
HAL Id: hal-02341393
https://hal-amu.archives-ouvertes.fr/hal-02341393

Submitted on 31 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cell width dictates Type VI secretion tail length
Yoann Santin, Thierry Doan, Laure Journet, Eric Cascales

To cite this version:
Yoann Santin, Thierry Doan, Laure Journet, Eric Cascales. Cell width dictates Type VI secretion tail
length. Current Biology - CB, Elsevier, 2019, �10.1016/j.cub.2019.08.058�. �hal-02341393�

https://hal-amu.archives-ouvertes.fr/hal-02341393
https://hal.archives-ouvertes.fr


Cell width dictates Type VI secretion tail length 1	
Yoann G. Santin1, Thierry Doan1, Laure Journet1 & Eric Cascales1,2,* 2	

 3	
1Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la 4	
Méditerranée, Aix-Marseille Université – CNRS UMR7255, 31 Chemin Joseph Aiguier, CS7071, 5	
13402 Marseille Cedex 09, France 6	
2Lead Contact 7	
*Correspondence: cascales@imm.cnrs.fr	8	
 9	
Running title: T6SS sheath length control 10	
 11	
 12	
 13	
Keywords : Protein transport, protein secretion, contractile injection systems, tail sheath, 14	
length regulation, TagA, cell width, molecular ruler, membrane.  15	



SUMMARY 16	

The type VI secretion system (T6SS) is a multiprotein apparatus that injects protein 17	

effectors into target cells, hence playing a critical role in pathogenesis and in microbial 18	

communities [1–4]. The T6SS belongs to the broad family of contractile injection 19	

systems (CIS), such as Myoviridae bacteriophages and R-pyocins, that use a spring-like 20	

tail to propel a needle loaded with effectors [5,6]. The T6SS tail comprises an assembly 21	

baseplate on which polymerizes a needle, made of stacked Hcp hexamers, tipped by the 22	

VgrG-PAAR spike complex and wrapped by the contractile sheath made of TssB and 23	

TssC [7–13]. The T6SS tail is anchored to the cell envelope by a membrane complex that 24	

also serves as channel for the passage of the needle upon sheath contraction [14–16]. In 25	

most CIS, the length of the tail sheath is invariable, and is usually ensured by a 26	

dedicated protein called tape measure protein (TMP) [17–22]. Here we show that the 27	

length of the T6SS tail is constant in enteroaggregative Escherichia coli cells, suggesting 28	

that it is strictly controlled. By overproducing T6SS tail subunits we demonstrate that 29	

component stoichiometry does not participate to the regulation of tail length. The 30	

observation of longer T6SS tails when the apparatus is relocalized at the cell pole 31	

further shows that tail length is not controlled by a TMP. Finally, we show that tail stops 32	

its elongation when in contact with the opposite membrane, and thus that T6SS tail 33	

length is determined by the cell width. 34	

 35	

RESULTS AND DISCUSSION 36	

T6SS tail sheath length in EAEC.  37	

The length of bacteriophage and other CIS tails such as that of anti-feeding prophages is 38	

strictly controlled [17-23]. To determine whether this is also the case for the T6SS, we 39	



measured the length of T6SS sheaths in EAEC wild-type cells producing a functional fusion 40	

between the TssB tail subunit and the superfolder-Green Fluorescent Protein (TssB-sfGFP). 41	

The sfGFP-coding sequence was inserted on the chromosome, upstream the tssB stop codon. 42	

In this construct, the sfGFP sequence is in frame with the tssB gene, and the tssB-sfGFP 43	

fusion is under the control of the native tssB expression signals. Cells were grown in sci1 44	

inducing medium (SIM), a defined synthetic medium that avoids batch-to-batch composition 45	

variability and induces the expression of EAEC T6SS genes [24]. In agreement with the 46	

localization of T6SS MC along the cell body with an underrepresentation at the poles [15,25], 47	

we observed that T6SS sheaths assemble from one position on the cell body to the opposite 48	

membrane. To avoid measurements of the length of contracted sheaths or of sheaths under 49	

extension, time-lapse recordings were performed and only sheaths for which the elongation 50	

has been completed (i.e., when the sheath holds >1 min with the same length) were 51	

considered (Figure 1A). The distal extremity of these extended sheaths always co-localized 52	

with the TagA stopper protein (Figure 1B). Quantitative measurements of these T6SS tail 53	

length showed low disparities, with a length mean of 0.76 ± 0.11 µm (n = 150) and a normal 54	

distribution (Figure 1C). We thus concluded that the length of the T6SS sheath is not 55	

randomly distributed, and hence that the arrest of T6SS sheath elongation is controlled. Based 56	

on this conclusion, we hypothesize that T6SS sheath length might be determined by (i) the 57	

number of available T6SS tail subunits, (ii) a tape measure protein, or (iii) the cell width.  58	

 59	

T6SS tail sheath length is not regulated by tube/sheath components stoichiometry 60	

Several reports have demonstrated that the length of some pilus-like structures is limited by 61	

the number of available pilin subunits. For example, the T2SS uses a periplasmic pseudo-62	

pilus to expel the substrates in the external medium such as a piston or an Archimedes screw 63	



[26]. By artificially increasing the number of pseudo-pilins, µm-long pili can be observed at 64	

the cell surface, suggesting that pseudo-pilus length is determined, in part, by the number of 65	

available subunits [27,28]. A strict control of the number of subunits in the cell by finely 66	

tuned gene expression and protein stability levels would prevent the costly synthesis of 67	

unnecessary subunits. To test whether T6SS sheath length might be controlled by the number 68	

of available tail subunits, we modified the stoichiometry balance by deregulating the levels of 69	

tube/sheath subunits, Hcp, TssB and TssC. TssA, which locates at the distal end of the 70	

growing sheath to coordinate the assembly of the tail tube/sheath [29-31], and the TagA 71	

stopper [31,32] were not included in the study as single TssA and TagA complexes are 72	

responsible for promoting T6SS tail elongation and arrest. tssB-sfGFP, and epitope-tagged 73	

tssC and hcp, were cloned into the pTrc99A vector, under the IPTG-inducible ptrc promoter. 74	

Pilot experiments showed that the production of TssB-sfGFP, TssC and Hcp can be tightly 75	

controlled by varying the IPTG inducer concentrations from 0 to 250 µM in the culture 76	

medium. However, although we do not know whether it results from protein aggregation or 77	

stoichiometric unbalance, we noticed that IPTG concentrations higher that 50 µM yielded 78	

non-functional T6SSs, as no dynamic sheath structures were observable by fluorescence 79	

microscopy. Nevertheless, with IPTG concentrations ranging from 0 to 10 µM, we observed 80	

an increase in TssB-sfGFP, TssC and Hcp protein levels up to ~14-18 fold (Figure 2A) 81	

without affecting T6SS sheath formation and dynamics (Figure 2B). However, sheath length 82	

measurement analyses did not reveal striking differences (Figure 2B, 2C and Figure S1). 83	

Collectively, our results therefore argue against a direct correlation between the abundance of 84	

T6SS tail subunits and T6SS sheath length.  85	

 86	

T6SS sheath length is not regulated by a tape measure protein.  87	



The length of contractile bacteriophage tails is dictated by a tape measure protein (TMP) [18-88	

20,33,34]. Such a ruler mechanism has been also evidenced or proposed for other CISs such 89	

as antifeeding prophages and Photorhabdus virulence cassettes, or non-contractile structures 90	

such as T3SS injectisome needles in Yersinia, or the bacterial hook in Salmonella [21,22,35–91	

38]. Although bacterial T6SSs have been shown to be structurally and functionally related to 92	

contractile bacteriophages [6], and contrarily to R-pyocins, AFP, PVC or ACS gene clusters 93	

[21,22,35], no gene encoding a potential TMP can be found within T6SS clusters [39]. In 94	

addition, previous experiments showing T6SS tail sheath extension in Vibrio cholerae 95	

spheroplasts [40] and in EAEC and V. cholerae tagA mutants [31,32] suggested that longer 96	

tails assemble in the cell, hence arguing against a tape measure-like mechanism. To discard 97	

this hypothesis, we sought to reposition the T6SS at the cell pole to follow the assembly of the 98	

T6SS in the long axis of the cell body. In these conditions, the presence of a TMP would 99	

cause an arrest of tail extension in the cytoplasm, whereas the tail will extend towards the 100	

opposite cell pole or until no tail subunit is available for a TMP-independent mechanism. 101	

T6SS biogenesis starts with the assembly of the membrane complex (MC) [7,15]. The T6SS 102	

MC is composed of the TssJ outer membrane lipoprotein, and TssL and TssM inner 103	

membrane proteins [14]. Its biogenesis starts with the positioning of TssJ and is pursued by 104	

the sequential recruitment of TssM and TssL [15]. The MC initially positions along the cell 105	

body with an underrepresentation at the cell pole [15,25]. To reposition T6SS MCs at the cell 106	

pole, we fused TssM to the Bacillus subtilis polar/septal determinant DivIVA. This approach 107	

has been successfully used to relocate the T4SS VirD4 coupling protein to the cell pole in 108	

Agrobacterium cells [41]. A fragment encoding the B. subtilis divIVA gene was inserted on 109	

the chromosome, downstream the tssM ATG start codon and in frame with the tssM coding 110	

sequence, to engineer a divIVA-tssM fusion. Because TssL is the last component to be 111	

recruited during MC biogenesis [15], we then imaged TssL fused to sfGFP in these cells. 112	



Statistical analyses of sfGFP-TssL position, that hence reflects the localization of the fully-113	

assembled T6SS MC [15], demonstrated that sfGFP-TssL forms ~32% of polar foci in 114	

presence of DivIVA-TssM, by contrast to the wild-type cells, with ~16% of polar foci (Figure 115	

3A, 3B). Introduction of the divIVA-tssM fusion into tssB-sfGFP EAEC cells showed that few 116	

T6SS tails assemble from the pole suggesting that polar-localized MCs are less functional. 117	

However, the number of tail polymerizations starting from the cell pole was significantly 118	

increased with the relocation of the MC compared to wild-type cells. Statistical analyses 119	

showed that these extensions from the poles lead to significantly longer tails (Figure 3C), with 120	

a mean equal to 1.05 ± 0.42 µm (n = 75). Sheaths that crossed the entire cell body with length 121	

up to 3.5 µm (corresponding to outliers in Figure 3C), and capable of contraction were readily 122	

observed (Figure 3D). Taken together, these data demonstrate that T6SS tails could be 123	

artificially extended by relocalization of the MC at the cell pole, and hence that sheath length 124	

is not regulated by a TMP-mediated ruler mechanism.  125	

 126	

T6SS tail sheath length is dictated by the cell width.  127	

In all the images recorded, we observed that sheaths extend towards and stop when in contact 128	

with the opposite membrane. As the membrane mechanically defines the cell limits, one may 129	

hypothesize that the distance between the two opposite membrane positions is sufficient to 130	

determine sheath length. Indeed, the measure of the distance between the two membranes in 131	

cells analyzed in Figure 1 showed a cell width average of 0.86 µm ± 0.07, which is 132	

comparable to the sheath length (0.76 µm ± 0.11), specifically if we take into account the 133	

widths of the membranes, of the cytoplasmic portion of the MC, and of the BP [8,9,15,16]. To 134	

further investigate the impact of cell width on T6SS sheath length, we treated EAEC cells 135	

producing TssB-sfGFP with A22, a drug that causes cell shape defects by targeting the 136	



cytoskeletal MreB protein. As expected, we observed a significant impact on cell morphology 137	

with a trend to cell rounding (Figure 4A). In these conditions, we observed T6SS sheaths with 138	

length varying from 0.7 to 2 µm (Figure 4A). However, when sheath length was plotted 139	

against cell width, a strict correlation is observed (Kendall’s ! = 0.82) (Figure 4B). In addition, 140	

the value of the slope, close to 1 (m = 0.92), demonstrates that sheath length is directly 141	

proportional to cell width, which is also confirmed by sheath length/cell width ratio 142	

calculations (Figure 4C). Similarly to wild-type cells [32], the distal extremity of these longer 143	

extended sheaths co-localized with TagA (Figure 4D). We therefore conclude that T6SS 144	

sheath length depends on cell width, and that T6SS sheath polymerization is arrested upon 145	

contact with the opposite membrane, likely by the TagA stopper. 146	

 147	

Concluding remarks 148	

In this study, we have shown that the T6SS tails in EAEC cells have a defined length. Our 149	

further analyses demonstrated that the length of the T6SS tail is not determined by a tape 150	

measure protein or by the number of available tail tube/sheath subunits, but rather by the 151	

distance between the baseplate and the opposite membrane. This mechanism contrasts with 152	

the TMP-dependent regulation found in most contractile tailed machines. However it is in 153	

agreement with the fact that no putative TMP-encoding genes are encoded on T6SS gene 154	

clusters [5,39]. In TMP-dependent contractile tails, it has been shown that a strict correlation 155	

exists between the number of TMP residues and the length of cognate sheaths [21,22]. An 156	

extrapolation for the T6SS would mean that a sheath of 0.76 µm corresponds to a TMP of ~ 157	

5,000 amino-acids. Such a protein is not encoded within T6SS gene clusters. Finally, the 158	

observation that DivIV-mediated relocalisation of the MC to the cell pole yields extra-long 159	

sheath structures demonstrates that no TMP is involved. The assembly of extra-long sheaths 160	



also suggests that the number of subunits necessary to assemble a tail tube/sheath is not 161	

limiting in the bacterial cytoplasm, and hence that sheath length is not regulated by the 162	

number of available tail subunits. Indeed, this hypothesis was also discarded by artificially 163	

modulating the levels of T6SS tail subunits, demonstrating that it does not influence tail 164	

sheath length. This results is also in agreement with the recent measurement of T6SS subunits 165	

abundance demonstrating that tail tube/sheath components are not limiting in Acinetobacter 166	

baylyi, V. cholerae, or P. aeruginosa cells [42]. All our observations therefore argue for an 167	

arrest of sheath polymerization at the opposite membrane. This hypothesis is likely, as 168	

altering the distance between the two membranes by using A22, an antagonist of the MreB 169	

morphological determinant, showed a strict correlation between membrane width and sheath 170	

length. We conclude that tail tube/sheath polymerization stops when it hits the opposite 171	

membrane. In most cases, the assembly of the T6SS tubular structure starts perpendicular to 172	

the membrane and hence, the length of the sheath correlates with the cell width. However, 173	

when T6SS tail assembly starts non-perpendicularly, its polymerization will proceed until it 174	

touches the opposite membrane boundary. This model is also consistent with the recent 175	

identification of TagA, a membrane-bound protein that binds to the distal extremity of the 176	

growing tail and stops tube/sheath polymerization in EAEC and V. cholerae [31,32]. However, 177	

TagA is not a universal stopper as recordings of sheath dynamics of TagA+ T6SS (V. 178	

cholerae) or T6SSs lacking TagA (Acinetobacter baylyi, P. aeruginosa H1, S. enterica 179	

Typhimurium, Francisella novicida) showed that sheaths extend to and stop at the opposite 180	

membrane [40, 42-45]. It would be interesting to define how T6SS sheath polymerization is 181	

stopped in bacterial species lacking TagA. 182	

  In conclusion, T6SS has evolved to use a mechanism of tail length control distinct 183	

from other CISs. We thus propose a model in which T6SS tail length is determined by the 184	

distance to the opposite membrane. In EAEC, and likely other TagA+ species, proper arrest of 185	



tail tube/sheath polymerization is mediated by the TagA stopper by binding to the TssA cap 186	

protein once the distal end of the sheath hits the opposite membrane. .  187	

	188	
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Legend to Figures 209	

Figure 1. Statistical measure of the EAEC T6SS sheath length. (A) Representative 210	

fluorescence micrograph of EAEC cells producing TssB-sfGFP and labelled with FM4-64 211	

(upper panel, phase channel; lower panel, merge of GFP and FM4-64 channels). Scale bar, 1 212	

µm. (B) Representative fluorescence micrograph of EAEC cells producing TssB-CFP and 213	

YFP-TagA, and labeled with FM4-64 (upper panel, phase channel; lower panel, merge of 214	

CFP, YFP, and FM4-64 channels). The open arrowheads point T6SS extended sheaths in 215	

contact with the TagA stopper. Scale bar, 1 µm. (C) Violin plot representation of the sheath 216	

length in wild-type cells. The distribution of the sheath lengths is represented by the outer 217	

shape. The bold horizontal bar represents the median value (median = 0.76 µm); the lower 218	

and upper boundaries of the internal box plot correspond to the 25th and 75th percentiles 219	

respectively; whiskers extend 1.5 times the interquartile range from the 25th and 75th 220	

percentiles. The number of measured sheaths (n=150) is indicated above. 221	

Figure 2. T6SS tail tube/sheath subunits levels do not determine T6SS sheath length. (A) 222	

Western-blot analyses of tail tube/sheath component abundance. 2×108 cells of ∆tssBC∆hcp 223	

cells producing TssB-sfGFP (TssBsfGFP), 6×His-tagged TssC (TssC6His) and FLAG-tagged 224	

Hcp (HcpFLAG) from the pTrc-BGFP-C6H-HcpF grown in presence of 0.4% of glucose or of the 225	

indicated concentration of IPTG were subjected to 12.5% acrylamide SDS-PAGE and 226	

immunodetected with anti-GFP, -His, -FLAG and -EF-Tu monoclonal primary antibodies and 227	

secondary antibodies coupled to AlexaFluor® 680. The EF-Tu cytoplasmic elongation factor 228	

is used as loading control. The increased fold values compared to the glucose condition, 229	

measured by densitometric quantification of the band signal intensities and relative to the 230	

loading control, are indicated below. Molecular weight markers (in kDa) are indicated on left. 231	

(B-C) Representative fluorescence microscopy recordings (B) and statistical analyses of 232	

sheath length measurements (C) of ∆tssBC∆hcp cells producing HcpFLAG, TssB-sfGFP and 233	



TssC6His in presence of 0.4% glucose or of the indicated concentration of IPTG, and labelled 234	

with FM4-64 (left panels, phase channel; right panels, merge of GFP and FM4-64 channels). 235	

Scale bar, 2 µm. In the violin plot representation of the statistical analysis, the distribution of 236	

the sheath length is represented by the outer shape. The bold horizontal bar represents the 237	

median; the lower and upper boundaries of the internal box plot correspond to the 25th and 238	

75th percentiles respectively; whiskers extend 1.5 times the interquartile range from the 25th 239	

and 75th percentiles. Outliers are shown as black dots. Statistical significance from three 240	

independent assays (n= 100 for each conditions) relative to the glucose condition is indicated 241	

above the plots (ns, non-significative; ***, p < 0.001; two-tailed Student's t-test). A 242	

comparison of tail tube/sheath subunits levels and sheath lengths is shown in Figure S1. 243	

Figure 3. Sheath length is not controlled by a tape measure protein. Representative 244	

fluorescence microscopy recordings of EAEC cells producing sfGFP-TssL in WT (A) or 245	

DivIV-TssM (B) cells, and labelled with FM4-64 (upper panels, phase channel; lower panels, 246	

merge of GFP and FM4-64 channels). White and blue arrowheads indicate TssL foci with 247	

body or polar localizations, respectively. Scale bar, 2 µm. The spatial repartition of sfGFP-248	

TssL foci is shown on right, as a projection of foci from n=152 and n=151 WT and DivIVA-249	

TssM cells, respectively, on a single cell (from blue to yellow, see heatmap color chart on 250	

right of panel A). The percentage of sfGFP-TssL foci with polar localization is indicated 251	

below. (C) Violin plot representation of sheath length measurements in DivIVA-TssM cells 252	

producing TssB-sfGFP (red). An example of a representative microscopy field is shown in the 253	

inset (scale bar, 2 µm). The distribution of sheath length in WT cells (shown in Figure 1B) is 254	

reported in transparency for comparison (blue). The distribution of the sheath length is 255	

represented by the outer shape. The bold horizontal bar represents the median value (median 256	

= 0.93 µm and 0.76 µm for DivIVA-TssM and WT cells, respectively); the lower and upper 257	

boundaries of the internal box plot correspond to the 25th and 75th percentiles respectively; 258	



whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. Outliers 259	

are shown as black dots. The number of measured sheaths (n=75) is indicated below. 260	

Statistical significance relative to WT cells is indicated above the plots (***, p < 0.001; one-261	

tailed Wilcoxon’s t-test). (D) Fluorescence microscopy time-lapse recordings of DivIVA-262	

TssM cells producing TssB-sfGFP highlighting polar T6SS sheath assembly (white 263	

arrowhead) and contraction (blue arrowhead). Scale bar, 2 µm.  264	

Figure 4. Cell width dictates T6SS sheath length. (A) Representative fluorescence 265	

micrographs of EAEC cells producing TssB-sfGFP in absence (upper panel) or in presence of 266	

the MreB inhibitor A22 (lower panel), and labelled with FM4-64 (upper panel, phase channel; 267	

lower panel, merge of GFP and FM4-64 channels). Scale bar, 2 µm. (B) Plot representation 268	

showing the relationship between sheath length and cell width in absence (blue) and presence 269	

of A22 (orange). The dashed line represents the mean of the WT cell width (mean = 0.87 µm). 270	

Value of the slope (m) is indicated on right. Kendall’s ! = 0.82. (C) Dotplot of the ratios 271	

between sheath length and the width of the corresponding cell from cells grown in absence 272	

(blue) or presence of A22 (orange). Horizontal bars represent the mean in each condition. The 273	

values of the means and standard deviations are indicated above the plots. The number of 274	

analyzed cells (n) is indicated below. (D) Representative fluorescence micrograph of EAEC 275	

cells producing TssB-CFP and YFP-TagA in presence of the MreB inhibitor A22, and 276	

labelled with FM4-64 (left panel, phase channel; right panel, merge of CFP, YFP, and FM4-277	

64 channels). The open arrowheads point T6SS extended sheaths in contact with the TagA 278	

stopper. Scale bar, 2 µm. 279	

 280	

STAR METHODS 281	

 282	



LEAD CONTACT AND MATERIALS AVAILABILITY  283	

Further information and requests for resources and reagents should be directed to and will be 284	

fulfilled by the Lead Contact, Eric Cascales (cascales@imm.cnrs.fr). There are no restrictions 285	

to the availability of reagents.  286	

 287	

EXPERIMENTAL MODEL AND SUBJECT DETAILS 288	

Strains used in this study are listed in Table S1. Escherichia coli DH5α (New England 289	

Biolabs) or CC118λpir have been used for cloning procedures. Enteroaggregative E. coli 290	

(EAEC) strains used in this work are isogenic derivatives of the wild-type O3:H2 17-2 strain. 291	

The wild-type 17-2 strain and its TssB-sfGFP [46], sfGFP-TssL [15], TssB-CFP/YFP-TagA 292	

(this work), and DivIVA-TssM (this work) derivatives have been used for in vivo studies. E. 293	

coli cells were routinely grown in Lysogeny broth (LB)  broth at 37°C, with aeration. For 294	

induction of the sci1 T6SS gene cluster, cells were grown in Sci1-inducing medium [SIM: M9 295	

minimal medium supplemented with glycerol 0.25 %, vitamin B1 200 µg.mL−1, 296	

casaminoacids 40 µg.mL−1, MgCl2 2 mM, CaCl2 0.1 mM, and LB (10% v/v)] [24]. Plasmids 297	

and chromosomal deletions and insertions were maintained by the addition of kanamycin (50 298	

µg.mL−1), or ampicillin (100 µg.mL−1). Gene expression from pTrc99A derivative plasmids 299	

was induced at A600 nm ≈ 0.4 by the addition of 2-10 µM of isopropyl-β-D-thio-300	

galactopyranoside (IPTG, Sigma-Aldrich). The MreB antagonist S-(3,4-301	

dichlorobenzyl)isothiourea hydrochloride (known as A22 [47], purchased from Sigma-302	

Aldrich) has been added to the culture at the concentration of 10 µg.mL-1 for 2 hours prior 303	

analyses. Membranes were stained with 10 µg.mL-1 of the N-(3-triethylammoniumpropyl)-4-304	

(6-(4-(diethylamino) phenyl) hexatrienyl) pyridinium dibromide dye (FM4-64, Molecular 305	

Probes, Life technologies). 306	

 307	



METHOD DETAILS 308	

Plasmid construction. All plasmids used in this study are listed in Table S2. 309	

Oligonucleotides used for plasmid construction are listed in Table S3. pTrc99A [48] and 310	

pKD4 [49] plasmid derivatives were engineered by ligation-free restriction-free cloning. PCR 311	

amplification were performed in a Biometra thermocycler using the Q5® DNA polymerase 312	

(New England Biolabs). Briefly, the fragment of interest was amplified and then used as 313	

oligonucleotides for a second PCR for amplification of the target plasmid. For construction of 314	

pTrc-BGFP-C6His, a fragment encoding tssB-sfGFP and tssC-6×His was amplified from EAEC 315	

17-2 TssB-sfGFP [46] genomic DNA using primers 316	

GGATAACAATTTCACACAGGAAACAGACCATGAGCAGTTCGTTTCAGAATGAAATCC317	

C and 318	

CCCGGGTACCGAGCTCGAATTCTTAATGGTGATGGTGATGATGCGCTTTTGCCTTC319	

GGCATCTGC (6×His tag sequence underlined, sequence annealing on the target pTrc99A 320	

plasmid [48] italicized), and inserted into pTrc99A. The hcp gene was amplified from EAEC 321	

17-2 genomic DNA using primers 322	

GCGCATCATCACCATCACCATTAAGAATTaggaggtattacaccATGGCAATTCCAGTTTA323	

TCTGTGGCTG and 324	

GGATCCCCGGGTACCGAGCTCGTTACTTGTCATCGTCATCTTTATAATCCGCGGTGG325	

TACGCTCACTCC (FLAG tag sequence italicized, sequence annealing on the target pTrc-326	

BGFP-C6H plasmid underlined, Shine-Dalgarno ribosome-binding site in lower case), and 327	

inserted into pTrc-BGFP-C6His to yield pTrc-BGFP-C6H-HcpF. For construction of plasmid 328	

pKD4-DivIVA-Nt allowing chromosomal insertion of divIVA at the 5'-end of genes, the 329	

divIVA gene was amplified from Bacillus subtilis str. 168 using primers 330	

GGAACTTCGGAATAGGAACTAAGGAGGATATTCATATGCCATTAACGCCAAATG331	

ATATTCACAACAAGAC and 332	



GCTGACATGGGAATTAGCCATGGTCCCCTCCGCCGGCCGCTGCTTCCTTTTCCTCA333	

AATACAGCGTCGACTTC (3×Ala-3×Gly sequence linker italicized, sequence annealing on 334	

the target pKD4 plasmid underlined), and inserted into plasmid pKD4 [49]. For construction 335	

of plasmid pKD4-CFP-Ct allowing chromosomal insertion of ecfp at the 3'-end of genes, the 336	

ecfp gene was amplified from the pTrc99A-ecfp vector (gift from Leon Espinosa, LCB, 337	

Marseille, France) using primers 338	

GATTGCAGCATTACACGTCTTGAGCGATTGCAGCGGCCGGCGGAGGGGTGAGCAA339	

GGGCGAGGAGC and 340	

GAACTTCGAAGCAGCTCCAGCCTACACTTACTTGTACAGCTCGTCCATGCCG 341	

(3×Ala-3×Gly sequence linker italicized, sequence annealing on the target pKD4 plasmid 342	

underlined), and inserted into plasmid pKD4 [49]. For construction of plasmid pKD4-YFP-Nt 343	

allowing chromosomal insertion of eyfp at the 5'-end of genes, the eyfp gene was amplified 344	

from the pCBP-EYFP vector (gift from Emmanuelle Bouveret, Institut Pasteur, Paris, France) 345	

using primers 346	

CGGAATAGGAACTAAGGAGGATATTCATATGGTGAGCAAGGGCGAGGAGC and 347	

CGGCTGACATGGGAATTAGCCATGGTCCCCTCCGCCGGCCGCTGCCTTGTACAGC348	

TCGTCCATGCCGAGAG (3×Ala-3×Gly sequence linker italicized, sequence annealing on 349	

the target pKD4 plasmid underlined), and inserted into plasmid pKD4 [49]. All plasmids were 350	

verified by colony-PCR and DNA sequencing (Eurofins genomics). 351	

Strain construction. Strains were engineered by λ-red recombination [49] using plasmid 352	

pKOBEG [50] and PCR products (oligonucleotides listed in Table S3). Briefly, a kanamycin 353	

cassette was amplified from plasmids pKD4, pKD4-DivIVA-Nt, pKD4-CFP-Ct, or pKD4-354	

YFP-Nt, using oligonucleotides carrying 50-nucleotide extensions homologous to regions 355	

adjacent to the gene of interest. Cassette allowing deletion of the hcp gene was generated 356	

using the pKD4 vector template with primers 357	



TCCCCTGCGCCGGAAGAGGGCGCATCAGAAAACATAACGGAGTAATTTTTTGTGT358	

AGGCTGGAGCTGCTTCG and  359	

TGAAGAAAAAATAAAAATGACGGACAGGATGCCCTGTCCGTCCGGCAGAACATA360	

TGAATATCCTCCTTAGTTCC (50-bp sequence annealing on the 5' and 3' regions of the 361	

deleted gene underlined). For chromosomal insertion of DivIVA at the tssM locus, the 362	

DivIVA cassette was generated using the pKD4-DivIVA-Nt vector with primers 363	

TTCTCATCCGGAGAAGAACATTTTATCAGTACTGTTACATCAGGAAACCAGAATG364	

AATAACGATTGTGTAGGCTGGAGCTGCTTCGAAGTTCCTATAC and 365	

CACACCAATAAATACAATCCCCGGTCGCCCAAAGCGACCAGACAGACAGGCCAG366	

TTTATTCCCTCCGCCGGCCGCTGC (50-bp sequence annealing on the 5' and 3' regions of 367	

the tssM ATG start codon underlined). For chromosomal insertion of CFP at the tssB locus, 368	

the cfp cassette was generated using the pKD4-CFP-Ct vector with primers 369	

CCGGCACTGAGTCAGACGCTGCGTGATGAACTGCGTGCACTGGTGCCGGAAAAG370	

GCGGCAGCGGCCGGCGGAGGG and 371	

GCAACGTTCTTTTCTTTCTGTACAGACATCAGCATTTTCTCTCGTAATCCGTTAAA372	

CATATGAATATCCTCCTTAGTTCCTATTCCGAAGTTCC (50-bp sequence annealing on 373	

the 5' and 3' regions of the tssB TAA stop codon underlined). For chromosomal insertion of 374	

YFP at the tagA locus, the yfp cassette was generated using the pKD4-YFP-Nt vector with 375	

primers 376	

CTTTTCGTCACTGTTAATCATGATTTAATACAGCAACACCGAATCTGCCGCGATTG377	

TGTAGGCTGGAGCTGCTTCGAAGTTCCTATAC and 378	

TCCGGTAATGACCGGGGGTCACCACCGGTTTTCAGTTTCACTTCAGAAGTCCCTC379	

CGCCGGCCGCTGC (50-bp sequence annealing on the 5' and 3' regions of the tagA ATG 380	

start codon underlined). Cassette amplicons were column-purified (NucleoSpin® Gel and PCR 381	

clean-up, Macherey Nagel), and 600 ng were electroporated into electrocompetent target cells 382	



(∆tssBC for ∆hcp; 17-2, sfGFP-TssL and TssB-sfGFP for DivIVA; 17-2 for YFP-TagA; YFP-383	

TagA for TssB-CFP), kanamycin-resistant clones were selected and verified by colony-PCR. 384	

When possible, kanamycin cassettes were excised by the FRT-specific FLP recombinase 385	

using vector pCP20 [49]. 386	

SDS-PAGE, Western-blotting, imaging and quantification analyses. Standard methods 387	

were used for sodium dodecyl-sulfate poly-acrylamide gel electrophoresis (SDS-PAGE) and 388	

protein transfer on nitrocellulose membranes. Membranes were probed with anti-GFP (clone 389	

7.1, Roche), anti-His (clone His1, Sigma), anti-FLAG (clone M2, Sigma), and anti-EF-Tu 390	

(clone mAb900, HyCult Biotech) monoclonal antibodies, and goat anti-mouse secondary 391	

antibodies coupled to AlexaFluor® 680 (Invitrogen). Images were recorded at λ=700 nm using 392	

an Odyssey® infrared imaging system (LI-COR Biosciences). Image analyses were performed 393	

with the ImageJ processing program using the Fiji interface [51], as previously described [52]. 394	

Briefly, the image was first converted to grayscale in .jpg format. The rectangle tool of 395	

ImageJ was used to select a rectangular area of the size corresponding to the lane width, in 396	

order to cover the minimal area to contain the whole of the largest band. The same frame was 397	

used to select each TssB, TssC, Hcp or EF-Tu band. For each selection, the number of pixels 398	

was calculated. A control region with no band was also selected to subtract the background. 399	

The number of pixels of each band, subtracted from the background, was then divided by the 400	

EF-Tu loading control intensity at the same IPTG concentration, to compensate for loading 401	

differences. The fold-change relative to the glucose sample was then calculated. 402	

Fluorescence microscopy and statistical analyses. Cells were grown in SIM to a A600 nm ≈ 403	

0.6–0.8, harvested and resuspended in fresh SIM to a A600 nm ≈ 10. For inhibition of MreB 404	

function, cells grown in SIM were treated at A600 nm ≈ 0.3 for 2 hours with 10 µg.mL-1 of A22 405	

prior to data acquisition, as previously published [53]. For membrane staining, cells were 406	



labelled with FM4-64 (10 µg.mL-1) for 2 min prior to centrifugation. Concentrated cell 407	

mixtures were spotted on a thin pad of SIM supplemented with 2% agarose, or 2% agarose 408	

and A22 (10 µg.mL−1), covered with a cover slip, and incubated for 20-30 min at room 409	

temperature before microscopy acquisition. Fluorescence microscopy was performed on a 410	

Nikon Eclipse Ti microscope equipped with an Orcaflash 4.0 LT digital camera (Hamamatsu) 411	

and a perfect focus system (PFS) to automatically maintain focus so that the point of interest 412	

within a specimen is always kept in sharp focus at all times despite mechanical or thermal 413	

perturbations. All fluorescence images were acquired with a minimal exposure time to 414	

minimize bleaching and phototoxicity effects. Exposure times were typically 30 ms for phase 415	

contrast, 200 ms for TssB-sfGFP, 300 ms for TssB-CFP, 1 s for sfGFP-TssL, 1.5 s for YFP-416	

TagA, and 50 ms for FM4-64. The experiments were performed at least in triplicate and a 417	

representative result is shown. Images were analyzed using ImageJ (http://imagej.nih.gov/ij/) 418	

and the MicrobeJ v5.11y plugin (http://www.microbej.com/) [54].  419	

 420	

QUANTIFICATION AND STATISTICAL ANALYSIS 421	

Statistical analyses of microcopy images were performed with several representative fields 422	

from at least three independent biological replicates, using Excel and the R software 423	

environment. The number of measured cells or events (n) is indicated on each figure. 424	

Differences in sheath length between groups were examined by unpaired parametric Student t 425	

test or nonparametric Wilcoxon t test. Relationship between sheath length and cell width was 426	

examined by Mann-Kendall test. Significance was defined by p < 0.001 (***) and p < 0.0001 427	

(****).	428	

 429	



DATA AND CODE AVAILABILITY 430	

This study did not generate datasets and codes. 431	
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Fig. 1. Statistical measure of the EAEC T6SS sheath length. (A) Representative fluorescence 
micrograph of EAEC cells producing TssB-sfGFP and labelled with FM4-64 (upper panel, phase 
channel; lower panel, merge of GFP and FM4-64 channels). Scale bar, 1 µm. (B) Representative 
fluorescence micrograph of EAEC cells producing TssB-CFP and YFP-TagA, and labeled with FM4-64 
(upper panel, phase channel; lower panel, merge of CFP, YFP, and FM4-64 channels). The open 
arrowheads point T6SS extended sheaths in contact with the TagA stopper. Scale bar, 1 µm. (C) Violin 
plot representation of the sheath length in wild-type cells. The distribution of the sheath lengths is 
represented by the outer shape. The bold horizontal bar represents the median value (median = 0.76 
µm); the lower and upper boundaries of the internal box plot correspond to the 25th and 75th 
percentiles respectively; whiskers extend 1.5 times the interquartile range from the 25th and 75th 
percentiles. The number of measured sheaths (n=150) is indicated above.  
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Fig. 2. T6SS tail tube/sheath subunits levels do not determine T6SS sheath length. (A) Western-blot 
analyses of tail tube/sheath component abundance. 2×108 cells of ∆tssBC∆hcp cells producing TssB-sfGFP 
(TssBsfGFP), 6×His-tagged TssC (TssC6His) and FLAG-tagged Hcp (HcpFLAG) from the pTrc-BGFP-C6H-HcpF 
grown in presence of 0.4% of glucose or of the indicated concentration of IPTG were subjected to 12.5% 
acrylamide SDS-PAGE and immunodetected with anti-GFP, -His, -FLAG and -EF-Tu monoclonal primary 
antibodies and secondary antibodies coupled to AlexaFluor® 680. The EF-Tu cytoplasmic elongation factor 
is used as loading control. The increased fold values compared to the glucose condition, measured by 
densitometric quantification of the band signal intensities and relative to the loading control, are indicated 
below. Molecular weight markers (in kDa) are indicated on left. (B-C) Representative fluorescence 
microscopy recordings (B) and statistical analyses of sheath length measurements (C) of ∆tssBC∆hcp cells 
producing HcpFLAG, TssB-sfGFP and TssC6His in presence of 0.4% glucose or of the indicated concentration 
of IPTG, and labelled with FM4-64 (left panels, phase channel; right panels, merge of GFP and FM4-64 
channels). Scale bar, 2 µm. In the violin plot representation of the statistical analysis, the distribution of the 
sheath length is represented by the outer shape. The bold horizontal bar represents the median; the lower 
and upper boundaries of the internal box plot correspond to the 25th and 75th percentiles respectively; 
whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. Outliers are shown as 
black dots. Statistical significance from three independent assays (n= 100 for each conditions) relative to 
the glucose condition is indicated above the plots (ns, non-significative; ***, p < 0.001; two-tailed Student's 
t-test). A comparison of tail tube/sheath subunits levels and sheath lengths is shown in Fig. S1.  
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Fig. 3. Sheath length is not controlled by a tape measure protein. Representative fluorescence 
microscopy recordings of EAEC cells producing sfGFP-TssL in WT (A) or DivIV-TssM (B) cells, and 
labelled with FM4-64 (upper panels, phase channel; lower panels, merge of GFP and FM4-64 channels). 
White and blue arrowheads indicate TssL foci with body or polar localizations, respectively. Scale bar, 2 
µm. The spatial repartition of sfGFP-TssL foci is shown on right, as a projection of foci from n=152 and 
n=151 WT and DivIVA-TssM cells, respectively, on a single cell (from blue to yellow, see heatmap color 
chart on right of panel A). The percentage of sfGFP-TssL foci with polar localization is indicated below. 
(C) Violin plot representation of sheath length measurements in DivIVA-TssM cells producing TssB-sfGFP 
(red). An example of a representative microscopy field is shown in the inset (scale bar, 2 µm). The 
distribution of sheath length in WT cells (shown in Fig. 1B) is reported in transparency for comparison 
(blue). The distribution of the sheath length is represented by the outer shape. The bold horizontal bar 
represents the median value (median = 0.93 µm and 0.76 µm for DivIVA-TssM and WT cells, 
respectively); the lower and upper boundaries of the internal box plot correspond to the 25th and 75th 
percentiles respectively; whiskers extend 1.5 times the interquartile range from the 25th and 75th 
percentiles. Outliers are shown as black dots. The number of measured sheaths (n=75) is indicated below. 
Statistical significance relative to WT cells is indicated above the plots (***, p < 0.001; one-tailed 
Wilcoxon’s t-test). (D) Fluorescence microscopy time-lapse recordings of DivIVA-TssM cells producing 
TssB-sfGFP highlighting polar T6SS sheath assembly (white arrowhead) and contraction (blue arrowhead). 
Scale bar, 2 µm.  



Fig. 4. Cell width dictates T6SS sheath length. (A) Representative fluorescence micrographs of 
EAEC cells producing TssB-sfGFP in absence (upper panel) or in presence of the MreB inhibitor A22 
(lower panel), and labelled with FM4-64 (upper panel, phase channel; lower panel, merge of GFP and 
FM4-64 channels). Scale bar, 2 µm. (B) Plot representation showing the relationship between sheath 
length and cell width in absence (blue) and presence of A22 (orange). The dashed line represents the 
mean of the WT cell width (mean = 0.87 µm). Value of the slope (m) is indicated on right. Kendall’s ! 
= 0.82. (C) Dotplot of the ratios between sheath length and the width of the corresponding cell from 
cells grown in absence (blue) or presence of A22 (orange). Horizontal bars represent the mean in each 
condition. The values of the means and standard deviations are indicated above the plots. The number 
of analyzed cells (n) is indicated below. (D) Representative fluorescence micrograph of EAEC cells 
producing TssB-CFP and YFP-TagA in presence of the MreB inhibitor A22, and labelled with FM4-64 
(left panel, phase channel; right panel, merge of CFP, YFP, and FM4-64 channels). The open 
arrowheads point T6SS extended sheaths in contact with the TagA stopper. Scale bar, 2 µm.   
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Fig. S1. T6SS tail tube/sheath subunits levels do not determine T6SS sheath length. Graph 
representation of the fold increase of HcpFLAG (green triangles), TssB-sfGFP (blue circles), and TssC6His 
(red squares) cellular levels as a function of the IPTG concentration (relative to the glucose condition) 
from ∆tssBC∆hcp cells bearing plasmid pTrc-BGFP-C6H-HcpF. The corresponding sheath lengths are 
indicated with black diamonds. The mean and standard deviations from three independent experiments 
are shown.  


