 |D

+
z Fn|

2
`2ν(dz).

We thus see that (SΓ), (R3) and (WΓ) imply that

(3.13) ∇ψn(λ) −−−→
n→∞

−λESST ei〈λ,F∞〉 .

All in all, we have proved that

(3.14)
d

dλ
ψ∞(λ) = iEGF∞ ei〈λ,F∞〉`2 = −λEGSST ei〈λ,F∞〉`2 .
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Thus, we obtain the following differential equation for the conditional characteristic function:

(3.15)
d

dλ
E[eiλF∞ |η] = −λSSTE[eiλF∞ |η].

The only solution of this equation with ψ(0) = 1 is the one given in (1.14) and this concludes
the proof in view of (iii) in Proposition 1.1. For the proof under (Wν) and (Sν), we only briefly
explain what to modify; the details can be found below, in the proof of Theorem 3.2, where we
use this strategy to obtain convergence to a Poisson mixture. To work with (Wν) and (Sν), we
rather introduce ψn(λ) = E ei〈λ,Fn+I1(h)〉`2 for some h ∈ L 2(ν). Instead of Lemma 2.8, we have
to use Lemma 2.9. The rest of the proof is similar.

Proof of Theorem 3.2. Let h ∈ L 2(ν). Let λ ∈ R, and consider ψn(λ) = E eiλ(Fn+I1(h)), and
ψ∞(λ) = E eiλ(F∞+I1(h)). Since EF 2

n = E〈un, DFn〉, using (Mν), we see that Fn + I1(h) is tight
and uniformly integrable. Up to extraction, we can find some F∞, such that Fn + I1(h) −−−→

n→∞
F∞ + I1(h), and that

(3.16) ψ′n(λ) = iE(Fn + I1(h)) eiλ(Fn+I1(h)) −−−→
n→∞

iE(F∞ + I1(h)) eiλ(F∞+I1(h)) = ψ′∞(λ).

On the other hand, by Lemma 2.5, we have that

(3.17) ψ′n(λ) = iE〈un, DFn + h〉 eiλ(Fn+I1(h))(eiλ−1) + iEI1(h) eiλ(Fn+I1(h)) +Rn,

where

(3.18) |Rn| ≤ λ2

ˆ
|un(z)(DzFn − 1)DzFn|ν(dz).

Thus, under (Mν), (P3) and (WΓ):

(3.19) lim
n→∞

ψ′n(λ) = iE(eiλ−1)M eiλF∞ +iEI1(h) eiλ(F∞+I1(h)) .

Equating, (3.16) and (3.19) we obtain that

(3.20) E eiλI1(h) F∞ eiλF∞ = E eiλI1(h)M(eiλ−1) eiλF∞ , ∀λ ∈ R, ∀h ∈ L 2(ν).

Arguing, by linearity of I1, as in the proof of (iv) of Proposition 1.1, we find that:

(3.21) EI1(h)F∞ eiλF∞ = EI1(h)M(eiλ−1) eiλF∞ , ∀λ ∈ R, ∀h ∈ L 2(ν).

That is to say, we have proved the following differential equation for the conditional charac-
teristic function:

(3.22)
d

dλ
E[eiλF∞ |η] = i(eiλ−1)ME[eiλF∞ |η].

The unique solution of this equation satisfying ψ(0) = 1 is the function given in (1.15). This
concludes the proof by (iv) in Proposition 1.1.
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3.2 Main quantitative results for Gaussian mixtures

3.2.1 General results in any dimension

As [26] on the Gaussian space, we use the integration by parts formulae to obtain quantita-
tive Malliavin-Stein bounds between the law of a Poisson functional and that of a Gaussian
mixture. Our results crucially rely on the two following bounds, proved at the end of the sec-
tion. We obtain these bounds via the so-called Talagrand’s smart path interpolation method. As
for Theorem 3.1 we can either work with [·, ·]ν or with [·, ·]Γ yielding to different bounds. Re-
sults involving [·, ·]ν are a priori easier to handle in applications. However, we state the two
bounds for completeness. For short, for φ ∈ C k(Rd), let us write Φk = |∇kφ|`2,∞, and S ∈ C ov

whenever S ∈ DomD with SST ∈ DomD.

Proposition 3.3. Let F = (F1, . . . , Fd) ∈ DomD, S ∈ C ov, and N be a standard d-dimensional
Gaussian vector independent of η. Assume that there exists u ∈ Dom δ such that F = δu. Then, for all
φ ∈ C 3

b (Rd) and all I = I1(h), h ∈ L 2(ν):

|Eφ(F + I)− Eφ(SN + I)| ≤1

4
Φ2E

∣∣∣ ˜[u,DF ]ν − SS
T
∣∣∣
`2

+
1

3
Φ3E

∣∣[u, (DS)ST
]
ν

∣∣
`2

+
1

6
Φ3E
ˆ
|h(z) + u(z)|`2

(
|D+

z F |
2
`2 + |DS|2`2

)
ν(dz).

(3.23)

Proposition 3.4. Let F = (F1, . . . , Fd) ∈ DomD, S ∈ C ov, and N be a standard d-dimensional
Gaussian vector independent of η. Assume that there exists u ∈ Dom δ such that F = δu. Then, for all
φ ∈ C 3

b (Rd) and all G ∈ G :

|Eφ(F )G− Eφ(SN)G| ≤1

4
Φ2|G|∞E

∣∣∣ ˜[u,DF ]Γ − SS
T
∣∣∣
`2

+
1

3
Φ3|G|∞E|[u, (DS)ST ]Γ|`2

+
1

6
Φ3|G|∞E

ˆ
|u(z)|`2

(
|D+

z F |
2
`2 + |DS|2`2

)
ν(dz)

+
1

2
Φ1E|[u,DG]Γ|`2 ,

(3.24)

where for short, we write |G|∞ = |G|L∞(P).

We are now in position to state our bound in the d3 distance of a Poisson functional to a
Gaussian mixture.

Theorem 3.5. . Let β ∈ {ν,Γ}. Let F ∈ DomD, and S ∈ C ov. Then,

d3(F,N(0, S2)) ≤ 1

4
E
∣∣∣ ˜[u,DF ]β − SS

T
∣∣∣
`2

+
1

3
E
∣∣∣[u, (DS)ST ]β

∣∣∣
`2

+
1

6
E
ˆ
|u(z)|(|DzF |2`2 + |DS|2`2)ν(dz).

(3.25)

Proof. We simply use either Proposition 3.3 with h = 0 and φ ∈ F3; or Proposition 3.4 with
G = 1 and φ ∈ F3.

In Theorem 3.1, (Sν) enforces that the asymptotic covariance S is measurable with respect to

η. Thanks to Proposition 3.3, when S2
n = ˜[un, DFn]ν is non-negative, we can deduce sufficient

conditions for the stable convergence of a Poisson functional that involves stable convergence
of Sn to some S (not necessarily measurable with respect to η). This weaker form of conver-
gence can allow, for instance, S to be independent of η.
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Theorem 3.6. Let (Fn)n∈N ⊂ DomD, and S ∈ L 2(Ω) (not necessarily measurable with respect to η).
Let (un)n∈N ⊂ Dom δ such that Fn = δun for all n ∈ N, and (Wν) and (R3) holds. Assume, moreover,

that for n sufficiently big ˜[un, DFn]ν = Cn + εn, where Cn = SnS
T
n is a symmetric non-negative

random matrix, and:

Cn
stably−−−→
n→∞

SST ;(C.st)

εn
L 1(P)−−−−→
n→∞

0;(ε)

[un, (DSn)Sn]ν
L 1(P)−−−−→
n→∞

0;(RS) ˆ
|h(z)|`2 |D

+
z Fn|

2
`2ν(dz)

L 1(P)−−−−→
n→∞

0;(Rh)
ˆ
|un(z)|`2 |D

+
z Sn|

2
`2ν(dz)

L 1(P)−−−−→
n→∞

0;(S3)
ˆ
|h(z)|`2 |D

+
z Sn|

2
`2ν(dz)

L 1(P)−−−−→
n→∞

0.(Sh)

Then Fn
stably−−−→
n→∞

N(0, S2).

Remark 6. We can also consider

(S4)
ˆ
|D+

z Sn|
4
`2ν(dz)

L 1(P)−−−−→
n→∞

0.

Provided (un) is bounded in L 2(P ⊗ ν) then (R4) implies (R3) and (Rh), and (S4) implies (S3)
and (Sh).

Remark 7. We formulated our result with [·, ·]ν ; we could do the same for [·, ·]Γ. Details are left
to the reader.

Proof. Let h ∈ L 2(ν), and N ∼ N(0, idRd). For n ∈ N, we write:

Eφ(Fn + I1(h))− Eφ(SN + I1(h)) = Eφ(Fn + I1(h))− Eφ(SnN + I1(h))

+ Eφ(SnN + I1(h))− Eφ(SN + I1(h)).
(3.26)

From Proposition 3.3, we have that under (Wν), (R3), (ε), (RS), (Rh), (S3) and (Sh):

(3.27) Eφ(Fn + I1(h))− Eφ(SnN + I1(h)) −−−→
n→∞

0.

On the other hand, under (C.st), SnN
stably−−−→
n→∞

SN , consequently

(3.28) Eφ(SnN + I1(h))− Eφ(SN + I1(h)) −−−→
n→∞

0.

We conclude using Proposition 1.1.

3.2.2 Bounds in the Monge-Kantorovich distance for the one-dimensional case

The results of the previous section are stated in the rather abstract distance d3. When F is
univariate, one can use the following regularization lemma in order to turn the estimate of
Proposition 3.4 into a quantitative bound for the Monge-Kantorovich distance d1. In this sec-
tion, all the random variables are implicitly univariate.
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Lemma 3.7. Let F and F ′ ∈ L 1(P) such that there exists a, b, and c ≥ 0 such that for all φ ∈ C 3
b (R):

(3.29) Eφ(F )− Eφ(F ′) ≤ a|φ′|∞ + b|φ′′|∞ + c|φ′′′|∞.

Then,

(3.30) d1(F, F ′) ≤ a+ max

((
2

1
3 + 2−

2
3

)
∆

2
3
1 ∆

1
3
2 ,∆1∆2

)
where

∆1 = 2

(
2

π

) 1
2

+ E|F |+ E|G|;(3.31)

∆2 =

(
2

π

) 1
2

b+ 2
1
2 c.(3.32)

Proof. This result is well-known at different levels of generality. We follow here the proof
of [26, Theorem 3.4] (where the reader is referred to for details). For t ∈ (0, 1), we define
φt(x) =

´
φ(t

1
2 y + (1− t)

1
2x)γ(dy), with γ = N(0, 1). Then, we have that

|φ′t|∞ ≤ |φ
′|∞;(3.33)

|φ′′t |∞ ≤
(

2

π

) 1
2 |φ′|∞

t
;(3.34)

|φ′′′t |∞ ≤ 2
1
2
|φ′|∞
t

.(3.35)

On the other hand, we have that

(3.36) Eφ(F )− Eφt(F ) ≤ t
1
2 |φ′|∞

((
2

π

) 1
2

+ E|F |

)
.

Combining all the estimates and optimizing in t yields the desired result.

We can now state our main quantitative result for univariate random variables.

Theorem 3.8. Let F ∈ DomD such that F = δu for some u ∈ Dom δ, and let S ∈ C ov. Consider

∆1 =

(
2

π

) 1
2

(2 + E|S|) + E|F |;(3.37)

∆2 =
1

4

(
2

π

) 1
2

E|ν(uDF )− S2|+ 2
1
2

(
1

3
E|Sν(uDS)|+ 1

6
Eν
(
|u|
(
|DF |2 + |DS|2

)))
.(3.38)

Then, we have that

(3.39) d1(F,N(0, S2)) ≤ max

((
2

1
3 + 2−

2
3

)
∆

2
3
1 ∆

1
3
2 ,∆1∆2

)
.

Proof. We just combine Proposition 3.3 (with h = 0) and Lemma 3.7.

This theorem allows us to prove a quantitative version of Theorem 3.6 in the univariate
case.
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Theorem 3.9. Let the assumptions and the notations of Theorem 3.6 prevail. Consider

∆1,n =

(
2

π

) 1
2

(2 + E|Sn|) + E|Fn|;(3.40)

∆2,n =
1

4

(
2

π

) 1
2

E|εn|+ 2
1
2

(
1

3
E|Snν(unDSn)|+ 1

6
Eν
(
|un|

(
|DFn|2 + |DSn|2

)))
.(3.41)

Then,

(3.42) d1(Fn,N(0, S2)) ≤ max

((
2

1
3 + 2−

2
3

)
∆

2
3
1,n∆

1
3
2,n,∆1,n∆2,n

)
+

(
2

π

) 1
2

d1(Sn, S).

Proof. By the triangle inequality, we write

(3.43) d1(Fn,N(0, S2)) ≤ d1(Fn,N(0, S2
n)) + d1(N(0, S2

n),N(0, S2)).

By Theorem 3.8, we have that

(3.44) d1(Fn,N(0, S2
n)) ≤ max

((
2

1
3 + 2−

2
3

)
∆

2
3
1,n∆

1
3
2,n,∆1,n∆2,n

)
.

Thus, to conclude the proof we need to prove that

(3.45) an := d1(N(0, S2
n),N(0, S2)) ≤

(
2

π

) 1
2

d1(Sn, S).

Let An ∼ Sn and A ∼ S. Let N ∼ N(0, 1) independent of A and An. Then (AnN,AN)
is a coupling of (N(0, S2

n),N(0, S2)). Hence, by the formulation of the Monge-Kantorovich
distance as an infimum over couplings, we find that:

(3.46) an ≤ E|(A−An)N | =
(

2

π

) 1
2

E|A−An|.

Minimizing over all couplings (A,An) proves the claim. This completes the proof.

Remark 8. From the proof, we see that working with the Monge-Kantorovich distance is crucial.
For instance, we do not know if d3(N(0, S2),N(0, T 2)) ≤ cd3(S, T ), for some c > 0.

3.2.3 Proofs of the technical bounds

We start by proving in details the bounds involving [·, ·]Γ that is more involved, then we explain
how to adapt the proof for [·, ·]ν .

Proof of Proposition 3.4. By the assumptions on u and F , we have that
´
|u(z)|`2 |D+

z F |`2ν(dz) <

∞, and we can assume that
´
|u(z)|`2 |D+

z F |
2
`2ν(dz) <∞ (otherwise there is nothing to prove).

Let (st)t∈[0,1] be a smooth [0, 1]-valued path such that s0 = 0 and s1 = 1, and define

(3.47) Ft = stF + s1−tSN.

Let g(t) = Eφ(Ft)G. Then,

(3.48) Eφ(F )G− Eφ(SN)G =

ˆ 1

0
ġtdt.
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An explicit computation yields

(3.49) ġt = E[〈∇φ(Ft), (ṡtF − ṡ1−tSN)G〉`2 ].

Since DomD is a linear space, in view of the assumptions, Ft ∈ DomD. Since∇φ is Lipschitz,
∇φ(Ft) ∈ DomD. Using the integration by part formula Lemma 2.8, we find that

E〈∇φ(Ft)G,F 〉`2 =
1

2
EG

〈
∇2φ(Ft), st[u,DF ]Γ + s1−t[u, (DS)N ]Γ

〉
`2

+
1

2
E 〈∇φ(Ft), [u,DG]Γ〉`2

+
1

8
EG
ˆ 〈

u(z)⊗ (D+
z Ft)

⊗2
, R̂(Ft, z,∇φ)

〉
`2
ν(dz)

− 1

8
EG
ˆ 〈

(1−D−z )u(z)⊗ (D−z Ft)
⊗2
, Ř(Ft, z,∇φ)

〉
`2
η(dz).

(3.50)

Recall that, by integration by parts, ENψ(N) = E∇ψ(N), for all smooth ψ. Let

(3.51) ψ(x) = G∂ijφ(stF + s1−tSx).

Then,

(3.52) ∂kψ(x) = s1−tG
∑
l

Slk∂ijl(stF + s1−tSx).

As a consequence, by the previous Gaussian integration by parts:

(3.53) EG〈∇2φ(Ft), [u, (DS)N ]Γ〉`2 = s1−tEG〈∇3φ(Ft), [u, (DS)ST ]Γ〉`2 .

Furthermore, by Gaussian integration by parts, we obtain that

(3.54) E〈∇φ(Ft), SN〉`2 = s1−tE〈∇2φ(Ft), SS
T 〉`2 .

Combining (3.49), (3.50), (3.53) and (3.54), we find that

ġt =
1

2
EG

〈
∇2φ(Ft),

(
stṡt ˜[u,DF ]Γ − s1−tṡ1−tSS

T
)〉

`2

+
1

2
ṡts

2
1−tEG〈∇3φ(Ft), [u(DS)ST ]Γ〉`2

+
1

2
ṡtE 〈∇φ(Ft), [u,DG]Γ〉`2

+ ṡt
1

8
EG
ˆ 〈

u(z)⊗ (D+
z Ft)

⊗2
, R̂(Ft, z,∇φ)

〉
`2
ν(dz)

− ṡt
1

8
EG
ˆ 〈

(1−D−z )u(z)⊗ (D−z Ft)
⊗2
, Ř(Ft, z,∇φ)

〉
`2
η(dz).

(3.55)

Observe that |R̂+ Ř|`2 ≤ Φ3, and that, if we take the absolute value of the integrands in the
two last lines then the expectations become equal (by the Mecke formula (2.1)). Hence, by the
Cauchy-Schwarz inequality, we find that

|ġt| ≤
1

2
|G|∞Φ2stṡt

〈
∇2φ(Ft),

(
stṡt ˜[u,DF ]Γ − s1−tṡ1−tSS

T
)〉

`2

+
1

2
Φ3ṡts

2
1−t|G|∞E|[u, (DS)ST ]Γ|`2

+
1

2
Φ1ṡtE|[u,DG]Γ|`2

+
1

4
ṡt|G|∞Φ3E

ˆ
|u(z)|`2 |D

+
z Ft|

2
`2ν(dz).

(3.56)
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By expending the square in |D+
z Ft|

2
`2 , the cross term vanishes (by the fact that N is centered

and independent of η). By the fact that N is a normal vector independent of η, we also find
that E[|(D+

z S)N |2`2 |η] = |(D+
z S)|2`2 . Following these observations, the results is obtained by

selecting st = t
1
2 (other choices of s could possibly yield better constants). The reader can

immediately verify that with this choice for s, we have that

ˆ 1

0
ṡtdt = 1;(3.57)

ˆ 1

0
stṡtdt =

ˆ 1

0
s1−tṡ1−t =

1

2
;(3.58)

ˆ 1

0
ṡts

2
1−t =

ˆ 1

0
s2
t ṡt =

2

3
.(3.59)

This concludes the proof.

Proof of Proposition 3.3. The strategy of proof is the same and we simply highlight the differ-
ences with the previous proof. We have to consider instead g(t) = Eφ(Ft + I1(h)) for some
h ∈ L 2(ν). Then, using Lemma 2.9, we find that

E〈∇φ(Ft + I1(h)), F 〉`2 =
1

2
EG

〈
∇2φ(Ft), st[u,DF ]ν + s1−t[u, (DS)N ]ν

〉
`2

+
1

4
EG
ˆ 〈

(u(z) + h(z))⊗ (D+
z Ft)

⊗2
, R̂(Ft, z,∇φ)

〉
`2
ν(dz)

(3.60)

The rest of the proof is identical to the previous one.

3.3 Comparison with existing results

First, on the Gaussian space, the authors of [25, 13, 26] work with iterated Skorokhod integrals
of any order q ∈ N. That is, given a Gaussian functional F and given u such that F = δqu, they
give probabilistic conditions in terms of u and F for stable convergence of F to a Gaussian
mixture. Theorems 3.1 and 3.5 are the Poisson version of their results for the case q = 1. Due
to the lack of diffusiveness on the Poisson space, it does not seem possible to reach a result
involving iterated Kabanov integrals, via our method of proof, that is, via integration by parts.

Second, (SΓ) enforces that the convergence of CΓ = [u,DF ] (or its symmetrized version)
determines the asymptotic covariance. The comparison of CΓ and SST is similar in the Gaus-
sian case [25]: the quantity 〈DF, u〉 (whereD is the Malliavin derivative on the Gaussian space)
controls the asymptotic variance of the functional F = δu. In this respect, let us refer to [27,
Theorem 5.3.1] for deterministic variance (for the choice u = −DL−1F ), to [25, Theorem 3.1],
to [13, Theorem 3.2] and to [26, Theorem 5.1] for random asymptotic variances. However, we
see from (Sν) that another relevant quantity to consider is Cν = [DFn, un]ν . The matrix Cν
would also correspond in the Gaussian setting to 〈u,DF 〉 since Γ(F ) and |DF |2 coincide on
the Gaussian space. As already observed by [8], working with CΓ rather than Cν is critical
in obtaining a fourth moment theorem. We also work with CΓ to obtain our stable version of
their fourth moment theorem. When working with deterministic covariances one can choose
Cν and still obtain sufficient conditions for convergence of Poisson functionals to a Gaussian
(see, for instance [18, 17, 39]).

Our condition (Wν) is the exact counterpart of the condition 〈un, h〉 → 0 (see [25, Remark
3.2]) in the Gaussian setting, enforcing some asymptotic independence. When working with
the energy bracket, we have (WΓ) that we can also regard as an asymptotic independence
condition. (RS) plays the same role, in our setting, as 〈u,DS2〉 → 0 in [26]. On the Gaussian
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space, by the chain rule, DS2 = 2SDS. In our case we cannot have this simplification, which
implies that we have to formulate our condition in terms of SDS. This adds an extra difficulty
since, in practice, the convergence of Cν or CΓ only provides information on SST but not
on S. As the condition with DS2 is already present in the Gaussian setting [26], we do not
expect that the condition (RS) could disappear in general. The condition (R3) is specific to the
Poisson setting. Controlling quantities of the form

´
|D+

z L
−1F ||D+

z F |
2
ν(dz) is standard in the

theory of limit theorems for Poisson functionals and already appeared in the first result on the
Malliavin-Stein method on the Poisson space [32, Theorem 3.1], as well as in the proof of the
fourth moment theorem on the Poisson space [8, Equation 4.2]. These correspond to the choice
u = −DL−1F in (R3). In our case we have an extra term of the form

´
|u(z)||D+

z S|
2
ν(dz). This

term is also the result of the lack of a chain rule and we do not expect we could remove it.
Furthermore, the authors of [25, 13, 26] only consider results involving the convergence

in L 1(P) of the Stein matrix Cν , thus imposing measurability with respect to the underlying
Gaussian process on the limit covariance. In our case, when the limiting covariance is non-
negative, we can replace the condition of convergence in L 1(P) by the weaker form of stable
convergence to obtain Theorem 3.6. This modification relies on our quantitative bounds, which
is why, in this case we need to check (RS) while Theorem 3.1 does not need to enforce this
condition. Being quantitative, the results of [26] could also be modified in order to obtain a
result similar to Theorem 3.6 with the same proof as the one we gave in the Poisson setting.

Lastly, in the multidimensional case, our bound in Theorem 3.5 holds for every symmetric
covariance random matrix C = SST , while the results of [26] are limited to the case of a
diagonal matrix. [13] also deals with generic matrices but relies on the so-called method of the
characteristic function that is not known to provide quantitative bounds.

On the other hand, the convergence to Poisson mixtures was not considered for Gaussian
functionals (recall that by [27, Theorem 2.10.1] random variables in a fixed Wiener chaos are ab-
solutely continuous with respect to the Lebesgue measure). Several authors have applied the
Malliavin-Stein approach on the Poisson space to consider convergence to a Poisson random
variable with deterministic mean. The work of Peccati [33] is the first result in that direction.
Selecting un = −DL−1Fn and M = EM = c in (Mν) exactly yields the condition of [33, Propo-
sition 3.3]: 〈−DL−1Fn, DFn〉L 2(ν) → c (remark that [33] works with non-centered random
variables). For Poisson approximation, the above discussion on the difference between SD and
SΓ does not apply as we only obtain a condition involving SD (see Remark 5). Our condition
(P3) is similar to the one in [33].

Contrary to [33], we cannot obtain quantitative bounds for Poisson approximation. In fact,
we do not know how to adapt the methods in Section 3.2 to reach estimates for the distance of a
Poisson functional to a Poisson mixture. Indeed, our approach towards quantitative estimates
relies on the computability of the Malliavin derivative of a Gaussian mixture, since they always
can be written SN with N independent of η, and in this case D(SN) = (DS)N . However, if
N(M) is a Poisson mixture directed by M , we have:

(3.61) DzN(M) = N(1[0,M+DzM ])−N(1[0,M ])−DzM.

The computations with this quantity seem not tractable, and we need new techniques to tackle
this problem; we reserve exploring this direction of research for future works.

4 Convergence of stochastic integrals

Outline

We apply the results of Section 3 to stochastic integrals. In particular, we deduce Proposi-
tion 4.1, that is a stable version of the fourth moment theorem of Döbler & Peccati [8], and
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Döbler, Vidotto & Zheng [9]; and Theorems 4.2 and 4.3 that give sufficient conditions for a
sequence of Itô-Poisson integrals of order 2 to converge to a Gaussian or Poisson mixture.

4.1 A stable fourth-moment theorem for normal approximation

In a recent reference, [9] proves a multidimensional fourth-moment theorem on the Poisson
space, thus refining and generalizing the previous findings of [8]. It is worth noting that taking
G = 0 and S deterministic in (3.24) yields the same bound as [8, Equation 4.2]. In fact, as a first
application of Theorem 3.6, we deduce a stable fourth-moment theorem on the Poisson space.

Proposition 4.1 (Stable fourth-moment theorem). Let q1, . . . , qd ∈ N. For n ≥ 1, let (f in) ⊂
L 2(µqi) and let Fn = (Iq1(f1

n), . . . , Iqd(fdn)). Assume that (Fn) is bounded in L 2(P). Then, the
following are equivalent:

(i) Fn converges stably to a Gaussian vector.

(ii) For all i ∈ [d], F in converges in law to a Gaussian random variable.

(iii) For all i ∈ [d], E
(
F in
)4 − 3

(
E
(
F in
)2)2

−−−→
n→∞

0.

(iv) Var Γ(L−1Fn, Fn) −−−→
n→∞

0.

Remark 9. If either of the conditions of the theorem is satisfied then, as n→∞, Γ(L−1Fn, Fn)→
σσT in L 2(P), where σ is some deterministic matrix. The covariance of the limit Gaussian
vector is σσT .

Remark 10. Proposition 4.1 is very close to [5, Theorem 2.22]. However, one condition of their
theorem requires that the norms of each of the individual star-contractions vanish. This is
strictly stronger than a vanishing fourth-moment as, by the product formula, this condition
translates in vanishing properly chosen linear combinations of the star-contractions (see [6]).

Proof. It is clear that (i) implies (ii). That (ii) implies (and in fact is equivalent to) (iii) is the
main finding of [8]. That (iii) implies (iv) is a consequence of [9, Equation 4.3, Lemma 4.1]. Let
us prove (iv) implies (i). Under (iv), −Γ(L−1Fn, Fn) → σσT , in L 2(P), as n → ∞. We apply
Theorem 3.1 with S = σ and

(4.1) un(z) = −
(
Iq1−1(f1

n(z, ·)), . . . , Iqd−1(fdn(z, ·))
)

= −DzL
−1Fn.

We have that δun = −δDL−1Fn = Fn, and that [un, Fn]Γ = −Γ(L−1Fn, Fn). Thus, (SΓ) is
satisfied. From [20, Lemma 3.4], we have that

(4.2) E
ˆ
|DzL

−1Fn|
2
`2ν(dz) ≤ E

ˆ
|DzFn|2`2ν(dz).

Hence, applying the Cauchy-Schwarz inequality, we find that

(4.3) E
ˆ
|un(z)|`2 |DzFn|2`2ν(dz) ≤

√
E
ˆ
|DzFn|2`2ν(dz)E

ˆ
|DzFn|4`2ν(dz).

By Hölder’s inequality, we find that (recall DG ∈ L∞(P⊗ ν) by Lemma 2.1):

(4.4) E|[un, DG]| ≤ |DG|∞
(
E
ˆ
|DFn|4`2

)1/4

.
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The quantity

(4.5) E
ˆ
|DzFn|2`2ν(dz) =

∑
i∈[d]

qi!ν
qi(|f in|

2
),

is bounded by assumption. Hence it is sufficient to show that under (iv),

(4.6) E
ˆ
|DzFn|4ν(dz) −−−→

n→∞
0.

This follows from [8, Lemma 3.2] and [9, Remark 5.2]. The proof is complete.

Remark 11. Let Σ = (Σij) be a random matrix sufficiently integrable. If we assume that

− Γ(L−1Fn, Fn)
L 1(P)−−−−→
n→∞

ΣΣT ;(4.7)

E(F in)
4 −−−→
n→∞

3
(
E
(
ΣΣT

)
ii

)2
, ∀i = 1, . . . , d.(4.8)

Then, from the previous computations, Σ = σ is deterministic. This shows that fourth-moment
theorems cannot capture phenomena with asymptotic random variances.

4.2 Convergence of order 2 Poisson-Wiener integrals to a mixture

We derive an analytic statement for the convergence of a sequence of random variables of the
form F = I2(g) for some g ∈ L 2

σ (ν2). In this case, with u0(z) = −DzL
−1F = I1(g(z, ·)), we

have F = δu0 However, for every ĝ ∈ L 2(ν2) such that the symmetrization of ĝ is g, we also
have that u(z) = I1(ĝ(z, ·)) is a solution to δu = F . Having made this observation, we can thus
specify our Theorems 3.1 and 3.2 to the particular case where F is an Poisson-Wiener stochastic
integral of order 2.

Theorem 4.2. Consider the sequence of random variables {Fn = I2(gn);n ∈ N} for some (gn) ⊂
L 2
σ (ν2). Suppose that there exists (ĝn) ⊂ L 2(ν2) such that, for all n ∈ N the symmetrization of ĝn is

gn. Assume, moreover, that:  gn ?
1
1 ĝn

L 2(ν2)−−−−→
n→∞

g2,∞,

ν2(gnĝn) −−−→
n→∞

g0,∞;
(KS)

gn
L 4(ν2)−−−−→
n→∞

0;(KR4)

gn ?
1
2 gn

L 2(ν)−−−−→
n→∞

0;(KR?)

ĝn ?
1
1 h

L 2(ν)−−−−→
n→∞

0.(KW)

Assume that S2 = I2(g2,∞) + g0,∞ ≥ 0. Then Fn
stably−−−→
n→∞

N(0, S2).

Remark 12. Following Theorem 3.8, it is of course possible to write conditions for the conver-
gence in the Monge-Kantorovich distance d1 in terms of the norms of the kernels. However,
this task seems tedious and not particularly useful in this abstract setting.

Theorem 4.3. Consider the sequence of random variables {Fn = I2(gn);n ∈ N} for some (gn) ⊂
L 2
σ (ν2). Suppose that there exists (ĝn) ⊂ L 2(ν2) such that, for all n ∈ N the symmetrization of ĝn is

gn. Assume that (KS), (KW) and (KR?) hold and that

(KP4) ν2

(
g2
n

(
gn −

1

2

)2
)
−−−→
n→∞

0.

Assume that M = I2(g2,∞) + g0,∞ ≥ 0. Then Fn
stably−−−→
n→∞

Po(M).
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Proof of Theorems 4.2 and 4.3. We prove the two theorems at once. We simply apply Theo-
rems 3.1 and 3.2 to our data. For simplicity, we drop the dependence in n. Let u = I1(ĝ).
Let us compute [DF, u]ν = ν(DFu) in that case. By the product formula (2.8), we have that

[DF, u]ν = ν(uDF ) =

ˆ
I1(g(z, ·))I1(ĝ(z, ·))ν(dz)

=

ˆ
I2(g(z, ·)⊗ ĝ(z, ·)) + I1(g(z, ·)ĝ(z, ·)) + ν(g(z, ·)ĝ(z, ·)).

(4.9)

By linearity of I1 and I2, we thus find

(4.10) ν(uDF ) = I2(g ?1
1 ĝ) + I1(g ?1

2 ĝ) + ν2(gĝ).

By [7, Lemma 2.4 (vi)] (which according to the proof holds for any σ-finite measure ν), we have

that ν(|g ?1
2 ĝ|

2
) ≤ ν(|g ?1

2 g|
2
)
1
2 ν(|ĝ ?1

2 ĝ|
2
)
1
2 . Hence, we see that (KS) and (KR?) implies either

(Sν) or (Mν) with S2 or M as given in the statement. On the one hand, we have that

1

16
E
ˆ
|DzF |4ν(dz) =

ˆ
EI1(g(z, ·))4ν(dz)

= 3

ˆ (ˆ
g(y, z)2ν(dy)

)2

ν(dz) +

ˆ ˆ
g(y, z)4ν(dy)ν(dz)

= 3ν
(

(g ?1
2 g)

2
)

+ ν2(g4).

(4.11)

So that (KR4) and (KR?) readily implies (R4). On the other hand:

(4.12)
1

16
E
ˆ
|DzF (DzF − 1)|2ν(dz) = ν2

(
g2

(
g − 1

2

)2
)

+ 3ν
(

(g ?1
2 g)

2
)
.

We thus see that (KP4) and (KR?) implies (P4). Finally, we find that

(4.13) ν(uh) = I1(ĝ ?1
1 h).

Consequently, by Itô’s isometry (2.5), we find that (KW) implies (Wν).

5 Convergence of a quadratic functional of a Poisson process on the
line

In this section, we apply our abstract result to study the asymptotic of a particular quadratic
functional. Let us recall one of the main applications of [25, 26], refining a result of [36].

Theorem 5.1 ([25, Example 4.2] and [26, Theorem 3.7]). Let W be a standard Brownian motion on
[0, 1] and let

(5.1) Qn =
n

3
2

√
2

ˆ 1

0
tn−1(W 2

1 −W 2
t )dt, n ∈ N.

Then,

(5.2) Qn
stably−−−→
n→∞

N
(
0,W 2

1

)
.

Moreover, there exists c > 0 such that, for all n ∈ N:

(5.3) d1

(
Qn,N

(
0,W 2

1

))
≤ cn−

1
6 .
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Let η be a Poisson point process on R+ with intensity the Lebesgue measure; and N̂t =
η([0, t]) − t, for t ∈ R. The process N̂ is a martingale called a compensated Poisson process on
the line. Recall that from Dynkin & Mandelbaum [11], we have that

(5.4)
{
n−

1
2 N̂nt; t ≥ 0

}
−−−→
n→∞

W,

where the convergence holds in the sense of finite-dimensional distributions and in a stronger
sense that we do not detail here. Having made this remark the following thermo-dynamical
limit appears as a natural generalization of Theorem 5.1.

Theorem 5.2. Let

(5.5) Qn =
n

3
2

√
2

ˆ 1

0
tn−1

((
n−

1
2 N̂n

)2
−
(
n−

1
2 N̂nt

)2
)

dt, n ∈ N.

Then,

(5.6) Qn
stably−−−→
n→∞

N
(
0,W 2

1

)
.

Proof. By Itô’s formula (see, for instance [15, Chapter I Theorem 4.57]), we have that

(5.7) N̂2
t = 2

ˆ t

0
N̂s−dN̂s +

∑
s≤t

(
N̂s − N̂s−

)2
.

Since, a Poisson process only has jumps of size 1, we find that

(5.8) N̂2
t = 2

ˆ t

0
N̂s−dN̂s +Nt.

Hence, we can write

(5.9) Qn =
√

2Fn +Hn,

where

Fn = n
1
2

ˆ 1

0
tn−1

ˆ n

nt
N̂s−dN̂sdt;(5.10)

Hn =
(n

2

) 1
2

ˆ 1

0
tn−1(Nn −Nnt)dt.(5.11)

Recalling that N is a non-decreasing process and that ENt = t, we find that

E|Hn| = 2−
1
2n

3
2

ˆ 1

0
tn−1(1− t)dt

= 2−
1
2n

3
2

(
1

n
− 1

n+ 1

)
= 2−

1
2
n

1
2

n+ 1
= O(n−

1
2 ).

(5.12)

Consequently, in order to obtain the conclusions of the theorem for (Qn) it suffices to obtain
them for (Fn). By inverting the order of integration, we find:

(5.13) Fn = n−
1
2

ˆ n

0
N̂s−

( s
n

)n
dN̂s = n−

1
2
−n
ˆ n

0
N̂s−s

ndN̂s = δun,
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where

(5.14) un(s) = n−
1
2 N̂s1[0,n](s)

( s
n

)n
.

We have that

(5.15) Fn = n−
1
2 N̂nn

−n
ˆ n

0
sndN̂s + n−

1
2
−n
ˆ n

0
(N̂s− − N̂n)sndN̂s.

Now observe that, by Skorokhod’s isometry:

E
(
n−

1
2
−n
ˆ n

0
(N̂s− − N̂n)sndN̂s

)2

= n−2n−1

ˆ n

0
(s− n)2s2nds

=
n

(2n+ 1)(2n+ 2)
= O(n−1).

(5.16)

We have that

E
(
n−

1
2 N̂n

)2
= 1;(5.17)

E
(
n−

1
2 N̂n

)4
= 3 + n−1;(5.18)

E
(
n−n
ˆ n

0
sndN̂s

)2

=
n

2n+ 1
;(5.19)

E
(
n−n
ˆ n

0
sndN̂s

)4

=
n

4n+ 1
+ 3

n2

(2n+ 1)2 .(5.20)

By our stable fourth moment theorem Proposition 4.1, we immediately find that:

(5.21)
(
n−

1
2 N̂n, n

−n
ˆ n

0
sndN̂s

)
stably−−−→
n→∞

N

(
0,

(
1 0
0 1

2

))
.

Thus proving that
√

2Fn
stably−−−→
n→∞

N(0,W 2
1 ), and hence that Qn

stably−−−→
n→∞

N(0,W 2
1 ).

Remark 13. Rather than studying δun with Theorem 3.6, we simplify the problem by studying
the convergence of two Itô-Wiener integrals. In fact, in our example, (R4) is not satisfied. With
the notations of the proof, we have that DsFn = n−n−

1
2

´ n
0 (s ∨ t)ndN̂t. An easy computation

yields that ˆ n

0
E(DsFn)4ds −−−→

n→∞

1

4
.

We do not know if (R3) holds, so we do not know if we could use Theorem 3.6 directly (or even
invoke Theorem 3.9 to get a quantitative estimate).

6 Some open questions

• As already mentioned, we are interested in understanding which techniques we should
consider to reach quantitative estimates for the convergence to a Poisson mixture.

• According to [26, Remark 3.3 (b)], the results of [25] can be understood as a variant of
the asymptotic Knight theorem about the convergence of Brownian martingales. In the
Poisson setting, it would be interesting to know if our results can be put in contrast with
a corresponding martingale result.
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• Very commonly, quantitative limit theorems in stochastic geometry rely on Malliavin-
Stein bounds on the Poisson space (see among others [39, 18, 17, 33]). In particular,
counting statistics of a nice class of rescaled geometric random graphs construct from
a Poisson point process exhibit a Gaussian or Poisson asymptotic behaviour depending
on the regime of the rescaling. In view of our results, we ask whether it is possible to
consider a wider class of geometric random graphs (including the previous one) whose
counting statistics exhibit a convergence to a mixture.
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