

Betulin-related esters from birch bark tar: identification, origin and archaeological significance

J. Perthuison, P. Schaeffer, P. Debels, P. Galant, P. Adam

▶ To cite this version:

J. Perthuison, P. Schaeffer, P. Debels, P. Galant, P. Adam. Betulin-related esters from birch bark tar: identification, origin and archaeological significance. Organic Geochemistry, Elsevier, 2019, pp.103944. 10.1016/j.orggeochem.2019.103944. hal-02335022

HAL Id: hal-02335022 https://hal.archives-ouvertes.fr/hal-02335022

Submitted on 28 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BETULIN-RELATED ESTERS FROM BIRCH BARK TAR:
IDENTIFICATION, ORIGIN AND ARCHAEOLOGICAL
SIGNIFICANCE
J. Perthuison ¹ , P. Schaeffer ^{1*} , P. Debels ² , P. Galant ³ , P. Adam ¹
¹ University of Strasbourg, CNRS – UMR 7177, Strasbourg, France
² University Paul Valéry Montpellier 3 – UMR 5140 and UMR 8215
Montpellier and Paris, France; ³ Regional Service of Archaeology – Occitania
Montpellier, France.
* Corresponding Author: Tel: +33 (0)3 68 85 28 05
E-mail address: p.schaef@unistra.fr

22

Abstract

23	Birch bark tar, an organic material frequently encountered during
24	archaeological excavations, has been identified from its lipid composition on
25	the cracks of a ceramic dated to the late Neolithic. Lipids of this black
26	substance were dominated by a characteristic triterpenoid assemblage of
27	lupane-related triterpenoids from birch bark together with their thermal
28	degradation products formed during preparation of the tar. Among the
29	latter, four main series of unusual triterpenoid esters have been detected
30	and were postulated to correspond to esters of Δ^2 -betulin and Δ^2 -
31	dihydrobetulin based on their mass spectra and hydrolysis experiments.
32	Their conclusive identification has been achieved by synthesis of reference
33	compounds. These compounds most likely originate from the esterification
34	between triterpenoid alcohols related to betulin and fatty acids from suberin
35	formed upon heating of birch bark tar. They could be considered as markers
36	of intense heating during birch bark tar preparation using the "single
37	pot" procedure.
38	
39	Key words: Archaeology, Birch bark tar, Lupane-related triterpenoids,
40	Triterpenoid esters, Neolithic.
41	
42	Declarations of interest: none
43	1. Introduction
T J	1. Introduction
44	Natural plant resins and resinous materials have played an important role
45	in the daily life since ancient times, explaining their frequent occurrence at

46	archaeological sites. Among them, birch bark tar is a vegetal substance
47	produced by dry distillation of birch bark (Aveling and Heron, 1998; Urem-
48	Kotsou et al., 2002; Rageot et al., 2016; Courel et al., 2018). This sticky and
49	hydrophobic material has been used since the Paleolithic (Koller et al., 2001;
50	Grünberg, 2002) for various purposes, like the hafting of lithic tools or
51	jewellery (Sauter et al., 2000; Bosquet et al., 2001; Koller et al., 2001; Courel
52	et al., 2018), the repairing or caulking of ceramics (Charters et al., 1993;
53	Connan et al., 2000; Bosquet et al., 2001; Rageot et al., 2016; Reunanen et
54	al., 1993; Urem-Kotsou et al., 2002), the decorating of ceramic vessels (Vogt,
55	1949) and has even been used as chewing-gum (Aveling and Heron, 1999;
56	Karg et al., 2014). Birch bark tar has a typical molecular composition,
57	making it easy to identify by detection of predominant lupane-related
58	triterpenoids using gas chromatography coupled to mass spectrometry - GC-
59	MS - (Hayek et al., 1989, 1990; Reunanen et al., 1996; Aveling and Heron,
60	1998; Schnell et al., 2014).
61	In the frame of a study dedicated to the use of pottery during the Neolithic,
62	we have investigated an organic black substance having most likely served
63	to repair different ceramics (Fig. 1) found at the site of La Rouvière (Rogues,
64	Gard, Occitanie, Southern France) and dated to the late Neolithic (ca. 3000
65	BCE). GC-MS analysis of this substance led to its identification as birch
66	bark tar. Along with typical triterpenoid markers from the lupane series,
67	four series of uncommon compounds eluted late on the gas chromatogram
68	were detected. Based on MS interpretations, they were postulated to

69	correspond to triterpenes ester-linked to monocarboxylic or dicarboxylic
70	acids. One of this compound series was previously reported to occur in birch
71	bark tar samples from Roman archaeological sites in Great Britain, but the
72	identification, based on MS interpretations and hydrolysis experiments,
73	remained tentative (Dudd and Evershed, 1999). We report here the
74	conclusive identification of the four series of compounds by synthesis of one
75	homologue of each series. Their origin as well as their significance with
76	regard to the mode of preparation of the organic material are discussed.
77	2. The archaeological site of La Rouvière
78	The site of La Rouvière corresponds to a settlement unearthed in the city of
79	Rogues (Southern France). It has been discovered in 1989 by J. Halgand and
80	colleagues (members of the « Groupe de Recherches et d'Explorations
81	Souterraines du Vigan ») and excavated by P. Galant from 1989 to 2004
82	(Galant et al., 2000). The archaeological site is composed of a sinkhole
83	(discovered in 1989) and an outdoor establishment (discovered in 1999)
84	linked by a narrow corridor (Fig. 1a). The site was used to collect and store
85	water. Two main phases of occupation both dated to the late Neolithic (ca.
86	3000 BCE) were clearly distinguished, with the latest ending with a fire
87	event. More than 40 jars related to the last occupation stage were discovered
88	inside the establishment. One of them, named I15, was found in the corridor
89	at the entrance of the sinkhole and was probably used for water storage
90	(Galant and Halgand, 2004; Fig. 1a). In this jar, black organic residues were

- 91 discovered along the edges of ancient cracks on the inner surface, suggesting
- 92 that this material was used to repair/waterproof the ceramic. The
- 93 archaeological sample investigated corresponds to a black organic residue
- ollected on the jar I15 (Fig. 1b).

3. Experimental

96 3.1. Extraction

95

- 97 The archaeological sample was extracted by sonication (20 min) using a
- 98 mixture of CH₂Cl₂/MeOH (1:1 v/v) followed by filtration of the supernatant
- 99 through celite and removal of the solvent under reduced pressure. 25.0 mg of
- organic extract were obtained from 204.7 mg of starting material.

101 3.2. Fractionation of the solvent extract

102 **3.2.1. Protocol A**

- 103 An aliquot of the extract was acetylated (Ac₂O, Pyridine, 2 h, 60 °C) and, after
- 104 removal of the solvents and excess reagents under a stream of Ar, esterified
- with a solution of diazomethane in diethyl ether. The derivatized extract was
- 106 fractionated by liquid chromatography (LC) on silica gel into an apolar
- 107 fraction (F_{A.1}) eluted with CH₂Cl₂/EtOAc (8:2, v/v; 3 dead volumes D_{vol} -) and
- a more polar fraction (F_{A.2}) eluted with CH₂Cl₂/MeOH (1:1, v/v; 2 D_{vol}). F_{A.1}
- was analyzed by GC-MS.

110 **3.2.2. Protocol B**

111 An aliquot of the extract was fractionated by liquid chromatography (LC) on 112 silica gel without derivatization. A first fraction (F_{B.1}) containing the fatty 113 acyl esters from series E1 and E2 was recovered by elution with CH₂Cl₂(1.4 114 D_{vol}). A second fraction (F_{B.2}), eluted with a mixture of CH₂Cl₂/MeOH (1:1 v/v; 115 2 D_{vol}), was treated with a solution of diazomethane in diethyl ether. The 116 resulting methylated fraction F_{B,2} was re-fractionated into three fractions. The first fraction (F_{B.2.1} eluted with CH₂Cl₂ (1.25 D_{vol}) was shown to contain 117 118 mainly methylated fatty acids, and the second fraction (F_{B.2.2}), also eluted 119 with CH₂Cl₂ (2 D_{vol}), comprised dicarboxylic esters from series **E3** and **E4**. The 120 last eluted one (F_{B.2.3}), recovered using a mixture of CH₂Cl₂/MeOH (1:1 v/v; 2 121 D_{vol}), corresponded to more polar material not further investigated. 122 3.3. GC-MS 123 GC-MS analyses were carried out using a Thermo Trace gas chromatograph (Thermo Scientific) coupled to a Thermo Scientific TSQ Quantum mass 124 125 spectrometer equipped with an autosampler Tri Plus and a programmed temperature vaporizing (PTV) injector. The temperature of the source was set 126 127 at 220 °C. The mass spectrometer was operating in the electron impact (EI) 128 mode at 70 eV and scanning m/z 50 to 700 or 50 to 900. Gas chromatographic 129 separations were performed on a HP5-MS column (30 m x 0.25 mm; 0.25 µm 130 film thickness) using He as carrier gas. 131 Two oven temperature programs were used: 132 **Program 1:** 70 °C (1 min), 70 °C-200 °C (10 °C/min), 200 °C-320 °C (4 °C/min),

133

isothermal at 320 °C for 40 min.

134	Program 2: 70 °C (1 min), 70 °C-320 °C (10 °C/min), isothermal at 320 °C
135	for 80 min.
136	3.4. NMR
137	The NMR spectra were recorded on a Bruker Avance I $500\mathrm{MHz}$ spectrometer.
138	The chemical shifts are reported in ppm relative to tetramethylsilane with
139	the solvent used as internal standard (CDCl3 : $\delta^1 H$ 7.26 ppm ; $\delta^{13} C$ 77.16 ppm).
140	3.5. LiAlH4 hydrogenolysis of ester bonds
141	Fraction $F_{B.1}$ (cf. § 3.2.2.) was submitted to hydrogenolysis using LiAlH ₄ . A
142	small amount of LiAlH $_4$ (in powder) prewashed with distilled cyclohexane was
143	put under stirring in a vial containing the fraction $F_{\rm B.1}$ dissolved in THF (1 h,
144	room temperature). The mixture was transferred dropwise into a round-
145	bottom flask containing MeOH in order to remove the excess of reagent. After
146	removal of the solvents under reduced pressure, the crude mixture was
147	transferred into a separatory funnel and extracted using EtOAc after addition
148	of distilled water. The solvent extract was filtered on a small silica gel column
149	and acetylated (Ac ₂ O/Pyr, 1:1 v/v, 2 h, 60 °C) before analysis using GC-MS.
150	3.6. Synthesis of reference compounds
151	Synthesis of the reference compounds was based on the articles from Sun et
152	al. (1998a, 1998b).
153	3.6.1. Dehydration of betulin derivatives (Fig. 2a)
154	Diethylazodicarboxylate (0.15 mL, 4 eq) was added dropwise to a solution
155	containing 100 mg of betulin T1 (respectively 100 mg of dihydrobetulin T9)

- 156 in THF (3-4 mL), triphenylphosphine (237 mg, 4 eq) and 3,3-
- dimethylglutarimide (129 mg, 4 eq) at 0 °C under Ar atmosphere. The mixture
- was left for 3 h at room temperature. After removal of the solvent under
- 159 reduced pressure, the crude residue was fractionated by silica gel
- 160 chromatography with a mixture of EtOAc/CH₂Cl₂ (5:95 v/v) to obtain 68 mg of
- pure Δ^2 -betulin **T5** (respectively 46 mg of Δ^2 -dihydrobetulin **T7**) with a yield
- 162 of 71% (respectively 48%).
- 163 Δ^2 -betulin **T5** (Fig. 3a): GC-MS (acetate derivative of **T5**) (EI, 70 eV) m/z (rel.
- 164 intensity) 466 (M+, 10%), 406 (8), 393 (20), 229 (12), 216 (21), 203 (40), 189
- 165 (100), 187 (55), 173 (27), 159 (32), 147 (35), 133 (42), 119 (56), 107 (48), 93 (40).
- ¹H NMR (500 MHz; CDCl₃): 0.86 (3H, s), 0.87 (3H, s), 0.94 (3H, s), 0.99 (3H,
- 167 s), 1.05 (3H, s), 1.69 (3H, s, H-30), 2.40 (1H, td, J = 5.5; 11.0 Hz, H-19), 3.34
- 168 (1H, d, J = 10.5 Hz, H-28), 3.82 (1H, d, J = 10.5 Hz, H-28), 4.59 (1H, s, H-29),
- 169 4.69 (1H, s, H-29), 5.35 (1H, dd, J = 2.0; 10.0 Hz, H-3), 5.40 (1H, ddd, J = 1.0;
- 170 5.5; 10.0 Hz, H-2). ¹³C NMR (500 MHz; CHCl₃): 14.9, 15.8, 16.5, 19.2, 19.6,
- 171 21.4, 22.7, 25.5, 27.2, 29.3, 29.9, 31.9, 33.5, 34.1, 34.8, 36.5, 37.6, 41.1, 41.4,
- 172 42.9, 47.9, 48.0, 48.9, 49.2, 52.2, 60.7, 109.8, 121.7, 138.1, 150.7.
- 173 Δ^2 -dihydrobetulin **T7** (Fig. 3b): GC-MS (acetate derivative of **T7**) (EI, 70 eV)
- m/z (rel. intensity) 468 (M+, 9%), 408 (3), 395 (54), 229 (10), 217 (13), 204 (26),
- 175 191(41), 189 (100), 177 (36), 161 (22), 147 (27), 135 (47), 122 (62), 119 (47),
- 176 107 (43), 95 (35). ¹H NMR (500 MHz; CDCl₃): 0.77 (3H, d, J = 7.0 Hz, H-29 or
- 177 H-30), 0.84 (3H, d, J = 7.0 Hz, H-29 or H-30), 0.87 (3H, s), 0.88 (3H, s), 0.95
- 178 (3H, s), 0.97 (3H, s), 1.06 (3H, s), 3.31 (1H, d, J = 11.0 Hz, H-28), 3.79 (1H, d,

- 179 J= 11.0 Hz, H-28), 5.36 (1H, dd, J = 2.5; 10.0 Hz, H-3), 5.40 (1H, ddd, J = 1.5;
- 180 5.5; 10.0 Hz, H-2). ¹³C NMR (500 MHz; CHCl₃): 14.8, 15.1, 15.8, 16.5, 19.6,
- 181 21.4, 21.9, 22.8, 23.1, 27.1, 27.1, 29.4, 29.6, 31.9, 33.6, 34.2, 34.8, 36.5, 37.1,
- 182 41.2, 41.4, 43.0, 44.7, 48.1, 48.2, 48.9, 52.2, 60.8, 121.7, 138.1.

183 3.6.2. Esterification of betulin derivatives

- 184 Synthesis of **E1a** and **E2a** (Fig. 2b)
- 185 A solution containing Δ^2 -betulin **T5** (14.7 mg) (respectively Δ^2 -
- dihydrobetulin **T7**, 17.9 mg), nonanoyl chloride (50 μL, ~7 eq), N-methyl
- imidazole (N-Me Im, one drop) and pyridine (0.6 mL) was placed in a vial at
- 188 90 °C for 4 h. After transfer of the mixture into a separatory funnel and
- addition of an aqueous solution of CuSO₄ (3 mL, 9/1 wt:wt), the organic
- 190 layer was recovered using CH₂Cl₂. The organic phase was washed with
- distilled water, and the solvent removed under reduced pressure. The crude
- residue was fractionated by silica gel chromatography with toluene to obtain
- 193 4.3 mg of pure **E1a** with a yield of 22% (resp. 4.4 mg of E2a; 19%, yield).
- 194 Compound E1a (Fig. 3c): GC-MS (EI, 70 eV) m/z (rel. intensity) 564 (M⁺,
- 195 6%), 406 (18), 393 (19), 229 (14), 216 (22), 203 (46), 189 (100), 187 (64), 175
- 196 (25), 173 (26), 159 (34), 147 (34) 135 (34), 133 (40), 121 (44), 119 (48), 107
- 197 (45), 95 (37), 81 (27). ¹H NMR (500 MHz; CDCl₃): 0.94 (3H, s), 0.99 (3H, s),
- 198 1.06 (3H, s), 1.69 (3H, s, H-30), 2.32 (2H, t, J = 7.5 Hz, H-2'), 2.46 (1H, td, J
- 199 = 6.0; 11.5 Hz, H-19), 3.86 (1H, d, J = 11.0 Hz, H-28), 4.26 (1H, d, J = 11.0
- 200 Hz, H-28), 4.59 (1H, s, H-29), 4.69 (1H, s, H-29), 5.35 (1H, dd, J = 2.0; 10.0
- 201 Hz, H-3), 5.40 (1H, ddd, J = 1.0; 5.5; 10.0 Hz, H-2). ¹³C NMR (500 MHz;

- 202 CHCl₃): 14.2, 14.9, 15.9, 16.5, 19.3, 19.6, 21.3, 22.8, 22.8, 25.3, 25.5, 27.2,
- 203 29.3, 29.4, 29.4, 29.8, 29.9, 31.9, 32.0, 33.5, 34.7, 34.8, 34.8, 36.5, 37.8, 41.1,
- 204 41.4, 42.9, 46.6, 47.9, 48.9, 49.2, 52.3, 62.7, 109.9, 121.7, 138.1, 150.4, 174.5.
- 205 Compound **E2a** (Fig. 3d): GC-MS (EI, 70 eV) m/z (rel. intensity) 566 (M⁺,
- 206 5%), 408 (8), 395 (47), 229 (16), 217 (14), 204 (39), 191 (43), 189 (100), 177
- 207 (37), 161 (23), 159 (24), 149 (28), 147 (30), 135 (50), 122 (51), 107 (42), 95
- 208 (42), 81 (30). ¹H NMR (500 MHz; CDCl₃): 0.77 (3H, d, J = 6.5 Hz, H-29 or H-
- 209 30), 0.84 (3H, d, J = 7.0 Hz, H-29 or H-30), 0.87 (3H, s), 0.88 (3H, s), 1.07
- 210 (3H,s), 2.31 (2H, t, J = 8.0 Hz, H-2'), 3.83 (1H, d, J = 11.0 Hz, H-28), 4.26
- 211 (1H, d, J = 11.0 Hz, H-28), 5.36 (1H, dd, J = 2.0; 10.0 Hz, H-3), 5.41 (1H,
- 212 ddd, *J*= 1.0; 6.0; 10.0 Hz, H-2). ¹³C NMR (500 MHz; CHCl₃): 14.2, 14.8, 15.1,
- 213 15.9, 16.5, 19.6, 21.3, 21.8, 22.8, 22.8, 23.1, 25.3, 27.1, 27.1, 29.3, 29.4, 29.4,
- 214 29.6, 30.1, 31.9, 32.0, 33.6, 34.7, 34.8, 34.9, 36.5, 37.4, 41.1, 41.4, 43.0, 44.7,
- 215 46.7, 48.3, 48.9, 52.2, 62.7, 121.7, 138.1, 174.5.
- 216 Synthesis of **E3a** and **E4a** (Fig. 2b)
- 217 A solution containing 12.9 mg of Δ^2 -betulin **T5** (resp. 13 mg of Δ^2 -
- 218 dihydrobetulin **T7**), methyl 8-chloro-8-oxooctanoate (50 μL, 11 eq), N-methyl
- 219 imidazole (N-Me Im) (one drop) and pyridine (0.6 mL, was placed in a vial at
- 220 90 °C for 4 h. To remove pyridine and N-Me Im, the mixture was transferred
- into a separatory funnel, shaken with 3 mL of an aqueous solution of CuSO₄
- 222 (9/1 wt:wt) and extracted 2x with CH₂Cl₂ and 2x with EtOAc. The combined
- 223 organic extracts were evaporated under reduced pressure, dissolved in
- 224 EtOAc and washed with distilled water. The crude residue obtained after

- 225 removal of the solvent under reduced pressure was fractionated by silica gel
- 226 chromatography with a mixture of EtOAc/CH₂Cl₂ (5:95 v/v) to obtain 8.9 mg
- 227 (49 % yield) of pure **E3a** (respectively 10.1 mg of **E4a**, 55 % yield).
- 228 Compound E3a (Fig. 3e): GC-MS (EI, 70 eV) m/z (rel. intensity) 594 (M⁺,
- 229 2%), 406 (31), 391 (13), 363 (7), 229 (15), 215 (23), 203 (41), 202 (41), 189
- 230 (100), 187 (62), 173 (28), 159 (32), 147 (36), 133 (41), 119 (51), 107 (47), 95
- 231 (39), 81 (26). ¹H NMR (500 MHz; CDCl₃): 0.86 (3H, s), 0.87 (3H, s), 0.94 (3H,
- 232 s), 0.98 (3H, s), 1.06 (3H, s), 1.68 (3H, s, H-30), 2.30 (2H, t, J = 7.5 Hz, H-2'
- 233 or H-7'), 2.32 (2H, t, J = 7.5 Hz, H-2' or H-7'), 2.45 (1H, td, J = 5.5; 11.5 Hz,
- 234 H-19), 3.66 (3H, s, OCH₃), 3.86 (1H, d, J = 11.5 Hz, H-28), 4.27 (1H, d, J =
- 235 11.0 Hz, H-28), 4.59 (1H, s, H-29), 4.69 (1H, s, H-29), 5.35 (1H, dd, J = 2.0;
- 236 10.0 Hz, H-3), 5.39 (1H, ddd, J = 1.0; 5.5; 10.0 Hz, H-2). ¹³C NMR (500 MHz;
- 237 CHCl₃): 14.9, 15.9, 16.5, 19.3, 19.6, 21.3, 22.8, 24.9, 25.0, 25.5, 27.2, 28.9,
- 238 28.9, 29.8, 29.9, 31.9, 33.5, 34.1, 34.5, 34.7, 34.8, 36.5, 37.8, 41.1, 41.4, 42.9,
- 239 46.6, 47.9, 48.9, 49.2, 51.6, 52.3, 62.7, 110.0, 121.7, 138.1, 150.4, 174.3,
- 240 174.3.
- Compound **E4a** (Fig. 3f): GC-MS (EI, 70 eV) m/z (rel. intensity) 596 (M⁺,
- 242 2%), 408 (15), 395 (16), 365 (8), 326 (7), 229 (13), 217 (11), 204 (39), 191 (38),
- 243 189 (100), 177 (27), 159 (22), 149 (24), 147 (25), 135 (43), 119 (40), 107 (37),
- 244 95 (38), ¹H NMR (500 MHz; CDCl₃): 0.77 (3H, d, J = 7.0 Hz, H-29 or H-30),
- 245 0.84 (3H, d, J = 7.0 Hz, H-29 or H-30), 0.87 (3H, s), 0.88 (3H, s), 0.94 (3H, s),
- 246 0.96 (3H, s), 1.07 (3H, s), 2.30 (2H, t, J = 7.5 Hz, H-2' or H-7'), 2.31 (2H, t, J = 7.5 Hz, H-2' or H-7'
- $= 7.5 \text{ Hz}, \text{ H-2' or H-7'}, 3.66 (3\text{H, s}, \text{OCH}_3), 3.83 (1\text{H, d}, J = 11.0 \text{ Hz}, \text{H-28}),$

- 248 4.26 (1H, d, *J* = 11.0 Hz, H-28), 5.36 (1H, dd, *J* = 2.0; 10.0 Hz, H-3), 5.40
- 249 (1H, ddd, J = 1.0; 5.5; 10.0 Hz, H-2). ¹³C NMR (500 MHz; CHCl₃): 14.8, 15.1,
- 250 15.9, 16.5, 19.6, 21.3, 21.8, 22.8, 23.1, 24.9, 25.0, 27.1, 27.1, 28.9, 28.9, 29.6,
- 251 30.0, 31.9, 33.5, 34.1, 34.5, 34.8, 34.9, 36.5, 37.4, 41.1, 41.4, 43.0, 44.7, 46.7,
- 252 48.3, 48.9, 51.6, 52.2, 62.8, 121.7, 138.1, 174.3, 174.3.

4. Results and discussion

253

254

4.1. Triterpenoids as markers of birch bark tar

- The gas chromatogram of fraction $F_{A,1}$ (cf. § 3.2.1.) isolated from the
- archaeological sample is shown in Fig. 4. Its lipid distribution was
- dominated by triterpenoids from the lupane series, indicating a major
- contribution from a vegetal source derived from angiosperms (Fig. 4). The
- 259 triterpenoids notably comprised betulin **T1**, lupeol **T2** and betulone **T3**
- 260 which are native triterpenoids occurring in birch bark (Hayek et al., 1989,
- 261 1990; Schnell et al., 2014). However, these compounds represent generally
- by far the predominant triterpenoids in the case of fresh (or even weathered)
- birch bark (Hayek et al., 1990; Aveling and Heron, 1998; Schnell et al.,
- 264 2014; Courel et al., 2018), whereas they appear only as minor constituents
- in the archaeological sample. In the latter case, the distribution is
- dominated by compounds **T4**, **T5**, **T10**, **T7** and **T11**, which all belong to the
- series of Δ^2 -betulin-related triterpenoids. These compounds, together with
- 268 the allobetulane derivatives **T10-T13**, are known from the literature to be

269	biomarkers of birch bark tar (Bosquet et al., 2001; Modugno et al., 2006;
270	Regert et al., 2006; Courel et al., 2018; Rageot et al., 2019).
271	$\Delta^2\text{-triter}\textsc{penoids}$ are formed by elimination of the oxygenated function at C-3
272	of lupeol $\mathbf{T2}$ and betulin $\mathbf{T1}$, this reaction being generally induced by a
273	thermal treatment as is the case for the preparation of birch bark tar
274	(Courel et al., 2018; Rageot et al., 2019). Similarly, it was shown that the
275	same thermal treatment leads to the formation of allobetulane derivatives
276	(T10-T13) which results from an acid-catalyzed intramolecular
277	rearrangement of the ring $\it E$ of betulin and by-products (Davy et al., 1951a,
278	1951b; Green et al., 2007; Salvador et al., 2009). In some cases, both
279	reactions may co-occur, resulting in the formation of Δ^2 -allobetulin
280	derivatives such as T10 and T11.
281	Similar observations regarding birch bark tar composition, in which
282	alteration products dominate over genuine ones, are reported in the
283	literature in the case of archaeological samples (e.g., Urem-Kotsou et al.,
284	2002; Regert et al., 2003), and were interpreted as being the result of an
285	intense heating of the material upon tar preparation. Such seems to be the
286	case with our sample as well which was likely submitted to an abnormally
287	high thermal stress, resulting in the almost complete transformation of the
288	genuine triterpenoids (Fig. 4). In addition to these triterpenoids closely
289	related to birch bark tar, four unusual late-eluted compound series were
290	detected (named "series E1-E4"; Fig. 4), which present fragmentation
291	patterns in MS (Fig. 3c-3f) very similar to those of Δ^2 -betulin T5 (Fig. 3a)

and Δ^2 -dihydrobetulin T7 (Fig. 3b) but with quite higher molecular masses
in the range 494-748 Da. In order to have a more detailed look to these
different compounds, a fractionation procedure of the lipid extract was
developed and led to obtaining chromatographic fractions considerably
enriched in triterpenoids from series E1-E4 (cf. § 3.2.2).
4.2. Late-eluted triterpenoid esters from series E1-E4
4.2.1. Identification of triterpenoid esters from series E1-E2
Detailed investigation of fraction $F_{B.1}$ (cf. § 3.2.2.) revealed the occurrence of
compounds belonging to the series ${\bf E1}$ and ${\bf E2}$ (Fig. 5). Homologues from
series $\mathbf{E1}$ have a mass fragmentation pattern very similar to that of Δ^2
betulin T5 (Fig. 3a and 3c) and a molecular weight of $494 + n \times 14$ ($n = 0$ -
18), while those from series ${\bf E2}$ have mass spectra close to that of Δ^2
dihydrobetulin $\mathbf{T7}$ (Fig. 3b and 3d) and with a molecular weight shifted
upwards by 2 mass units compared to series E1 (i.e., M^+ of 496 + $n \times 14$, $n =$
0-18). According to the literature, the generic structure of compounds from
series ${f E1}$ has been previously proposed to correspond to Δ^2 betulin ${f T5}$
esterified at C-28 with saturated monocarboxylic acids of different chain
lengths (Dudd and Evershed, 1999). By analogy, it can be proposed that
compounds from the series ${\bf E2}$ have the same generic structure, but without
the $\Delta^{20(29)}$ unsaturation. For both series, the fatty acyl moiety is ranging
from C_4 to at least C_{22} (Fig. 5). However, since the original structural
identification of compounds from series E1 was based on MS interpretations
and hydrolysis experiments (Dudd and Evershed, 1999), thus remaining

315	tentative, we have carried out the synthesis of one reference compound from
316	each series ${\bf E1}$ and ${\bf E2}$ (Fig. 2 and § 3.6.) for firm identification. Briefly, the
317	hydroxy group at C-3 from betulin $\mathbf{T1}$ (resp. dihydrobetulin $\mathbf{T9}$) was
318	selectively dehydrated following the method reported by Sun et al. (1998b),
319	leading to the formation of Δ^2 -betulin T5 (resp. Δ^2 -dihydrobetulin T7). The
320	remaining hydroxy group at C-28 from ${\bf T5}$ (resp. ${\bf T7}$) was then esterified
321	with nonanoyl chloride to yield the C_9 ester of Δ^2 -betulin E1a (resp. E2a).
322	Since the mass spectra and retention times in GC of the synthetic and
323	naturally-occurring compound ${\bf E1a}$ (resp. ${\bf E2a}$) were identical, it can be
324	considered that both compound series have been successfully identified.
325	4.2.2. Identification of the triterpenoid esters from series E3-E4
326	The fraction $F_{B.2.2}$ recovered after purification of the solvent extract (cf. §
327	$3.2.2.$) revealed the occurrence of late eluting compounds from series ${f E3}$ and
328	$\mathbf{E4}$ (Fig. 6). Like compounds from series $\mathbf{E1}$, the mass spectra of the
329	homologues from series $\mathbf{E3}$ (Fig. 3e) showed close similarities with those of
330	Δ^2 -betulin T5 (Fig. 3a) but with molecular ions at 538 + $n \times 14$ ($n = 0$ -6).
331	Similarly, the mass spectra of compounds from series ${\bf E4}$ (Fig. 3f) closely
332	resemble that of Δ^2 -dihydrobetulin T7 (Fig. 3b), with a molecular weight of
333	$540 + n \times 14$ ($n = 0$ -6). Based on these data, it was proposed that compounds
334	from series ${f E3}$ (resp. ${f E4}$) could correspond to dicarboxylic acids esterified at
335	the C-28 hydroxy group of Δ^2 -betulin T5 (resp. Δ^2 -dihydrobetulin T7). For
336	both series, the dicarboxylic acid moieties comprised $C_4\text{-}C_{10}$ homologues with
337	a predominance of the C_8 and C_9 homologues. In order to confirm these

338	hypotheses, the synthesis of one homologue of each series was performed
339	following the same synthetic scheme as for compounds ${\bf E1a}$ and ${\bf E2a}$, except
340	for the acylating agent which was methyl-8-chloro-8-oxooctanoate (Fig. 2b).
341	Mass spectra and retention times in GC of the synthetic references and of
342	the archaeological sample were in good agreement, confirming our
343	structural hypotheses.
344	4.2.3. Mode of formation of the triterpenoid esters E1-E4
345	As proposed by Dudd and Evershed (1999), the esters from series E1 and E2
346	may originate from esterification reactions involving compounds ${f T5}$ and ${f T7}$
347	and monocarboxylic acids during the heating of birch bark or birch bark tar
348	with fat in a process aimed at producing birch bark tar with modified
349	properties. However, at least in our case, we propose that the
350	monocarboxylic acids may rather originate from the thermal degradation of
351	suberin, a biopolymer of birch bark (Fig. 7), and not from the input of fat.
352	Our hypothesis is notably based on the presence in the lipid extract of free
353	saturated fatty acids dominated by the C_{16},C_{18} and C_{22} homologues,
354	together with that of C_{20} - C_{22} α , ω -hydroxyacids and C_{16} - C_{22} α , ω -diacids (Fig.
355	8a). Such a distribution closely resembles that of bound fatty acids released
356	from birch bark suberin (Holloway, 1972; Ekman, 1983; Ferreira et al.,
357	2013) and from birch bark tar (Charters et al., 1993; Reunanen et al., 1993,
358	1996; Courel, 2016; Rageot et al., 2019). Furthermore, fraction $F_{B.1}$
359	containing the triterpenoid esters from series ${\bf E1}$ and ${\bf E2}$ was treated with
360	LiAlH ₄ , and the distribution of the resulting alcohols released by

361	hydrogenolysis of the acyl chains (Fig. 8c) was compared to that of the free
362	fatty acids from the same sample (Fig. 8b). It appeared from this experiment
363	that the free fatty acids and the alcohols shared the same type of
364	predominance, with $C_{16} > C_{18} > C_{22} > C_{20} = C_{21}$, confirming an origin from
365	fatty acids from suberin for the esterifying moieties.
366	The esters E3 and E4 might correspond to the oxidation products of
367	triterpenoids ${f T5}$ and ${f T7}$ originally esterified with mid-chain unsaturated
368	fatty acid such as those occurring in birch bark suberin (Ekman, 1983;
369	Ferreira et al., 2013) and which have been oxidized during ageing of the
370	material or during tar preparation (Fig. 7). In this respect, it is worth noting
371	that oleic and linoleic acids (both bearing a Δ^9 double bond) are predominant
372	among the unsaturated acids present in suberin. Interestingly, it has been
373	shown that oleic acid can form $C_2\text{-}C_{12}$ dicarboxylic acids during
374	photochemical degradation (Rontani, 1998; Tedetti et al., 2007), with azelaic
375	acid (C ₉) predominating (Passi et al., 1993; Tedetti et al., 2007), as is the
376	case with the distribution of compounds from series E3 and E4 dominated
377	by homologues esterified with a C_9 diacid moiety.
378	4.3. Mode of preparation of the archaeological birch bark tar
379	The presence of lupane-related biomarkers and of their thermal degradation
380	products, like Δ^2 -betulin derivatives, in the archaeological sample collected
381	from the ceramic I15, clearly indicates that the organic residue corresponds
382	to birch bark tar. As it was found on ancient cracks, it is very likely that it
383	has been used to repair the ceramic (Charters et al., 1993; Connan et al.,

2000; Bosquet et al., 2001; Rageot et al., 2016; Urem-Kotsou et al., 2002).
However, compared to the distributions generally reported in the literature
(Aveling and Heron, 1998, 1999; Courel et al., 2018; Koller et al., 2001), the
triterpenoid distribution was unusually dominated by thermal degradation
products, whereas genuine compounds from bark, like betulin T1, were
present in very low abundance. Such a situation has been seldom reported
(Urem-Kotsou et al., 2002; Regert et al., 2003), and was interpreted as being
the result of a drastic heating during tar preparation. In this respect, birch
bark tar making procedures used in the past are still little documented, but
thanks to archaeological findings and experimental archaeological research
on tar-making, two main procedures known as autothermic and allothermic
procedures (Rageot et al., 2019) have been identified. For the former, the
raw material is exposed directly to the heat source (Kurt et al., 2008),
whereas an indirect heat transfer by a conductor is required for the latter
(Rageot et al., 2019). However, according to Rageot et al. (2019), it seems
that the autothermic process has been used mainly for preparing conifer tar
and not birch bark tar since birch bark is easily flammable. Within the
allothermic systems, two main ways of tar production are described: one
without separation, and the other with separation, this technique being
named "per descensum" (Rageot et al., 2019). In the first case, the tar
remains in the reaction chamber with the bark until the end of the process.
In the second case, the fresh tar formed gives drops that fall into a second
receptacle isolated from the fire. The containers used for tar making could

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

have been ceramics leading to the so called "single-pot" and "double-pot" systems or, for aceramic societies, could be made of clay, sand, ash, turf (Kozowyk et al., 2017; Schenck and Groom, 2018; Rageot et al., 2019). To our knowledge, the oldest allothermic ceramic system known for tar making is dated to the final Bronze Age and was a double-pot system (Dal Ri and Tecchiati, 2003). Ceramic systems and especially the "double-pot" are more frequently encountered in Roman times and in the Middle Age in Europe (Balsan, 1951; Connan et al., 2002; Regert et al., 2003; Trintignac, 2003; Burri, 2009, 2010; Burri et al., 2018). According to the distribution of the triterpenoids, and particularly given the almost absence of genuine triterpenoids from birch bark, it is likely that the archaeological birch bark tar investigated in the present study was prepared using a system without separation. With this method, the produced tar is staying with the bark in the reaction chamber until the end of the heating phase, thus explaining the presence of thermal degradation products in high proportions and the low amounts of betulin T1 in the sample. This hypothesis is in agreement with the findings of Rageot et al. (2019) who provided new molecular data on tar production by single or double-pot processes and showed that the birch bark tars with low amount of betulin were exclusively produced using the "singlepot" procedure. However, caution is needed since the use of ceramics for tar production is unclear during the Neolithic time (Pietrzak, 2012).

4.4. Triterpenoid esters as new biomarkers of birch bark tar

Dudd and Evershed (1999) originally reported on the presence of fatty acyl	Ĺ
esters of betulin-related triterpenoids from archaeological samples. These	
samples, found in Roman archaeological sites in Great Britain, were	
interpreted as being the result of the condensation between birch bark tar	
triterpenoids and fatty acids from animal fat upon strong heating. Since	
such compounds were never previously reported in birch bark tar, they we	re
considered by the authors as being molecular indicators of a composite	
material made of birch bark tar and fat. Based on the present work, it seen	ns
that esters of triterpenoids can (also) be formed during the preparation of	
birch bark tar by esterification reactions between birch triterpenoids and	
thermal degradation products of suberin (i.e., fatty acids, α , ω -dicarboxylic	
acids) during heating, without the presence of an additional ingredient (i.e	·.,
fat; Fig. 7). In this respect, it is interesting to note that recently, Urem-	
Kotsou et al. (2018) reported the occurrence of the same fatty acyl	
triterpenoids than those from the study of Dudd and Evershed (1999), which	ch
were interpreted as the result of a mixture between birch bark tar and fat.	
However, these authors also reported, in the same samples, on the presence	е
of free fatty acids, as well as long and short chain dicarboxylic acids with	
distributions typical of thermal degradation products of suberin, which	
could indicate that triterpenoid esters occurring in these samples may also)
have been directly formed from birch bark during tar preparation. In this	
case, triterpenoid esters ${f E1}{ ext{-}{f E4}}$ should be considered as molecular indicato	rs
of strong thermal processes during birch bark tar preparation, such as tho	se

expected to occur in the "single-pot" procedure. The condensation/esterification reactions between the triterpenoid alcohols and the compounds bearing a carboxylic acid functionality may have been favored by an acid catalysis, possibly provided by phenols formed during the pyrolytic degradation of lignin (Faix et al., 1990; Reunanen et al., 1996; Dudd and Evershed, 1999; Regert et al., 2006; Colombini et al., 2009; Orsini et al., 2015). Further chemical investigations of archaeological samples and birch bark tar production experiments should be undertaken to further clarify under which conditions esters of triterpenoids may be formed, the latters representing potentially new molecular tools allowing different modes of preparation of birch bark tar to be distinguished.

5. Conclusion

The set of lipids identified in an organic material found on an ancient crack on a jar from the late Neolithic led to its identification as birch bark tar that has been used to repair the ceramic. Further chemical investigation of the sample allowed identification of four unusual series of triterpenoid esters by synthesis of reference compounds, three of them being reported here for the first time. The investigation of these compounds allowed a new interpretation of their mode of formation to be proposed. We suggest that these markers represent the esterification products between triterpenoid alcohols related to betulin and carboxylic acids from suberin formed upon heating of birch bark tar. They could be indicators of a high level of heating

474	during birch bark tar preparation using the "single pot" procedure rather
475	than biomarkers resulting from the mixture between birch bark tar and
476	animal fat, as envisaged previously (cf. Dudd and Evershed, 1999; Urem-
477	Kotsou et al., 2018).
478	
479	Acknowledgements
480	Mrs E. Motsch (University of Strasbourg) is thanked for the GC-MS
481	analyses and Dr L. Allouche (University of Strasbourg) for the measurement
482	of the NMR spectra. J.P. has benefited from a doctoral fellowship from the
483	"French Ministère de l'Enseignement Supérieur et de la Recherche".
484	References
485	Aveling, E.M., Heron, C., 1998. Identification of birch bark tar at the
486	Mesolithic site of Star Carr. Ancient Biomolecules 2, 69–80.
487	Aveling, E.M., Heron, C., 1999. Chewing tar in the early Holocene: an
488	archaeological and ethnographic evaluation. Antiquity 73, 579–584.
489	Balsan, L., 1951. L'industrie de la résine dans les Causses et son extension
490	dans l'Empire romain. Gallia 9, 53–55.
491	Bosquet, D., Regert, M., Dubois, N., Jadin, I., 2001. Identification de brai de
492	bouleau sur quatre vases du site rubané de Fexhe-le-Haut-Clocher "Potri
493	

- 494 Burri, S., 2009. La fouille programmée d'un site de distillation du bois à la
- 495 Roche Redonne (Le Castellet, Var). Revue du Centre Archéologique du Var,
- 496 31–34.
- 497 Burri, S., 2010. Production et commerce de la poix et de l'huile de cade en
- 498 basse Provence au Moyen Âge. Anthropobotanica 1, 3–17.
- 499 Burri, S., Alifriqui, M., Bun, S., Cenzon-Salvayre, C., Ciğerci, İ., Cloarec-
- Quillon, A., Corbineau, R., Delgado Robles, A.A., Durand, A., El Jemli, M.,
- 501 Fernandez, X., Genin, D., Ghanmi, M., Konuk, M., Le Maguer-Gillon, S.,
- 502 Liman, R., Marmouzi, I., Mazuy, A., Ollivier, D., Yılancıoğlu, K., 2018. Des
- 503 ressources naturelles à la santé: Approche interdisciplinaire de la
- 504 production des goudrons de conifères et de leur usage médicinal en
- 505 Méditerranée sur la longue durée. Les Nouvelles de l'Archéologie 152, 62-
- 506 69.
- 507 Charters, S., Evershed, R.P., Goad, L.J., Heron, C., Blinkhorn, P., 1993.
- 508 Identification of an adhesive used to repair a Roman jar. Archaeometry 35,
- 509 91–101.
- 510 Colombini, M.P., Lucejko, J.J., Modugno, F., Orlandi, M., Tolppa, E.-L.,
- Zoia, L., 2009. A multi-analytical study of degradation of lignin in
- archaeological waterlogged wood. Talanta 80, 61–70.
- 513 Connan, J., Adam, P., Dessort, D., Albrecht, P., 2000. Apport de la chimie
- 514 moléculaire à la connaissance des enduits utilisés pour le traitement des
- 515 bois et le calfatage des bateaux romains de la Saône. In: Archéologie des
- fleuves et des rivières. Bonnamour, L. (Ed.), Errance, Paris, pp. 40–47.

- Connan, J., Maurin, B., Long, L., Sebire, H., 2002. Identification de poix et
 de résine de conifère dans des échantillons archéologiques du lac de
- 519 Sanguinet : exportation de poix en Atlantique à l'époque gallo-romaine.
- 520 Revue d'Archéométrie 26, 177–196.
- 521 Courel, B., 2016. Caractérisation de substances naturelles en contexte
- 522 archéologique: apport des études moléculaires, isotopiques et de la datation
- 523 au ¹⁴C. PhD thesis, Université de Strasbourg, France.
- 524 Courel, B., Schaeffer, P., Féliu, C., Thomas, Y., Adam, P., 2018. Birch bark
- 525 tar and jewellery: The case study of a necklace from the Iron Age
- 526 (Eckwersheim, NE France). Journal of Archaeological Science: Reports 20,
- 527 72–79.
- 528 Dal Ri, L., Tecchiati, U., 2003. Una distilleria per la pece della fine dell'età
- del Bronzo dal lago di Ledro nel Trentino (loc. Longhini-Assat), in:
- 530 Attraverso Le Alpi. Stuttgart: Uomini, Vie, Beni, Konrad Theiss Verlag, pp.
- 531 175–181.
- Davy, G.S., Halsall, T.G., Jones, E.R.H., Meakins, G.D., 1951a. The
- chemistry of the triterpenes. Part IX. Elucidation of the betulin-oleanolic
- acid relationship. Journal of the Chemical Society, 2696-2702.
- Davy, G.S., Halsall, T.G., Jones, E.R.H., Meakins, G.D., 1951b. The
- 536 chemistry of the triterpenes. Part X. The structures of some isomerization
- 537 products from betulin and betulinic acid. Journal of the Chemical Society,
- 538 2702-2705.

539 Dudd, S.N., Evershed, R.P., 1999. Unusual triterpenoid fatty acyl ester 540 components of archaeological birch bark tars. Tetrahedron Letters 40, 359-541 362. 542 Ekman, R., 1983. The suberin monomers and triterpenoids from the outer 543 bark of Betula verrucosa Ehrh. Holzforschung 37, 205–211. 544 Faix, O., Meier, D., Fortmann, I., 1990. Thermal degradation products of 545 wood. Holz als Roh- und Werkstoff 48, 281–285. 546 Ferreira, R., Garcia, H., Sousa, A.F., Freire, C.S.R., Silvestre, A.J.D., Rebelo, L.P.N., Silva Pereira, C., 2013. Isolation of suberin from birch outer 547 548 bark and cork using ionic liquids: A new source of macromonomers. 549 Industrial Crops and Products 44, 520-527. 550 Galant, P., Halgand, J., Camus, H., Delaporte, S., 2000. L'aven de la 551 Rouvière: de la découverte spéléologique à l'étude archéologique. Grands 552 Causses – Préhistoire et Archéologie 1, 32-63. 553 Galant, P., Halgand, J., 2004. Rogues - Aven de la Rouvière-. ADLFI. 554 Archéologie de la France - Informations, Languedoc-Roussillon, 2-11. 555 http://journals.openedition.org/adlfi/11582 556 Green, B., Bentley, M.D., Chung, B.Y., Lynch, N.G., Jensen, B.L., 2007. 557 558 Isolation of betulin and rearrangement to allobetulin. A biomimetic natural 559 product synthesis. Journal of Chemical Education 84, 1985–1987.

- 560 Grünberg, J.M., 2002. Middle Palaeolithic birch-bark pitch. Antiquity 76,
- 561 15–16.
- Hayek, E.W.H., Jordis, U., Moche, W., Sauter, F., 1989. A bicentennial of
- 563 betulin. Phytochemistry 28, 2229–2242.
- Hayek, E.W.H., Krenmayr, P., Lohninger, H., Jordis, U., Moche, W., Sauter,
- 565 F., 1990. Identification of archaeological and recent wood tar pitches using
- 566 gas chromatography/mass spectrometry and pattern recognition. Analytical
- 567 Chemistry 62, 2038–2043.
- Holloway, P.J., 1972. The composition of suberin from the corks of *Quercus*
- 569 suber L. and Betula pendula roth. Chemistry and Physics of Lipids 9, 158–
- 570 170.
- Karg, S., Hansen, U.L., Walldén, A.M., Glastrup, J., Ærenlund Pedersen,
- 572 H., Sonne Nielsen, F.O., 2014. Vegetal grave goods in a female burial on
- 573 Bornholm (Denmark) from the Late Roman Iron Age period interpreted in a
- 574 comparative European perspective. Danish Journal of Archaeology 3, 52–60.
- Koller, J., Baumer, U., Mania, D., 2001. High-tech in the Middle
- 576 Palaeolithic: Neandertal-manufactured pitch identified. European Journal
- 577 of Archaeology 4, 385–397.
- 578 Kozowyk, P.R.B., Soressi, M., Pomstra, D., Langejans, G.H.J., 2017.
- 579 Experimental methods for the Palaeolithic dry distillation of birch bark:
- 580 implications for the origin and development of Neandertal adhesive
- 581 technology. Scientific Reports 7. doi:10.1038/s41598-017-08106-7

582 Kurt, Y., Suleyman Kaçar, M., Isik, K., 2008. Traditional tar production 583 from Cedrus libani A. Rich on the Taurus mountains in Southern Turkey. 584 Economic Botany 62, 615-620. 585 Modugno, F., Ribechini, E., Maria Perla Colombini, 2006. Chemical study of 586 triterpenoid resinous materials in archaeological findings by means of direct 587 exposure electron ionisation mass spectrometry and gas 588 chromatography/mass spectrometry. Rapid Communications in Mass 589 Spectrometry 20, 1787–1800. 590 Orsini, S., Ribechini, E., Modugno, F., Klügl, J., Di Pietro, G., Colombini, M., 591 2015. Micromorphological and chemical elucidation of the degradation 592 mechanisms of birch bark archaeological artefacts. Heritage Science 3, 2. doi 593 10.1186/s40494-015-0032-7 594 Passi, S., Picardo, M., De Luca, C., Nazzaro-Porro, M., Rossi, L., Rotilio, G., 1993. Saturated dicarboxylic acids as products of unsaturated fatty acid 595 596 oxidation. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid 597 Metabolism 1168, 190-198. 598 Pietrzak, S., 2012. Wood tar in the Dnieper and Elbe communities: VI - II 599 millenium BC. In: Baltic-Pontic studies 17, Kosko, A. (Ed), p. 44. 600 Rageot, M., Pêche-Quilichini, K., Py, V., Filippi, J.-J., Fernandez, X., Regert, 601 M., 2016. Exploitation of beehive products, plant exudates and tars in 602 Corsica during the early Iron Age. Archaeometry 58, 315–332.

- 603 Rageot, M., Théry-Parisot, I., Beyries, S., Lepère, C., Carré, A., Mazuy, A., 604 Filippi, J.-J., Fernandez, X., Binder, D., Regert, M., 2019. Birch bark tar 605 production: Experimental and biomolecular approaches to the study of a 606 common and widely used prehistoric adhesive. Journal of Archaeological 607 Method and Theory 26, 276-312. 608 Regert, M., Alexandre, V., Thomas, N., Lattuati-Derieux, A., 2006. 609 Molecular characterisation of birch bark tar by headspace solid-phase 610 microextraction gas chromatography-mass spectrometry: A new way for 611 identifying archaeological glues. Journal of Chromatography A 1101, 245-612 253. 613 Regert, M., Vacher, S., Moulherat, C., Decavallas, O., 2003. Adhesive 614 production and pottery function during the Iron Age at the site of Grand 615 Aunay (Sarthe, France). Archaeometry 45, 101–120. 616 Reunanen, M., Ekman, R., Hafizoğlu, H., 1996. Composition of tars from 617 softwoods and birch. Holzforschung 50, 118-120. 618 Reunanen, M., Holmbom, B., Edgren, T., 1993. Analysis of archaeological

birch bark pitches. Holzforschung 47, 175–177.

621 senescent cells of phytoplankton: photoproduct structural identification and

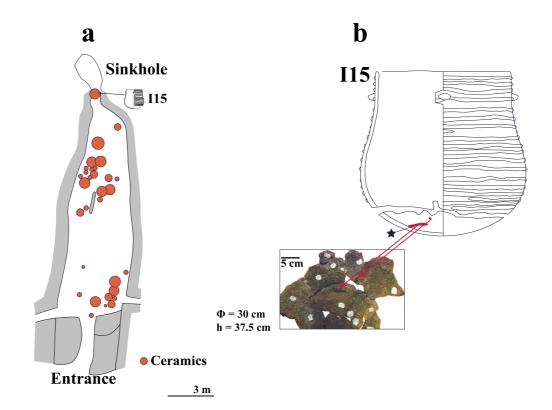
Rontani, J.-F., 1998. Photodegradation of unsaturated fatty acids in

- 622 mechanistic aspects. Journal of Photochemistry and Photobiology A:
- 623 Chemistry 114, 37–44.

619

- 624 Salvador, J.A.R., Pinto, R.M.A., Santos, R.C., Le Roux, C., Beja, A.M.,
- Paixão, J.A., 2009. Bismuth triflate-catalyzed Wagner-Meerwein
- rearrangement in terpenes. Application to the synthesis of the 18α-oleanane
- 627 core and A-neo-18α-oleanene compounds from lupanes. Organic and
- 628 Biomolecular Chemistry 7, 508–517.
- 629 Sauter, F., Jordis, U., Graf, A., Werther, W., Varmuza, K., 2000. Studies in
- organic archaeometry I: Identification of the prehistoric adhesive used by
- the "Tyrolean Iceman" to fix his weapons. Arkivoc 2000, 735–747.
- 632 Schenck, T., Groom, P., 2018. The aceramic production of Betula pubescens
- 633 (downy birch) bark tar using simple raised structures. A viable Neanderthal
- 634 technique? Archaeological and Anthropological Sciences 10, 19–29.
- 635 Schnell, G., Schaeffer, P., Tardivon, H., Motsch, E., Connan, J., Ertlen, D.,
- 636 Schwartz, D., Schneider, N., Adam, P., 2014. Contrasting diagenetic
- 637 pathways of higher plant triterpenoids in buried wood as a function of tree
- 638 species. Organic Geochemistry 66, 107–124.
- 639 Sun, I.-C., Shen, J.-K., Wang, H.-K., Cosentino, L.M., Lee, K.-H., 1998a.
- Anti-AIDS agents. 32.1 synthesis and anti-HIV activity of betulin
- derivatives. Bioorganic & Medicinal Chemistry Letters 8, 1267–1272.
- 642 Sun, I.-C., Wang, H.-K., Kashiwada, Y., Shen, J.-K., Cosentino, L.M., Chen,
- 643 C.-H., Yang, L.-M., Lee, K.-H., 1998b. Anti-AIDS agents. 34.† Synthesis and
- 644 structure–activity relationships of betulin derivatives as anti-HIV agents.
- Journal of Medicinal Chemistry 41, 4648–4657.

646	Tedetti, M., Kawamura, K., Narukawa, M., Joux, F., Charrière, B.,
647	Sempéré, R., 2007. Hydroxyl radical-induced photochemical formation of
648	dicarboxylic acids from unsaturated fatty acid (oleic acid) in aqueous
649	solution. Journal of Photochemistry and Photobiology A: Chemistry 188,
650	135–139.
651	Trintignac, A., 2003. La production de poix dans la cité des Gabales (Lozère)
652	à l'époque gallo-romaine. Revue Archéologique de Picardie 1, 239–248.
653	Urem-Kotsou, D., Mitkidou, S., Dimitrakoudi, E., Kokkinos, N., Ntinou, M.,
654	2018. Following their tears: Production and use of plant exudates in the
655	Neolithic of North Aegean and the Balkans. Quaternary International 496,
656	68–79.
657	Urem-Kotsou, D., Stern, B., Heron, C., Kotsakis, K., 2002. Birch-bark tar at
658	Neolithic Makriyalos, Greece. Antiquity 76, 962–967.
659	Vogt, E., 1949. The Birch as a source of raw material during the Stone Age.
660	Proceedings of the Prehistoric Society 15, 50–51.
661	


562	Figure Captions
663	Fig. 1. Map of the site of La Rouvière (a), Jar I15 discovered at La Rouvière
664	and location of the black organic residues (b). The star indicates sampling
565	location for molecular studies. Drawings by P. Debel.
666	
667	Fig. 2. Synthesis of (a) Δ^2 -belulin T5 and Δ^2 -dihydrobetulin T7 ; (b)
668	triterpenoid esters E1a-E4a.
669	
670	Fig. 3. Mass spectra (EI, 70 eV) of Δ^2 -betulin T5 (a) , Δ^2 -dihydrobetulin T7
671	(b), and triterpenoid esters E1a-E4a (c-f). The hydroxy group of T5 and T7
672	is analyzed as an acetate derivative and the carboxylic acid group from ${\bf E3a}$
673	and E4a as a methyl ester derivative.
674	
675	Fig. 4. Gas chromatogram of fraction $F_{A.1}$. Bold numbers refer to structures
676	shown in Appendix. Alcohols are analyzed as acetates and carboxylic acids
677	as methyl esters. Fx: fatty acid, x: number of carbon atoms of the
678	hydrocarbon skeleton.
679	
680	Fig. 5. Partial gas chromatogram (RIC) showing the distribution of the
681	triterpenoid fatty acyl esters from series ${\bf E1}$ and ${\bf E2}$ present in fraction $F_{B.1}.$
582	

583	Fig. 6. Partial gas chromatogram (RIC) showing the distribution of the
684	triterpenoid dicarboxylic esters from series ${\bf E3}$ and ${\bf E4}$ present in fraction
685	$F_{\rm B.2.2}$. Carboxylic acids are analyzed as methyl esters.
686	
687	Fig. 7. Hypothetical pathway leading to the formation of the triterpenoid
688	esters from series E1-E4.
689	
590	Fig. 8. (a) Partial gas chromatogram (RIC) showing the aliphatic
691	compounds from fraction F _{A.1} . Fx: Monocarboxylic fatty acid, Dx:
692	dicarboxylic acid, Wx : ω -hydroxyacid. x : number of carbon atoms. (b) Partial
693	mass chromatogram m/z 74 showing the distribution of the fatty acids from
594	fraction F _{A.1} . (c) Partial gas chromatogram (RIC) showing the distribution of
595	the fatty alcohols released by hydrogenolysis using LiAlH ₄ of the
696	triterpenoid esters $\textbf{E1-E2}$ present in fraction $F_{B.1}$. Ax: Alcohol. x: number of
697	carbon atoms. Alcohols are analyzed as acetates.
598	
599	

Appendix: structures cited in the text

33

700

a
$$R^{20}$$
 R^{20} R^{20}

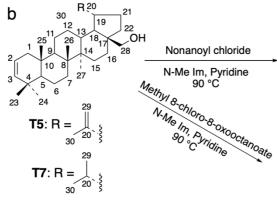
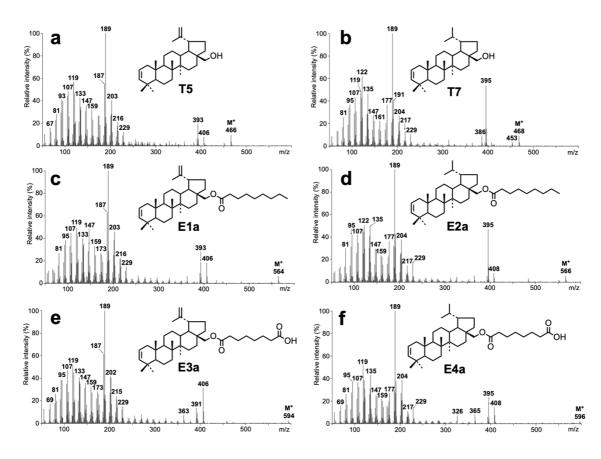



Figure 2

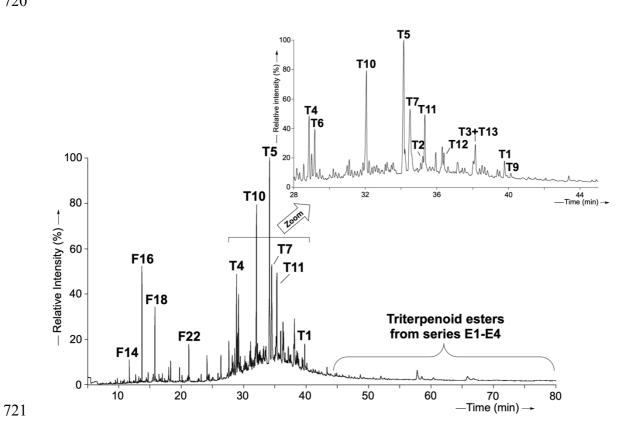


Figure 4

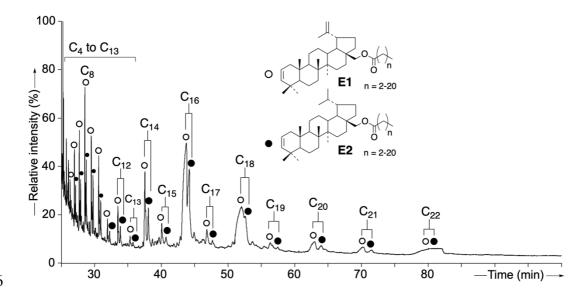


Figure 5

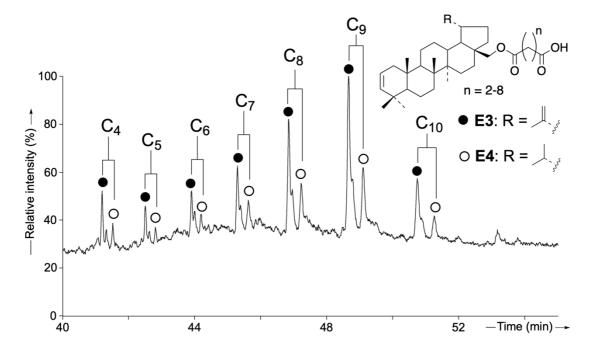


Figure 6

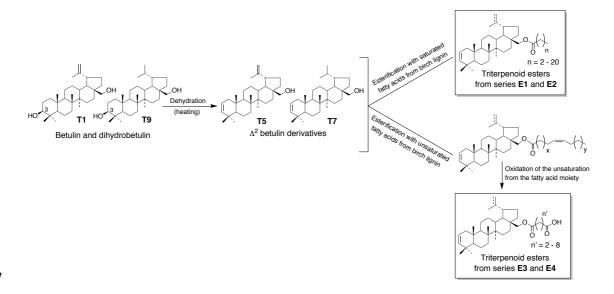


Figure 7

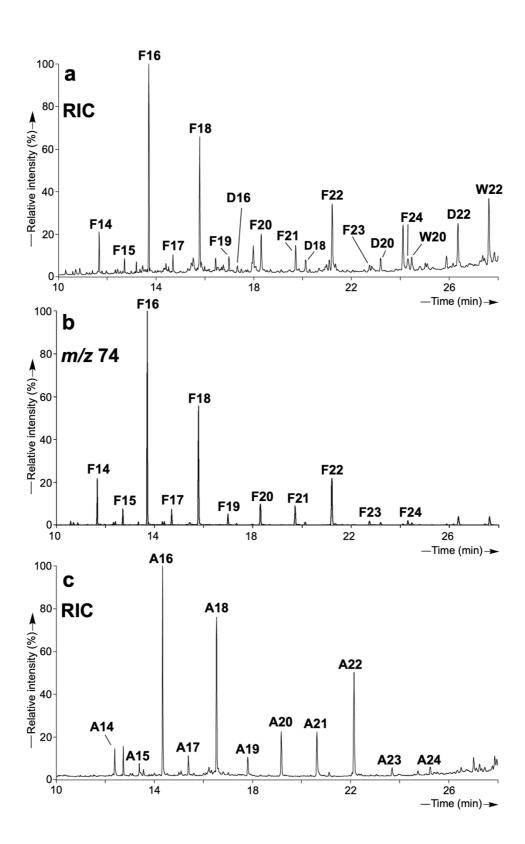


Figure 8