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DOUBLE-PRECONDITIONING FOR FRACTIONAL LINEAR
SYSTEMS. APPLICATION TO STATIONARY FRACTIONAL
PARTIAL DIFFERENTIAL EQUATIONS

XAVIER ANTOINE* AND EMMANUEL LORINT

Abstract. This paper is devoted to the numerical computation of fractional linear systems. The
proposed approach is based on an efficient computation of Cauchy integrals allowing to estimate the
real power of a (sparse) matrix A. A first preconditioner M is used to reduce the length of the Cauchy
integral contour enclosing the spectrum of M A, hence allowing for a large reduction of the number
of quadrature nodes along the integral contour. Next, ILU-factorizations are used to efficiently
solve the linear systems involved in the computation of approximate Cauchy integrals. Numerical
examples related to stationary (deterministic or stochastic) fractional Poisson-like equations are
finally proposed to illustrate the methodology.

Key word. Real power of a matrix; Cauchy integral; preconditioning; deterministic and sto-
chastic fractional stationary partial differential equations; unbounded domain.

1. Introduction. This paper is devoted to the efficient computation of the real
power a € R% of a large and sparse matrix A € C*"*" or R"*"™ which is supposed to
be diagonalizable in R or C, and to the solution to fractional linear systems

(1.1) A% = f,

where f € C" is given. The most natural method, also used in this paper, is based on
the approximation of a Cauchy integral with a closed contour enclosing the spectrum
of A. In this case, classical quadrature rules can be used for an accurate approximation
of A% [3]. Alternatively, A® can be performed [6] by using Padé’s approximants for z®.
Another approach, proposed in [6] and more specifically devoted to the computation of
A*b for a given vector b, is based on the solution to a differential system. A common
point to all these approaches is that they require estimates of matrix inverses or
solutions to linear systems. More generally, we refer to [6] for a discussion about the
computation of g(A)b for a holomorphic function g.

As said above, our strategy is based on the approximation of a Cauchy integral
by a numerical quadrature rule [3, 6] involving J4 quadrature nodes/points, which is
clearly expected to be embarrassingly parallel. Unless when specified, we assume that
the spectrum of the matrix A is unknown so that a direct spectral decomposition in
an orthonormal basis cannot be a priori used. Then, for k > 0, A is defined as (see
e.g. Theorem 6.2.28 from [7])

(1.2) A% = (2771)*1/1]“/ 207F (2l — A7z,

Ta
where I' 4 is a closed contour in the complex plane enclosing the spectrum of the matriz
A, I is the identity matrix in R®*™ and i = +/—1. In practice, when using the Cauchy
integral to estimate A%, it is clearly necessary to have some informations about the
spectrum of the matrix A to define the contour path (see Section 3). Selecting k

*INSTITUT ELIE CARTAN DE LORRAINE, UNIVERSITE DE LORRAINE, UMR 7502,

INRIA NANCY-GRAND EST, F-54506 VANDOEUVRE-LES-NANCY CEDEX, FRANCE,
FRANCE (XAVIER.ANTOINEQUNIV-LORRAINE.FR).

tSCHOOL OF MATHEMATICS AND STATISTICS, CARLETON UNIVERSITY, OT-
TAWA, CANADA (ELORIN@MATH.CARLETON.CA); CENTRE DE RECHERCHES
MATHEMATIQUES, UNIVERSITE DE MONTREAL, MONTREAL, CANADA.

1

This manuscript is for review purposes only.



ot Ot Ot Ot Ot
L o= O

(S BTSNV

S O O U Ot Ut ot Ot
N = O © 0 9 O

63
64
65
66
67
68
69
70

79
80
81
82
83

84

in (1.2) can be dependent on the location of the spectrum of A and the value of a.
We refer to Subsection 4.6 for a discussion on the choice of the value of k. When
using the Cauchy integral approach, two important issues related to the question of
preconditioning can penalize the efficiency of the algorithm for solving a fractional
linear system:

e first, the length ¢(T"4) of the contour integral must be as small as possible to
reduce the cost of the quadrature rule. Indeed, the number of linear systems
to solve linearly grows according to the number J4 of quadrature points. To
reduce this cost, we propose to use a preconditioned Cauchy integral formula
based on a preconditioner M, leading to a contour length £(T'ar4) < (T 4).

e Second, when the Ja (or Jpra) linear systems must be resolved, they also
need to be preconditioned to be solved in conjunction with (for instance) a
GMRES solver.

Proceeding this way, we then propose in Section 4 a double-preconditioning technique
to efficiently estimate the real power of A. The first preconditioner allows for a
reduction of the contour length, while the second preconditioner is used for efficiently
solving the induced linear systems. Different Cauchy integral preconditioners are
proposed and numerically tested. In Section 5, we present an efficient computational
method for solving fractional linear systems, using the double-preconditioning method
developed in Section 4.

This work is partially motivated by the computation of approximate solutions to
deterministic or stochastic stationary fractional PDEs, and more specifically general
fractional Poisson-like equations [9]. Such stationary equations can be solved approx-
imately by using traditional finite difference methods which can require the solution
to a so-called fractional linear system: find u such that A% = f, for A, f, a given. A
Cauchy integral preconditioning is then proposed in Section 6 to efficiently solve this
problem for various cases of equations (deterministic or stochastic). Let us remark
that this strategy, used here to solve Poisson-like equations, can also be naturally
extended e.g. to fractional diffusion or Schrédinger equations (see again [9]). We
propose several numerical experiments to illustrate the properties of the proposed
approach for the stationary case.

Along the paper, some basic numerical experiments are presented to illustrate the
main ideas and concepts. A discussion about the computational complexity of the
derived method and a comparison with a direct finite difference approximation of the
fractional Poisson equation is also proposed in Subsection 6.2. Some more elaborated
experiments are reported in Subsection 6.3. We conclude in Section 7.

2. Fast computation of A when Sp(A) is given. An explicit knowledge of
the spectrum Sp(A) := { A\ }1<k<n of the matrix A leads to an efficient computation
of A“. Such a situation occurs for instance when considering that the matrix A is a
3-, 5- or 7-points approximation of the Laplace operator with null Dirichlet boundary
conditions on a finite interval, a square or a cube, respectively. In this case, the
full spectrum (eigenvalues and eigenvectors) of the discrete laplacian A is indeed
analytically known. Assuming that the transition matrix P4 and diagonal matrix A 4
are explicitly known (A = PAAAPgl), we then have: A® = PAAﬂPXI. Indeed, from
(1.2) we can write that

A% = (zm)—lA/ 22712l — A)"ldz = (PaAaPy M)
I

= Py(27i) A4 / 2272l — Ag)"tdzPa = PaAS Py .
r
2
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Consequently, to solve A%y = f, with f € C™ and A invertible, we can proceed as
follows u = A=¢f = PglAZO‘PAf, which in practice leads to solving

{ v = AZaPAf,

Pau = wv.

Equivalently, for A € R™*"™ by using the residue theorem one gets

ZReb (2 — A)~ 1/\;C 1X:Res (21 —Aa)™ ,)\k)PA

:RTE:DTR%
k=1

where fo) = {dff;)ijhgi,jgm and

(k) _J Ay =k o e
dA;jj_{ 0 lfj#k' ) dA;z;—O, lfl#].

Obviously, we have Ay = > ) _,; Dl(f). In this paper, we will exclude this situation,
which makes trivial the computation of the solution to fractional linear systems.

3. Construction of the integral contour. In the general case, the direct
strategy detailed in Section 2 cannot be used. We propose to develop an approach
based on the discretization of the contour integral formula (1.2). Let us first consider
the problem of building the contour I' 4. When the spectrum location of the matrix
A is known, I'4 can be chosen such that its length is as small as possible. However,
this is usually not the case, the crucial property of I" 4 being that it must enclose the
whole spectrum of A. Various simple contours can be considered.

e A rectangular contour G(a, b, ¢, d) with left lower corner a+1b and right upper
corner ¢ + id.
e A circular contour C(z, R) := {z + Re? 6 € [0,27]}, centered at z € C and
with radius R.
In the following, I'4 will refer to a rectangular contour and C4 to a circular one.
The most natural and simple approach consists in evaluating the eigenvalue of A
with largest modulus, i.e. )\(of) = maxigi<n |/\§A)|, where {)\Z(A)}lgign denotes the
(complex) eigenvalues of A (with possible multiplicity). As a consequence, we can
define the contour as a circle C ( A4 €), where € is a strictly positive number. When
the contour is circular (with & = 1 in formula (1.2)), the Cauchy integral can be
reformulated as follows

AY = (27ri)71A/ 2272l — A) 7tz
§a
= (2r)74 / (D +2)et®) T (OAD 4 2)etfT — A) T (AD) + £)edo.
0

Alternatively, we can construct I'y as g()\éo) — &, )\( ) _ ,)\g}) +e, Aé‘;‘) +e).
This general approach can unfortunately be inefficient from a practical point of
view to numerically approximate the Cauchy integral by a quadrature formula, for

instance with a clusterized spectrum. If the matrix A is hermitian, the contour can
(4)

naturally be constructed more precisely. Typically, if A\, = minigj<n )\;A) and
)\max = maxig<n /\gA) are computed by using a standard eigenvalue solver, then the
simplest contour is a rectangle G A()\fnlx)l —¢, >\max +¢,¢).

3
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120 4. Cauchy integral preconditioner. In this section, we propose a Cauchy
121 integral preconditioning strategy which potentially allows for a drastic reduction of
122 the integral contour (1.2), then leading to a much faster algorithm than with a direct
123 computation of A%.

124 4.1. General consideration. A Cauchy integral preconditioner is a matrix M
125 such that

126 (4.1) (MA)* = (2ri)"'MA 2272l — MA) 'dz,

Tma

127 where we expect that £(I'pra) < (T 4), £ denoting the length of a curve in the complex

128 plan. Typically, M will be chosen as a preconditioner for solving the linear system

120 Ax = b, i.e. M ~ A~!. However, additional constraints need to be added. The

130 integral preconditioner of interest is two-fold

131 1. clustering of the spectrum of the preconditioned matrix M A,

132 2. accurate estimate of the center of the spectrum of M A, more specifically 1.
This idea is summarized in Fig. 1. Getting a shorter integration path for the Cauchy

C
largest eigenvalue of A
M
c largest eigenvalue of I — M A
- Sp(MA
/ .\ @
T
\ (J
S+ Cua

Fic. 1. Clusterized spectra of the matrices A and M A, and their respective circular contours
Ca and Cpra by using the above strategy.

133
134 integral, i.e. leading to a small ratio AL-MA /)\&3 ), hence reduces the cost of the
135 numerical quadrature used to approximate the Cauchy integral. Computing (1.2) from

4
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(4.1) is expected to be more efficient than with a direct computation. To determine the
contour for the preconditioned integral, we can proceed as for I'4 but by computing
the eigenvalue of I — M A with largest amplitude, which is denoted by )\ngA). Next,
we consider a circular contour Cpra = C(1, ALMA) +¢) centered at 1 and with radius

,\E,Q‘MA). The reason for computing )\g)_MA) instead of /\((DQ/IA) is that I — M A has
a spectrum centered at 0, implying that Sp(M A) is centered at 1. An alternative to

the circular contour is a square domain : g(—,\S,Q‘MA) — €, —)\g_MA) —€ )\((,é_MA) +

(I-MA)
€, Aoo +e).

The following sections are devoted to the selection of the preconditioner M. Some
constraints naturally arise, which makes its selection non-trivial.

)

4.2. Scaling Cauchy integral preconditioner. The simplest Cauchy integral
preconditioner is a scaling matrix. Its interest may be limited, but in some cases it
can be highly efficient. It simply consists in defining M = csI, where c4 is given
by the 2-norm of the matrix A, ie. ca = [|All2 := supyern_o [|Az|]2/||z]]2. An-

other possible choice, which is proved to be less efficient in practice, is cq4 = )\éé1 ) =
max;—i,.. N |)\§A) |. This simple scaling naturally implies that the following relation is
satisfied

(4.2) A% = M~(MA)

and £(Tpr4) < ¢(T4). As a consequence, we expect a reduction of the length of
the Cauchy integral contour and then an improvement of the overall efficiency of the
algorithm for computing A%. In general, the equality (4.2) is not valid, except for
some very specific matrices and preconditioners.

4.3. Polynomial Cauchy integral preconditioner. The connection between
(MA)* and A% is a priori not trivial if M and A do not commute. However, if M is for
instance a polynomial preconditioner px(A) [5], then obviously px(A)A = Apk (A).
The simplest approach to construct px consists in using a truncated Neumann series
expansion. More precisely, for w € (0,2/||A]]), K > 1 and N := I —wA, we define

(4.3) M =pg(A) =w( +N+---+ N¥).

Since (wA)™! =T+ N+ N2+ ..., we can easily deduce the inequality: ||[I — M A <
| NE+L| < || N|| B+, where || - ]| is a matrix norm. Other polynomial preconditioners
can be used (see Subsection 4.4) and more generally other types of Cauchy integral
preconditioners may as well be implemented (see below) as long as they i) allow for a
reduction of the length of the contour and ii) provide an efficient computation of A
(resp. A™%) from (M A)* (resp. (MA)~®). This leads to the following proposition
which is important from a practical point of view.

Proposition 4.1. Assuming that M is a polynomial Cauchy integral precondi-
tioner of the matrix A, then, for & € R*, we have A® = M ~“(MA)>.

Proof. The proof is straightforward. For the matrix A = {A;; }1<i j<n, We introduce
M = pg(A), for K > 1. Then, one gets AM = M A and (for k =1 in (1.2))

(MA)* = (2ri)"'MA 2272l — MA)"dz
ISV
= (27i)'AM 227 M - AT Mz
'va
5
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Next, setting z <~ M 'z and 'y = M 'T';4, we deduce that

(MA)™ = (2ri) 'AM MO 207 (2] — AP M Mdz

Fma
(4.4) = (2ri)" A Moz (2l — A)"tdz
Ty
= M*(2ri)"'A 2272l — A) 7 dz = M@ A®
T'a
O
Using a polynomial preconditioning leads to a reduction of the computational

complexity of p%(A) compared to A®. In particular, we can easily prove that :
(pr(A)A)* = p%(A)A*, which means formally that A% = p"(A)(px(A)A)*. How-
ever, evaluating A% from p$% (A) is a priori not a simple task, although an iteration
algorithm could be explored. At this stage, we propose an alternative preconditioning,
particularly efficient for diagonally dominant matrices.

4.4. Differential-based preconditioner. We propose now a preconditioning
method based on the solution to a differential system, used typically for computing
Ab, for b € R™. For a € R, we recall [2, 3, 6] that the n-dimensional dynamical
system

(4.5) Y(1)=—a(A=D)(I+7(A-1))""

y(r),  y(0) =0o,

is such that y(r) = (I + 7(A — I))fab, y(1) = A=*b. Therefore, (4.5) can be used
for computing u = A~*f. We can then approximate A~%f as follows : y(7) =~
(I —ar(A—1))f =: M. f. Thus, we have

M A

M,
(M A)™" =

—/ 27 A - M)z
Paya

2im 2im

/ 2 N2l = M A) e =
Tavra

Since M, is nothing but a parameterized polynomial preconditioner, we trivially have
AM, = M;A and then (M,;A)* = M>A“. This approach is partially relevant for
non-diagonally dominant matrices when the approximations are accurate, i.e. for 7
and « small enough. The preconditioning strategy is parallel to the one proposed with
Cauchy integral, but this time applied to a differential system solver (Crank-Nicolson).
This approach will be further investigated in a forthcoming paper.

4.5. Numerical approximations and experiments on contour integrals.
From a practical point of view, the contour integral is numerically computed by using
a quadrature rule leading to the approximate matrix computation (for £ =1 in (1.2))

AL = (2ri) A Z hjwjz?_l(zjl— A7t
1<i<Ja
where {w;}1<<u, are the quadrature weights and {z;}1<;<J, the integration nodes.

The local discretization steps of the path are denoted by h;, and h = max;¢;<s, h;.
In matrix norm, the order of convergence o is such that

HAﬁ — (27ri)*1A/ zafl(zI — A)*ldzH < Che.

A

In the following, we propose some numerical illustrations.
6
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Experiment 1. Let us start by considering the one-dimensional operator —A + V
defined on the computational domain | — 2;2[ with homogeneous Dirichlet boundary
conditions. The potential V is V(x) = i exp(—20x2). We use a 3-points finite differ-
ence discretization based on n = 101 interior points to approximate —A. On Fig. 2,
we represent two rectangular contours I'y and I"j; 4, where A is symmetric and M is
the polynomial preconditioner px (A) as defined in (4.3) for K = 5. We numerically
get £(T'4) ~ 5x 10% and ¢(T'pr4) &~ 2. Since £(T'4)/¢(Tara) ~ 2.5 x 103, the numerical
discretization based on I'j; 4 is expected to be much faster than with I' 4, for the same
accuracy, since it needs far less discretization points.

- —————"—— - g === —————————— = *
5] Sp(A 351 [
01 b o Sp(4) 4 | + Sp(MA) w
! Sp(M A 3 .
o * Sp( ) a b —»-Contour T'js4 |
008 o —e-Contour I'y ol © 25 ", '
g 1o —+-Contour T'js4 ol K o2 * !
o I o o \L o | * |
006 I Q o 215 0| * 14
= [ 000000000 o 3 | * !
= e RS S 4l * 1
Eb | © o QL‘ | % ¥ % ***** |
< 0.04 [ O Oy ® o5l * FHF s |4
g 1o ol s 7 W5 o |
- lo o T o %"“N f
0.02 i ! !
P d‘ 05 I | I
I I
¥ 9) b %
o ———7-———— g - g
0 500 1000 1500 2000 0 02 04 06 08 1
Real part Real part

Fic. 2. Ezperiment 1. (Left) Spectrum of the complex-valued matrices A and MA, and
associated contours. (Right) Zoom on the spectrum of M A and contour I'par4.

Experiment 2. In this second example, we consider a complex-valued random matrix
A € C"*™ such that, for 1 <4,j < n, A;; = rand(0, 1) +irand(0, 1), where rand(0, 1)
denotes a real number randomly chosen between 0 and 1 (that is taking its value in
state space for a uniform distribution ¢(0,1)). Moreover, we report the results for
both n = 101 and n = 1001. We draw in Fig. 3 the corresponding spectra in the
complex plane, including the contours I'y and I'j;4 for n = 101 (top) and n = 1001
(bottom). This shows the drastic clustering of the spectrum for the preconditioned
matrix.

Experiment 3. Let us introduce the matrix A = {A;;},; € R"*", defined by
the two matrices B and C such that, for 1 < 4,5 < n: B;; = nrand(0,1), C;; =
20n+rand(0,1)d;;, with n = 100, and A = B+ BT + C, which then has a real-valued
spectrum. For oo = 0.9, we compare the relative error |A%; — AZ|l2/||A%¢]|2 vs the
number of quadrature points J4 and Jys4, with and without scaling preconditioner
M = 1I/||Al|2 (see Subsection 4.2), for circular and rectangular contours in the precon-
ditioned and non-preconditioned cases. The reference solution A%, is computed by
matlab through a spectral decomposition (see Subsection 2) and we use a composite
midpoint quadrature rule. We first report on Fig. 4 (Top-Left) Sp(A4), Sp(M A), the
circular contours C4 and the preconditioned one Cy; 4 with a scaling preconditioner, as
well as the rectangular contours I' 4 and I'pr 4 (with the same preconditioner). We then
zoom in the neighborhood of Sp(A) in Fig. 4 (Top-Right), and in the neighborhood
of Sp(MA) in Fig. 4 (Bottom-Left). We then compare in Fig. 4 (Bottom-Right) the
convergence with respect to the contour choice (rectangle, circle). More specifically,
we plot the relative error as a function of the number of quadrature points Ja pra.
As expected, the preconditioning improves the convergence rate for both the rectan-
gular and circular contours. We also remark that the non-preconditioned rectangular

7
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Fi1c. 3. Ezperiment 2. Sp(A) and Sp(MA), and rectangular contour: (Top-Left) : n = 101;
(Top-Right) : zoom for n = 101; (Bottom-Left) n = 1001; (Bottom-Right) : zoom for n = 1001.

contour allows for a slightly more precise estimate of the Cauchy integral than for the
non-preconditioned circular one. This is mainly due to the structure of the spectrum
which is concentred around 0. As a consequence, the rectangle contour is very thin,
then leading to a more accurate computation of the approximate operator Ap. The
choice of the contour is naturally highly correlated to the structure of the spectrum.
Experiment 3bis. To complete the illustrations, let us consider the matrix A =
B+0.75B" + C, where B;; = nrand(0, 1) and C;; = 20n+rand(0,1)d;;, 1 <4, < n,
for n = 100. The matrix A has a complex-valued spectrum. For o = 0.9, Sp(A) is
reported in Fig. 5 (Left) and a zoom on Sp(MA) is given in Fig. 5 (Right). We
observe that the circular contour is more efficient here than the rectangular one (see
Fig. 6).

4.6. Selection of the parameter k£ in the Cauchy integral formulation
(1.2). We discuss now the selection of the Cauchy integral formulation, and more
specifically the value of k¥ € N in formula (1.2). Since z € I'4, we have |z| > p(A),
where p(A) denotes the spectral radius of A. Denoting by Ay, the approximate Cauchy
integral using an order o-composite-quadrature rule with h = sup; [zj11 — 2;], there
exists ¢ = ¢(A, o) > 0 such that

do’
a—k -1
A%, — AX H—gz (ZI— A) H
(4.6) M < ch? sup dz =
(| Asee 2€l 4 ([ Afel

To minimize the error, this suggests that, if p(A) is large, we should typically take
k > [al, so that k — « < 0. In practice, it is natural to simply select k& = [a].

8
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F1G. 4. Ezperiment 3. (Top-Left) Sp(A) and Sp(MA), with A € R"*", and Ca, Cpra, Ta,
Tama. (Top-Right) zoom on Sp(A). (Bottom-Left) zoom on Sp(MA). (Bottom-Right) Relative error
vs the number of integration points for a = 0.9.
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F1G. 5. Ezperiment 3bis. (Left) Sp(A), Sp(MA) with A € R" ™, Ca, Cpra and T4, Tara.
(Right) Zoom on Sp(MA).

However, whenever p(A) is small, a natural choice in relation (1.2) is k = 0. Indeed,
in this case, as |z| is larger but close to p(A), a small error (4.6) is expected and taking
k < a could even deteriorate the approximation. For instance, it looks reasonable to
use (1.2) with k = [a] for a direct evaluation of A* and to use k = 0 for evaluating
(MA)* when M is an accurate (in the sense that p(MA) is very small, typically
< 1) Cauchy integral preconditioner. If p(M A) is still larger than 1, it is preferable
(theoretically) to take k = [«] to evaluate (M A)*. In the following, we arbitrary fix
k=1 (or k =0), as most of the computations are done for 0 < a <1 (or 1 < o < 2)
and that p(M A) will still be large enough to justify the fact that k = [a] provides a

9
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FI1G. 6. Experiment 3bis. Relative error (aw = 0.9) vs the number of integration points.

better approximation than for k¥ = 0. Notice that in the chosen benchmarks, we did
not observe any noticeable effect of the selected formulation.

Experiment 4. To illustrate the discussion, we compare the relative error in 2-
norm of A® for a = 0.5, where the matrix A = {A4;;}1<i j<n is defined as: A;; =
nrand(0,1) 4+ inrand(0, 1), with n = 400. We compare the error (4.6) for k = 0,

1
(4.7) A= — [ 2%(zI — A)"dz,
2im Jp,
and k=1
A
(4.8) A= —— | 227zl - A)lde.
2im Jp,

We consider a circular contour where the number of quadrature nodes varies between
2 and 4096, and report in Fig. 7 the convergence of |A* — A ||2/||A%]|2 for k =0, 1,
in the non-preconditioned case, vs the number of quadrature points. We notice that
taking k = 0 or kK = 1 does not impact the behavior of the error.

a=0.5
b “-e-Precond. contour k — 0
P e Non-precond. contour, k = 0
~ - ¢ -Precond. contour, k = 1
c:“‘q'j , Non-precond. contour, k = 1
S o
=
~ 102
=
T P
3 e
O ot ...
< Toe
| ~‘~,
5 100 "~‘.\
= o,
< . o
—~ 1 ...
e
o
102 o

Quadrature points (J4 174)

Fic. 7. Experiment 4. Relative error (o = 0.5) vs the number of integration points.

5. Fractional linear systems A%u = f. In the previous subsections, we devel-
oped an efficient methodology to estimate the real power of a matrix. In this paper, we

10
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are more specifically interested in the solution to fractional linear systems A%u = f,
with A € C"*", f € C", for some o € R.. For invertible matrices, we formally have

u=A"*f.

5.1. Solution to fractional linear systems A%u = f, with [M, A] = 0. We
assume here that M can efficiently be estimated numerically. If not, it is then more

appropriate to proceed as in Subsection 5.2. We recall that for any matrix M such
that (M A)* = M*A“, we can compute A~ f from (MA)~*f, and

(5.1) u = A7*f = M*MA)~“f,

this approach being a priori valid for any invertible matrix A € C"*". We can
formally proceed as follows (e.g. for k =0 in (1.2))

u=A"%f = (27ri)*1/r 272 — A7 fdz

where I'4 encloses the spectrum of the matrix A. To estimate (27i)~! fFA 27%(2] —

A)~1fdz, a Cauchy integral preconditioner is proposed. We denote by M a precondi-
tioner for A=, such that A and M commute: [M, A] = 0. Since A=* = M*(MA)~,
one gets

(MA)~«f = (27ri)71/F 272 — MA) ' fdz.

Computed on a finite grid FS\IZL C I'pa, with spatial resolution h = maxi¢j<r,, . by
and a quadrature of order o, the approximate Cauchy integral to (M A)~¢ is denoted

by S]é_a) ~ (MA)~® and is defined as

(5.2) Sy =ri)t Y hywie ozl - MA)T,
1<i<Ima

where {w,}, are some interpolation weights. More precisely

e in the case of a rectangular contour, z; € F(J\}hl‘ and 241 = z; +hj4q, with

h; = dz; + idy;. Denoting (z;1 — MA)~' f = u;, we have

up = MOSTVf=(@2r) MY ST bz,
(5.3) 1<G<Ima
(z;I —MAwu; = f foralll<j<Juma,
ie up = M“Sﬂ(_a)f.

e In the case of a circular contour of center z. and radius rgA), we have : z; =
2o+ et e ¢ and 2541 = 2o+ (2 — 20)eX%+1, with 641 = 6; + 66, 1.
We then consider the following quadrature

up = (2ri) "M Z 60w, M 30 (p(MA)—ag=ialiy,
1<j<Ima
(rMD e — M Ay, = f, for all 1 < j < Jasa.
A double-preconditioning is then implemented, the first one to reduce the contour

length in the Cauchy integral, and then the second one to efficiently evaluate (zI —
MA)~Lf, thus leading to

(5.4) Sy V=)™t Y hywey (el — MA)TU

1<iSIma
11
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Since £(Tpra) < £(T4) (or £(Crra) < £(Ca)), we get Jya < Ja, which justifies
the use of a Cauchy integral preconditioner M. Let us remark that when M A can
be analytically diagonalized, the matrix power can be very efficiently computed, as
stated in the following proposition.

Proposition 5.1. If M A is diagonalizable, then we have M A = PMADMAPA}{4
and

S]1(1a)f = (27Ti)71PMA|: Z ]hj’LUij_a(ZjI — I)MA)71 PJ\_4{4f’

1<j<Ima

where Djs4 is a diagonal matrix. As a consequence, in this case only one linear
system (related to Pps4) has to be solved. However, except in some very simple cases
(including low dimensional cases), Pysa and Djysa cannot be analytically calculated
or computed.

Proof. Since M A is diagonalizable, we have

(MA)> = (27ri)_1/rz°‘(zl — MA)'dz = (PyaDmaPyy)”

= Ppra(2mi)™? / 2%(2I — Daga) " 'dzPara = ParaD$yaPrfy -
r

Next, we discretize the integral by using a classical quadrature formula:

i = @r) Pua Y. hywiz (sl - Dara) Y Pk

1<iSIma

which concludes the proof. []

In order to efficiently solve the linear systems (5.3), we simply compute in parallel
the incomplete LU-factorizations [5]: for any 1 < j < Jaa, 2,1 — MA~ —L;U;. We
then define the preconditioners N; = —Ujflefl used to solve: N;(z;] — MA)u; =
N, f. The Jyra linear systems are preconditioned and solved independently. On the
other hand, if the systems are solved sequentially, ugk) —% Uj4+1 in R™ in at most n
iterations and we can benefit from the previous computations

e From given u\), solve No(zol — MA)ug = Nof, for zo € T, (or € ),
by using the above algorithm, where Ny = on_ngl.

e At index j + 1: assuming u; was previously computed, take as initial guess
uﬁ)l = u; since for Jyra large enough, that is |z; — z;| small enough, we
expect that ;4 is close to u;.

e It is not necessary to implement an ILU-factorization for any 1 < j < Jyza-
Basically, only a few ILU-factorizations are sufficient. By denoting N; =
L;Uj, for j’ close to j and by using continuity arguments, we expect that, in
terms of conditioning, we have

cond(N; (2,1 — A)) ~ cond(N;(z;:1 — A)) < cond(z;: I — A).

e Deduce u = A~%f, by estimating first S]l(:lfa)f, then we have u ~ up :=
AMetgm ) p
We notice that performing a full LU-factorization on A provides a matrix M such
that [M, A] = 0. However, computing M“ may be as almost complex as computing
A*. We therefore prefer to use ILU-factorizations.

12
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5.2. Solution to fractional linear systems A%y = f, with [M, A] # 0. The
most general and interesting case occurs when A and M do not commute. Then,
we can no longer directly deduce the solution to A%“u = f, from the solution to
M(MA)~“f. The natural procedure then consists in solving

MY(MA)" A% = M*(MA)~“f,

meaning that we precondition the linear system A%u = f by M*(M A)~* which is now
only an (accurate) approximation to A~%. It is still necessary to be able to efficiently
compute M*(MA)~ %z for any vector . From a practical point of view, we have
MY(MA) ="z ~ M*S{z, where 5.z is defined by (5.4) (setting f = x). The
linear system is numerically solved by using an iterative scheme, but also requires
intermediate solutions to sparse linear systems in order to estimate M“(MA)~%x.
First, we approximate (M A)~“z by vy such that

Vh (2ri)~tMe ZKKJMA Ihjwjzj_o‘uj ,
(z;jI —MAu; = =z, for1<j<Jma.

(5.5)

Next, we evaluate M “vy,, which is more or less computationally complex. If M is a
diagonal matrix (Jacobi) preconditioner, computing M“vy, is straightforward, while
for ILU-preconditioning additional operations are needed, as described below.

5.3. Jacobi Cauchy integral preconditioner. Let us consider a Jacobi pre-
conditioner, assuming that A is diagonally dominant and that A;; # 0, for all 1 <14 <
n. Setting M = diag(A;',---, A;}), we then have

(MA)> = (27Ti)_1/F 2%(2 — MA) dz.

Similarly to the proof of Proposition 4.1 but noticing that a priori AM # MA (in
particular when the diagonal terms of A are not all equal), then A% # M~*(MA)%,
with a € R*. Interestingly, M“ can however be very efficiently computed since M is
diagonal.

5.4. ILU Cauchy integral preconditioner. Incomplete-LU factorizations ap-
pear as some natural candidates for solving fractional linear systems for two main
reasons. First, they usually allow for a better preconditioning than Jacobi. Secondly,
the triangular structure of the L and U matrices leads to an efficient computation of
intermediate sparse linear systems. More specifically, we propose the following ap-
proach. We first implement an ILU-factorization LU of the matrix A, with a threshold
parameter ¢ > 0, and formally denote M = (LU)~!. In addition to (5.5), it is needed
to approximate M “vy,. In this goal, and unlike Jacobi preconditioning, it is necessary
to solve additional triangular linear systems, i.e. we approximate M “vy, by wy such
that

wp = (2ri)7? Zlgjng ]hjwjzj_avj ,

5.6 ~~ o
(56) (z; LU — I)v; LUy, for 1 <j < Jy.

These new linear systems can be very efficiently solved since they are sparse and
triangular. In addition, in order to improve the efficiency of the computation of
M vy, a Jacobi Cauchy integral preconditioner or scaling of M itself can be used as
well, so that the quadrature is applied on a contour of reduced length which can be a
priori as long as I' 4, as proposed in Subsection 4.2.
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5.5. Parallelization aspects. The computation of (M A)~® can then be per-
formed in parallel as follows. For p processors, we decompose I' in p subcontours I'y:
I'=U)_ Ty and {(I'y) = {(T") /p and write

(MA)™ =) (MA);* = Z(Qwi)*l/r 272l — MA) Ydz.

=1 =1

We first implement an ILU-factorization and construct L and U. For any fixed value
of ¢,
e we solve, for {z](»l)}j ely: (zj(»e)LU — Ayl = fj,
e send&receive to the root processor the contribution of each I'y, that is:
ZZJ(-Z)EU (271)*1]hjwjzj_auj.

5.6. Numerical experiments on fractional linear systems. We provide
now a few examples of numerical simulations to illustrate the methodology.
Experiment 5. In this example, we compare the efficiency of the different pre-
conditioners implemented in GMRES for solving (1.1), where f is the unit vector.
We report the convergence rate, represented as the residual history vs the GMRES
iteration, where the solution is computed from

e a direct evaluation of the Cauchy integral without preconditioning (labelled
No-precond.),

e by using an ILU preconditioner M ~*(M A)®, with M = LU for a drop toler-
ance at 107%, and a rectangular (ILU-precond. rect.) and circular contours
(ILU-precond. circ.),

e with an ILU preconditioner M directly built on the sparse matrix A, and
then the preconditioner M® is used on A% (and denoted M,-precond.),

e and finally with an ILU preconditioner directly constructed from the full
matrix A% that we assume to be given (ILU-precond. on A%).

The matrix A is defined as A = (B + C) + (B + )T € R200%200  where

Bii = 75rand(0, 1) + 15, Bii:i:l = 5rand(0, 1) F 8, Bn‘ig = rand(O, 1) F 1/2,

and C;; = rand(0,1). We fix the tolerance to 10~'® in the GMRES, where the restart
parameter is equal to 50. We report in Fig. 8 the results for the ILU-Cauchy inte-
gral preconditioner with (Left) J4 a4 = 8 and (Right) Ja,ama = 128. The number
of GMRES iterations for the different preconditioners for a fixed number of quadra-
ture nodes illustrates the efficiency of the proposed Cauchy integral preconditioning.
For completeness, the same tests are performed by using a Jacobi Cauchy integral
preconditioner (see Fig. 9).

Experiment 6. We now solve A%u = f, where A is a symmetric diagonally dominant
full matrix which models a randomly perturbed Laplace operator, i.e. —A + dW,
where dW is a small amplitude (2 x 1072) random and symmetric process, n = 51
and f is identically equal to 1. Moreover, we consider 3 values of the fractional order,
ie. a=0.25 « =0.75 and a = 1.5. We then apply the Jacobi preconditioning for
solving the linear systems related to ((zc + rgMA)eieﬂ‘)I — MA)uj;, in the following
quadrature

up = (2m) T MY(MA) Z 00w A it (p(A))mamlegmilat DOy,
1<j<Ima
((zC +T§MA)eiej)I —MAyu; =f, for 1 <j<Jma,
14
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Fic. 8. Experiment 5. Comparison of the residual history wvs iterations of the GMRES
algorithm (restarted at 50 iterations, and tolerance 10~1°) for various preconditioners: ILU Cauchy
integral preconditioner (threshold at 104 ), ILU-preconditioner on A®. (Left): Ja pa = 8 (Right):
Jana =128
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Fic. 9. Experiment 5. Comparison of the residual history vs number of iterations of the
GMRES (restarted after 50 iterations, and for a tolerance 10715) for different preconditioners:
Jacobi preconditioner, ILU-preconditioner on A*. (Left): Ja pa =8 (Right) : Ja,ma = 128.

with up ~ u = A~*f. Let us recall that rgA) = r 4+ ¢ and that the initial guess

for computing u;4+q is taken as w;. We report in Figs. 10 (Top/Bottom Left) the
2-norm error |lun — uret||2 (in logscale) as a function of Ja ara. We also provide the
corresponding CPU-time with/without Jacobi preconditioning, as well as [|A4;“ —
A~%||3, where we have numerically estimated Ap* from a direct (D) computation

(A]EID))_O‘ such that (k =1 in relation (1.2))

(5.7) (AP = @ri)7 A Y by (5l - A7

1<i<Ja

or with a preconditioning (AI(hP ))*0‘, from

(5.8) (A7 = @ri)TMA YT hjwsey o e - MA)TL
1<j<Ima

The same test as above is also performed with n = 501 and a = 0.75. The results are
reported in Fig. 11, with 7(4) = 5.15 and rj;4 = 0.33, i.e. with a ratio of about 15.5,
illustrating the improved computational time.
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F1G6. 10. Experiment 6.(Top-Left) CPU-time (in seconds) in logscale, and ||[A~™% f, — Urefl|2,
where A= f, = un, as a function of the number of quadrature points Ja ara, with a = 0.25,
(Top-Right) ||Ay* — A;?”Q in logscale as function of the number of quadrature points Ja ara.
(Middle-Left) and (Middle-Right) : o = 0.75. (Bottom-Left) and (Bottom-Right) : o = 1.5.

450 Experiment 7. We propose the following numerical experiment to illustrate the
451  differential-based preconditioner derived in this subsection for solving A%u; = f,
452 with @ = 0.25 in a case where [M, A] = 0. More precisely, we estimate A~%f, =
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FiG. 11. Experiment 6. (Top-Left) CPU-time (in seconds) in logscale, and ||[A™% fi, — trefll2
as a function of the number of quadrature points Ja ara, with o = 0.75, (Top-Right) ||Ay, * — A, 2|2
in logscale as a function of the number of quadrature points Ja ara, with n = 501. (Bottom) Direct

contour Cp and preconditioned contour Cpara.

M (M. A)=*f) and, for 7 small enough, we have

M (M- A)™ fr

(2mi)~tMot? /

27 Y2 A = M) fdz

Pamya
~ Un = (27Ti)_1Mg+1 Z ]hjwjzjiail(ZjA — M.,-)_lfh
1<i<Imr A
+1)r2
~ Uup = (27ri)_1(I— (a + 1)T(A — ]) + M(I _ A)2)

<)

1<j<Imr A

]hj’LUijiail(ZjA — MT)ilfh .

We consider A as a 3-point approximation of the Laplace operator on a segment
] — 1;1[, with n = 101 grid-points. We use some circular contours for both the non-
preconditioned and preconditioned Cauchy integrals. In Fig. 12 (left), we report in
logscale i) the CPU-time (in seconds) for the direct method (with C4) and double-
preconditioned method (with Cas, 4), and ii) ||up — trer||2. We more precisely compare
a Jacobi Cauchy integral preconditioner with a differential-based preconditioner M.,
with7 =8x10"1, 7 =9x107!, 7 =1 and 7 = 1.2, and with a direct integral compu-
tation without preconditioner. We also use a Cauchy ILU-preconditioner (LU) with a
drop-tolerance fixed to 10~ although in this case [(LU)™, A] is not necessarily close

to zero. We also report |4y, * —
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trates that for a moderately dominant diagonal matrix, the differential-based precon-
ditioning may be an alternative to Jacobi preconditioning, but an ILU-factorization
can be used as well, if the drop tolerance is small enough.
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x 107"

Il
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Fia. 12. Experiment 7. Jacobi preconditioner, differential-based preconditioner M, = with
T=8x10"1, 1 =9x107!, 1 =1, and 7 = 1.2 and ILU-preconditioner with a drop tolerance
at 1071, (Left) In logscale ||A=%fr, — wrefll2 where A= f, = un, as a function of the number of
quadrature points Ja ara, with o = 0.25, (Right) ||Ap“ — A;;HQ in logscale as a function of the
number of quadrature points Jao pra, with n = 101. (Right) Direct contour C4 and preconditioned
contour Cpra.

6. Application to the approximation of stationary fractional PDEs. The
approximation of stationary and time-dependent fractional PDEs is currently a very
active research area in particular due to the development of fractional models from
physics (see e.g. [9]). We are here interested in the efficient computation of the solu-
tion to fractional Poisson-like equations thanks to the solutions to induced ” fractional
linear systems” A%xr = b. The fractional Poisson equation on a bounded domain
Q Cc RY (d =1,2,3) with null Dirichlet boundary condition on 9 writes

_(_A)au = f7 in Qa
(6.1) u = 0, on 09,
where a € (0,400), f € LP(2), 1 < p < co. The well-posedness of this problem
is for instance studied in [1] for o € (0,1). In particular, it is proved that, for any
function f € LP(Q), with 1 < p < oo, the unique solution to the Dirichlet problem
belongs to the functional space L5, ,,.(2), where L5 |, (Q) == {ueLP(Q) : up €
L5, (Q) for any ¢ € C§°(Q)}, and L5, (Q) = {u € LP(Q) : (-A)*u € LP(Q)}. For
any u € S(R?) (i.e. the Schwartz’s space of rapidly decaying C*°-functions [11]) and
a € (0,1), we have (—A)*u € L?(R3). An equivalent definition [4] in R? can be stated
for a € (0,1) and any u € S(R?) [11] as

u(z) — u(y) : u(z) —u(y)
————dy=C 1 —_—
y[Fr2e Y (@) E—lgl‘*' B.(z) |z — y[2+2e Y

(6.9-A)u(x) = C(a)p.v. /

r2 [T —

where B.(x) is the ball of radius € and center x, C(«) being the constant defined by

(6.3) Cla) == (/R 1|_£|C2(f2(§1)d§>_1.
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The fractional laplacian can also be rewritten [4], for a € (0,1) and any u € S(R?),
as

Although nonlocal, this last equality is potentially interesting from a computational
point of view (see formula (6.7)).

6.1. Fractional laplacian approximation. For the 2d computational domain
Q= H?:l] — Ly; Ly[, we introduce the inner uniform cartesian grid Qy, with n :=
IT;_, Nj, total discretization points, defined by Qn = {x;; = (21,4, 2;)} i j)ez, With
w1, = —Li+ihy, T2 = —Lo+ jho, T := {(i,j) € N? such that 1 <i < Ny, 1 <j <
Ng}, setting hy := 2L;/(Ny + 1), £ = 1,2, and h := (hy, ha). When all the uniform
discretization steps are equal along the directions, we define : h := h; = ho, and then
n = ZVZ7 with N := N1 = NQ.

To fix the ideas, let us now consider the following finite-difference approximation
of the Laplacian operator —A based on a 5-point approximation scheme [10] along
each direction for a function ¢ := (¢; ;) set on the grid Qy

it — 16pit1,; +30p;; — 16pi—1; + i—2;

~OmPig = 1212 :
1

i jr2 — 160; j11 + 30p; 5 — 160, 51 + @452

_Ah2(pi7j = 12h2 :
2

A fourth-order approximation of the laplacian is then: Apup := (Ap, + Ap, )up. Let
Jn = {fij}a,jer be the projection of the function f on Qy, such that f; ; = f(x;;),
(i,7) € Z. Any other real space method (e.g. finite volume or finite element) could
also be used within the method developed below. The approximate solution to system
(6.1) is obtained by solving the fractional linear system Afu; = f3, corresponding
to the discrete operator —(—Ap)%. Let us assume that the approximation of A is at
order g with discretization step h on the bounded domain €2y,. The construction to
the approximate solution uy is performed by computing

(65) Up = A_afh .

For the sake of conciseness, we use hereafter the notation ”A = A,”. For a smooth
function ¢, one gets: App = Ap + O(h1R1(¢)), so that as we use a null Dirichlet
boundary condition [9] we obtain : A¥p = A%+O(h1*R,(p)), with Ry and R, some
smooth differential operators. To compute uy, we propose to apply the strategy based
on the efficient computation of Cauchy integrals. Inhomogeneous Dirichlet boundary
conditions would complicate the approximation [9]. Let us also remark that usually
real space approximations of the fractional Poisson equation are performed by directly
approximating (—A)® by polynomials (see for instance [8]). The approach developed
below is intended instead to illustrate that the efficient computation of matrix powers
is an attractive alternative by numerically solving (6.5).

6.2. Computational complexity analysis in 2d. We recall that the frac-
tional laplacian can also be rewritten [4] under the form (6.2), for « € (0,1) and any
u € S(R?). A direct finite-difference approximation to (6.2) on a n-grid Qp = {z;; =
(xl,,»,argﬂ-) 01 S 7 < N, 1 < j < N} reads

(66) Aauh = fha
19
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where up, := {ui; h<icniacjcn € CV, with ug; & u(;,;), and where the matrix Aq
is constructed by approximating (6.4) on the finite grid by

1 N Uikl — 2Ugei + Ui i1

a itkij+l T 4% i—kij—

67) (A ulwi) ~ 50@) 303 = = = ks,
k=11=1 ;

The overall computational complexity to obtain the full matrix A, is at worse O(n?),
where the solution to (6.6) requires O(n®) operations with 1 < 8 < 3 related to the
complexity for solving a full linear system (once) by a given brute force or specific
algorithm. In contrast, for any (deterministic or stochastic) stationary operator, the
methodology developed in Section 4 requires

e O(n) operations in order to construct a sparse approximate laplacian A.

e the computation of Jys 4 sparse linear systems, i.e. O(Jyan”) operations,
with v > 1. This also contains the cost of the eigenvalue solver to estimate
the largest and smallest eigenvalues to design the integral contour.

e The rest of the computation is a sparse matrix-vector product, thus requiring
O(n) operations.

In fine, the overall computational complexity of the proposed method is O(Jasan?),
which must be compared to O(n® + n?). We conclude that a good preconditioned
Cauchy integral approach allows for i) the use of sparse matrices, ii) efficient quadra-
tures on short length contours, and thus is theoretically much more efficient than a
direct approach.

We now state an important result of this paper. Consider the following system

—(=A)*u = f, inQ,

(6:8) uw = 0, on 0,

where 2 € R? is an open and bounded domain, and f € C°(Q2). Let us introduce the
numerical solution up;p = MO‘S]fl_a)fh, where

S]}(l_a) = (2ri)"'MA Z ]hjwjzj_a_l(zjf— MA)~L.

1<j<Ima

Therefore, up., is an approximation of the solution u, = A~ f, the latter being itself
an approximation to the solution u to system (6.8). In the sequel, we need the follow-
ing discrete norms: for v € £%°(Qn), [|v|lr= () = Maxi<i<N 1<G<N, [V(T14, T2,5)],
and for v € 62(9},): ”va(Qh) = (hlhg Zl<i§N1;1<j<N2 |U(l‘17¢,$27j)‘2)1/2.

Theorem 6.1. We consider system (6.8). Let us denote by A an order ¢ € 2N*
finite-difference approximation to —/A on the grid 2y, and by II, the projection
operator from C(§) to £°°(Qy), such that f, := Huf = {f(@i,¥j) << 1< <N, -
The approximate solution upp on €y to the fractional linear system A%uj, = f, is
constructed as follows:

= (2ri)'M*(MA) D hjwiz
1< <A
(zjI —MAu; = fn, for1<j<JIyma,

Uh;h

where i) M is a Cauchy integral preconditioner such that [M,A] = 0, ii) Jara is
the total number of quadrature nodes on F(A;[hlx (or Cgh)), iii) {w;}1<j<ina are the
quadrature weights, and iv) {z;}i<j<imya € FE\H/}A (or C](\EII,)ﬁl) the quadrature nodes.
Then, the following results hold
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1. Let us assume that the Cauchy integral quadrature is of order ¢ € N*, then
there exists C = C(a,Q, A, M,T'psa) > 0 and D = D(f,,Q, A) > 0, such
that

(6.9)  [lu—unmlleen <O _max  |hy|?|[fallez(ey) + D(hiha)™.
1<yj<Ima

2. Setting n = N1 Ny and for A € C"*", a direct estimate of A~“uy; requires
O(JanP4) operations, with 1 < B4 < 3. By using a Cauchy integral pre-
conditioner M, only Jya < Ja linear systems have to be solved along
Tpra. Performing p (parallel) ILU-factorizations N; on z;I — A such that
cond(N;(z;I — MA)) < cond(z;1 — MA), the overall computational com-
plexity of the double-preconditioning method is at most O(Jy;4n”™v), with
BiLu 2 1 thanks to the cost for building the ILU-preconditioners.

Proof. We first prove (6.9). The approximate solution to (6.1) is defined by
(6.10) u, = ATf, = (2ri)rA [ 2Nl - A7 frdz.
Ta

Assuming that an order o € N* quadrature formula is used to approximate (6.10), we
have

Sy =(ri) T TMA DT hywiey o (2] — MA)TL

1<i<Ima
In addition, one gets
(MA)=f, = (27ri)_1MA/ 27 N2l — MA) frdz.
Tma

We therefore deduce that there exists C; = Cy(«a, A, M,T'pr4) > 0 such that

(6.11) 1957 = (MA) ™2 < C1_max |hy|°.

1<j<Ima

Next, we have: upn —up = M*S, fr, — A7 fi,. According to Proposition 5.1, the
identity A= = M*(MA)~ yields

[unm — A~ fullezn) = [IM*SE fr — MY(MA)™ follez(0u)
= [[M(S,“ _((M)A)_a)thﬁ(Qh)
[ M2 x [|S " = (MA)™*|la % || fulle2 () -

N

From (6.11), we prove that there exists a positive constant C = C(«, Q, A, M, Tpr4) >
0 such that: [[upn — A fulle2(0n) < Cmaxigicaya [P fullen). Next, according
to [9], one can find D = D(f, o, A, Q) > 0 such that: |[u—A"% ful[r2(q,) < D(hi1ha)?®.
We finally have

lu —unlleeny < lunn — A7 fulleen) + lu— A7 fallezon)

< O max ||| fullezn) + D(hihe)?.

1<iSIma

The second part of the theorem is straightforward. A direct estimate, i.e. without
any preconditioner, requires the solution to .J4 linear systems, each requiring O(n?4)
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operations, for 1 < 84 < 1. When a Cauchy integral preconditioner is used, only
Jya K Ja linear systems have to be solved. For ILU-preconditioners, the overall
complexity is simply O(Jaran®™), where BiLy < Ba. O

The following remark is of interest for matrices with complex eigenvalues.

Remark 6.1. For matrices with a complex spectrum, the circular contour can also
be used as follows: Casa = C(z¢,Tar4), with center z. and radius ras4, and enclosing
Sp(M A) corresponding to n poles to (z;1 — MA)~!. In the following, we define
pma = Jara/2. In the case of a circular path, one also gets

1 1 ) . 6171'6
I—-MA)™ =~ im0 I-MA de.
(Z ) 2 \/71 ((TG + 2. + Z) ) (eiﬂ—g + 26621”9/7")

We set z; = 0;1 + 2. (see [12]), where

ol — rarae” T k=1, pma,
J rymae e k=pya+1,-0 2pma = Jua,
and
—1
5:{ UjjipMA’ kzla"'vaAv
’ O par K=pPma+l,--- . 2ppa = Jua.

We first consider the construction of a preconditioner solving (z;1 — M A)u; = f, for
n € 2N*,

(E.I_A) ~ { Lj+pMAUj+pMA7 ‘7:: 1 pma,
! j*pMAUj*pMAv J=DPmMA+ 1. 72pMA'

These LU-factorizations can be used as preconditioners. Theorem 6.1 can easily be
established for circular contours.

We can extend the methodology to equations of the form

—(=A)*u+Vu = f, inQ,

(6.12) w = 0, on 09,

where o € (0,1), f € LP(Q) and V := V(x) € L*(Q), and with null Dirichlet
boundary conditions on 0. We propose the following finite difference approximation
(A% + Vi)up, = fr, where i) the vector f, and the matrix V}, are respectively the
projection on Q, of f and V, ii) A = A, is a finite difference approximation of —A
on Q, and iii) up is the approximate solution to u in (6.12). We formally have:
(I + A *Vi)up, = A~%f,. We then proceed as follows. We compute A~ f;, and
A~*V}, by using the method developed above. Next,
1. we define gy as an approximation to A~ f} following

gn = (27‘(’1)7114 Z ]hjwjzj_a_lgj,
1<j<Ja
(z;1—A)g; = fp, foralll <j<Ja,
where 1) J4 is the total number of quadrature nodes on I‘gh), i) {wjhigi<aa

are some interpolation weights, and iii-a) z; € Fg‘h) with 241 = z;+h;41 and
h; = dz; + 1dy; or iii-b) z; = z. + r(Metli and 2,1 = 2. + (27 — z0)etlitt =
zjel‘wj“, with 841 = 0; 4+ 0041, where 66,41 is an angular increment.
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2. Similarly, By, is an approximation to A~*V},

B]}(f) = (27‘(’1)7114 Z ]hjw_jzj_a_lv‘g‘l)7
4 4 1<j<Ja
(51— Ay = VP forall 1< j < Ja,

where V;, = [V}fl)-~-Vh(n)] € R™ " (resp. Bp = [Blfll)~~B]§1")] e R™*™)
setting {Vh(i)}lgign (resp. {Bﬂ(li)}lgign) as the column vectors of V}, (resp.
By).
3. Finally, we solve : (I — Bp)upn = gh-
The computation of B]%li) is naturally embarrassingly parallel. Let us remark that

Cauchy integral preconditioning can easily be combined with the above methodology
for solving (6.12).

6.3. Numerical experiments on fractional Poisson equations. This sec-
tion is devoted to some numerical experiments to illustrate the above approaches.
Experiment 8. 1d modified fractional Poisson equation. We consider :
—(=A4+V)*u = fon Q=]-2,2[, with f(z) = exp(—=1522), « = 0.6 and V = 5. We
use a 5-point stencil approximate laplacian on €y, where n = 500 and A € R500%500,
To analyze the performance of the proposed approach, we proceed as follows. We
numerically compute A

min

and )\I({Qx with a power and inverse-power methods, respec-

tively, and define a circular contour C4 = C(0, AL EéA)), with ang) =5x 1072

The so-called direct method consists in computing

D\ — z; + Zi+1\ —« _
(6.13) upp = (2r1)70 Y Ihj(%) (2] — A) ",
1<isJa—-1
with z; = z. + réA)eiej. We define a Jacobi preconditioner M = diag(aj', - ,a;,})

and consider Cjr4 = C(0, ALMA) +5éMA)), where séMA) = 5x1072. In the following,
we compute only one CROUT (row) ILU factorization with tolerance 1076, setting
the restart parameter to 20 iterations, LU = zI — A with z = )\x(n]\ilA). We find
rﬁA) ~ 2.7 and réMA) ~ 0.4, corresponding to a gain factor equal to 6.7. In Fig.
13 (Right), we report in logscale i) the CPU-time (in seconds) for the direct method
(with C4) and double-preconditioned method (with Caza), and ii) ||un;n — tret|le2(04)-
The preconditioned approach converges much faster than the direct method which
also requires more resources.

Experiment 9. 2d fractional Poisson equation. For Q =] — 5,5[x] — 1,1[, we
consider the fractional laplacian problem —(—A)%u = f, with f(x) = exp(—5z? —
1023) and a = 0.4. We choose a simple 3-point stencil approximate laplacian on Qy, =
{($17i7$27j) e :1<i< Ny, 1 <j< NQ}, where N1 = 40, No=20and A € Rnxn’

for n = 800. The eigenvalues )\51‘331 and )\EQX are again computed by a power/inverse-

power method. We define the rectangle contour I'y = Q(A(A) —&,—¢, AL+ g,¢€),

with ¢ = 107!, The direct method is based on (6.13), Wit};nl,;j_l,_l = hj1 + 2z; such
that h; := dz or h; := dy, leading to E(qu]h)) = 2(/\5{1?,( - )\I(Tﬁzl + 2¢), where Jy is
the number of points to approximate I'4. For the Jacobi preconditioner M, we have
E(I‘(]\Zhl‘) = Q(Afnﬂgf) — A +2¢). We calculate one CROUT (row) ILU-factorization,

setting the tolerance to 1076 and the value of the restart parameter to 20. Moreover,
LU ~ 7T — A, with 7 = A4 In Fig. 13 (Middle), we plot in logscale i) the CPU-

time (in seconds) for both the direct method (with I'4) and double-preconditioned
23
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method (with T'aza), and ii) [[A™ fi — tret|l¢2(q), - It is clear that the preconditioned
method is convergent much more rapidly than the direct one.

Experiment 9bis. 2d fractional Poisson equation. For =] — 2, 2[?, we solve
the fractional Poisson equation —(—A)%u = f, for f(x) = 1 and « = 04. A 3-
point stencil scheme is used for the laplacian on the square grid 2y, where N = 50,
A € R™"™ and n = 2500. The power and inverse-power method provides )\frﬁzl and

M. We use the circular contour Ca, with e(gA) = 1072. The direct method makes use

max-

of (6.13), with z; = 2, +r(Aei% . We define the Jacobi preconditioner M and consider

C](\E;)A, where e = 5x1072. As in Experiment 9, one CROUT factorization is computed
with the same parameters. We find ) ~ 8.34 and r(M4) ~ 1.6, corresponding to a
gain factor equal to 5.2. In Fig. 13 (Middle), we provide in logscale i) the CPU-time
(in seconds) for the direct method (with C4) and double-preconditioned method (with
Cna), and ii) [[A™ fr, — Uret]|r2(,)- The preconditioned method is definitively faster

than the direct method, which is also more resources consuming.

a=04

02

o O ’ g
= g
= =)
= =]
=) =}
. =
O o

10

s 2. iti
ot +§2"‘°‘ m s,‘ f’“’“‘h“‘:‘edd method —e—(*-norm preconditioned method
e ——{%-norm direct met. 0 —w—(*-norm direct method
- — o -CPU-time preconditioned method — e -CPU-time preconditioned method
N — % —CPU-time direct method — % -CPU-time direct method
10 o 102 10°
Quadrature points (J4) Quadrature points (J4,14)

a=0.75

CPU time

e--="

- s
—e— (?-norm preconditioned method
—e—(*-norm direct method

— & -CPU-time preconditioned method
—»-CPU-time direct method

10! 102 0%

Quadrature points (J474)

Fi1G. 13. CPU-time (in seconds) in logscale, and ||A™% fr, — uret||2 in logscale. (Left) Exper-
iment 8. 1d Poisson. (Middle) Experiment 9. 2d Poisson. (Right) Experiment 9bis. 2d
Poisson.

Experiment 10. We finally propose a series of experiments for (—A+V +dW)%u = f
on a bounded domain | — 10, 10[ with null Dirichlet boundary conditions. The Cauchy
integral is approximated by using Ja a4 = 128 quadrature nodes. For —A, we
use a 5-point scheme. In the following tests, we report the residual history vs the
GMRES iteration number (the tolerance is 10715 and the restart parameter is set to
50 iterations). More specifically using circular contours, we compare the convergence
i) without Cauchy integral preconditioning (No precond.), ii) Jacobi Cauchy integral
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preconditioner (Jacobi precond.), iii) ILU Cauchy integral preconditioner (with scaling
matrix for computing Mz, see Subsection 4.2) (ILU-precond.), iv) ILU factorization
M on A and then M® is used to precondition A%, v) and finally no Cauchy integral
preconditioning, but ILU preconditioning of A%, assuming it is known (ILU-precond.
on A%). The convergence graphs (residual history vs GMRES iteration number) are
given in Fig. 14 for
e Experiment 10a. V = 0 and the brownian motion dWV is approximated by
a symmetric random (uniform law) matrix of magnitude 0.12, and « = 0.75.
e Experiment 10b. V = 0 and the brownian motion dWV is computed by a
unsymmetric random (uniform law) matrix with magnitude 0.06, and a =
0.75.
e Experiment 10c. V = 0 and the brownian motion dVV is approximated
by a symmetric random (uniform law) matrix with magnitude 0.12, fixing
a = 0.5.
e Experiment 10d. V = 100e=*" and the brownian motion dW is approxi-
mated by a symmetric random (uniform law) matrix of magnitude 0.12, and
a = 0.75.
These tests illustrate the fact that the convergence of the GMRES solver is highly
dependent on the presence of a potential and the value of a. Overall, the ILU-Cauchy
integral preconditioner allows for a faster (sometimes much faster) convergence than
any other preconditioning approach.

Residual history

——ILU-precond.

—e—Jacobi precond.

—< M,-precond.
ILU-precond. on A®

—— No-precond.

150 200 250 300 350 400 450 500
Iteration

——ILU-precond.

—e—Jacobi precond.

—&— M,-precond.
ILU-precond. on A%

——No-precond.

0 10 20 30 40 50 60 70
Iteration

Fic. 14. GMRES convergence. (Top-Left) Experiment 10a ; (Top-Right) Experiment 10b;

Residual history

Residual history

——ILU-precond.

—e—Jacobi precond.

—< M,-precond.
ILU-precond. on A®

——No-precond.

10710

100 150 200
Iteration

—+—ILU-precond.
—e—Jacobi precond.
—&— M,-precond. H
ILU-precond. on A
——No-precond. H

100 150 200 250
Iteration

(Botton-Left) Experiment 10c ;(Bottom-Right) Experiment 10d.

7. Conclusion. In this paper, we proposed an efficient method for computing
the real power of a diagonalizable matrix A and algorithms for solving fractional
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linear systems, using quadrature rules for Cauchy integrals and contours enclosing
the spectrum of A. Simple preconditioners are proposed for drastically reducing the
computational complexity thanks to spectrum clustering. Some experiments are re-
ported to illustrate the methodology. In particular, applications to (deterministic and
stochastic) stationary fractional Poisson-like equations with Dirichlet boundary con-
ditions are given. In a forthcoming paper, we will propose some realistic applications
and comparisons with other methods such as the differential equation approach as
defined in Subsection 4.4.
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