
HAL Id: hal-02333374
https://hal.archives-ouvertes.fr/hal-02333374

Submitted on 25 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulating Induction-Recursion for Partial Algorithms
Dominique Larchey-Wendling, Jean-François Monin

To cite this version:
Dominique Larchey-Wendling, Jean-François Monin. Simulating Induction-Recursion for Partial Al-
gorithms. 24th International Conference on Types for Proofs and Programs,TYPES 2018, Jun 2018,
Braga, Portugal. �hal-02333374�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/237321262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02333374
https://hal.archives-ouvertes.fr


Simulating Induction-Recursion for Partial Algorithms

Dominique Larchey-Wendling1 and Jean-François Monin2

1 Université de Lorraine, CNRS, LORIA
dominique.larchey-wendling@loria.fr

2 Université Grenoble Alpes, CNRS, Grenoble INP, VERIMAG
jean-francois.monin@univ-grenoble-alpes.fr

Abstract
We describe a generic method to implement and

extract partial recursive algorithms in Coq in a
purely constructive way, using L. Paulson’s if-
then-else normalization as a running example.

Implementing complicated recursive schemes
in a Type Theory such as Coq is a challenging
task. A landmark result is the Bove&Capretta
approach [BC05] based on accessibility predi-
cates, and in case of nested recursion, simulta-
neous Inductive-Recursive (IR) definitions of the
domain/function [Dyb00]. Limitations to this ap-
proach are discussed in e.g. [Set06, BKS16]. We
claim that the use of (1) IR, which is still absent
from Coq, and (2) an informative predicate (of sort
Set or Type) for the domain, preventing its erasing
at extraction time, can be circumvented through a
suitable bar inductive predicate.
type Ω = α | ω of Ω∗Ω∗Ω

let rec nm e = match e with
| α ⇒ α

| ω(α,y,z) ⇒ ω(α,nm y,nm z)
| ω(ω(a,b,c),y,z)⇒ nm(ω(a,nm(ω(b,y,z)),nm(ω(c,y,z))))

Figure 1: L. Paulson’s if-then-else normalisation algorithm.

We illustrate our technique on L. Paulson’s al-
gorithm for if-then-else normalization [Gie97,
BC05] displayed in Fig. 1. For concise state-
ments, we use ω to denote the ternary construc-
tor for if then else expressions, and α as
the nullary constructor for atoms. As witnessed in
the third match rule ω(ω(a,b,c),y,z), nm contains
(two) nested recursive calls, making its termination
depend on properties of its semantics. This cir-
cularity complicates the approach of well-founded
recursion and may even render it unfeasible.

Our method allows to show these properties af-
ter the (partial) function nm is defined, as proposed
in [Kra10], but without the use of Hilbert’s ε-
operator. We proceed purely constructively with-
out any extension to the existing Coq system and

the recursive definition of Fig. 1 can be extracted
as is from the Coq term that implements nm.

We start with the inductive definition of the
graph G : Ω→Ω→ Prop of nm (Fig. 2) and we
show its functionality.1 Then we define the do-
main/termination predicate D : Ω→Prop as a bar
inductive predicate with the three rules of Fig. 3.

G α α

G y ny G z nz

G (ω α y z) (ω α ny nz)

G (ω b y z) nb G (ω c y z) nc G (ω a nb nc) na

G (ω (ω a b c) y z) na

Figure 2: Rules for the graph G : Ω→Ω→Prop of nm.

D α

D y D z

D (ω α y z)

D (ω b y z) D (ω c y z)
∀nb nc,G (ω b y z) nb→G (ω c y z) nc→D (ω a nb nc)

D (ω (ω a b c) y z)
Figure 3: Rules for the bar inductive definition of D : Ω→Prop.

There, we single out recursive calls using G but
proceed by pattern-matching on e following the re-
cursive scheme of nm of Fig. 1. Then we define
nm_rec : ∀e (De : D e), {n | G e n} as a fixpoint
using De to ensure termination. However, the term
nm_rec e De does not use De to compute: the value
n satisfying G e n is computed by pattern-matching
on e and recursion, following the scheme of Fig. 1.

Finally, we define nm e De := π1(nm_rec e De)
and get nm_spec e De : G e (nm e De) using the
second projection π2. Extraction of OCaml code
from nm outputs exactly the algorithm of Fig. 1, il-
lustrating the purely logical (Prop) nature of De.
In order to reason on D/nm we show that they sat-
isfy the IR specification given in Fig. 4: the con-
structors of D are sufficient to establish the simu-
lated constructors d_nm_[012], while nm_spec al-
lows us to derive the fixpoint equations of nm. Us-

1i.e. g_nm_fun : ∀e n1 n2,G e n1→G e n2→n1 = n2.



Simulating Induction-Recursion for Partial Algorithms D. Larchey-Wendling & J.-F. Monin

ing g_nm_fun, we get proof-irrelevance of nm.2

Inductive Ω : Set := α : Ω | ω : Ω→Ω→Ω→Ω.

Inductive D : Ω→Prop :=
| d_nm_0 : D α

| d_nm_1 y z : D y→D z→D(ω α y z)
| d_nm_2 a b c y z Db Dc : D

(
ω a (nm (ω b y z) Db)

(nm (ω c y z) Dc)
)

→ D
(
ω (ω a b c) y z

)
with Fixpoint nm e (De : D e) : Ω := match De with

| d_nm_0 7→ α

| d_nm_1 y z Dy Dz 7→ ω α (nm y Dy) (nm z Dz)
| d_nm_2 a b c y z Db Dc Da 7→ nm

(
ω a (nm (ω b y z) Db)
(nm (ω c y z) Dc)

)
Da

end.

Figure 4: IR spec. of D : Ω→Prop and nm : ∀e, D e→Ω.

We show a dependent induction principle for
D (see Fig. 5). The term d_nm_ind states that
any dependent property P : ∀e, D e→ Prop con-
tains D as soon as it is closed under the simu-
lated constructors d_nm_[012] of D. The assump-
tion ∀e D1 D2, P e D1→P e D2 restricts the prin-
ciple to proof-irrelevant properties about the de-
pendent pair (e,De). This is exactly what we need
to establish properties of nm. Then we can show
partial correctness and termination as in [Gie97] –
in this example, nm happens to always terminate
on a normal form of its input. In a more rela-
tional approach, these properties can alternatively
be proved using nm_spec and induction on G x nx.
Theorem d_nm_ind (P : ∀e, D e→Prop) :(

∀eD1 D2, P e D1→P e D2
)
→

(
P _ d_nm_0

)
→

(
∀y z Dy Dz, P _ D1→P _ Dz→P _ (d_nm_1 y z Dy Dz)

)
→

(
∀a b c y z Db Dc Da, P _ Db→P _ Dc→P _ Da . . .

. . . →P _ (d_nm_2 a b c y z Db Dc Da)
)

→ ∀e De, P e De.

Figure 5: Dependent induction principle for D : Ω→Prop.

Though our approach is inspired by IR defini-
tions, in contrast with previous work, e.g. [Bov09],
the corresponding principles are established in-
dependently of any consideration on the seman-
tics or termination of the target function (nm), i.e.
without proving any properties of D/nm a priori.
This postpones the study of termination after both
D and nm are defined together with constructors
and elimination scheme, fixpoint equations and
proof-irrelevance. Moreover, our domain/termina-
tion predicate D is non-informative, i.e. it does not
carry any computational content. Thus the code
obtained by extraction is exactly as intended.

2i.e. nm_pirr : ∀e D1 D2, nm e D1 = nm e D2.

Our Coq code is available under a Free Software
license [LWM18]. We have successfully imple-
mented other algorithms using the same technique:
F91, unification, depth first search as in [Kra10],
quicksort, iterations until 0, partial list map as
in [BKS16], Huet&Hullot’s list reversal [Gie97],
etc. The method is not constrained by nested/mu-
tual induction, partiality or dependent types. On
the other hand, spotting recursive sub-calls implies
the explicit knowledge of all the algorithms that
make such calls, a limitation that typically applies
to higher order recursive schemes such as e.g. sub-
stitutions under binders. Besides growing our bes-
tiary of examples, we aim at formally defining a
class of schemes for which our method is applica-
ble, and more practically propose some automation
like what is done in Equations [Soz10].

References
[BC05] A. Bove and V. Capretta. Modelling gen-

eral recursion in type theory. Math. Struct.
Comp. Science, 15(4):671–708, 2005.

[BKS16] A. Bove, A. Krauss, and M. Sozeau. Par-
tiality and recursion in interactive theorem
provers - an overview. Math. Struct. Comp.
Science, 26(1):38–88, 2016.

[Bov09] A. Bove. Another Look at Function Do-
mains. Electr. Notes Theor. Comput. Sci.,
249:61–74, 2009.

[Dyb00] P. Dybjer. A General Formulation of Si-
multaneous Inductive-Recursive Definitions
in Type Theory. J. Symb. Log., 65(2):525–
549, 2000.

[Gie97] J. Giesl. Termination of Nested and Mutu-
ally Recursive Algorithms. J. Autom. Rea-
soning, 19(1):1–29, 1997.

[Kra10] A. Krauss. Partial and Nested Recursive
Function Definitions in Higher-order Logic.
J. Autom. Reasoning, 44(4):303–336, 2010.

[LWM18] D. Larchey-Wendling and J.F. Monin.
The If-Then-Else normalisation algo-
rithm in Coq. https://github.com/

DmxLarchey/ite-normalisation, 2018.
[Set06] A. Setzer. Partial Recursive Functions in

Martin-Löf Type Theory. In CiE 2006, vol-
ume 3988 of LNCS, pages 505–515, 2006.

[Soz10] M. Sozeau. Equations: A Dependent Pat-
tern-Matching Compiler. In ITP 2010, vol-
ume 6172 of LNCS, pages 419–434, 2010.

2

https://github.com/DmxLarchey/ite-normalisation
https://github.com/DmxLarchey/ite-normalisation

