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Abstract  

Hemophilia, or inherited genetic deficiencies in coagulation factors result in uncontrolled 
bleeding requiring replacement therapy with recombinant proteins given preventively or on-
demand. However, a major problem with these approaches is the potential for development of 
immune responses to the administered proteins due to the underlying genetic deficiency of the 
factor(s) throughout life. As such, there is great interest in developing strategies that avoid 
immunogenicity and induce immune tolerance. Recently, recombinant Factor VIII and Factor IX 
fused to the Fc domain of IgG have been developed as therapeutic agents for hemophilia A and 
B, respectively. Although it is well known that the possession of an Fc domain confers IgG’s 
longer-lasting circulating half-life, it is not generally appreciated that the Fc domain also confers 
immunoregulatory properties that are associated with the induction of tolerance. Here, we 
review some of the latest advances in our understanding of the tolerogenic abilities of IgG Fc 
and the impact of rFVIIIFc on the treatment of hemophilia.  
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Introduction  

As a class of therapeutic moieties, crystallizable fragment (Fc)-fusion proteins have a long 
history of clinical use, dating back to 1998 when the first Fc-fusion protein product was 
approved for therapy.1 The rationale for such an approach stems from the ability of Fc fusion 
proteins to confer the characteristics of both the IgG Fc-domain and the chimerized protein or 
peptide. An important property of IgG is its long serum half-life due to interactions between the 
IgG Fc-domain and neonatal crystallizable fragment receptor (FcRn) conferring an extended 
half-life on the chimerized cargo drug.2-6 An underappreciated quality of Fc-fusion proteins is 
their ability to produce limited immunogenicity to the attached molecule. Indeed, several Fc 
fusion drugs have been approved by FDA. While there are no direct comparisons between the 
immunogenicity of the coupled (Fc-cargo) and uncoupled (cargo) therapies, it has been noted 
that the immunogenicity of such fusion proteins is low.1 The latter finding is consistent with 
observations dating back to more than 40 years ago that IgG is endowed with tolerance 
inducing functions which are conferred through the Fc domain.7-13 

This is potentially important to recombinant replacement therapies whereby recurring 
supplementation of these compounds can trigger an immune-mediated reaction, as is the case 
for long-term treatment with recombinant Factor VIII (rFVIII) and Factor IX (rFIX) in humans with 
hemophilia A and hemophilia B, respectively, who are genetically or functionally deficient in 
these factors. Hence, administration of therapeutic FVIII and FIX can result in the development 
of neutralizing anti-FVIII or anti-FIX IgG antibodies that can reduce the therapeutic effects of 
these proteins.14-18 Fc-fusion proteins of rFVIII (rFVIIIFc) and rFIX (rFIXFc) represent a new 
class of therapeutic proteins in which the Fc domain of human IgG1 is genetically fused to one 
molecule of rFVIII or rFIX, respectively, creating so-called monomeric Fc-fusion proteins that are 
produced in a human cell line which enables a human glycosylation pattern.19-23 As a 
consequence of these attributes, there is burgeoning evidence that FVIIIFc and FIXFc may be 
capable of being uniquely more effective in inducing antigen-specific tolerance to these 
recombinant coagulation factors. Here we summarize current evidence in support of this 
proposal, the potential mechanisms involved and how these concepts may be used in current 
treatment regimens of hemophilia A and B for tolerance induction. 

The relationship between IgG Fc and immune tolerance 

In the late 1960’s, Weigle and his colleagues built on the newly discovered collaboration 
between T and B cells to examine mechanisms and targets for tolerance using ultracentrifuged 
human gamma globulin (HGG) as a model antigen.24,25 They found that ultracentrifuged and 
deaggregated HGG was tolerogenic in mice, whereas aggregated HGG was immunogenic, 
suggesting tolerance was associated with monomeric IgG but not IgG as a complex. Further, 
both T and B cells could be rendered unresponsive, but with different dose requirements and 
kinetics for tolerance induction and duration.   

 
Yves Borel and co-workers subsequently expanded on these observations by demonstrating 

direct coupling of immunogenic haptens (such as chemicals or nucleic acids) to murine IgG 
isotypes led to both T- and B-cell tolerance to the coupled epitopes and that IgG subclasses 
worked best as tolerogenic carriers relative to other proteins such as albumin or IgM.7-9,26-28 
Baxevanis et al. extended this work by examining the effect of coupling an antigen directly with 
human Fc (hFc).29 They found that hFc could induce tolerance in mice, while a truncated Fc 
variant containing only the CH3 domain could not. In addition, Waldschmidt and colleagues 
demonstrated in vitro that although intact IgG was a tolerogenic carrier, F(ab)’2 fragments were 
not, indicating the unique importance of the Fc domain of IgG for tolerance induction.10 Further 
studies by Scott’s group validated the use of IgG carriers and showed that potential 
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immunogenic peptide epitopes could be rendered tolerogenic in an antigen specific manner by 
genetically embedding them into an IgG framework.30-33  

Although the mechanisms by which the IgG Fc domain can induce tolerance are poorly 
characterized, it has been suggested to involve Fc receptor dependent and independent 
interactions. In humans, two main classes of Fc receptors have been described and include the 
classical Fcγ receptors (FcγR: FcγRI, FcγRIIa/b/c, FcγRIIIa/b) which are expressed primarily on 
the surface of hematopoietic cells and non-classical FcγR (FcRn, DC-SIGN, CD22, CD23, 
TRIM21, FcRL1-6, FCRLA, FCRLB) which have a broader cellular localization and cell 
expression pattern (Table 1).34,35 Among the classical FcγRs, FcγRIIb is the sole receptor that 
possesses inhibitory function. It is also the only FcγR in mice and humans that is expressed on 
B cells although it is widely expressed on innate immune effector cells including monocytes, 
macrophages and dendritic cells and also on liver sinusoidal endothelium.36,37 In FcγRIIb-
deficient mice, antibody production is strongly enhanced and less specific, resulting in 
autoantibody production and a systemic lupus erythematosus-like disease in susceptible mouse 
strains. Thus, IgG-Fc binding to FcγRIIb on B cells provides an important checkpoint for 
maintaining humoral tolerance and limiting self-reactive immune responses.38,39 Furthermore, 
antigen-antibody complexes (immune complexes, IC) may induce B cell apoptosis by triggering 
FcγRIIb in the absence of B cell receptor signaling which may be an important mechanism to 
limit the survival of autoantibody producing plasma cells in the bone marrow (Figure 1a).40-43  

The immune-modulating property of IgG is also dependent on glycosylation status. The Fc 
portion of IgG has a single carbohydrate modification site at an Asparagine 297 residue that can 
produce at least 30 potential IgG glycoforms (Figure 1b) which have important consequences 
for the biologic activities and effector functions of antibodies.44 Ravetch and colleagues have 
shown that sialylated IgG glycoforms can bind DC-SIGN (or its mouse homolog SIGN-R1) and 
induce the expression of FcγRIIb by professional antigen presenting cells (APC), such as 
macrophages or dendritic cells (DC).45 These cells may promote tolerance presumably through 
suppression of APC function or promotion of antigen presentation of the internalized antigen in 
a tolerogenic fashion (Figure 1c).46 Furthermore, sialylated IgG glycovariants were 
demonstrated to upregulate the inhibitory FcγRIIb variant on human B cells in vitro and murine 
cells in vivo via binding to CD23, which limits antibody responses (Figure 1a).47 Thus, select 
IgG Fc-glycoforms may be involved in limiting immune activation in both the adaptive humoral 
immune response and its downstream effector functions.  

Among other non-classical FcγR, FcRn is thought to mediate some of the tolerogenic 
properties of IgG.  FcRn normally binds IgG through the CH2-CH3 domain of Fc at acidic pH as 
in an endosome of an APC, and protects it from degradation by diverting the IgG and its 
associated molecules away from lysosomes to the cell surface (Figure 1e).48 Thus, FcRn is 
both responsible for the long serum half-life of IgG but also a potential vehicle for preventing 
immunogenicity by diverting associated cargo, such as Fc fusion proteins away from antigen 
presentation compartments when the IgG is monomeric (Figure 1d).49-55 In addition, neonatal 
murine models of tolerance have demonstrated that maternally transferred IgG IC can engage 
FcRn in mucosal DC and induce FOXP3+ T regulatory (TReg) cells, thus linking FcRn to 
generation of tolerance pathways in certain settings.56 

Finally, Fc receptor independent mechanisms include the observation that promiscuous 
tolerogenic epitopes may also exist in the CH2 domain of Fc; so-called “Tregitopes” proposed by 
DeGroot and colleagues.44 They have suggested that the Fc portion of IgG upon degradation is 
processed and presented by major histocompatibility complex class II molecules that promote 
the activation of TReg cells (Figure 1e).57-59 Importantly, some of these Tregitopes overlap with 
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regions critical for binding to FcγR and/or FcRn.60-62 On the other hand, additional studies have 
shown that some Tregitopes possess limited TReg cell triggering capacities consistent with the 
notion that the Fc portion of IgG engages multiple mechanisms of tolerance induction.63 
Amongst the other potential mechanisms, it has been suggested that monomeric IgGs might 
negatively affect Ag uptake, processing or loading onto MHC-class II molecules by APC 
rendering T cell stimulation less efficient.64-66 Whether these mechanisms promote bystander 
tolerance to non-IgG epitopes attached to Fc remains to be determined. 

Together, multiple mechanisms, both FcγR-dependent and independent, potentially underlie 
the tolerance inducing activities of IgG through its Fc domain and account in part for the anti-
inflammatory activities of intravenous immunoglobulin (IVIG).67 

The relationship between IgG Fc and immune tolerance in models of hemophilia 

Such concepts have direct potential relationship to the immunogenicity of, and immune 
tolerance to, FVIII and FIX. Building on these historical observations, pioneering studies of Lei & 
Scott have shown that insertion of the immunogenic A2 and C2 FVIII domains into the Fc-
domain of IgG, creating chimeric IgG molecules, can preventatively induce FVIII-specific 
tolerance and actively induce tolerance in - FVIII immunized rodents.68 Notably, the latter 
observations represent more closely the clinical setting in that the inhibitors are present before 
the start of the therapy in most hemophilia A patients. Similarly, hemophilia A mice exposed to 
rFVIIIFc at therapeutically relevant doses (50 IU/kg and 100 IU/kg), but not higher doses (250 
IU/kg), exhibit reduced antibody responses relative to that observed in response to rFVIII 
without an Fc-domain.11 Moreover, pre-treatment of hemophilia A mice with therapeutic doses of 
rFVIIIFc, but not an irrelevant protein, can prevent the induction of anti-FVIII antibodies including 
those with neutralizing potential. The mechanistic basis of the reduced immunogenicity of 
rFVIIIFc was found to involve a combination of immunomodulatory influences which are 
consistent with the induction of antigen-specific tolerance. Examination of splenocytes from 
rFVIIIFc-treated mice showed increased numbers of CD4+CD25+FOXP3+ TReg cells as well as 
an increase in T cells expressing the tolerogenic CD279 (PD-1) molecule.11 Further analysis of 
these splenic T cells revealed reduced expression of the proinflammatory protein TNFα and 
examination of their transcriptome confirmed an increased expression of immunomodulatory 
molecules such as FOXP3, CTLA-4, IL-10 and TGF-β. Furthermore, the levels of transcripts for 
proinflammatory molecules such as CCL3 and STAT3 were reduced in the spleens of rFVIIIFc-
treated mice. Lastly, rFVIIIFc mutant molecules were generated that lacked the ability to bind to 
either FcγR or FcRn. In mice, the immunomodulatory influences of the two mutant forms of 
rFVIIIFc were maintained, although with a less evident immune regulatory profile as seen with 
the original rFVIIIFc protein. Overall, this murine study suggests that the immunomodulatory 
effect of rFVIIIFc is the combined result of increased numbers of TReg cells and the generation of 
a non-inflammatory splenic microenvironment. There is also evidence that interaction with both 
FcRn and FcγR contributes to this outcome.  

Among the FcγR to be considered in the context of tolerance responses potentially 
associated with rFVIIIFc is the inhibitory FcγRIIb. FcγRIIb is a low-affinity IgG Fc receptor that 
binds to IC rather than monomeric IgG.69,70 As a consequence, rFVIIIFc is unlikely to 
bind FcγRIIb at therapeutic concentrations which typically achieve the levels of FVIII that 
normally exist in the circulation.20,22 As an IC, on the other hand, rFVIIIFc would be able to 
engage FcγRIIb and activating FcγR.71 It is thus interesting to consider the possibility that the 
presence of anti-FVIII or anti-rFVIIIFc antibodies might allow for formation of IC capable of 
binding to and triggering FcγRIIb function which might deliver inhibitory signals to B and other 
hematopoietic cells.43 However, FcγRIIb plays a complex role in regulating antibody-mediated 
tolerogenic pathways. This is illustrated by observations in a FVIII-/- mouse model where the 
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presence of FcγRIIb was shown to be potentially detrimental in this regard through its ability to 
ensure survival of memory B cells during re-stimulation with FVIII. 72,73 Therefore, in some 
instances FcγRIIb may be necessary to protect memory B cells from over-stimulation during 
FVIII re-encounter and allow them to survive. 

rFVIIIFc’s interaction with FcRn suggests that the molecule’s immunomodulatory effects 
might be transferred across the placenta as the FcRn receptor is expressed by the 
syncytiotrophoblast and is involved in the transplacental transfer of IgG.74,75 This proposal is 
supported by evidence that an Fc fusion version of β-glucuronidase has been found to cross to 
the murine fetus.76 To date, preliminary evidence obtained in hemophilia A mice has also shown 
that when rFVIIIFc is administered at high doses to late stage pregnant mothers there is FVIII 
activity detectable in the fetus.77 This is not found in fetal mice treated with rFVIII only. 
Consistent with this, Gupta and colleagues have taken advantage of these concepts to further 
demonstrate the vital role played by FcRn in the transplacental transfer of IgG during gestation 
in relation to hemophilia.12,78 They have shown that the antenatal transfer of Fc containing the 
A2 and C2 domains of FVIII can induce FVIII-specific TReg cells in the progeny animals and 
prevent immune responses to rFVIII upon subsequent exposure during post-natal life.12 This is 
due to FVIII-specific tolerance induction as resistance to FVIII-associated immune responses 
can be transferred to previously naïve animals. What is not known presently is how the 
transplacental transport of FVIII is influenced by its interaction with von Willebrand factor77. 
Nevertheless, if this potential was realized it might be possible to induce prenatal tolerance to 
FVIII, a significant step towards mitigating this treatment’s complication.                 

Mechanisms of immunogenicity of replacement clotting factors VIII and IX 

As previously stated, the intravenous administration of therapeutic FVIII and FIX results in 
the development of neutralizing anti-FVIII or anti-FIX IgG, that are referred to as “inhibitors”, in 
up to 40% and 4%, respectively, of the patients with the severe forms of these diseases.16-18 
Immune responses to FVIII and FIX are believed to be classical responses to foreign antigens: 
the proteins are endocytosed by professional APC, processed and presented to naïve CD4+ T 
cells (Figure 1d); the naïve T cells are activated, proliferate and provide help to naïve antigen-
specific B cells that differentiate into plasmocytes or memory B cells. In the case of FVIII, the 
dependence on T-cell help was initially suggested in inhibitor-positive patients who became 
responsive to FVIII therapy following infection by human immunodeficiency virus and loss of 
CD4+ T cells, as well as by the isotype-switched nature of anti-FVIII IgG (predominantly IgG1 or 
IgG4) and by the presence of affinity maturation.79-81 More directly, FVIII-specific CD4+ T cell 
lines or clones have been isolated from inhibitor-positive patients.82-84 Several factors have been 
proposed to predispose patients to FVIII inhibitor development. These include genetic risk 
factors, such as the type of hemophilia A-causing FVIII mutation, and more precisely, the 
presence of FVIII antigen, HLA-DR and DQ haplotypes, and polymorphisms in different 
immuno-inflammatory genes (TNFA, IL10, HMOX1, FCGR).85-88 Other non-genetic risk factors 
have also been identified such as the type of FVIII product used, vaccination schedules or the 
intensity of treatment in the first months of life.18,89  

The nature of the immune regulation of the anti-FVIII response is poorly understood. Healthy 
donors can produce FVIII-reactive IgG and T cells, albeit under homeostatic conditions, 
suggesting that tolerance to FVIII relies on dynamic and controlled immune recognition rather 
than on the mere elimination of FVIII-specific T cells and B cells in primary lymphoid organs.90-92 
Experiments in mice have suggested that induced tolerance to exogenous FVIII relies on the 
generation of both central (thymic) and peripheral (induced) TReg cells.12 Besides, the 
development of FVIII inhibitors was suggested to depend on an impaired capacity of the 
patients’ DCs to trigger indoleamine 2,3-dioxygenase 1 (IDO1)-dependent tolerance 
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mechanisms.93 Yet, the facts that i) healthy donors without previous abnormalities may develop 
pathogenic anti-FVIII autoimmunity (i.e., acquired hemophilia), and ii) patients with 
mild/moderate forms of the disease, who express mutated forms of the FVIII molecule, are at a 
lesser, but life-long risk of developing FVIII inhibitors, illustrate the tenuous and complex nature 
of FVIII-specific regulatory mechanisms.94 Although less well understood, it is likely that similar 
mechanisms may underlie the hypersensitivity to FIX observed in patients with hemophilia B.95  

Current treatment approaches and success rate for management of inhibitors 

In some individuals with hemophilia who have low titer inhibitors (<5 Bethesda units[BU]/ml) 
to FVIII or FIX, higher doses of factor concentrate may be able to achieve hemostasis or even 
allow continued prophylactic therapy. However, for most patients with inhibitors, particularly, 
those with high titers (>5 BU/ml), this precludes continued use of standard FVIII or FIX 
replacement therapy, making acute management of bleeding and prophylaxis more challenging.  
Thus “bypassing agents” have been the only available strategy to treat or prevent bleeding. The 
approved bypassing agents are an activated prothrombin complex concentrate (aPCC) or 
recombinant factor VIIa (rFVIIa).96 A recombinant porcine FVIII is approved for treatment of 
acute bleeding in patients with acquired hemophilia A, but is still being investigated in clinical 
trials in patients with congenital hemophilia A with inhibitors.97 Most recently, a humanized 
bispecific antibody, Emicizumab, that partially mimics the scaffolding function of FVIII has 
shown significant hemostatic activity in FVIII inhibitor patients and its properties were recently 
reviewed.98,99 This therapy has now been licensed for prophylactic management of bleeding in 
this patient population. 

aPCC is a plasma-derived concentrate that contains both zymogen and active forms of 
vitamin K-dependent clotting factors, with its most important hemostatic components believed to 
be prothrombin and activated factor X (FX).98 The mechanism of action of rFVIIa is not entirely 
clear, however, evidence supports the notion that the therapeutic effect of high doses of rFVIIa 
in hemophilia stems from FVIIa-catalyzed activation of FX, requiring phospholipids exposed on 
activated platelets, but independent of tissue factor.96 Even though a scarce amount of 
information is available on their mode of action, both bypassing agents have demonstrated 
efficacy in achieving hemostasis with acute bleeding episodes of about 80%, with no clear 
evidence of superiority of either agent, although there is considerable inter-patient and intra-
patient variability.86 Thus, both agents may be used concomitantly. Clinical trials support the use 
of both bypassing agents for prophylaxis in hemophilia patients with inhibitors in association 
with reduction in the number of bleeding episodes and improvement in quality of life measures. 
However, overall efficacy in preventing bleeding episodes is inferior compared to prophylaxis in 
hemophilia patients without inhibitors and remains a substantial treatment burden that adds 
considerably to the overall costs of therapy. Thus, eradication of the inhibitor remains a high 
priority. 

The standard of care for inhibitor eradication is thus immune tolerance induction (ITI). ITI 
therapy involves the frequent and regular infusion of FVIII or FIX, typically at high doses over 
months to years to induce tolerance to the infused factor and allow factor infusions alone to 
control acute bleeding and resumption of prophylaxis. The proposed mechanisms by which 
tolerance is induced have included T cell exhaustion through overstimulation leading to T cell 
anergy, inhibition of FVIII-specific memory B-cell differentiation and the formation of anti-
idiotypic antibodies.100-102  

ITI is effective in about two-thirds of patients. However, observational studies have identified 
good and poor risk features that affect successful outcome. Poor risk features include age at 
start of ITI of >8 years old, a historical peak titer of >200 BU/ml, pre-ITI titer of >10 BU/ml, and 
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time to titer decline to <10 BU/ml before ITI of >24 months, with tolerance success rates that are 
less than 50%. The International Immune Tolerance Study demonstrated an overall success 
rate of approximately 70% in subjects with good risk features.103 This study was a randomized, 
controlled study comparing low-dose (50 IU/kg three times per week) to high-dose FVIII (200 
IU/kg daily) and did not show a significant difference between the dosing regimens in overall 
tolerance induction success rate. However, high-dose subjects achieved a negative titer and 
recovered significantly more rapidly than low-dose subjects (4.2 months vs 9.2 months). In 
addition, there was a significantly greater number of bleeding episodes in the low-dose subjects. 
ITI has significant financial implications, with costs of approximately $50,000 to $75,000 per 
month not including the high cost associated with the chronic use of bypassing agents. 
Economic modeling has suggested that low-dose ITI combined with aPCC prophylaxis could be 
a cost-saving strategy with the potential to reduce the morbidity by lowering the risk of 
breakthrough bleeding during ITI.104 These observations highlight the critical need for additional 
approaches to prevent and manage the complication of inhibitor formation. 

Potential immunomodulatory properties of rFVIIIFc and rFIXFc in the management of 
inhibitors 

The immunomodulatory properties of rFVIIIFc have suggested that it may be beneficial to 
hemophilia patients in preventing inhibitor formation or in those in whom inhibitors have already 
developed. There are now several pieces of clinical evidence that support this proposal.  

rFVIIIFc and rFIXFc display extended stability and availability in the circulation, through 
interaction of the IgG-Fc domain with FcRn, diverting the chimeric proteins away from 
intracellular degradation; although this half-life extension is greater with FIX than FVIII due to 
the latter’s interaction with von Willebrand factor.105-107 Importantly, passage of rFVIIIFc through 
intracellular recycling routes doesn’t affect its overall function and studies involving FVIII (rFVIII-
SQ) stability at different pH levels have shown that its activity is minimally lost at pH 6. 20,22,108,109 
It was only below this pH level that FVIII activity was increasingly absent.108 Further, the 
endocytic recycling pathway where FcRn operates to salvage IgG from lysosomal degradation 
involves mildly acidic environments characteristic of an early endosome, sorting endosome and 
recycling endosome where the lowest pH is between ~5.8-6.5.49,110-113 In this mildly acidic 
environment the activity of FVIII would thus be expected to be preserved.  Consequently, both 
rFVIIIFc and rFIXFc have demonstrated efficacy in managing acute bleeding episodes and in 
preventing bleeding through prophylaxis.114,115 In addition, to date no inhibitors have been 
reported within previously treated patient populations with either Fc fusion product. There is thus 
good biological rationale for reduced immunogenicity of these fusion proteins as well as 
improved efficacy in ITI based upon the aforementioned comments; recognizing however that 
this requires additional studies in controlled ITI trials and in previously untreated patient 
populations. Moreover, recent clinical data support this notion.13,116 However, definitive 
confirmation in this regard await clinical data from previously untreated patients and in 
prospective ITI studies. 

In a case report, Ragni and colleagues for example noted that in comparison to a child in an 
inhibitor-prone family who developed a high titer inhibitor in response to conventional rFVIII 
treatment, a cousin with severe hemophilia A was observed to develop a low titer inhibitors 
when treated with rFVIIIFc.116 Further, the child who received rFVIIIFc was able to continue 
prophylactic dosing with rFVIIIFc with subsequent resolution of the inhibitor, while the rFVIII only 
family member went on to require placement of a port central venous catheter and high dose ITI 
to eradicate the inhibitor.116 In addition, two case series have described the successful induction 
of FVIII tolerance in four children with severe hemophilia A and high titer inhibitors using doses 
of rFVIIIFc ranging from 50 IU/kg three times per week up to 200 IU/kg every other day.13,117 In 
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the report from Malec and colleagues, the time to disappearance of anti-FVIII antibodies was 4-
12 weeks which was shorter than that reported with rFVIII ITI. More recently, a non-
interventional, retrospective chart review of males with severe hemophilia A and high-titer 
inhibitors treated with rFVIIIFc for ITI was conducted at 10 sites in the United States and 
Canada.117,118 Nineteen patients were treated: 7 first-time ITI and 12 who had previously failed 
ITI with other products (rescue ITI). Although this retrospective study included a patient 
population with poor risk features for ITI success, rFVIIIFc use demonstrated a rapid decrease 
in BU titers and rapid tolerization in first-time ITI patients, as well as showing therapeutic benefit 
in patients undergoing rescue ITI. Furthermore, a trend toward rapid BU titer decline was 
observed with higher rFVIIIFc dosing (>130 IU/kg) administered daily. These preliminary results 
will be evaluated further in two prospective clinical trials using rFVIIIFc for ITI in patients with 
hemophilia A and inhibitors (NCT03093480 and NCT03103542) to determine if an 
immunomodulatory influence of rFVIIIFc may be more prompt and efficient than current ITI 
protocols. In addition, a phase 2 clinical study has been organized to assess the influence of 
rFVIIIFc on inhibitor incidence in previously untreated patients (the INHIBIT study – Clinical 
Trials.gov Identifier NCT02196207).119 Confirmation of the immunomodulatory influence of 
rFVIIIFc in enhancing the efficiency of current ITI protocols will require the design of appropriate 
clinical trials that are now ongoing. Similar studies should be considered for patients with 
hemophilia B in light of a case report describing the successful use of rFIXFc in an extended 
infusion protocol to treat a patient with a history of hypersensitivity to plasma-derived and other 
rFIX products.120 Notwithstanding this initial report, more clinical data needs to be collected to 
confirm the immunomodulatory potential of rFIXFc. 

Concluding Remarks 

FVIII and FIX are highly immunogenic proteins when used as long-term replacement 
therapy in patients with hemophilia A and B, respectively. This fact significantly complicates the 
management of these diseases. These immune responses represent a major burden on 
patients and the health care system, necessitating a better understanding of the pathways 
involved in the pathogenic immune responses, their regulation and novel means to mitigate the 
complication through the induction of immune tolerance. The development of recombinant FVIII 
and FIX as fusion proteins with the Fc domain of IgG1 for the treatment of these patients is 
increasingly recognized to provide a unique opportunity for confronting this problem. The 
possession of an IgG Fc domain not only endows FVIII and FIX with extended pharmacokinetic 
survival due to interactions with FcRn, but also potentially takes advantage of the less 
appreciated but equally important property of the Fc domain as a factor involved in tolerance 
induction as reviewed here. Indeed, the recent application of rFVIIIFc and rFIXFc to humans 
with hemophilia A and B has revealed encouraging evidence that coupling these proteins to Fc 
may, at present mainly with rFVIIIFc, alter the host immune response in a manner that is 
associated with enhanced tolerance induction. These timely observations raise the possibility 
that such fusion proteins may be less immunogenic and/or allow for enhanced induction of 
factor specific tolerance relative to their native counterparts which will require ongoing and 
newly established protocols focused on addressing the major clinical challenges associated with 
coagulation factor immunogenicity. It is hoped that this review article will stimulate such 
preclinical and clinical studies and the opportunities that they provide.   
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Figure 1: A schematic representation of the potential mechanisms of tolerance induction
by Fc portion of IgG. (a) The ligation of the inhibitory receptor FcγRIIb by IgG IC (potentially
composed of FVIII-anti-FVIII IgG or rFVIIIFc-anti-FVIII IgG) on B cells has different
consequences depending on B cell maturity and has been shown to (1) prevent B cells with a
higher-affinity self-reactive receptor from becoming IgG positive plasma cells and (2) induce
apoptosis. When sialylated IgG engages CD23, (3) B cells upregulate FcγRIIb expression. (b) In
the CH2 domain of the IgG Fc region a single conserved glycosylation site is located
(asparagine, N297). This site hosts two sugar moieties per IgG with extensive heterogeneity
due to the variable addition of fucose, galactose, bisecting N-acetylglucosamine, or sialic acid.
These differences result in altered IgG binding to FcγRs, among others, which ultimately
influence the effector functions of the Fc domain. For instance, (c) ligation of sialylated IgGs to
DC-SIGN is involved in upregulation of inhibitory FcγRIIb on the surface of the APC which
modulates downstream APC functions. (d-e) Although APC express FcRn on the surface, FcRn
does not bind IgG at neutral pH. Thus, monomeric IgG or rFVIIIFc is internalized by i) fluid-
phase endocytosis and binds to FcRn in ii-iii) an acidic endosomal compartment, the pH at
which FcRn binds IgG. FcRn then recycles iv) IgG or rFVIIIFc back into the neutral pH milieu of
the circulation. FcRn unbound IgG or other internalized soluble proteins (FVIII) will be
subsequently degraded in v) lysosomes and routed to vii) Ag processing compartments where
loading onto MHC class II molecules takes place. Therefore, FcRn diverts IgG or recombinant
protein fused to Fc from Ag presentation. e) IgG not bound to FcRn due to levels that exceed
FcRn capacity will also be degraded and peptides derived from IgG can be presented in the
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context of MHC class II molecules.  Within the CH2 domain of Fc, tolerogenic epitopes are 
present and promote tolerance via TREG cell activation (Treg-itope). As tolerance can be imposed 
upon proteins attached to Fc, these regulatory effects are likely to be transmissible.   
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Table 1: Human Fc Receptors 

 Classical FcγR Non-Classical FcR 

 FcγRI FcγRIIa FcγRIIb FcγRIIc FcγRIIIa FcγRIIIb FcRn DC-SIGN CD22 CD23 TRIM21 FCRL1-6 FCRLA FCRLB 

Other name CD64 CD32A CD32B CD32C CD16A CD16B 
Brambell 

Receptor 

CD209; 

CLEC4L 
SIGLEC2 FcεRII Ro52 CD307a-f   

Cellular 

distribution 
Surface plasma membrane 

Surface and 

Endosomes 
Surface plasma membrane Surface Cytoplasmic Surface 

Intracellular 

Compartments 

Functional 

outcome 
Activation Inhibition Activation 

IgG recycling; CIC 

responses 

Ag 

presentation 
Inhibition Activation 

Activation; viral 

degradation 

Inhibition/ 

Activation ? 

IgG retention during 

affinity maturation? 

Cellular 

Expression 
Hematopoietic 

Most nucleated 

cells 
Myeloid B cells 

Hematopoietic; 

epithelia  

Most nucleated 

cells 

Lymphocytes; 

Mainly B cells 

Germinal center B 

cells 

Ig binding 

affinity 
IgG, High IgG, Low/Medium 

IgG, High; 

pH dependent 

sialylated IgG, 

Medium  

Sialylated 

glycans, 

sIgM, CD45  

IgE Low 
IgG, IgM and 

IgA, Medium 

IgG 

aggregates 

Low/Medium 

IgG Low 

Ag, antigen; s, surface;  
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