
HAL Id: hal-02327953
https://hal.archives-ouvertes.fr/hal-02327953

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A domain decomposition strategy for a very high-order
finite volumes scheme applied to cardiac

electrophysiology
Yves Coudière, Rodolphe Turpault

To cite this version:
Yves Coudière, Rodolphe Turpault. A domain decomposition strategy for a very high-order finite
volumes scheme applied to cardiac electrophysiology. Journal of computational science, Elsevier,
2019, 37, pp.101025. �10.1016/j.jocs.2019.101025�. �hal-02327953�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/237325966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02327953
https://hal.archives-ouvertes.fr

A domain decomposition strategy for a very high-order
finite volumes scheme applied to cardiac

electrophysiology

Yves Coudièrea,b,d,e, Rodolphe Turpaulta,c

aInstitut de Mathématiques de Bordeaux, F-33405 Talence, France
bUniv. Bordeaux, F-33400 Talence, France
cBordeaux-INP, F-33400 Talence, France
dCarmen, Inria, F-33405 Talence, France

eIHU Liryc, F-33600 Pessac, France

Abstract

In this paper, a domain decomposition technique for a very high-order finite
volumes scheme is proposed. The objective is to obtain an efficient way
to perform numerical simulations in cardiac electrophysiology. The aim is
to extend a very high-order numerical scheme previously designed, where
large stencils are used for polynomial reconstructions. Therefore, a particular
attention has to be paid to maintain the scalability in parallel. Here, we
propose to constrain the stencils inside the subdomains or their first layer of
neighbors. The method is shown to remain accurate and to scale perfectly
up to the level where there are not enough cells in the subdomains. Hence,
these high-order schemes are proved to be efficient tools to perform realistic
simulations in cardiac electrophysiology.

Keywords: Finite volumes, very high-order schemes, parallel computing,
cardiac electrophysiology, MOOD
2000 MSC: 65M08, 65Y05, 35Q92, 92C99

1. Introduction

Numerical simulation plays an important role in the understanding and
treatment of cardiac arrhythmia [1]. The efficiency of the cardiac pumping
function is tightly related to the electrical synchronization of the cells. This
phenomenon is due to the propagation of an electrical depolarization wave

November 7, 2019

that spreads in the heart. Indeed, numerous pathologies are associated to dis-
organizations of these waves. They may be described by a reaction-diffusion
equation, namely the classical monodomain model:

∂tV + Iion(V,w) = div
(
D∇V

)
, x ∈ Ω, (1)

∂tw = G(V,w), x ∈ Ω, (2)

where V is the transmembrane voltage in mV, Iion(V,w) is the normalized
ionic current in A F−1, and D = σ/AmCm is the normalized diffusion tensor
in cm2 ms−1 (see [2]) . Equation (2) is the system of m nonlinear ordinary
differential equations called the ionic model, and specified through the func-
tion G(V,w), defined for V ∈ R and w ∈ A, where A is a convex subset of
Rm. There exists a large diversity of ionic models, depending on the required
level of complexity and cell type. In this paper, we will consider the sim-
ple phenomenological model of Aliev and Panfilov [3] and the more complex
model of Ten Tusscher et al [4]. These two models are representative of the
models used in biomedical simulations. In particular, the Ten Tusscher et
al model is one of the few to describe human ventricular cells and its set of
admissible states A is composed of positive ionic concentrations and gating
variables that lie in [0, 1].

Since the phenomena under consideration involve complex dynamics with
stiff gradients, very high-order numerical schemes capable of maintening the
solution inside the admissible domain A are natural candidates. More-
over, long-time simulations have to be performed, hence parallel versions
are required in many applications. In the field of cardiac electrophysiol-
ogy, codes generally use at most schemes of order 2 and therefore unreason-
ably fine meshes have to be considered (or some physical parameters have
to be tuned down). Furthermore, the reference codes (namely CARP[5],
PROPAG [6] and CHASTE [7]) use parallel computing one way or another.
The most comon strategy encountered in the domain is to rely on Petsc (see
[6, 8, 9, 10]). Some codes use GPU through OpenCL or CUDA programming.
This is the case of [11] where linear algebra involved in the implicit scheme
is parallelized, and [12] where a parallel preconditionned multigrid conjugate
gradient is developed. Finally, in [13] a Schwarz-based preconditionner is
proposed.

In a previous article, an explicit very high order numerical method adapt-
ed to the monodomain model was described [2]. This numerical method

2

proved to be efficient and allows to perform simulations up to order 6 while
retaining an admissible solution (i.e. positive ionic concentrations and gates
in [0, 1]). The importance of using high-order schemes was underlined. In-
deed, for a given level of accuracy, high-order methods require only reason-
ably refined meshes and hence save a lot of computational time.

The method proposed in [2] uses a cell-centered finite volume scheme
based on a MOOD strategy (see [14] for the description of MOOD and [15, 16]
for more related problems). High-order MOOD methods require large sten-
cils for the sake of polynomial reconstructions. Hence, their effectiveness
in parallel was questionable as opposed to some other techniques, e.g. Dis-
continuous Galerkin schemes for which there exists a natural way to do the
parallel decomposition.

Indeed, for these MOOD schemes, a naive domain decomposition tech-
nique does scale very badly due to the large stencils.

The purpose of this paper is to develop an adapted domain decomposition
technique in order to restore an efficient parallel scalability while maintaining
the accuracy and properties of the sequencial method.

In the following section, the scheme proposed in [2] is briefly recalled, then
an adapted domain decomposition technique is described. Several numerical
tests are performed in order to show that the order and overall accuracy are
maintained and an efficient scalability is obtained.

2. Preliminary description of the numerical method

We discretize equations (1) and (2) on a two-dimensional domain with the
cell-centered finite volume scheme described in [2], which is a finite volumes
scheme with a MOOD strategy. The domain is split into an unstructured
meshM, and the unknonwns are functions which are piecewise constant on
the cells K of the mesh, with values denoted by VK(t) ∈ R and wK(t) ∈ Rq

for any K ∈M. They solve the semi-discrete finite volume scheme

d

dt
VK + IK =

1

|K|
∑
e∈EK

|e|FK,e, (3)

d

dt
wK = GK , (4)

where IK , GK and FK,e are respectively approximations of the mean values
of Iion(V,w) and G(V,w) on the cell K and of the mean value of D∇V ·nK,e
on the edge e; and where EK is the set of the edges of K.

3

The computation of the terms IK , GK and FK,e relies on two series of
weighted least squares polynomial approximations:

1. a polynomial approximation of degreem of the function V on each edge
e of the mesh, that will be used to compute FK,e;

2. and a polynomial approximation of degree p of the functions V and w
on each cell K of the mesh, that will be used to compute IK and GK .

Approximation on each edge e. We define a stencil Se, specifically a fixed col-
lection of cells C that surround the edge e, and contains at least (m+1)(m+
2)/2 cells, so as to have enough information to build a polynomial of degree
m. Then, we construct the polynomial function Ṽe(x) =

∑
|α|≤m γα,e(x−xe)α

that best approximates the values of the unknown VC on the cells C ∈ Se in
a weighted least squares sense. Here, the point xe is the midpoint of the edge
e. The polynomial coefficients vector set (γα,e)|α|≤m := Γe ∈ R(m+1)(m+2)/2

minimizes the function

J(Γe) =
1

2

∑
C∈Se

ωC,e

(
Ṽe(xC)− VC

)2
, (5)

where xC are the barycenters of the cells C ∈ Se and ωC,e = ω (|xC − xe|) ≥ 0
where ω is a decreasing weighting function, for instance ω(r) = r−s for some
s > 0. The approximate flux FK,e is finally defined by

FK,e :=

qe∑
l=1

ξl,e

(
D(xl,e)∇Ṽe (xl,e)

)
· nK,e '

1

|e|

∫
e

D(x)∇Ṽe(x) · nK,e, (6)

where (ξl,e)l=1...qe and (xl,e)l=1...qe
are the weights and points of a quadrature

formula of degree at least m − 1 (see [2]). The terms FK,e is ultimately a
linear combination of the VC for C ∈ Se, and it depends on the choice of the
stencils Se.

Approximation on each cell K. We similarly define a stencil SK , a fixed
collection of cells C that surround the cell K, and contains at least (p +
1)(p + 2)/2 cells, so as to have enough information to build a polynomial
of degree p. Then we have to build a polynomial approximation for the
variable V ∈ R and similarly for each of the variables in w ∈ Rq. Here,
we briefly recall the construction for V , which generalizes to w. It dif-
fers from the edge based reconstruction since it has to preserve the aver-
age value on the cell K, to garantee the order of accuracy of the method

4

(see [2]). Hence, we construct the polynomial function ṼK(x) = VK +∑
1≤|α|≤p λα,K

[
(x− xK)α − 1

|K|

∫
K

(x− xK)αdx
]
that best approximates the

values of the unknown VC on the cells C ∈ SK in a weighted least square
sense. With the same notations as for the edges, the polynomial coefficients
vector set (λα,K)1≤|α|≤p := ΛK ∈ R(p+1)(p+2)/2−1 minimizes the function

J(ΓK) =
1

2

∑
C∈SK

ωK,e

(
ṼK(xC)− VC

)2
. (7)

The function w̃K(x) is reconstructed similarly, and finally, the approximate
source terms IK and GK are defined by

IK =

qK∑
l=1

ξl,KIion

(
ṼK(xl,K), w̃K(xl,K)

)
, (8)

GK =

qK∑
l=1

ξl,KG
(
ṼK(xl,K), w̃K(xl,K)

)
, (9)

where (ξl,K)l=1...qe and (xl,K)l=1...qe
are the weights and points of a quadrature

formula of degree at least p. Again, the terms IK and GK finally depend on
the choice of the stencils SK.

Time-stepping method. The semi-discrete problem consists in solving the sys-
tem of ODEs (3) and (4), with the flux and source terms computed from (6),
(8) and (9). We discretize this system with standard strong stability pre-
serving Runge Kutta (SSP RK) method from [17]. Specifically we will use
SSP(k,k) methods, for k = 1 (forward Euler), k = 2 and k = 3, where the
number of stages equals the order. Since, these are explicit methods where
the CFL condition imposes ∆t = O(∆x2), we only need to have 2k at least
equal to the order of discretization in space, hence we will finally use the
forward Euler method up to order 2, the SSP(2,2) for the order 3 and 4, and
SSP(3,3) for the order 5 and 6.

Degrees m and p, weights and quadrature rules. In practice, we look for
polynomial reconstructions of the same degree m = p := k on the edges and
cells, so as to obtain a method of order of accuracy k+1. We will investigate
the properties of the methods of odrer k+1 = 2, 4, 6, built from polynomial of
degreee k = 1, 3, 5. To this aim, we also need quadrature rules that are exact

5

for polynomials of degree k−1 on the edges, and k on the cells. For all three
schemes, we use the three-point Gauss formula on the edges (it is exact for
polynomials of degree 5), and the 7 points formula of Dunavant [18] on the
cells like proposed in our previous work [2] (it is also exact for polynomial
of degree 5). We also fix the weighting function to ω(r) = r−1.5 on both the
edges and the cells, since it is a good compromise as observed in [2].

Limitation strategy. For ionic models in our application (the functions F and
G), there is a need to preserve values for part of the variables w ∈ Rq into a
convex admissible set. Specifically, we want to preserve the gating variables
in the interval [0, 1], and positive ion concentrations. With the higher order
methods, this will not be the case unless we limit the polynomial reconstruc-
tion when the admissible condition is violated when processing from time tn
to time tn+1. To this aim, we adopt a MOOD strategy. Actually, assuming
that all wC(tn) are admissible, we replace the value w̃K(xl,K) reconstructed
from the wC(tn), whenever it is not admissible, by the average value wK(tn).
Since we use an SSP-RK method (and the admissible set is convex), the next
value wK(tn+1) is admissible.

Stencils Se and SK. In order to build the stencil Se of an edge e, we first
consider the initial set S0

e of the two neighbors of e, then build iteratively
the sets Ske by adding the neighbors of rank k of these two cells (two cells are
neighbours iff they share a common node). We take Se = Ske the smallest
such set that contains at least (m+1)(m+2)/2 cells. The stencil SK of a cell
K is built similarly, with S0

K = {K} and SkK the neighbours of S0
K of ranks

≤ k. The stencil SK is the smallest SkK that contains at least (p+1)(p+2)/2
cells.

Implementation details. In practice, the minimization problems (5) and (7)
amounts to solving local symetric and positive definite linear systems (which
sizes are the number of elements in the stencils Se or SK), only depending on
the geometry. They are solved in a preprocessing step and their inverses are
stored. Hence each stage in the time-stepping methods requires one matrix
vector products of size Se for each edge e, and one of size SK for each cellK of
the mesh, quadrature formulas on the edges e, computation of the nonlinear
terms F and G at the quadrature points, and application of the quadrature
formulas in the cells K.

6

3. The domain decomposition technique

If the mesh is split so as to define geometrical subdomains of Ω (see exam-
ple on figure 1), the computation of the flux (6),(8) and (9) near the boundary
of each subdomain requires values of the unknowns in the neighbouring sub-
domains. More precisely, every unknown inside each of the stencils SK and
Se has to be communicated. Hence, if nothing special is done, this results
in heavy communications between threads which drastically slow down the
computations.

In the following a strategy is proposed to avoid such an issue.

3.1. What happens near the boundary of the domain ?
Before going into the description of this strategy, let us investigate some

features of the way reconstruction stencils are designed. Indeed, this is ob-
viously a key point in terms of efficiency.

Let us first remark that even for the scheme on one domain with the
stencils chosen as in [2] there is already a discrepancy in the treatment of
these stencils between the boundaries and the interior of the domain. In
order to avoid considering a large amount of ghost cells, only cells inside
the domain are eligible for the stencil (plus the boundary condition). As a
result, at the domain’s boundaries, the stencils are not well balanced around
the corresponding cells/interfaces. As order increases, cells located quite far
from the boundary may be part of the stencils.

This does not change the order of the scheme since the degree of the
polynomial reconstructions are unchanged. However, the use of distant in-
formation is expected to result in a reduction of the accuracy.

Hopefully, the least-squares procedures which determines the polynomial
coefficients uses weights that decrease with the distance, so that remote cells
only have a marginal influence. In practice, no significant reduction of the
accuracy was observed at boundaries in numerical simulations [2].

3.2. The case of two subdomains
This observation suggests that it is possible to avoid deteriorating the

order while imposing the stencils to lie inside a specific subdomain or the
first layer of neighbors for the sake of consistency.

In order to validate this hint, a simple test-case is performed in a domain
subdivised into two subdomains. As illustrated on figures 2 and 3, the recon-
struction stencils are forced to belong to the related subdomain or the first
layer of neighbors:

7

./Images/Domaines_24.png

Figure 1: Example of mesh decomposition with 24 subdomains

8

subdomain 1

subdomain 2
and halo of subdomain 1

subdomain 2

Figure 2: Subdomains and halo.

Figure 3: Stencils of a cell on the boundary of subdomain 1 (left) and stencils of an edge
of the interface between the two subdomains (right).

9

./Images/Domaines_128_zone6_halo_isolee.png

(a) A subdomain in a decomposition of 128, and its halo.

./Images/Domaines_128_zone6_halos.png

(b) All subdomains around the previous one, and their halos.

Figure 4: Exemple of domains and halos

10

• the stencils associated to the cells are forced to belong to the cell’s
subdomain and if necessary to the first layer of neighbours (halo),

• the stencils associated to the edges are forced to belong the union of
the two first layers of neighbours.

In order to evaluate the loss of accuracy of such a choice, an analytical
test-case is performed. The ionic current is chosen such that:

V (t, x) = e−λt cos(8πx) cos(8πy),

Iion(V,w) = ∆V − ∂tV.

This analytical test-case was performed and detailed in [2] where the
following error is computed:

e2 :=
∑
K∈M

|K||VK −
qK∑
l=1

ξl,K ṼK(xl,K)|.

The results are in tables 1 and 2. The orders are conserved and, even if the
accuracy is slightly decreased, the difference between the two simulations
stays neglectable.

h 1 order 3 order 5 order
6.225E-003 5.920E-001 n/a 1.365E-001 n/a 4.562E-002 n/a
3.007E-003 1.058E-001 2.366 1.169E-002 3.378 1.053E-003 5.179
1.504E-003 1.859E-002 2.509 6.497E-004 4.170 2.359E-005 5.481

Table 1: L2 errors for the analytical test case - one domain.

h 1 order 3 order 5 order
6.225E-003 5.922E-001 n/a 1.392E-001 n/a 4.771E-002 n/a
3.007E-003 1.058E-001 2.367 1.173E-002 3.400 1.102E-003 5.178
1.504E-003 1.859E-002 2.509 6.538E-004 4.167 2.447E-006 5.496

Table 2: L2 errors for the analytical test case - two subdomains.

11

3.3. General case
In the general case, the domain Ω is partitionned into N subdomains

(Ωk)k=1...N .
A cell neighbors graph is defined as follows: two cells K and L are neigh-

bors if they share a vertex. This relation is denoted by K|L.
Each closed subdomain Ωk is then associated to an extended subdomain

Ω̂k consisting in all cells in Ωk and their neighbors:

Ω̂k = {L|K ∀K ∈ Ωk}.

With these notations, the halo of Ωk is simply Ω̂k\Ωk. Now, the stencils are
chosen such that:

• ∀K ∈ Ωk, SK ⊂ Ω̂k,

• ∀e ∈ Ωk, Se ⊂ Ω̂k.

Let us emphasize that if an edge e is located at the interface between sub-
domains Ωk and Ωl (i.e. e ∈ Ωk ∩ Ωl), then Se belongs to Ω̂k ∩ Ω̂l.

As a consequence, we expect Ω̂k ∩ Ω̂l to contain at least (m+ 1)(m+ 2)/2
cells for a polynomial of degree m on the interfaces. Exceptionally, when
there are too many subdomains, the intersection Ω̂k ∩ Ω̂l may contain too
few cells to fulfill this condition. In this case, we use the second layer of
neighbors.

For illustration, an example of subdomain and its halo is given on figure 4.
The results in tables 3 and 4 correspond to the analytical test-case de-

scribed in the previous paragraph with 24 subdomains. Once again, the
orders are conserved and, even if the accuracy is slightly decreased, the dif-
ference with the reference case (table 1) stays neglectable.

h 1 order 3 order 5 order
6.225E-003 5.927E-001 n/a 1.470E-001 n/a 5.946E-002 n/a
3.007E-003 1.058E-001 2.368 1.195E-002 3.450 1.415E-003 5.138
1.504E-003 1.859E-002 2.509 6.776E-004 4.141 3.084E-005 5.520

Table 3: L2 errors for the analytical test case - 24 subdomains.

12

h 1 order 3 order 5 order
6.225E-003 7.609E-004 n/a 1.049E-002 n/a 1.384E-002 n/a
3.007E-003 8.267E-006 6.215 2.575E-004 5.095 3.612E-004 5.011
1.504E-003 6.337E-007 3.706 2.784E-005 3.210 7.248E-006 5.639

Table 4: L2 errors for the analytical test case - difference between 1 and 24 subdomains.

3.4. Practical partitionning
As far as scalability is concerned, one of the difficulties in the scheme is

the presence of two reconstructions. Ideally, when Ω is divided into N , one
would want each subdomain to contain 1

N
cells and edges. Unfortunately,

this is not possible in most cases. For the sake of numerical experiments,
the software Scotch was used [19] in order to define the subdomains. The
default feature of Scotch was selected here, i.e. the partionning of a graph.
In our case, the graph’s vertices are the cells and the graph’s edges are the
interfaces between cells. This graph is different from the neighbouring graph
defined in section 3.3.

In any case, we cannot have 100% scalable code since it would require
a perfect balance of both cells and intefaces, though in practice we are not
far from it. For instance, tables 6 and 7 show the minimum and maximum
number of cells and edges in subdomains in the case of the two meshes that
are used for numerical studies in this article (see table 5).

In these tables, an efficiency coefficient is computed as follows:

effedge =
#edges in subdomain

#edges
∗ 100 ∗# threads.

These numbers should ideally be 100 if cells and edges are evenly dis-
patched. Let us mention that edges which are located at the interface be-
tween two subdomains are arbitrarily affected in one subdomain or the other.
These numbers are representative of the number of communications between
two subdomains. Hence, it is possible to a priori have an idea of the deteri-
oration of the parallel computing’s efficiency.

Tables 6 and 7 show that one can expect each subdomain to contain at
least 0.95

N
edges and 0.99

N
cells as long as each subdomain contains a reasonable

number of cells.
From the implementation standpoint and in the sake of efficiency, let us

mention that cells and edges are renumbered so that Ωk contains consecutive

13

cells # edges h (cm) dt (ms)
Mesh #1 37 928 57 132 2.051e-2 1.104e-2
Mesh #2 151 740 228 090 5.344e-3 2.856e-3

Table 5: The two meshes considered in the numerical studies below.

cell and edges numbers. This features favors memory locality, which is very
important for general effectiveness, especially when OpenMP directives are
used.

4. Numerical study

The goal of this section is to investigate:

• the accuracy of the method, even in parallel,

• its scalability,

• the best ratio accuracy / CPU time in parallel,

hence we will focus on these issues on a specific test-case.
Taking advantage of the experience on one single domain [2], we chose

to perform the simulation of a spiral wave. To this aim, the standard Aliev-
Panfilov model is modified in order to decrease the action potential duration
(k = 10). The spiral wave is initiated by exciting a region which straddles
the refractory and resting zones of a first planar wave.

As observed in [2], this test-case is a difficult one, very sensitive to the
mesh and order. In particular, in the sequential case and on the considered
meshes, a significant discrepancy is observed even between 5th and 6th order
at time t = 150 ms.

We will consider the same meshes used in the previous article which
features are summarized in table 5. Each mesh was partitionned in 1, 2, 4,
8, 12, 16, 24 for OpenMP simulations on CPU and in addition 32, 48, 64,
128, 256 subdomains for OpenMP simulations on KNL nodes. In practice,
the CPU used were dual dodecacore Haswell Intel R© Xeon R© E5-2680 v3 @
2.5 GHz and the KNL where Xeon Phi TM 7230 @ 1.3 GHz.

In the sequencial simulations, huge discrepancies were visible on this par-
ticular mesh even between order 5 and 6 (the spirals obviously had a different
number of revolutions). Here, as for the analytical test-case, we observe on

14

cells per subdomain # boundary edges # edges per subdomain
thrds min max min max min max
2 18 955 18 973 0 142 28 482 28 508
eff 99.95 100.05 0.50 99.71 99.80
4 9 460 9 503 0 142 14 175 14 249
eff 99.77 100.22 0.99 99.24 99.76
8 4 705 4 751 0 168 7 033 7 155
eff 99.24 100.21 2.35 98.48 100.19
12 3 137 3 183 0 152 4 625 4 753
eff 99.25 100.71 3.19 97.14 99.83
16 2 355 2 383 0 102 3 467 3 565
eff 99.35 100.53 2.86 97.09 99.84
24 1 565 1 595 0 99 2 293 2 370
eff 99.03 100.93 4.16 96.32 99.56
32 1 174 1 194 0 99 1 714 1 788
eff 99.05 100.74 5.55 96.00 100.15
48 783 797 0 87 1 134 1 176
eff 99.09 100.86 7.31 95.27 98.80
64 587 597 0 73 848 896
eff 99.05 100.74 8.18 94.99 100.37
128 294 298 0 54 416 443
eff 99.22 100.57 12.10 93.20 99.25
256 145 149 0 38 196 220
eff 97.87 100.57 17.03 87.82 98.58

Table 6: Minimum and maximun number of cells and edges in subdomains - Mesh 1.
Boundary edges are edges located on the interfaces between two subdomains. These edges
are arbitrarily affected inside one subdomain or the other.

15

cells per subdomain # boundary edges # edges per subdomain
thrds min max min max min max
2 75 830 75 910 0 294 113 837 113 959
eff 99.95 100.05 0.26 99.82 99.92
4 37 796 38 029 300 56 661 56 960
eff 99.63 100.25 0.53 99.37 99.89
8 18 873 19 075 368 28 282 28 510
eff 99.50 100.57 1.29 99.20 100.00
12 12 614 12 667 232 18 794 18 952
eff 99.75 100.17 1.22 98.88 99.71
16 9 414 9 533 214 14 025 14 236
eff 99.26 100.52 1.50 98.38 99.86
24 6 278 6 379 147 9 298 9 471
eff 99.30 100.89 1.55 97.84 99.66
32 4 711 4 784 217 6 964 7 139
eff 99.35 100.89 3.04 97.70 100.16
48 3 135 3 188 166 4 624 4 727
eff 99.17 100.85 3.49 97.31 99.48
64 2 347 2 393 139 3 461 3 575
eff 98.99 100.93 3.90 97.11 100.31
128 1 174 1 196 105 1 708 1 774
eff 99.03 100.89 5.89 95.85 99.55
256 587 600 71 842 882
eff 99.03 101.23 7.97 94.50 98.99

Table 7: Minimum and maximun number of cells and edges in subdomains - Mesh 2
Boundary edges are edges located on the interfaces between two subdomains. These edges
are arbitrarily affected inside one subdomain or the other.

16

./Images/Vm_150ms_mesh4_01.png

(a) 1 subdomain.

./Images/Vm_150ms_mesh4_04.png

(b) 4 subdomains.

./Images/Vm_150ms_mesh4_24.png

(c) 24 subdomains.

./Images/Vm_150ms_mesh4_128.png

(d) 128 subdomains.

Figure 5: 6th order method: spiral wave (AP model) predicted at time t = 150 ms with
different domain decompositions.

17

#threads reaction diffusion total scale factor scalability
1 176.67 117.86 294.53 1.00 –
2 87.33 59.16 146.49 2.01 1.01
4 35.96 24.31 60.27 4.89 1.22
8 18.07 13.25 31.32 9.41 0.96
12 12.15 12.27 24.41 12.06 0.86
16 9.17 10.51 19.68 14.97 0.93
24 6.12 14.94 21.05 13.99 0.62

Table 8: Mesh 1, order 2

#threads reaction diffusion total scale factor scalability
1 623.16 480.70 1103.86 1.00 –
2 327.98 260.08 588.06 1.88 0.94
4 169.02 125.43 294.45 3.75 1.00
8 86.03 67.82 153.86 7.17 0.96
12 65.72 59.41 125.13 8.82 0.82
16 46.64 43.83 90.47 12.20 1.04
24 34.50 45.45 79.95 13.81 0.75

Table 9: Mesh 1, order 4

figure 5 that the influence of domain decomposition stays neglectable, even
on 128 subdomains. The result was far from being trivial given the stiffness
of the case and the large stencils used for 6th order.

Now, scalability tests were performed in order to compare the schemes of
order 2, 4 and 6 on both meshes with 1 to 24 subdomains. The CPU times
and scalabilities of the methods are given on tables 8, 9 and 10 for mesh 1
and 11, 12 and 13 for mesh 2. The scale factors are also plotted on figures
6 and 7. They are defined as the ratio of the total time on 1 thread by the
total time on N threads.

On the coarse mesh (Mesh 1), one can observe that the scalability is rel-
atively good up to 16 threads and the suddently stalls. This is due to the
fact that the subdomains become relatively small and there is not enough
computations to be performed in each subdomain to keep the method effec-
tive. One also clearly sees that considering a refined mesh (Mesh 2) or more
computations to do (order 6) helps restoring a good scalability. The graphs
on figure 8 show the CPU time of computations. More precisely, the cost

18

#threads reaction diffusion total scale factor scalability
1 3342.23 1938.90 5281.13 1.00 –
2 1699.76 1003.36 2703.11 1.95 0.98
4 877.15 546.53 1423.68 3.71 0.95
8 383.74 246.47 630.21 8.38 1.13
12 262.21 166.35 428.56 12.32 0.98
16 206.00 126.12 332.12 15.90 0.97
24 134.43 108.57 243.00 21.73 0.91

Table 10: Mesh 1, order 6

#threads reaction diffusion total scale factor scalability
1 2872.00 2045.38 4917.38 1.00 –
2 1464.47 1077.84 2542.31 1.93 0.97
4 834.29 523.11 1357.40 3.62 0.94
8 400.06 273.49 673.55 7.30 1.01
12 273.72 189.79 463.51 10.61 0.97
16 202.51 151.56 354.07 13.89 0.98
24 138.00 139.52 277.52 17.72 0.85

Table 11: Mesh 2, order 2

#threads reaction diffusion total scale factor scalability
1 11319.77 7758.15 19077.92 1.00 –
2 5800.49 4199.91 10000.40 1.91 0.95
4 2725.47 2381.66 5107.13 3.74 0.98
8 1414.60 1318.90 2733.50 6.98 0.93
12 928.06 811.24 1739.31 10.97 1.05
16 692.03 637.78 1329.81 14.35 0.98
24 478.69 502.71 980.40 19.44 0.90

Table 12: Mesh 2, order 4

19

#threads reaction diffusion total scale factor scalability
1 48906.63 29253.54 78160.17 1.00 –
2 25643.07 16166.81 41809.88 1.87 0.93
4 13351.43 8678.10 22029.53 3.55 0.95
8 6577.43 4272.48 10849.91 7.20 1.02
12 4505.80 3102.36 7608.13 10.27 0.95
16 3065.58 2194.60 5260.18 14.86 1.08
24 2282.96 1615.26 3898.22 20.05 0.90

Table 13: Mesh 2, order 6

0

5

10

15

20

25

0 5 10 15 20 25

A
cc
el
er
at
io
n
fa
ct
or

Number of threads

2nd order
4th order
6th order

Ideal scaling

Figure 6: Scalability (AP model) on Mesh 1.

20

0

5

10

15

20

25

0 5 10 15 20 25

A
cc
el
er
at
io
n
fa
ct
or

Number of threads

2nd order
4th order
6th order

Ideal scaling

Figure 7: Scalability (AP model) on Mesh 2.

of order 2, 4 and 6 methods on Mesh 1 and order 2 method on mesh 2 are
considered. This allows to see at a glance the relative cost of increasing the
order of the method or refining the mesh.

On a given mesh, order 6 is roughly 10 times more expensive than order
2, but their CPU times improve at the same speed in parallel. One also sees
that using order 6 on Mesh 1 has nearly the same cost as order 2 on Mesh
2. Since, the accuracy of order 6 on Mesh 1 is way better, this shows that
using high-order is more efficient independently of the number of threads.
In fact, the conclusions of [2] remain valid with our domain decomposition
technique.

One can also see that the relative cost of the reaction is initially all the
more important that the order is large. However, its scalability behaves way
better than the diffusion due to the fact that only local computations are
involved. Interestingly, the Aliev-Panfilov ionic model is indeed the worst
case since only one simple ODE is involved.

To confirm this asumption, the same computations are done using the
Ten Tussher et al ionic model which involves 16 ODEs, including stiff ones.

21

10

100

1000

10000

1 10

C
P
U

ti
m
e

Number of threads

2nd order (Mesh 1)
4th order (Mesh 1)
6th order (Mesh 1)
2nd order (Mesh 2)

Figure 8: CPU times vs number of threads.

The results are displayed on figure 9. Here, even on the coarse mesh (Mesh
1), our scalability is excellent.

#threads reaction diffusion total scale factor scalability
1 34111.27 2210.35 36321.62 1.00 –
2 16508.04 1143.83 17651.86 2.06 1.03
4 8379.74 601.04 8980.78 4.04 1.01
8 4175.42 341.47 4516.88 8.04 0.99
12 2790.62 232.51 3023.13 12.01 1.00
16 2109.46 183.39 2292.85 15.84 0.99
24 1439.09 133.79 1572.88 23.10 0.97

Table 14: TNNP model, Mesh 1, order 6

Finally, a set of computations is performed on a KNL node and the re-
sults are shown on table 15 and figure 10. Up to 24 threads, the scalability
remains optimal. After that, the mesh is to coarse to observe a significant
improvement. From 32 threads onward, there exist interfaces between sub-

22

0

5

10

15

20

25

0 5 10 15 20 25

A
cc
el
er
at
io
n
fa
ct
or

Number of threads

6th order
Ideal scaling

Figure 9: Scalability (TNNP model) on Mesh 1.

domains for which the second layer of neighbors has to be added to the halo.
This spreads out the halo, which kills the scalability. Let us note nonetheless
that the accuracy remains very good (see for instance the result with 128
subdomains on figure 5).

Only order 4 and Mesh 1 were used in this configuration since we were
limited by a low system time-limit which disallow the computation in the
case of one domain for either higher order or finer mesh.

5. Conclusion

In this paper, a technique to fit a very high-order MOOD method to
parallel computing is proposed. Since MOOD methods rely on reconstruction
stencils which may be large, their efficiency in parallel was questionable.
Hopefully, numerical results show a very good scalability up to the point
where the subdomains are small enough to have a number of cells comparable
to their halo. When this happens, the scalablity obviously stalls very quickly.
This is not a big issue however since the computational cost is already very
low in such cases.

23

Moreover, the CPU time decreases at a speed which does not depend on
the order of the method (as shown on figure 8). Since high-order methods
were the most interesting in terms of accuracy vs CPU time ratio even in
serial computing, they remain the best choice with our parallel extension.

Even though we only implemented our method with OpenMP routines, its
extension to MPI is straightforward since communications are minimal (for
instance, equivalent to a Lagrange P1 finite elements scheme). Obviously,
the conclusions on the speed-up have to be confirmed.

Finally, let us empahsize that the method applies to any MOOD-type
scheme and hence to other kind of equations.

Acknowledgements

This study received financial support from the French Government as
part of the “Investments of the Future” program managed by the National
Research Agency (ANR), Grant reference ANR-10-IAHU-04.

0

5

10

15

20

25

30

0 10 20 30 40 50 60

A
cc
el
er
at
io
n
fa
ct
or

Number of threads

4th order
Ideal scaling

Figure 10: Scalability (AP model) on Mesh 1 - KNL node.

24

#threads reaction diffusion total scale factor scalability
1 4524.86 2651.64 7176.51 1.00 –
2 1900.88 1371.80 3272.67 2.19 1.10
4 921.89 679.90 1601.79 4.48 1.02
8 445.99 329.60 775.59 9.25 1.03
12 306.13 229.05 535.18 13.41 0.97
16 193.86 177.62 371.47 19.32 1.08
24 128.59 172.13 300.73 23.86 0.82
32 100.31 189.09 289.40 24.80 0.78
48 103.35 200.43 303.78 23.62 0.64
64 56.02 288.34 344.36 20.84 0.66
128 45.39 624.82 670.21 10.71 0.26
256 37.85 1503.48 1541.32 4.66 0.22

Table 15: Mesh 1, order 4, KNL Node

References

[1] S. A. Niederer, J. Lumens, N. A. Trayanova, Computational models in
cardiology, Nature Reviews Cardiology 16 (2019) 100 – 111.

[2] Y. Coudière, R. Turpault, Very high order finite volume methods for
cardiac electrophysiology, Computers & Mathematics with Applications
(2017) –.

[3] R. Aliev, A. Panfilov, A simple two-variable model of cardiac excitation,
Chaos, Solitons and Fractals 3 (1996) 293–301.

[4] K. H. Ten Tusscher, D. Noble, P. J. Noble, A. V. Panfilov, A model
for human ventricular tissue, Am. J. Physiol. Heart. Circ. Physiol. 286
(2004).

[5] E. J. Vigmond, M. Hughes, L. L. G. Plank, Computational tools for
modeling electrical activity in cardiac tissue, J. Electrocardiol. 36 (2003)
69–74.

[6] D. Krause, M. Potse, T. Dickopf, R. Krause, A. Auricchio, F. Prinzen,
Hybrid Parallelization of a Large-Scale Heart Model, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012, pp. 120–132.

25

[7] G. R. Mirams, C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper,
A. Corrias, Y. Davit, S.-J. Dunn, A. G. Fletcher, D. G. Harvey, M. E.
Marsh, J. M. Osborne, P. Pathmanathan, J. Pitt-Francis, J. Southern,
N. Zemzemi, D. J. Gavaghan, Chaste: An open source c++ library for
computational physiology and biology, PLOS Computational Biology 9
(2013) 1–8.

[8] P. Colli Franzone, L. Pavarino, A parallel solver for reaction–diffusion
systems in computational electrocardiology, Mathematical Models and
Methods in Applied Sciences 14 (2004) 883–911.

[9] R. W. dos Santos, G. Plank, S. Bauer, E. J. Vigmond, Parallel multigrid
preconditioner for the cardiac bidomain model, IEEE Transactions on
Biomedical Engineering 51 (2004) 1960–1968.

[10] G. Seemann, F. B. Sachse, M. Karl, D. L. Weiss, V. Heuveline, O. Dös-
sel, Framework for Modular, Flexible and Efficient Solving the Cardiac
Bidomain Equations Using PETSc, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010, pp. 363–369.

[11] R. Sachetto Oliveira, B. M. Rocha, R. M. Amorim, F. O. Campos,
W. Meira, E. M. Toledo, R. W. dos Santos, Comparing cuda, opencl
and opengl implementations of the cardiac monodomain equations, in:
R. Wyrzykowski, J. Dongarra, K. Karczewski, J. Waśniewski (Eds.),
Parallel Processing and Applied Mathematics, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012, pp. 111–120.

[12] G. Haase, M. Liebmann, C. C. Douglas, G. Plank, A parallel algebraic
multigrid solver on graphics processing units, in: W. Zhang, Z. Chen,
C. C. Douglas, W. Tong (Eds.), High Performance Computing and Ap-
plications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 38–
47.

[13] M. Munteanu, L. Pavarino, S. Scacchi, A scalable new-
ton–krylov–schwarz method for the bidomain reaction-diffusion system,
SIAM Journal on Scientific Computing 31 (2009) 3861–3883.

[14] S. Clain, S. Diot, R. Loubère, A high-order finite volume method for
systems of conservation laws—multi-dimensional optimal order detec-
tion (mood), Journal of Computational Physics 230 (2011) 4028 – 4050.

26

[15] S. Clain, G. Machado, J. Nóbrega, R. Pereira, A sixth-order finite
volume method for multidomain convection-diffusion problem with dis-
continuous coefficients, Computer Methods in Applied Mechanics and
Engineering 267 (2013) 43–64.

[16] S. Clain, G. Machado, A very high-order finite volume method for
the time-dependent convection–diffusion problem with butcher tableau
extension, Computers & Mathematics with Applications 68 (2014) 1292
– 1311.

[17] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability preserving high-
order time discretization methods, SIAM Rev. 43 (2001) 89–112.

[18] D. A. Dunavant, High degree efficient symmetrical gaussian quadrature
rules for the triangle, International Journal for Numerical Methods in
Engineering 21 (1985) 1129–1148.

[19] F. Pellegrini, Scotch and PT-Scotch Graph Partitioning Software:
An Overview, in: O. S. Uwe Naumann (Ed.), Combinatorial Scien-
tific Computing, Chapman and Hall/CRC, 2012, pp. 373–406. URL:
https://hal.inria.fr/hal-00770422.

27

