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Leaderless synchronization of heterogeneous

oscillators by adaptively learning the group model
Simone Baldi and Paolo Frasca

Abstract—This note addresses the problem of leaderless syn-
chronization in a network of linear heterogeneous oscillators. It
is well known that a synchronizing controller can be constructed
when a common reference model is available to (some of) the
agents. In this note, we show that synchronization can also be
achieved without any access to such reference, by letting the
agents cooperatively learn a suitable common model, which we
refer to as group model. We show that there exists a group
model that has the same structure as the oscillators and that the
agents can learn its parameters and synchronize to it, by using
a combination of consensus dynamics and adaptive regulation.
This learning is even possible if the agents do not know their own
dynamics, by using adaptive state observers. The distinguishing
feature of this approach is making the agents collectively self-
organize to their natural group model, instead of making them
synchronize to an external reference.

Index Terms—Adaptive synchronization, heterogeneous oscil-
lators, unknown dynamics.

I. INTRODUCTION

A
N important problem in cooperative control is to achieve

a common behavior for the entire network in a distributed

way (i.e. using local information): this is the so-called synchro-

nization problem [1]–[3], which is sometimes referred to as the

consensus problem when the behaviour to be achieved is a con-

stant value [4]–[6]. While static diffusive couplings between

the agents are sufficient to ensure synchronization between

homogeneous agents [7], synchronizing heterogeneous agents

is essentially harder and static couplings are not sufficient [8].

Crucially, the existence of a common reference model is

necessary for linear output synchronization. If this common

reference model is available to all agents, synchronization can

be achieved under mild connectivity assumptions [1], [9]. In

some variations of the synchronization problem, the agents can

also synchronize to a leader exosystem, provided at least some

of the agents can access the exosystem signal. The idea behind

this approach is that the agents that are not connected to the

exosystem generating the reference signal will construct an

observation of such signal in a distributed way, by coupling

the so-called regulator equations with a distributed observer

[10]–[12]. A common assumption to all these works is that all

the agents know the common dynamical model to which they

need to synchronize: this assumption can be quite restrictive

and, recently, the authors of [13] have relaxed it by showing
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that the common model can be known to some agents only,

while being estimated in a distributed way by the others.

However, relevant questions remain open: what if none of

the agents knows the common model? And pushing the bound-

ary of uncertainty even further: what if the agents neither know

their own dynamics? To the best of the authors’ knowledge, the

study of adaptive synchronization for heterogeneous uncertain

systems is limited to special classes of systems/uncertainty,

e.g. unknown control directions [14], unknown leader pa-

rameters [15], uncertain systems in output-feedback [16] or

parametric strict-feedback [17] form. Leaderless consensus to

a constant trajectory without resorting to any common model

has been shown in classes of Euler-Lagrange [18] or passive

systems [19, Chap. 8]. However, synchronization to more

complex trajectories (e.g. periodic) would necessarily require

a leader for which a desired trajectory is explicitly defined.

In this note we answer, for a class of linear agents that are

harmonic oscillators, two questions: how to achieve synchro-

nization when a common model is unknown to all agents? How

to achieve synchronization when even the agent dynamics are

unknown? None of the aforementioned approaches answers

these two questions.

Our analysis focuses on harmonic oscillators, i.e. second-

order point-mass systems exhibiting periodic motion. These

systems have recently attracted increasing attention, as some of

the application fields include resonance phenomena, acoustic

vibrations, electrical networks, motion coordination [20]–[24].

From a theory point of view, harmonic oscillators are also

suitable to effectively using adaptive control tools, since they

guarantee persistence of excitation. As compared to literature

on nonlinear oscillators, e.g. limit-cycle or phase oscillators

[25], [26], harmonic oscillators allow, via linear regulation

theory, for necessary and sufficient conditions regarding the

existence of a group model: in fact, being the group model

a priori unknown, it is fundamental to study a setting whose

solution is well posed, even in the presence of uncertainty. For

example, in synchronization of nonlinear agents via nonlinear

regulation theory [27], a solution may not exist if parametric

uncertainty is too large.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider n linear heterogeneous harmonic oscillators,

indexed by i ∈ {1, . . . ,n}

ẋi =

[
0 1

−ω2
i 0

]

︸ ︷︷ ︸

Ai

xi +

[
0

1

]

︸ ︷︷ ︸

Bi=B

ui, yi = [0 1]
︸ ︷︷ ︸

Ci=C

xi (1)

where for i ∈ {1, . . . ,n} we let xi ∈ R
2 be the state, yi ∈R be

the measurable output, ui ∈R be the input, and ωi > 0. Without
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loss of generality, the oscillators (1) have been taken in the

chain-of-integrators canonical form. Note that the pairs (Ai,B)
and (C,Ai) in (1) are stabilizable and detectable, respectively,

by construction.

The oscillators in (1) can communicate with each other

according to an undirected connected graph (N ,E ) with node

set N = {1, . . . ,n} and edge set E ⊂ N ×N : its (weighted)

adjacency matrix is A = [ai j], which satisfies the relations

aii = 0 and ai j = a ji > 0 if ( j, i) ∈ E ; its (weighted) Laplacian

matrix is L = [li j], which satisfies the relations lii = ∑n
j=1 a ji

and li j = −a ji if j 6= i. A control strategy ui is said to be a

distributed control strategy if it respects the communication

flows described by the graph (N ,E ).
We let v ∈R

2 be the state of a group model to be found in

the form

v̇ = Sv (2)

and let ei ∈R be the regulated output in the form

ei = yi − [0 1]
︸ ︷︷ ︸

Ri=R

v. (3)

We are now ready to formulate the following two problems:

Problem 1 (Synchronization with unknown group model).

Given the network (1), find a distributed controller ui such

that all systems synchronize to an a priori unknown group

model in the form (2), i.e. limt→∞ ei = 0, ∀i ∈ {1, . . . ,n}.

Problem 2 (Synchronization with unknown dynamics and

group model). Given the network (1), find a distributed

controller ui such that, without the knowledge of the system

parameters in (1), all systems synchronize to an a priori

unknown group model (2), i.e. limt→∞ei = 0, ∀i ∈ {1, . . . ,n}.

The following Lemmas will be used for stability analysis.

Lemma 1 (Stability under decaying disturbances [13]). Con-

sider the following system

ẋ = Fx+F1(t)x+F2(t) (4)

where F ∈ R
n×n is Hurwitz, F1(t) and F2(t) are bounded

and piecewise continuous for all t ≥ t0. If limt→∞ F1,F2 = 0

(exponentially), then limt→∞ x = 0 (exponentially).

Lemma 2 (Synchronization under decaying disturbances).

Consider the perturbed leaderless synchronization dynamics

ẋi = Sxi +K
n

∑
j=1

ai j(x j − xi)+ fi(t)xi (5)

where xi ∈ R
m, S ∈ R

m×m is marginally stable, K ∈ R
m×m is

such that (S−λkK) is Hurwitz for all non-zero eigenvalues λk

of the Laplacian L , and fi(t) is bounded, continuously differ-

entiable, and converges to zero exponentially. The definition

of the error εi = ∑n
j=1 ai j(x j − xi) leads to the error dynamics

ε̇ = [(In ⊗ S)+ (L ⊗K)]ε +F(t)ε (6)

where ε = [ε ′1 ε ′2 · · ·ε
′
n]
′ = (L ⊗ Im)x, x = [x′1 x′2 · · ·x

′
n]
′, and

F(t)= diag( f1Im, · · · , fnIm). Then, limt→∞ εi = 0, i∈{1, . . . ,n}.

Proof. This proof is provided because, although similar results

have appeared in the leader-follower setting [13], we are not

aware of a leaderless counterpart. From the explicit solution

of (6), superposition of a marginally stable autonomous linear

system and a time-varying autonomous system with exponen-

tially decreasing state matrix, we know that ε is bounded.

For undirected and connected graphs, there exists a unitary

matrix U ∈R
n×n such that U ′L U = diag(0,λ2, . . . ,λn),Λ,

where λk, k = 2, . . . ,n, are the non-zero eigenvalues of the

Laplacian matrix L . Define the transformation ε = (U ⊗ Im)ε̄
with ε̄ = [ε̄ ′1 ε̄ ′2 . . . ε̄

′
n]
′, where it can be checked that ε̄1 = 0 [28].

Consider the positive definite Lyapunov function candidate

V =
1

2
εT (In ⊗P)ε

with P a positive definite matrix to be chosen later. Using (6)

V̇ =ε ′(In ⊗P) [[(In ⊗ S)+ (L ⊗K)]ε +F(t)ε]

where we have used the property (A⊗B)(C⊗D) = AC⊗BD.

Using the transformation ε = (U ⊗ Im)ε̄ we have

V̇ =ε̄ ′ [(In ⊗PS)+ (Λ⊗PK)] ε̄ + ε ′(In ⊗P)Fε

=
n

∑
i=2

ε̄ ′i
[
P(S−λkK)+ (S−λkK)′P

]
ε̄i

︸ ︷︷ ︸

V̇i

+ε ′(In ⊗P)Fε
︸ ︷︷ ︸

F̄

. (7)

Being (S−λkK) Hurwitz for all non-zero eigenvalues λk of the

Laplacian L , there exists a matrix P such that P(S−λkK)+
(S−λkK)′P < 0 that is, V̇i is negative semidefinite: also, F̄

goes to zero exponentially (being ε bounded). After integrating

(7) we have V (t) ≤ V (0) + Ξ, where Ξ =
∫ t

0 |F̄(τ)|dτ is

finite since the exponentially decaying term is integrable.

Therefore, V (t) is bounded. Furthermore, we derive that V̇ (t)
is a uniformly continuous function of time because V̈ (t) is a

bounded function of time. In fact

V̈ =2ε̄ ′ [(In ⊗PS)+ (Λ⊗PK)]

·
[
[(In ⊗ S)+ (Λ⊗K)]ε̄ +(U ′⊗ Im)Fε

]
+ ˙̄F

(8)

where all variables are bounded. Barbalat’s lemma [29, Lemma

3.2.6] implies that V̇ → 0 as t → ∞ and hence ε → 0.

III. SYNCHRONIZATION WITH UNKNOWN GROUP MODEL

If a group model S in (2) were known, a distributed control

strategy could be constructed, provided there exist solutions

(Πi,Γi), i ∈ {1, . . . ,n} such that the following equations,

commonly referred to as the regulator equations, hold
{

AiΠi +BΓi = ΠiS

CΠi = R.
(9)

Then, synchronization would be guaranteed by the distributed

control scheme [1, Theorem 5]

ui =−Fi(zi −Πiζi)+Γiζi (10a)

żi =Aizi +Biui +Li(yi −Czi) (10b)

ζ̇i =Sζi +K
n

∑
j=1

ai j(ζ j − ζi) (10c)

provided K,Fi,Li are chosen such that

S−λkK Ai −BFi Ai −LiC (11)
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are Hurwitz for all i ∈ {1, . . . ,n} and all non-zero eigenvalues

λk of the Laplacian L associated to A .

Remark 1 (On the controller stability conditions). The con-

troller (10) comprises: a static observer-based controller

(10a), a Luenberger observer (10b), and a distributed observer

(10c) for reference generation: therefore, for every agent, the

controller has four states. The Hurwitz properties of Ai −BFi

and of Ai −LiC can be guaranteed by design in decentralized

way. Instead, the Hurwitz condition of S−λkK in principle re-

quires some knowledge about the network. However, provided

S is in the form of a harmonic oscillator, any K = κI with

κ > 0 guarantees the condition, irrespective of the network

topology. In what follows, we take K = κI.

Since we are assuming that all individual models are har-

monic oscillators, it is natural to seek a group model that is a

harmonic oscillator as well, namely

S =

[
0 1

−β 0

]

.

The following result ensures that a suitable harmonic oscillator

is indeed a solution to the regulator equations.

Proposition 1 (Existence of a harmonic oscillator solution).

A solution to (9) for dynamics (1) is given by

S =





0 1

− 1
n

n

∑
ℓ=1

ω2
ℓ 0



 , Πi = Π = I, (12a)

Γi =

[

1

n

n

∑
ℓ=1

(ω2
i −ω2

ℓ ) 0

]

. (12b)

Proof. The regulator equations (9) take the form
[

0 1

−ω2
i 0

]

Πi +

[
0

1

]

Γi = ΠiS,
[
0 1

]
Πi = R.

If we assume the group model to be an oscillator, then, without

loss of generality, Γi = [γ1i
γ2i

] and the first equation in (9)

boils down to

(Πi)11 = (Πi)22 γ1i
=−(Πi)11(β −ω2

i )

(Πi)21 =−β (Πi)12 γ2i
=−(Πi)12(β −ω2

i ).

If we choose Πi = I (from the second equation in (9)),

then we obtain γ2i
= 0 and γ1i

= −β + ω2
i . Let us now

take β = 1
n ∑n

ℓ=1 ω2
ℓ , i.e. the group model is the average of

the frequencies available in the network: this leads us to

γ1i
= ω2

i −
1
n ∑ℓ ω2

ℓ . Therefore, the solution to (9) is (12).

Proposition 1 suggests that the mean of the squared frequen-

cies of oscillation gives a legitimate group model S. However,

such an S is not directly known to the individual agents.

For this reason, we propose to estimate S in a distributed

way via consensus dynamics. More precisely, we replace each

individual copy of S in (10c) by a local version

Si =

[
0 1

−βi 0

]

(13)

and update βi by the consensus dynamics

β̇i =
n

∑
j=1

ai j(β j −βi), βi(0) = ω2
i . (14)

For an undirected connected graph, it is well known that (14)

converges to β in (12) [30, Thm. 2.2].

The solution to Problem 1 arises from combining the

distributed scheme (10) with the consensus dynamics (14), as

formalized by the following result.

Theorem 1 (Group controller). Consider the network of

harmonic oscillators (1) communicating according to an undi-

rected connected graph (N ,E ): then, the following dis-

tributed control strategy

ui =−Fi(zi − ζi)+
[
ω2

i −βi 0
]

ζi (15a)

żi =Aizi +Bui+Li(yi −Czi), zi(0) = 0 (15b)

ζ̇i =

[
0 1

−βi 0

]

ζi +κ
n

∑
j=1

ai j(ζ j − ζi), ζi(0) = 0 (15c)

β̇i =
n

∑
j=1

ai j(β j −βi), βi(0) = ω2
i (15d)

achieves synchronization to the group model S as in (12),

provided the Hurwitz conditions in (11). In addition, we have

limt→∞ Si = S, i ∈ {1, . . . ,n}.

Proof. Let us define Γ̂i =
[
ω2

i −βi 0
]

to be an estimate

of Γi =
[

−
∑ℓ ω2

ℓ
n

+ω2
i 0

]

. Also, let us define Fηi
= Γi −Fi,

F̂ηi
= Γ̂i−Fi and F̃ηi

=Γi−Fi−Fηi
. Motivated by the manifold

to which we want to converge, we define the coordinate change

x̃i = xi − v and z̃i = zi − v, where v satisfies v̇ = Sv. The

dynamics of these two signals are

˙̃xi = Aixi +Bui− Sv = Aixi +Bui−Aiv−BΓiv

= Aix̃i +Bũi

˙̃zi = Aiz̃i +Bũi+LiC(x̃i − z̃i)

where we have used the fact that ei = Cxi −Cv = Cx̃i, and

we have defined ũi = ui − Γiv = −Fiz̃i + F̂ηi
(ζi − v) + F̃ηi

v.

Therefore, it is convenient to write the following dynamics
[

˙̃xi

˙̃xi − ˙̃zi

]

=

[
Ai −BFi BFi

0 Ai −LiC

][
x̃i

x̃i − z̃i

]

+

[
B

0

]

F̂ηi
(ζi − v)+

[
B

0

]

F̃ηi
v. (16)

Observe that from (15c) and defining āi j = κai j we obtain

ζ̇i = Sζi +
n

∑
j=1

āi j(ζ j − ζi)+ (Si − S)ζi.

The first two terms of the right-hand side constitute the

synchronization dynamics of homogeneous oscillators, while

the third one is a disturbance that converges to zero exponen-

tially, because limt→∞ βi = β and limt→∞ Si = S exponentially

for all i ∈ {1, . . . ,n}. Thus, Lemma 2 allows to conclude

limt→∞ ζi − v = 0, i ∈ {1, . . . ,n}. Finally, the term F̃ηi
goes

to zero exponentially. By looking at (16), we notice that the

Hurwitz properties of Ai−BFi and of Ai−LiC make the system

matrix of (16) Hurwitz and, in addition, the system is driven

by decaying disturbances: therefore, Lemma 1 guarantees that

x̃i converges to zero, from which we obtain convergence of ei

to zero. This concludes the proof.
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Remark 2 (Extension to chains-of-integrators). Even though

this note focuses on harmonic oscillators, we can show that the

proposed results directly extend to the wider class of systems

in the chain-of-integrators canonical form, resulting in

Yi(s)

Ui(s)
=

1

sm + a1i
sm−1 + . . .+ ami

. (17)

For all systems in the form (17), a possible solution to (9) is

S =

[
0 Im−1

− 1
n ∑i ami

. . .− 1
n ∑i a1i

]

, Πi = I (18a)

Γi =
[

1
n ∑n

ℓ=1(ami
− amℓ

) . . . 1
n ∑n

ℓ=1(a1i
− a1ℓ)

]
. (18b)

The extension to Theorem 1 follows directly.

IV. SYNCHRONIZATION WITH UNKNOWN DYNAMICS AND

GROUP MODEL

The implementation of (15) requires the knowledge of the

parameter ωi, i.e. of the agent dynamics. In the following, we

would like to remove this assumption and endow the agents

with the ability to estimate it. To this purpose, we propose the

following adaptive state observer

żi =

[
0 1

− ˆ̄ωi 0

]

︸ ︷︷ ︸

Âi

zi +

[
0

1

]

︸︷︷︸

B

ui +

[
l1i
(t)

l2i
(t)

]

︸ ︷︷ ︸

Li

(yi − x̂2i
)

x̂2i
=
[
0 1

]
zi (19)

where ˆ̄ωi is the estimate of ω̄i =ω2
i and Li(t) must be such

that Âi(t)−Li(t)C is Hurwitz at every time instant.

In order to produce the estimate ˆ̄ωi, we derive the following

parametric model by exploiting the chain-of-integrators form

of the oscillators

s2

s2 +λ1s+λ2

x2i
−

s

s2 +λ1s+λ2

ui

︸ ︷︷ ︸

ξi

= ω2
i

−1

s2 +λ1s+λ2

x2i

︸ ︷︷ ︸

φi

(20)

where the state has been decomposed as xi =
[
x1i

x2i

]
,

and λ1, λ2 > 0 are such that s2 + λ1s + λ2 is a Hurwitz

polynomial. Similarly to [29, Sect. 4.2], we have used a

Laplace streamlined notation to indicate the filtering of the

signals x2i
and ui. The parametric model (20) is a linear-in-

the-parameter model for which the following gradient-based

adaptation law [29, Sect. 5.3] can be designed

˙̄̂ωi = Pro j[γ(ξi − ˆ̄ωiφi)φi], ˆ̄ωi(0) = ˆ̄ω0i
> 0 (21)

=







γ(ξi − ˆ̄ωiφi)φi if ˆ̄ωi < 0 or

if ˆ̄ωi = 0 and (ξi − ˆ̄ωiφi)φi ≥ 0

0 otherwise

where γ > 0 is an adaptive gain, ˆ̄ω0i
is an initial estimate of

the squared frequency ω2
i , ˆ̄ωi is the on-line estimate of ω̄i and

Pro j[·] is the projection operator to keep ˆ̄ωi > 0. In addition,

the following proposition gives another suitable group model

(2) for the network.

Proposition 2 (Alternate harmonic oscillator solution). A

solution to (9) is given by

S =

[
0 1

− 1
n ∑n

ℓ=1
ˆ̄ω0ℓ 0

]

, Πi = Π = I, (22a)

Γi =

[

1

n

n

∑
ℓ=1

( ˆ̄ω0i
− ω̄ℓ) 0

]

(22b)

Proof. The proof follows the same steps as Proposition 1.

Notice that, differently from (12), the group model S is

now chosen to be the average of the initial estimates ˆ̄ω0i

of the squared frequencies in the network. It is important

to mention that, even in the presence of uncertain dynamics,

the solution (22) is always well defined when ˆ̄ω0i
, ω̄i > 0,

i ∈ {1, . . . ,n}.

The solution to Problem 2 arises from combining the

distributed scheme (10) with the adaptive state observer (19)

and adaptive law (21), as formalized by the following result.

Theorem 2 (Group controller with unknown dynamics). Con-

sider the network of harmonic oscillators (1) interconnected

according to an undirected connected graph (N ,E ): then,

the following distributed control strategy

ui =−Fi(zi − ζi)+
[

ˆ̄ωi −βi 0
]

ζi (23a)

żi =Âizi +Bui+Li(yi −Czi), zi(0) = 0 (23b)

ζ̇i =

[
0 1

−βi 0

]

ζi +κ
n

∑
j=1

ai j(ζ j − ζi), ζi(0) = 0 (23c)

β̇i =
n

∑
j=1

ai j(β j −βi), βi(0) = ˆ̄ω0i
(23d)

˙̄̂ωi =Pro j[γ(ξi − ˆ̄ωiφi)φi], ˆ̄ωi(0) = ˆ̄ω0i
, (23e)

achieves synchronization to an a priori unknown group model

S, with S as in (22), provided Fi,Li (which can be time-varying)

are chosen such that

Âi −BFi Âi −LiC

are Hurwitz at every time instant. In addition, we have

limt→∞ Si = S, i ∈ {1, . . . ,n}, with S as in (22).

Proof. Similarly to the derivation of Theorem 1, we can find

the dynamics of x̃i = xi − v and z̃i = zi − v, which are

˙̃xi = Aix̃i +Bũi

˙̃zi = Âiz̃i +Bũi+LiC(x̃i − z̃i)+ Ãiv

where Ãi = Âi−Ai: also, we have used the fact that ei =Cxi−
Cv =Cx̃i, and we have defined ũi =−Fiz̃i + F̂ηi

(ζi −v)+ F̃ηi
v.

This leads to the following dynamics
[

˙̃xi

˙̃xi − ˙̃zi

]

=

[
Âi −BFi BFi

0 Âi −LiC

][
x̃i

x̃i − z̃i

]

+

[
−Ãix̃i +BF̂ηi

(ζi − v)+BF̃ηi
v

−Ãixi

]

. (24)

In addition, it is convenient to write the dynamics of zi − ζi

żi − ζ̇i = (Âi −BFi)(zi − ζi)+LiC(xi − zi)−κ
n

∑
j=1

ai j(ζ j − ζi).

(25)
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By observing the terms on the right-hand side of (25), we

have that limt→∞ C(xi − zi) = 0 (because a well-known result

of the adaptive observer (19) is that the output observation

error yi − x̂2i
converges to zero for t → ∞ [29, Thm. 5.3.1])

and limt→∞ ∑n
j=1 ai j(ζ j −ζi) = 0 (by applying Lemma 2 as in

the proof of Theorem 1). Therefore, being Âi −BFi Hurwitz,

we have that the system matrix of (25) is Hurwitz. Therefore,

similarly to (4), we have stable dynamics driven by decaying

disturbances. From Lemma 1 we obtain convergence to zero

of the state of (25), i.e. limt→∞ zi−ζi = 0. Now, by looking at

(23), we have that ui is the sum of two terms: a vanishing one

(zi−ζi) and a sinusoidal one (ζi). It is well known that the state

of a harmonic oscillator is persistently exciting: using standard

properties on persistently exciting signals [29, Lemma 4.8.3],

we have that ui is sufficiently rich of order 2 [29, Def. 5.2.1].

An adaptive observer with sufficiently rich inputs guarantees

that the state observation error xi − zi and the parameter error
ˆ̄ωi − ω̄i converge to zero exponentially fast [29, Thm. 5.3.1].

The last convergence implies that the term Ãi in (24) also

converges to zero exponentially fast. At this point we are in

a similar situation as in Theorem 1, with an asymptotically

stable system affected by decaying disturbances: therefore,

Lemma 1 guarantees that x̃i converges to zero, from which we

obtain convergence of ei to zero. This concludes the proof.

Remark 3 (Actual ω̄i =ω2
i and estimated ˆ̄ωi). The difference

between the consensus dynamics in (23d) and those in (15d) is

the initial condition, which reflects the a priori knowledge. In

fact, in (15d) we can use the known ω2
i as initial conditions,

while in (23d), being the actual dynamics unknown, we can use

only their initial estimates ˆ̄ω0i
. Despite unknown dynamics, a

solution (22) is always guaranteed to exist.

A. Average model as group model

It must be noted that the solution to Problem 2 presented

so far in this section does not guarantee the group model to

be the average of the actual individuals models, as instead

was the case in our solution to Problem 1. In other words, S

in (12) (average of the actual individuals models) might be

different from S in (22) (average of the estimated individuals

models). With the pursuit of bridging this gap, we now provide

an extension to our framework (23) that is able to converge

to a group model S, with S as in (12), i.e. being the average

of the actual individuals models. We propose the following

adaptive controller

ui =−Fi(zi − ζi)+
[

ˆ̄ωi −βi 0
]

ζi (26a)

żi =Âizi +Bui+Li(yi −Czi), zi(0) = 0 (26b)

ζ̇i =

[
0 1

−βi 0

]

ζi +κ
n

∑
j=1

ai j(ζ j − ζi), ζi(0) = 0 (26c)

β̇i =
˙̄̂ωi +

n

∑
j=1

ai j(β j −βi), βi(0) = ˆ̄ω0i
(26d)

˙̄̂ωi =Pro j[−γ(Rω ˆ̄ωi +Qω)], ω̂i(0) = ˆ̄ω0i
(26e)

Ṙω =− µRω +φ2
i , Rω(0) = 0 (26f)

Q̇ω =− µQω +φiξi, Qω(0) = 0, (26g)

with γ,µ > 0 being adaptive gains, and provided the Hurwitz

conditions on Âi −BFi and Âi−LiC. The essential differences

with respect to (23) lie in the modified consensus (26d) and

in the estimation scheme (26e)-(26g). The former exploits the

availability of ˙̄̂ωi in order for βi to converge to the actual

average of squared frequencies, while the latter is a gradient-

based estimation with integral cost [29, Thm. 4.3.3].

Remark 4 (Convergence proof for (26)). As compared to

(23), the additional difficulty in the analysis of (26) lies in

guaranteeing convergence of the consensus dynamics (26d) in

the presence of the extra term ˙̄̂ωi: for the particular case of

gradient-based estimation with integral cost, it is well known

that limt→∞
˙̄̂ωi = 0 irrespective of the input ui [29, Thm. 4.3.3]

(a similar result holds for least square estimation with no

forgetting factor [29, Thm. 4.3.4]). Therefore, in such special

estimation algorithms, ˙̄̂ωi acts as a vanishing disturbance on

the consensus dynamics, which allows us to use Lemma 1

to guarantee limt→∞ zi − ζi = 0 and therefore convergence

to the state of a (persistently exciting) group model. The

rest of the proof follows similar steps as for Theorem 2.

For standard gradient-based estimation laws like the one in

(23e), convergence of ˙̄̂ωi to zero irrespective of ui cannot be

proven: at most, one can prove that ˙̄̂ωi is bounded and with

finite energy [29, Thm. 4.3.2]. Therefore, it seems difficult to

generalize (26) to any estimation algorithm.

Despite the difficulty in generalizing the algorithm (26), nu-

merical experiments (cf. Sect. V) suggest that the combination

of (26a)-(26d) and (23e) (i.e. the modified consensus with the

standard gradient-based estimation) is able to converge to the

actual average of squared frequencies.

V. NUMERICAL EXAMPLES

ω2
i

ˆ̄ω0i
x0 ζi

#1 1 1.5 [ 1 -1]’ [0 -1]’

#2 5 3 [ 1 1]’ [0 1]’

#3 0.5 1 [-1 -1]’ [0 -1]’

#4 4 5 [-1 0]’ [0 0]’

#5 2 1.5 [ 0 -1]’ [0 -1]’

#6 6 4 [ 1 0]’ [0 0]’

#7 3 2 [-1 1]’ [0 1]’

Fig. 1: The undirected communication graph

Simulations are carried out on the undirected graph shown

in Fig. 1, where the table reports the squared frequencies ω2
i

of each oscillators and the initial estimates ˆ̄ω0i
(the latter to

be used for the case in which ω̄i = ω2
i is unknown). The other

parameters are: Fi are chosen such that Ai −BFi (or Âi −BFi)

have poles in -0.75 and -1.5; Li are chosen such that Ai−LiC

(or Âi − LiC) have poles in -2.25 and -4.5; κ = 3 for all i,

zi(0) = 0 for all i, λ1 = 2, λ2 = 1 and γ = 100.

On this set-up, we simulated the evolution of the controlled

dynamics by using controllers (15), (23) and (26). In case ω2
i

are known, the outputs yi and inputs ui resulting from (15) are

shown in Fig. 2: synchronization of the outputs to the same
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Fig. 2: Known ω2
i : synchronizing outputs yi and inputs ui.

Fig. 3: Known ω2
i : convergence of βi.

frequency is achieved, whereas it can be noted that each agent

has a different input in view of the heterogeneous dynamics.

The frequency to which the systems converge is defined by the

convergence of βi, as shown in Fig. 3. In case ω2
i are unknown,

they cannot be used for control design and (23) is employed.

The resulting outputs yi and inputs ui are shown in Fig. 4.

The frequency to which all agents synchronize depends upon

the consensus dynamics over ˆ̄ω0i
as shown in Fig. 5: therefore

the synchronizing frequency is not necessarily the same as in

the previous case (around 2.57 in Fig. 5 and around 3.07 in

Fig. 3). In addition, Fig. 5 shows that the estimates ˆ̄ωi converge

to ω2
i asymptotically. Finally, as anticipated after Remark 4,

Figs. 6 and 7 show the effectiveness of (26a)-(26d) and (23e)

in practice. Note the convergence of βi to a value around 3.07,

exactly as in Fig. 3: therefore, convergence occurs to a group

model being the average of the actual individuals models.

VI. CONCLUSION

In order to construct a distributed controller to make het-

erogeneous agents synchronize to a common trajectory, prior

works postulated that a reference model be known to at least

some agents. The goal of this work was to lift this assumption,

Fig. 4: Unknown ω2
i : synchronizing outputs yi and inputs ui.

Fig. 5: Unknown ω2
i : convergence of βi and of ˆ̄ωi.

by letting the agents cooperatively learn the parameters of a

common model (the group model) that are initially unknown

to all agents. We have also shown that even when the agents

do not know the parameters of their own dynamics, the

group model exists and the agents can cooperatively learn its

parameters and synchronize to its dynamics.

Future work can address some of the restrictive assumptions

of our results. First, in our learning scheme the observer gain

κ is common to all systems, in line with the literature on

synchronization for heterogeneous systems [13]: a relevant

open problem is to design or adapt such gain independently

for each agent, similarly to what can be done for homogeneous

agents [2]. Second, our work focused on harmonic oscillators

as a specific relevant class of (heterogeneous) systems, but we

are confident that its ideas can be extended to more general

systems. Considering harmonic oscillators has allowed us to

derive the structure of the group model analytically and just

leave to the agents the task of learning its parameters. Such

a structural knowledge, which in the linear case is justified

by the fact that the regulation problem typically considers

a marginally stable exosystem [31], might be restrictive for

more general classes of systems. In future work, it would be
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Fig. 6: Unknown ω2
i , average model: outputs yi and inputs ui.

Fig. 7: Unknown ω2
i , average model: βi and ˆ̄ωi.

interesting to study whether the group model structure can

be learned by the agents themselves, e.g. via neural-network

approaches.
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