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∗∗ ONERA, DTIS, Université Paris-Saclay, F-91123 Palaiseau,
France. (e-mail : emilien.flayac@onera.fr)

Abstract: We study sufficient conditions for the emergence of consensus and flocking in a
class of strongly cooperative non-linear multi-agent systems subject to arbitrary communication
failures. Our approach is based on a combination of Lyapunov analysis along with the
formulation of a novel persistence of excitation condition for cooperative systems. This
assumption can be interpreted in terms of average connectedness of the interaction graph of
the system, and provides quantitative convergence rates towards consensus and flocking.
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1. INTRODUCTION

The study of emerging patterns in dynamical systems
describing collective behaviour has been the object of an
increasing attention in the last decades. There is by now
a large literature devoted to the analysis of consensus
formation in the class of so-called cooperative systems,
see e.g. Smith (1995). These systems are widely used, for
example, to study crowd motion Cristiani et al. (2014),
robot swarms Elamvazhuthi and Berman (2015); Berman
et al. (2009) and animal groups such as bird flocks or fish
schools Albi et al. (2014); Bertozzi and Topaz (2004).

Since the seminal paper of Cucker and Smale (2007), a
great deal of interest has been manifested towards the
analysis of the so-called flocking behaviour (see Definition
4 below), which describes the appearance of alignment
patterns in second-order cooperative multi-agent systems.
In Ha and Liu (2009), the authors proposed a simpler
proof of the emergence of asymptotic flocking based on
Lyapunov methods. One of the main strength of the latter
approach was that it could be applied to both finite and
infinite dimensional multi-agent systems, while providing
a strong unifying framework for consensus and flocking
analysis with very diverse interaction topologies (see e.g.
Caponigro et al. (2013); McQuade et al. (2019)). It also
allowed to design efficient control law for key models, see
Caponigro et al. (2015, 2017); Piccoli et al. (2015).

When communications between agents are subject to pos-
sibly severe failures, it is crucial to verify under which con-
ditions convergence can still be guaranteed. For discrete-
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time first and second order systems, opinion formation
models have been thoroughly investigated in a graph
theoretic framework, see for instance the seminal paper
Moreau (2005) and subsequent developments in Tanner
et al. (2007); Martin et al. (2014). Further results allowed
to incorporate asymmetric communication rates and ran-
dom communication failures e.g. in Dalmao and Mordecki
(2011); Ru et al. (2015), as well as stochastic perturbations
described by Brownian motions Ha et al. (2009). How-
ever, to the best of our knowledge, there does not exist
in the literature a proof of convergence towards flocking
for general non-linear time-continuous systems subject to
arbitrary communication failures.

In this paper, we investigate sufficient conditions for both
asymptotic consensus and flocking formation, based on
Lyapunov methods. The main novelty of our approach is
the introduction of a suitable condition of persistence of
excitation (see Definition 3 below) for multi-agent systems.
This type of condition is quite standard in classical control
theory (see e.g. Narendra and Annaswami (1989); Chitour
and Sigalotti (2010); Chitour et al. (2012)), and has proven
its adaptability in stability theory, in particular in allowing
to build strict Lyapunov functions for perturbed systems,
see Mazenc and Malisoff (2009); Maghenem and Loŕıa
(2017); Maghenem et al. (2018). Besides the practical
interest of having a strict Lyapunov function (e.g. to
recover quantitative convergence rates towards an equi-
librium point or for studying input-to-state stability), our
notion of persistence of excitation has both a deep and
simple meaning in terms of cooperative dynamics. Indeed,
it transcribes the fact that on average on a sliding time
window, the interaction graph describing the multi-agent
system is connected. It also imposes a quantitative lower
bound on the intensity of this averaged interaction. This
type of average connectedness assumption is standard
when studying first-order time-varying interaction topolo-
gies (see e.g. Beard and Ren (2008); Blondel et al. (2005);



Moreau (2005)), and is even proven to be necessary for
consensus to arise in a large number of cases in Moreau
(2005). In the way we formulate it, this condition further
encodes the idea that one only requires the system to be
persistently exciting with respect to the agents which have
not reached consensus yet.

The structure of the paper is the following. In Section
2, we introduce our approach by proving the convergence
towards consensus for persistently excited first-order dy-
namics. We then extend this result in Section 3 to derive
the asymptotic flocking for Cucker-Smale type systems
with strongly interacting kernels in the sense of Hypothesis
(K), which is the main result of this paper. We conclude
with some remarks and open perspectives in Section 4.

2. CONSENSUS UNDER PERSISTENT EXCITATION
FOR FIRST-ORDER DYNAMICS

In this section, we introduce the main tools used through-
out this article in the particular case of consensus forma-
tion. We study first-order cooperative systems of the form










ẋi(t) = 1
N

N
∑

i=1

ξij(t)φ(|xi(t) − xj(t)|)(xj(t) − xi(t)),

xi(0) = x0
i , (CS1)

where (x0
1, . . . , x

0
N ) ∈ R

dN is a given initial datum. We
assume that the interaction kernel φ ∈ Lip(R+,R

∗
+) is

strictly positive.

The functions ξij ∈ L∞(R+, [0, 1]) represent communica-
tion rates, taking into account potential communication
failures that can occur in the system (when ξij(t) < 1, see
Example 1 below). We require them to be symmetric, i.e.
ξij(·) = ξji(·), which means that the interaction graph of
the system is undirected. One of the main motivations for
this choice of communication rates is to study consensus
and flocking when random interaction failures occur. This
article is the first step towards a more general theory for
such systems, in which the ξij(·) will be realizations of
stochastic processes.

From now on, we use the notation x = (x1, . . . , xN ) for

the state in R
dN and x̄ = 1

N

∑N
i=1

xi for its mean value.
For systems of the form (CS1), we aim at studying the
formation of asymptotic consensus, defined as follows.

Definition 1. A solution x(t) of (CS1) asymptotically con-
verges to consensus if

lim
t→+∞

|xi(t) − x̄(t)| = 0,

for all i ∈ {1, . . . , N}.

As a consequence of the symmetry of the rates ξij(·), the
system (CS1) can be rewritten in matrix form as

ẋ(t) = −L(t,x(t))x(t), x(0) = x0, (CSM1)

where L : R+ × R
dN → L(RdN ) is the so-called graph

Laplacian, defined by

(L(t,x)y)i := 1
N

∑N
j=1ξij(t)φ(|xi − xj |)(yi − yj). (1)

In the following, we will also use Lξ(·) defined by

(Lξ(t)y)i := 1
N

∑N
j=1ξij(t)(yi − yj). (2)

Observe that both L(·, ·) and Lξ(·) depend on the time-
dependent communication rates ξij(·), that are L∞ func-
tions, thus defined for almost every t ≥ 0.

The structure displayed in (1) is fairly general and allows
for a comprehensive study of both consensus and flocking
problems in a unified way via Lyapunov methods. With
this goal in mind, we introduce the following bilinear form
in the spirit of Caponigro et al. (2013, 2015).

Definition 2. The variance bilinear form B(·, ·) is

B(x,y) := 1
N

∑N
i=1〈xi, yi〉 − 〈x̄, ȳ〉. (3)

It is symmetric and positive semi-definite.

The evaluation B(x,x) of this bilinear form is the distance
of a given x ∈ R

dN from the so-called consensus manifold
C = {x ∈ R

dN s.t. x1 = · · · = xN}. It then follows
that B(x,x) = 0 if and only if xi = x̄ for any index
i ∈ {1, . . . , N}, i.e. if x is a consensus.

We now list useful properties linking B(·, ·) and L(·, ·).
Proposition 1. The graph Laplacian L(t,x) is positive-
semi definite with respect to B(·, ·). Moreover, vectors of
the form L(t,x)y have zero mean.

Proof : By summing over i ∈ {1, . . . , N} the components
in (1), the mean of L(t,x)y is zero. As a consequence, and
by symmetry of the communication rates ξij(·), it holds

B(L(t,x)y,y) = 1
N2

N
∑

i,j=1

ξij(t)φ(|xi − xj |)〈yi, yi − yj〉

= 1
2N2

N
∑

i,j=1

ξij(t)φ(|xi − xj |)|yi − yj |2 ≥ 0,

which proves our claim �

We now introduce the concept of persistence of excitation
for multi-agent systems described by (CSM1).

Definition 3. Let τ, µ > 0 be given parameters. We say
that the persistence of excitation condition (PEτ,µ)
holds for (CSM1) if

B
((

1
τ

∫ t+τ

t Lξ(s)ds
)

x,x
)

≥ µB(x,x), (PEτ,µ)

for all x ∈ R
dN .

Remark 1. Condition (PEτ,µ) only involves the communi-
cation weights ξij(·) through Lξ(·) and not the state of
the system. Moreover, it is formulated using the bilinear
form B(·, ·), illustrating the fact that one only needs the
persistence to hold along directions which are orthogonal
to the consensus manifold C . Finally, (PEτ,µ) can be in-
terpreted as a connectivity condition of the time-averaged
interaction graph of the system, which is fairly common
in the literature, see Moreau (2005) and (Beard and Ren,
2008, Chapter 2), see also Example 1 below.

Example 1. Consider a system of N = 3 agents with
states in R, fix two parameters (τ, µ) ∈ R

∗
+ × [0, 1], and

suppose that the communication weights ξij(·) are defined
for almost every t ≥ 0 by

ξ13(t) = 0, ξ12(t) =

{

µ if ⌊t/τ⌋ = 1 mod[4],

0 otherwise,

and

ξ23(t) =

{

µ if ⌊t/τ⌋ = 3 mod[4],

0 otherwise.

Then, (PEτ,µ) holds with parameters (τ ′, µ′) = (4τ, µ16 ).
Notice that this example can be generalized to systems
with N agents in R

d, and therefore that (PEτ,µ) incor-
porates undirected interaction topologies such that the
averaged interaction graph is connected.



In the following theorem, we prove that solutions of
(CSM1) asymptotically converge to consensus when the
persistence assumption (PEτ,µ) holds. While this result
might be derived from earlier works dealing with consensus
in undirected graphs, see e.g. in Moreau (2005); Blondel
et al. (2005), we believe that it presents a new point of view
on this topic. It also allows for a progressive introduction
to some of the concepts that shall be necessary for the
establishment of our main result Theorem 3.

Theorem 2. (Consensus). Let φ(·) be positive and non-
increasing. Let ξij ∈ L∞(R+, [0, 1]) satisfy (PEτ,µ) for
some τ, µ > 0. Then, any solution x(·) of (CSM1) asymp-
totically converges to consensus.

Proof : Let c2 := sup(t,x) ‖L(t,x)‖B be the operator norm

of L(·, ·) with respect to B(·, ·), i.e.

c2 = sup
(t,x,y)

{

√

B(L(t,x)y,L(t,x)y) s.t. B(y,y) = 1
}

.

Remark that c is finite since φ(·) is bounded. Denote by
X(·) the standard deviation of x(·), given by

X(t) :=
√

B(x(t),x(t)),

By the definition of B(·, ·), x(·) asymptotically converges
to consensus if and only if X(·) vanishes at infinity.

Define the time-dependent family of linear operators ψτ :
R+ → L(RdN ) along the trajectory x(·) by

ψτ (t) := (1 + c2)τ IdN − 1
τ

∫ t+τ

t

∫ s

t L(σ,x(σ))dσds. (4)

Then, ψτ (·) is Lipschitz with pointwise derivative

ψ̇τ (t) = L(t,x(t)) − 1
τ

∫ t+τ

t L(s,x(s))ds. (5)

By definition, it further holds√
τX(t) ≤

√

B(ψτ (t)x,x) ≤
√

(1 + c2)τX(t). (6)

Define the candidate Lyapunov function

Xτ (t) := λX(t) +
√

B(ψτ (t)x(t),x(t)), (7)

where λ > 0 is a tuning parameter. This type of con-
struction is rather recent in the design of strict Lyapunov
function under persistent excitation assumptions: see e.g.
Maghenem and Loŕıa (2017); Maghenem et al. (2018);
Mazenc and Malisoff (2009). By (6), it holds that

(λ +
√
τ )X(t) ≤ Xτ (t) ≤ (λ +

√

(1 + c2)τ )X(t). (8)

By Proposition 1, any solution x(·) of (CSM1) has constant
mean, i.e. x̄(·) ≡ x̄0. By invariance with respect to transla-
tion of (CSM1), we assume without loss of generality that
x̄(·) ≡ 0 from now on.

We now aim at proving a strict-dissipation inequality of
the form

Ẋτ (t) ≤ −αXτ (t), (9)
for some α > 0. With this goal, we first compute

Ẋτ (t) = − λ
X(t)B(L(t,x(t)),x(t)) + B(ψ̇τ (t)x(t),x(t))

2
√
B(ψτ (t)x(t),x(t))

− B(L(t,x(t))x(t),ψτ (t)x(t))√
B(ψτ (t)x(t),x(t))

.

By (5)-(6), it holds that

Ẋτ (t) ≤ − 1

2
√

(1+c2)τX(t)
B
((

1
τ

∫ t+τ

t
L(s,x(s))ds

)

y,y
)

+ 1√
τX(t)

B
((

1
τ

∫ t+τ

t

∫ s

t
L(σ,x(σ))dσds

)

y,L(t,y)y
)

+ 1√
τX(t)

(1
2 −

√

(1 + c2)τ −
√
τλ)B(L(t,y)y,y),

(10)

where we wrote y ≡ x(t) for conciseness.

To estimate the first line of (10), recall that first-order
cooperative systems have uniformly compactly supported
trajectories, see e.g. (Piccoli et al., 2015, Lemma 1) . Since
φ(·) is positive and continuous, there exists a positive
constant C0 – depending only on x0 – such that

mini,j φ(|xi(t) − xj(t)|) ≥ C0,

for all times t ≥ 0. By definition of L(·, ·), this implies that

B
(

L(t,x(t))y,y
)

≥ C0

2N2

N
∑

i,j=1

ξij(t)|yi − yj |2

= C0B
(

Lξ(t)y,y
)

,

for any y ∈ R
dN . By using (PEτ,µ), it further holds

B
((

1
τ

∫ t+τ

t L(s,x(s))ds
)

x(t),x(t)
)

≥ C0µX
2(t). (11)

For the second line of (10), one has that

B
(

1
τ

(∫ t+τ

t

∫ s

t
L(σ,x(σ))dσds

)

x(s),L(t,x(t))x(t)
)

≤ τc2X(t)
√

B
(

L(t,x(t))x(t),L(t,x(t))x(t)
)

≤ τc2X(t) ‖L(t,x(t))1/2‖B
√

B
(

L(t,x(t))x(t),x(t)
)

≤ τc3
(

ǫ
2X(t)2 + 1

2ǫB(L(t,x(t))x(t),x(t))
)

,
(12)

for any ǫ > 0, by definition of ‖ · ‖B and by applying
Cauchy-Schwartz and Young’s inequality. Merging (10)-
(11)-(12) and recalling that L(·, ·) is positive semi-definite,
we obtain that

Ẋτ (t) ≤ −
(

C0µ

2
√

(1+c2)τ
− c3√

τ
2 ǫ

)

X(t)

+ 1
X(t)

(

1
2

√
τ

+ c3√
τ

2ǫ − λ
)

B(L(t,x(t))x(t),x(t)).

Choosing furthermore the parameters

ǫ = C0µ

2c3τ
√

(1+c2)
, λ = 1

2
√
τ

+ c3
√
τ

2ǫ

and using (8), we recover

Ẋτ (t) ≤ − C0 µ

2
√

(1+c2)τ(λ+
√

(1+c2)τ)
Xτ (t)

so that (9) holds with a given constant α > 0. By
an application of Grönwall’s Lemma, we obtain that
lim

t→+∞
Xτ (t) = 0, and thus lim

t→+∞
X(t) = 0 by (8).

By definition of X(·), this implies that x(·) exponentially
converges to consensus. �

3. FLOCKING FOR CUCKER-SMALE SYSTEMS
WITH STRONG INTERACTIONS

In this section, we derive sufficient conditions for the
asymptotic convergence to flocking of a class of Cucker-
Smale type subject to arbitrary communication failures.
These systems are of the form










ẋi(t) = vi(t), (CS2)

v̇i(t) = 1
N

N
∑

j=1

ξij(t)φ(|xi(t) − xj(t)|)(vj(t) − vi(t)).

Similarly to Section 2, (CS2) can be rewritten in matrix
form using the graph Laplacian defined in (1):

{

ẋ(t) = v(t), x(0) = x0,

v̇(t) = −L(t,x(t))v(t), v(0) = v0.
(CSM2)



We now recall the definition of asymptotic flocking.

Definition 4. A solution (x(·),v(·)) of (CSM2) asymptot-
ically converges to flocking if

sup
t≥0

|xi(t) − x̄(t)| < +∞ and lim
t→+∞

|vi(t) − v̄(t)| = 0,

for any i ∈ {1, . . . , N}.

For this problem, we assume that the interaction kernel
φ(·) ∈ Lip(R+,R

∗
+) satisfies the following strong interac-

tion assumption.

Hypothesis (K) There exist positive constants K,σ
along with a parameter β ∈ (0, 1

2 ) such that

φ(r) ≥ K

(σ + r)β
. (13)

In particular, φ /∈ L1(R+,R
∗
+). Up to replacing φ(·) by this

lower estimate, we can assume with no loss of generality
that φ(·) is non-increasing.

Remark 2. Hypothesis (K) is a strengthened version of
the usual strong interaction condition, which requires that
φ /∈ L1(R+,R

∗
+). Remark that here, we require that the

Cucker-Smale exponent β be less that 1
2 , whereas in the

literature the expected critical exponent beyond which
unconditional flocking may fail to occur is β = 1, see
Section 4 for more details.

Remark 3. When φ(·) is uniformly bounded from be-
low by a positive constant, then flocking in the full-
communication setting occurs, see e.g. Cucker and Smale
(2007); Ha and Liu (2009); Piccoli et al. (2015). In our
framework, this result is a simple consequence of Theorem
3. For positive kernels not satisfying (13), one can easily
construct examples of initial conditions (x0,v0) for which
flocking does not occur, see Cucker and Smale (2007).

Solutions of (CSM2) satisfy
˙̄x(t) = v̄(t), ˙̄v(t) = 0.

By known invariance properties of multi-agent systems, we
can assume with no loss of generality that x̄(·) = v̄(·) ≡ 0.
We further define the standard deviation maps

X(t) :=
√

B(x(t),x(t)), V (t) :=
√

B(v(t),v(t)).

As a consequence of symmetry of ξij(·), (CSM2) is weakly
dissipative in the sense that

Ẋ(t) ≤ V (t), V̇ (t) ≤ 0. (14)

In the seminal paper Ha and Liu (2009), the authors
introduced a concise proof of the Cucker-Smale flocking
based on the analysis of a system of strictly dissipative
inequalities. More precisely, if it holds that

Ẋ(t) ≤ V (t), V̇ (t) ≤ −φ(2
√
NX(t))V (t), (15)

with an interaction kernel φ /∈ L1(R+,R
∗
+), then the

system converges to flocking. Our aim is to adapt their
strategy while taking into account possible communication
failures. We prove the following main result of this paper.

Theorem 3. (Main result - Flocking). Let φ(·) be positive,
non-increasing and satisfying (K). Let ξij ∈ L∞(R+, [0, 1])
be such that (PEτ,µ) holds. Then, any solution of (CSM2)
asymptotically converges to flocking.

The proof of this result relies on the construction of a
locally-strict Lyapunov function for (CSM2), for which

a system of inequalities akin to (15) holds only on a
bounded time interval. This local-in-time strict dissi-
pation allows us to recover the asymptotic flocking of the
system by a reparametrization of the time variable. To the
best of our knowledge, this combination of strict Lyapunov
design and flocking analysis via locally dissipative inequal-
ities is fully new in the context of multi-agent systems.

Notation 1. We define the rescaled interaction kernel by

φτ (r) := φ
(

2
√
N(r + τV (0))

)

(16)

for any r ≥ 0, and we denote by Φτ (·) its uniquely
determined primitive which vanishes at X(0), i.e.

Φτ (X) :=

∫ X

X(0)

φτ (r)dr. (17)

We start the proof of Theorem 3 by a series of lemmas
which will progressively highlight the role of the different
assumptions made on the system.

Lemma 4. Let (x(·),v(·)) be a solution of (CSM2). If
(PEτ,µ) holds, then one has

B
((

1
τ

∫ t+τ

t
L(s,x(s))ds

)

w,w
)

≥ µφτ (X(t))B(w,w)

(18)
for any w ∈ R

dN , with φτ (·) defined as in (16).

Proof : By definition of L(·, ·), it holds that

B
((

1
τ

∫ t+τ

t
L(s,x(s))ds

)

w,w
)

≥ 1
2N2

N
∑

i,j=1

(

1
τ

∫ t+τ

t ξij(s)φ(|xi(s) − xj(s)|)ds
)

|wi − wj |2

≥ 1
2N2

N
∑

i,j=1

(

1
τ

∫ t+τ

t
ξij(s)φ(2

√
NX(s))ds

)

|wi − wj |2,

(19)
where we used that φ(·) is non-increasing. As a conse-
quence of the weak dissipation (14), one further has

X(s) = X(t) +
∫ s

t
Ẋ(σ)dσ ≤ X(t) + τV (0).

for all s ∈ [t, t + τ ]. By (19), and using again that φ(·) is
non-increasing, it holds

B
((

1
τ

∫ t+τ

t
L(s,x(s))ds

)

w,w
)

≥ φ
(

2
√
N(X(t)+τV (0))

)

2N2

N
∑

i,j=1

(

1
τ

∫ t+τ

t
ξij(s)ds

)

|wi − wj |2

= φτ (X(t))B
((

1
τ

∫ t+τ

t
Lξ(s)ds

)

w,w
)

≥ µφτ (X(t))B (w,w) ,

where we used (PEτ,µ) in the last inequality. �

We now define the candidate Lyapunov function

Vτ (t) := λ(t)V (t) +
√

B(ψτ (t)v(t),v(t)), (20)

where ψτ (·) is defined in (4) and λ(·) is a smooth tuning
curve. We have the following lemma.

Lemma 5. For any ǫ0 > 0, there exists a time horizon
Tǫ0

> 0 such that for almost every t ∈ [0, 2Tǫ0
), it holds

˙Vτ (t) ≤ − µφ
τ

(X(t))

2
√

(1+c2)τ
V (t). (21)

Proof : Following the proof of Theorem 2, we have



˙Vτ (t) ≤

(

1
2

√
τ

+
c3τ

2ǫ(t) −
√
τλ(t)

)

√
τV (t)

B(L(t,x(t))v(t),v(t))

−
(

µφ
τ

(X(t))

2
√

(1+c2)τ
− c3√

τ
2 ǫ(t) − λ̇(t)

)

V (t).

(22)

The two differences with respect to the proof of Theorem
2 are the choice of time-dependent families of parameters
(λ(·), ǫ(·)) and the use of (18) instead of (PEτ,µ).

Start by fixing

λ(t) = 1
2

√
τ

+ c3√
τ

2ǫ(t) . (23)

This implies in particular that λ̇(t) = − c3√
τ

2ǫ2(t) ǫ̇(t). Choose

now ǫ(·) as the solution of

ǫ̇(t) = ǫ3(t), ǫ(0) = ǫ0,

for a given constant ǫ0 > 0, i.e. ǫ(·) defined by

ǫ(t) = ǫ0√
1−2ǫ2

0
t
, (24)

for t ∈ [0, 1/2ǫ2
0). Then, (22) reads as

˙Vτ (t) ≤ − µφ
τ

(X(t))

2
√

(1+c2)τ
V (t),

and (21) holds with Tǫ0
= 1/4ǫ2

0. �

Observe that (21) involves both Vτ (·) and V (·). We now
aim at finding an estimate involving solely V (·).
Lemma 6. There exists a function ǫ0 ∈ R

∗
+ 7→ XM (ǫ0)

such that X(t) ≤ XM (ǫ0) for all t ∈ [0, Tǫ0
]. Moreover, for

any ǫ0 ∈ R
∗
+ one has that

V (Tǫ0
) ≤

(

α1+β1ǫ0

α2+β2ǫ0

)

V (0) exp
(

−µφ
τ

(XM (ǫ0))
4(α3+β3ǫ0)ǫ0

)

, (25)

where {αk, βk}3
k=1 are constants depending on (c, τ).

Proof : Choose ǫ0 > 0 and denote by (λ(·), ǫ(·)) the
corresponding functions given by (23)-(24) respectively.

Similarly to (6), it holds that
√
τV (t) ≤

√

B(ψτ (t)v(t),v(t)) ≤
√

(1 + c2)τV (t).

By definition of Vτ (·) in (20), it then holds that






Vτ (t) ≤
(

√

(1 + c2)τ + 1
2

√
τ

+ c3
√
τ

2ǫ0

)

V (t),

Vτ (t) ≥
(√

τ + 1
2

√
τ

+ c3
√

2τ
4ǫ0

)

V (t),

for any t ∈ [0, Tǫ0
], where we used the fact that ǫ(t) ≤√

2ǫ0 on this time interval. By simple identification of the
coefficients, these estimates can be rewritten as

(

α2

ǫ0
+ β2

)

V (t) ≤ Vτ (t) ≤
(

α1

ǫ0
+ β1

)

V (t), (26)

for positive constants {αk, βk}2
k=1 depending on (c, τ).

We can further integrate (21) on [0, t] to recover

Vτ (t) ≤ Vτ (0) − µ

2
√

(1+c2)τ

∫ t

0
φτ (X(s))V (s)ds.

which in turn implies that

V (t) ≤
(

α1+β1ǫ0

α2+β2ǫ0

)

V (0) − µǫ0

α′

2
+β′

2
ǫ0

∫ t

0
φτ (X(s))V (s)ds,

(27)

where (α′
2, β

′
2) = 2

√

(1 + c2)τ (α2, β2). Recall now that

Ẋ(s) ≤ V (s) by (14) and apply the change of variable
r = X(s) in (27) to obtain

V (t) ≤
(

α1+β1ǫ0

α2+β2ǫ0

)

V (0) − µǫ0

α′

2
+β′

2
ǫ0

∫X(t)

X(0) φτ (r)dr. (28)

Since φτ /∈ L1(R+,R
∗
+), its primitive Φτ (·) is a strictly

increasing map which image continuously spans R+. It
is therefore invertible, and for any ǫ0 > 0 there exists a
critical radius XM (ǫ0) such that

XM (ǫ0) = Φ−1
τ

(

2
√

(1+c2)τ(α1+β1ǫ0)

µǫ0
V (0)

)

. (29)

Since V (·) is a non-negative quantity by definition, it
necessarily follows by plugging (29) into (28) that X(t) ≤
XM (ǫ0) on [0, Tǫ0

].

Going back to the dissipative differential inequality (21)
combined with (26), we can again use the fact that φτ (·)
is non-increasing to obtain

˙Vτ (t) ≤ −µǫ0 φ
τ

(XM (ǫ0))
(α3+β3ǫ0) Vτ (t)

for almost every t ∈ [0, Tǫ0
], where we denoted (α3, β3) =

2
√

(1+c2)τ(α1, β1). By an application of Grönwall Lemma
to Vτ (·) along with (26), we conclude that

V (Tǫ0
) ≤

(

α1+β1ǫ0

α2+β2ǫ0

)

V (0) exp
(

−µφ
τ

(XM (ǫ0))
4(α3+β3ǫ0)ǫ0

)

where we used the fact that Tǫ0
= 1/4ǫ2

0. �

Building on the estimate (25) obtained in Lemma 6, we
now conclude the proof of our main result Theorem 3. To
lighten the computations, most of the argument will be
carried out in terms of asymptotic estimates.

Notation 2. We will use the notations

f(x) &
x→a

g(x) and f(x) .
x→a

g(x)

to mean that a map f(·) is bounded from below (resp. from
above) by a map which is equivalent to g(·) as x → a.

Proof (Theorem 3): In order to recover the emergence of
flocking in (CSM2), we look into the asymptotic behaviour
of our estimates as ǫ0 → 0+, or equivalently as Tǫ0

→ +∞.
Using the analytical expression (29) of XM (ǫ0), we have
that

φτ (XM (ǫ0)) = φτ ◦ Φ−1
τ

(

C1 +
C2

ǫ0

)

,

where C1, C2 are positive constants depending on the data
of the problem. Moreover by integrating (13), we obtain

Φ(X) ≥ K
1−β

(

(σ +X)1−β − (σ +X(0))1−β
)

,

which along with standard monotonicity properties of
inverse functions and the fact that φτ (·) is non-increasing,
yields the existence of a positive constants C such that

φτ ◦ Φ−1
τ

(

C1 +
C2

ǫ0

)

&
ǫ0→0+

Cǫ

β
1−β
0 . (30)

Combining the latter expression (30) with (25) and recall-
ing that Tǫ0

= 1/4ǫ2
0, we recover that

V (Tǫ0
) .
Tǫ0

→+∞

α1

α2
V (0) exp

(

−Cµ
8α3

T

1−2β
2(1−β)
ǫ0

)

. (31)

Since ǫ0 ∈ R
∗
+ 7→ Tǫ0

continuously span the whole of R+,
we can reparametrize time using T ≡ Tǫ0

. As we assumed
in (K) that β ∈ (0, 1

2 ), estimate (31) implies that

V (T ) −→
T→+∞

0.

We now turn our attention to the uniform boundedness
of the position radius X(·). The weak-dissipativity (14)



of (CSM1) expressed in terms of the new time variable
T ≡ Tǫ0

writes

sup
T≥0

X(T ) ≤ X(0) +

∫ +∞

0

V (T )dT.

This implies that supT≥0 X(T ) < +∞ as a consequence of

(31) and of the fact that β ∈ (0, 1
2 ), which concludes the

proof of Theorem 3. �

4. CONCLUSION AND PERSPECTIVES

In this article, we proved two main results of convergence
of multi-agent systems under arbitrary communication
failures. If communication rates satisfy a persistence of
excitation condition, then one has both convergence to
consensus for first-order systems (Theorem 2) and con-
vergence to flocking for Cucker-Smale systems under an
additional strong interaction condition (Theorem 3). For
the sake of conciseness and readability, we assumed that
the initial time of the non-stationary dynamics was fixed.
Yet, it could be checked by repeating our argument that
both convergence results are uniform with respect to the
initial time.

In the future, we aim to improve our main result Theorem
3 in two directions. First, we will investigate whether the
rather surprising exponent range β ∈ (0, 1

2 ) – which is
currently necessary in order to ensure that asymptotic
flocking occurs – has an intrinsic meaning, or if it is just
appearing as a limit of our current choice of Lyapunov
function. Answering this question might also pave the
way for flocking results with weaker interactions, involv-
ing confinement conditions linking the initial state and
velocity mean-deviations and the persistence parameters.
Second, we will study communication failures defined as
the realizations of stochastic processes and try to see under
which assumptions and in what sense the convergence
towards consensus and flocking can occur (almost surely,
in probability, etc...). In this setting, one of the main
difficulty will most likely lie in the identificaton of proper
generalizations of (PEτ,µ) to the stochastic setting.
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Albi, G., Balagué.D, Carrillo, J., and von Brecht, J. (2014).
Stability Analysis of Flock and Mill Rings for Second
Order Models in Swarming. SIAM J. App. Math., 74(3),
794–818.

Beard, R. and Ren, W. (2008). Distributed Consensus in
Multi-Vehicle Cooperative Control. Springer-Verlag.

Berman, S., Halasz, A., Hsieh, M., and Kumar, V. (2009).
Optimized Stochastic Policies for Task Allocation in
Swarms of Robots. IEEE Trans. Rob., 25(4), 927–937.

Bertozzi, A. and Topaz, C. (2004). Swarming Patterns
in a Two-Dimensional Kinematic Model for Biological
Groups. SIAM J. App. Math., 65(1), 152–174.

Blondel, V., Hendrickx, J., Olshevsky, A., and J.N., T.
(2005). Convergence in multiagent coordination, con-
sensus, and flocking. In Proceedings of the 44th IEEE
Conference on Decision and Control.

Caponigro, M., Fornasier, M., Piccoli, B., and Trélat, E.
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