

CRYSTALLOGRAPHIC COMMUNICATIONS

Crystal structures and Hirshfeld surfaces of four methoxybenzaldehyde oxime derivatives, 2-MeO- XC_6H_3C =NOH (X = H and 2-, 3- and 4-MeO): different conformations and hydrogen-bonding patterns

Ligia R. Gomes, Marcus V. N. de Souza, Cristiane F. Da Costa, James L. Wardell and John Nicolson Low

Acta Cryst. (2018). E74, 1553-1560

Crystal structures and Hirshfeld surfaces of four methoxybenzaldehyde oxime derivatives, 2-MeO- XC_6H_3C =NOH (X = H and 2-, 3- and 4-MeO): different conformations and hydrogenbonding patterns

Ligia R. Gomes,^{a,b} Marcus V. N. de Souza,^c Cristiane F. Da Costa,^c James L. Wardell^{c,d} and John Nicolson Low^d*

^aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, ^bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, ^cInstituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, and ^dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland. *Correspondence e-mail: jnlow111@gmail.com

The crystal structures of four (*E*)-methoxybenzaldehyde oxime derivatives, namely (2-methoxybenzaldehyde oxime, **1**, 2,3-dimethoxybenzaldehyde oxime, **2**, 4-dimethoxybenzaldehyde oxime, **3**, and 2,5-dimethoxybenzaldehyde oxime, **4**, are discussed. The arrangements of the 2-methoxy group and the H atom of the oxime unit are *s*-*cis* in compounds **1**–**3**, but in both independent molecules of compound **4**, the arrangements are *s*-*trans*. There is also a difference in the conformation of the two molecules in **4**, involving the orientations of the 2- and 5-methoxy groups. The primary intermolecular O–H(oxime)···O(hydroxy) hydrogen bonds generate C(3) chains in **1** and **2**. In contrast, in compound **3**, the O–H(oxime)···O(hydroxy) hydrogen bonds generate symmetric $R_2^2(6)$ dimers. A more complex dimer is generated in **4** from the O–H(oxime)···O(hydroxy) and C–H(2-methoxy)···O(hydroxy) hydrogen bonds. In all cases, further interactions, C–H···O and C–H··· π or π - π , generate three-dimensional arrays. Hirshfeld surface and fingerprint analyses are discussed.

1. Chemical context

In the plant kingdom, oximes play a vital role in metabolism (Sørensen *et al.*, 2018). Aldoximes, *RCH*—NOH, are found in many biologically active compounds (Abele *et al.*, 2008; Nikitjuka & Jirgensons, 2014), having a diverse range of uses including as anti-tumour agents (Martínez-Pascual *et al.*, 2017; Qin *et al.*, 2017; Canario *et al.*, 2018; Huang *et al.*, 2018), acaricidal and insecticidal agents (Dai *et al.*, 2017), thymidine phosphorylase inhibitors (Zhao *et al.*, 2018), anti-microbial agents (Yadav *et al.*, 2017), bacteriocides (Kozlowska *et al.*, 2017), anti-inflammatory agents (Mohassab *et al.*, 2007), and in the treatment of nerve-gas poisoning (Lorke *et al.*, 2008; Voicu *et al.*, 2010; Katalinić *et al.*, 2017; Radić *et al.*, 2013).

Benzaldehyde oximes, ArCH=NOH, with their -CH=N-OH functional group are ideally arranged for classical O-H···O and/or O-H···N hydrogen bonding. The last survey of the classical hydrogen-bonding patterns in benzaldehyde oximes reported in 2010 (Low *et al.*, 2010) confirmed that the most frequently found arrangements, with the exception of salicylaldoxines, are $R_2^2(6)$ dimers and C(3) chains, Fig. 1.

Received 1 October 2018 Accepted 3 October 2018

Edited by P. McArdle, National University of Ireland, Ireland

Keywords: crystal structure; oxime derivative; hydrogen bonding.

CCDC references: 1871165; 1871164; 1871163; 1871162

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Figure 1 Illustrations of the C(3) chains and $R_2^2(6)$ dimers formed by oximes

Aakeröy *et al.* (2013) reported the percentages of $R_2^2(6)$ dimers and C(3) chains found in non-salicylaldoxine to be ca 72 and 24%, respectively – similar percentages can be derived from a recent survey of the Cambridge Structural Database (CSD Version 5.39, August 2018 update; Groom et al., 2016). Hydrogen bonds are considered to be the strongest and most directional of intermolecular interactions in molecules (Etter, 1990) and thus play the major roles in determining the overall supramolecular structures. However, the involvement of weaker intermolecular interactions, such as C-H···O hydrogen bonds, π - π interactions and interactions involving the substituents, can have a significant influence on the supramolecular arrays generated. In a continuation of recent studies on aldoximes (Low et al. 2018; Gomes et al., 2018), we have determined the crystal structures of four methoxybenzaldehyde derivatives, namely 2-MeO-X-C₆H₃CH=NOH where X = H in 1, X = 3-MeO in 2, X = 4-MeO in 3 and X =5-MeO in 4. The aim of the study was to further investigate the occurrence of $R_2^2(6)$ dimers and C(3) chains in a series of related compounds.

2. Structural commentary

There are no unusual features in the molecular structures. Compound 1 crystallizes in the orthorhombic space group $Pna2_1$ with one molecule in the asymmetric unit (Fig. 2), compound 2 crystallizes in the orthorhombic space group $P2_12_12_1$ with one molecule in the asymmetric unit (Fig. 3), compound 3 crystallizes in the *triclinic* space group $P\overline{1}$ with one molecule in the asymmetric unit (Fig. 4), and compound 4 crystallizes in the monoclinic space group, $P2_1/c$ with two independent molecules, Mol A and Mol B, in the asymmetric unit (Fig. 5). The geometry about the oxime moiety in all molecules is (E). In compounds 1–3, the 2-methoxy group and the hydrogen of the oxime moiety have an *s*-cis arrangement.

Figure 2

Atom arrangements and numbering scheme for compound 1. Displacement ellipsoids are drawn at the 50% probability level.

Atom arrangements and numbering system for compound 2. Displacement ellipsoids are drawn at the 50% probability level.

Atom arrangements and numbering system for compound 3. Displacement ellipsoids are drawn at the 50% probability level.

Figure 5 Mol A Mol B

Atom arrangements and numbering system for the two independent molecules, Mol A and Mol B, of compound 4. Displacement ellipsoids are drawn at the 50% probability level.

Figure 6

Compound **1**. Part of a C(3) chain formed by O13-H13····N12 hydrogen bonds (dashed lines; see Table 2).

In contrast, in both molecules of compound 4, the 2-methoxy group and the hydrogen atom of the oxime moiety have an s-trans arrangement. The s-trans arrangement of the 2-alkoxy group and hydrogen atom of the oxime units in compound 4 is very much rarer than the s-cis arrangement found in compounds 1-3 and other non-salicylaldoximes. A search of the Cambridge Structural Database (CSD Version 5.39, August 2018 update; Groom et al., 2016) revealed that only salicylaldoximes and 2-alkoxybenzaldehyde oxime (E)-2-($\{2$ -[(*E*)-(hydroxyimino)methyl]phenoxy}methyl)-3-*p*-tolylacrylonitrile (LAQRIG; Suresh et al. 2012) had this s-trans arrangement. In contrast, the isomer 2-({2-[(hydroxyimino)methyl]phenoxy}methyl)-3-(2-methylphenyl)acrylonitrile (GARNEU; Govindan et al., 2012a) and some similar compounds such as $(E)-2-(\{2-[(E)-(hydroxyimino))methyl]$ phenoxy}methyl)-3-phenylacrylonitrile (LAQRUS; Govindan et al., 2012b) had the s-cis arrangement.

There is a conformational difference between the two independent molecules Mol A and Mol B of compound **4**. This

able	e 1		

Т

Distances (Å) of OMe C atoms and oxime N and O atoms from benzene ring mean plane in compounds 1-4.

Atom	1	2	3	4 Mol A	4 Mol B
C21	0.086 (3)	-1.140 (4)	0.195 (1)	0.121 (1)	0.059(1)
C31	-	-0.011(4)	-	-	-
C41	-	-	0.081(1)	_	_
C51	-	-	-	0.033(1)	0.061(1)
N12	0.061(2)	0.259 (3)	-0.177(1)	0.264 (1)	-0.020(1)
O13	-0.009(2)	-0.027(3)	0.051 (1)	0.242 (1)	0.010(1)

Table 2	
Hydrogen-bond geometry (Å, °) for 1.	

	• • • /				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H·	$\cdot \cdot A$
$O13 - H13 \cdots N12^{i}$ $C3 - H3 \cdots O13^{ii}$ $C21 - H21C \cdots O13^{iii}$	0.84 0.95 0.98	1.93 2.50 2.57	2.764 (2) 3.442 (2) 3.506 (3)	170 174 160	
Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z.$	-x + 1, -y	$+1, z-\frac{1}{2};$	(ii) $x + \frac{1}{2}, -y +$	$\frac{1}{2}, z + 1;$	(iii)

difference is in the orientation of the two methoxy groups, see Fig. 5: in Mol A the orientation is *s*-*trans* and in Mol B, it is *s*-*cis*. As expected for a 1,2,3-trisubstituted benzene derivative, compound **4** is the least planar of the four oxime derivatives, with the 2-methoxy substituent furthest out of the plane of the attached phenyl group, see Table 1.

3. Supramolecular features

3.1. Hydrogen bonding

In the crystal of **1**, molecules are primarily linked by strong O13-H13···N12ⁱ hydrogen bonds (Table 2), forming C(3) chains, illustrated in Fig. 6. Also present in compound **1** are two weaker hydrogen bonds, namely, C3-H3···O13ⁱⁱ and C21-H21C···O13ⁱⁱⁱ, as well as a weak π - π stacking interaction [Cg··· $Cg^{iv} = 4.025$ (2) Å: slippage 2.105 Å: symmetry code; x, y, z - 1]. These three interactions generate the molecular arrangement shown in Fig. 7. The C3-H3···O13ⁱⁱⁱ hydrogen bonds generate C7 chains in the *c*-axis direction, while the C21-H21C···O13ⁱⁱⁱ hydrogen bonds form C(8)

Figure 7

Compound 1. Part of the arrangement generated from the combination of hydrogen bonds and π - π interactions (dashed lines; see Table 2).

Figure 8

Compound 2. Part of the arrangement generated form C21– $H21B\cdots O31$, C31– $H31B\cdots O13$ and π - π interactions (dashed lines; see Table 3).

spiral chains along the *a*-axis direction: together these hydrogen bonds form $R_4^4(22)$ rings. The tilted π - π stacks propagate in the *c*-axis direction. The involvement of the weaker C3-H3···O13ⁱⁱ, C21-H21C···O13ⁱⁱⁱ and π - π interactions, along with the stronger O13-H13···N12ⁱ hydrogen bonds, creates the three-dimensional structure for **1**.

As in **1**, molecules of **2** are primarily linked by strong O13– H13 \cdots N12ⁱ hydrogen bonds (Table 3), forming C(3) chains: as such chains are very similar to those in compound **1**, see Fig. 6, an illustration has not been provided for the C(3) chain in compound **2**. Other intermolecular interactions in **2** are the weaker C21–H21B \cdots O31ⁱⁱⁱ and C31–H31B \cdots O13^{iv} hydrogen bonds and a C31–H31C \cdots Cg1^v interaction involving the C1–C6 ring. These three interactions combine to form the arrangement illustrated in Fig. 8. The C21–H21B \cdots O31ⁱⁱⁱ hydrogen bonds on their own generate C(6) chains, which

Table	3				
Undrog		hand	acomoter	18	,

Hydrogen-bond geometry (Å, $^{\circ}$) for 2.

Cg1 is the centroid of the C1-C6 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O13-H13\cdots N12^{i}$	0.97 (4)	1.87 (5)	2.805 (4)	161 (4)
$C4-H4\cdots O21^{ii}$	0.95	2.63	3.284 (4)	126
$C21 - H21B \cdots O31^{iii}$	0.98	2.54	3.323 (5)	136
$C31 - H31B \cdots O13^{iv}$	0.98	2.51	3.448 (5)	161
$C31-H31C\cdots Cg1^{v}$	0.98	2.73	3.599 (5)	148

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x - 1, y, z; (iv) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) x + 1, y, z.

Table 4

Hydrogen-bond geometry (Å, $^{\circ}$) for 3.

Cg1 is the centroid of the C1–C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D13 - H13 \cdots N12^{i}$ $C41 - H41A \cdots O13^{ii}$ $C41 - H41C \cdots Cg1^{iii}$	0.893 (18) 0.98 0.98	1.995 (19) 2.63 2.60	2.8124 (13) 3.0680 (15) 3.4479 (13)	151.5 (15) 107 144

Symmetry codes: (i) -x, -y, -z; (ii) x + 2, y + 1, z; (iii) x + 1, y, z.

propagate in the *a*-axis direction while the C31–H31B···O13^{iv} hydrogen bonds generate spiral C(9) chains in the *b*-axis direction. Together these hydrogen bonds generate a network of $R_4^4(26)$ rings. The C31–H31C··· $Cg1^v$ interactions lead to chains along the *a*-axis direction. The involvement of the weaker C21–H21B···O31ⁱⁱⁱ, C31–H31B···O13^{iv} C and C–H··· π interactions, along with the stronger O13–H13 ···N12ⁱ hydrogen bonds, creates a three-dimensional structure for **2**. C4–H4···O12ⁱⁱ hydrogen bonds also occur.

In compound **3**, $R_2^2(6)$ dimers are generated from strong O13-H13···N12ⁱ hydrogen bonds (Table 4), as illustrated in Fig. 9. Linkages of these $R_2^2(6)$ dimers by weaker C41-H41A(methoxy)···O13ⁱⁱ hydrogen bonds provide a two-molecule-wide ribbon. Within the ribbons are R_4^4 (22) rings as well as the $R_2^2(6)$ rings. An additional interaction in **3** is the C41-H41C···Cg1ⁱⁱⁱ interaction, which generates a tilted ladder assembly, propagating in the *a*-axis direction, with the $R_2^2(6)$

Figure 9

Compound 3. A two-molecule-wide ribbon generated from linking the $R_2^2(6)$ dimers, formed by pairs of strong O13-H13-N12 hydrogen bonds and by weaker C41-H41A···O13 hydrogen bonds (dashed lines; see Table 4).

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for 4.

Cg1 and Cg2 are the centroids of the C11-C16 and C21-C26 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
0112 1112 0121	0.075 (1.0)	2 2 47 (15)	2 0044 (0)	120 7 (12)
0113-H1130121	0.875 (16)	2.247 (15)	2.8944 (9)	130.7 (12)
$O113 - H113 \cdot \cdot \cdot N112^{1}$	0.875 (16)	1.965 (16)	2.7567 (10)	149.9 (13)
$O213-H213\cdots O221^{ii}$	0.877 (15)	2.204 (15)	2.8758 (9)	133.1 (12)
$O213-H213\cdots N212^{ii}$	0.877 (15)	2.034 (15)	2.8160 (10)	147.9 (13)
C111-H111O251	0.95	2.46	3.2458 (11)	140
$C121 - H12C \cdot \cdot \cdot N212^{iii}$	0.98	2.53	3.4400 (13)	155
$C151 - H15A \cdots O113^{iv}$	0.98	2.50	3.3947 (11)	152
$C14-H14\cdots Cg2^{iii}$	0.95	2.98	3.6656 (9)	130
$C151 - H15B \cdot \cdot \cdot Cg2$	0.98	2.72	3.5973 (10)	149
$C24 - H24 \cdots Cg1^{v}$	0.95	2.67	3.4281 (10)	137
$C211 - H211 \cdots Cg1^{vi}$	0.95	2.78	3.6272 (9)	149

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) x - 1, y, z; (vi) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

rings acting as the rungs and the C41-H41C··· $Cg1^{iii}$ interactions as the supports.

In compound 4, each of the two independent molecules forms symmetric dimers, see Fig. 10. These are generated from combinations of O113-H113···N112ⁱ and O113-H113···O121ⁱ hydrogen bonds (Table 5) for Mol A and O213-H213···N212ⁱⁱ and O213-H213···O221ⁱⁱ hydrogen bonds for Mol B. In each case, the dimers contain three rings, two $R_1^2(6)$ and one $R_2^2(6)$. There are short N···N distances across the $R_2^2(6)$ dimer rings, 2.8595 (12) Å for MolA and 2.8956 (12) Å for Mol B, each being less than the sum of the van der Waals radius (3.10 Å) for two N atoms.

The links between the two different dimers of **4** are provided by a number of $C-H\cdots O$ and $C-H\cdots \pi$ interactions, listed in Table 5. Fig. 11 restricts the contacts to just the $C-H\cdots O$ hydrogen bonds, namely $C121-H12C\cdots$ N212ⁱⁱⁱ, $C111-H111\cdots O251$ and $C151-H15A\cdots O113^{iv}$. To

Figure 10

Compound 4. Symmetric dimers of (a) Mol A and (b) Mol B. Hydrogen bonds (see Table 5) are shown as dashed lines.

Compound **4**. Symmetric dimers of Mol A (green) and Mol B (blue). Intermolecular interactions (see Table 5) are shown as dashed lines.

facilitate the viewing of the connection in Fig. 11, the two different dimers are drawn in different colours.

3.2. Hirshfeld surface analysis

Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and twodimensional fingerprint (FP) plots (Spackman & McKinnon, 2002), provide complementary information concerning the intermolecular interactions discussed above. The analyses were generated using Crystal Explorer3.1 (Wolff et al., 2012). The Hirshfeld surfaces mapped over d_{norm} for 1-4 are illustrated in Fig. 12. The red areas on the surfaces correspond to close contacts. The fingerprint plots are shown in Fig. 13. In all of the FP plots, the pair of spikes pointing south-west relate to the N-H contacts, which in compounds 1 and 2 are involved in the C(3) chains, while in compounds 3 and 4, they are responsible for the creation of the dimers. In compound 3, the fins ending at d_e , $d_i = 1.9, 1.1$ Å are due to $C(\pi) \cdots H/C(\pi) \cdots H$ contacts. The FP plots for Mol A and Mol B of compound 4 are asymmetric because of the different interactions of each molecule. The double wings in the FP plot for Mol A in the second quadrant are complementary to those displayed in the fourth quadrant by MolB and relate to C···H close contacts connecting the two molecules. The spike ending at d_i , d_e = 1.1 Å in Mol A is due to $H \cdots H$ contacts.

The percentages of the various atom-atom contacts, derived from the fingerprint plots, for the four compounds are shown in Table 6. The fact that compound **1** has only one methoxy group while the isomers, **2**–**4**, have two is reflected in the greater percentages of contacts involving the oxygen close contacts. The C(3)-chain-forming compounds **1** and **2** show higher percentages of $H \cdots H$ and $C \cdots C$ contacts, but a lower percentage of $H \cdots C/C \cdots H$ contacts, than the dimer-forming compounds **3** and **4**.

Table 6
Percentages of atom-atom contacts for compounds 1, 2, 3 and 4 (Mol A
and Mol B).

Compound	1	2	3	4 Mol A	4 Mol B
H···H	52.7	49.1	43.7	41.5	38.6
$H \cdots O / O \cdots H$	16.2	22.5	23.4	24.9	26.3
$H \cdots C/C \cdots H$	11.3	14.5	20.4	22.7	25.9
$H{\cdots}N/N{\cdots}H$	8.1	6.6	8.4	9.0	8.1
$\mathbf{C} \cdots \mathbf{C}$	7.9	3.5	1.3	0.1	0.1
$O \cdots C/C \cdots O$	2.1	2.0	2.6	1.5	0.8
$N{\cdots}O/O{\cdots}N$	_	-	-	_	_
$N \cdots C/C \cdots N$	1.6	1.8	-	_	_
00	_	_	_	0.4	0.2

a a a a a a a a b a a b a

4. Database survey

A search of the Cambridge Structural Database survey (CSD Version 5.39, August 2018 update; Groom *et al.*, 2016) revealed compounds similar to **2** and **3**. The classical hydrogen bonds in 3,5-dimethoxybenzene oxime generate C(3) chains (VUZJAC; Dong *et al.*, 2010). No benzene oxime derivative with only methoxy substituents has been reported in the database to form an $R_2^2(6)$ or related dimer. The structure has been reported of 3,4,5-trimethoxybenzene oxime (MEQDAO; Chang, 2006) in which classical hydrogen bonds, formed between the oxime unit and the 4- and 5-methoxy moieties, but not the 2-methoxy group, result in the formation of a tetramer. The water molecule in 3,4.5-trimethoxybenzene monohydrate (HESWUY; Priya *et al.*, 2006) is strongly involved in the hydrogen-bonding arrangements.

There are 376 structures, (411 fragments) in the CSD database with oxime $R_2^2(6)$ dimers in which the N···N distance across the ring is less than or equal to 3.10 Å, the sum of two

N-atom van der Waals radii. The $H \cdots O$ hydrogen-bond distance range was restricted to 1.739–2.285 Å to exclude improbable $O \cdots H$ distances based on a statistical analysis in *Mercury* (Macrae *et al.*, 2006). The $N \cdots N$ distances range from 2.727 to 3.097 Å with a mean value of 2.987 Å. There are 27 structures within the range 2.838 to 2.909 Å in which our values of 2.8595 (12) Å for MolA and 2.8956 (12) Å for MolB of compound4 lie. Only single-crystal organic compounds were searched for with no limit on the *R* factor.

5. Synthesis and crystallization

The title compounds were prepared from hydroxyamine and the corresponding benzaldehyde in methanol in the presence

research communications

Table 7Experimental details.

	1	2	3	4
Crystal data				
Chemical formula	C ₂ H ₀ NO ₂	$C_0H_{11}NO_2$	$C_0H_{11}NO_2$	$C_0H_{11}NO_2$
<i>M</i> .	151.16	181.19	181.19	181.19
Crystal system, space group	Orthorhombic, <i>Pna</i> 2 ₁	Orthorhombic, $P2_12_12_1$	Triclinic. P1	Monoclinic. $P2_1/c$
Temperature (K)	100	100	100	100
a, b, c (Å)	11.1719 (2), 16.4260 (3), 4.0249 (1)	4.6775 (2), 13.0996 (5), 14.1984 (5)	4.9441 (2), 8.2188 (4), 12.1308 (3)	7.6480 (1), 21.3380 (4), 10.9421 (2)
$lpha,eta,\gamma(^\circ)$	90, 90, 90	90, 90, 90	108.849 (3), 92.288 (3), 106.273 (4)	90, 90.555 (2), 90
$V(Å^3)$	738.61 (3)	869.98 (6)	443.17 (3)	1785.59 (5)
Z	4	4	2	8
Radiation type	Cu <i>Kα</i>	Ου Κα	- Cu Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.82	0.87	0.86	0.10
Crystal size (mm)	$0.02 \times 0.05 \times 0.03$	$0.30 \times 0.05 \times 0.02$	$0.20 \times 0.10 \times 0.05$	$0.20 \times 0.15 \times 0.13$
Data collection				
Diffractometer	Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector	Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector	Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector	Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2017)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2017)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2017)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2017)
T_{\min}, T_{\max}	0.848, 1.000	0.507, 1.000	0.802, 1.000	0.935, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12857, 1345, 1325	7835, 1596, 1371	7618, 1594, 1462	38753, 4082, 3761
R _{int}	0.038	0.095	0.033	0.020
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602	0.602	0.602	0.649
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.088, 1.08	0.058, 0.151, 1.04	0.035, 0.101, 0.88	0.031, 0.086, 1.06
No. of reflections	1345	1596	1594	4082
No. of parameters	102	124	124	247
No. of restraints	1	0	0	0
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max} \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.17, -0.16	0.35, -0.20	0.20, -0.19	0.32, -0.19
Absolute structure	Refined as a perfect inversion twin.	Flack x determined using 474 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	-	_
Absolute structure parameter	0.5	0.2 (3)	_	_
Tissenate structure parameter	010	012 (0)		

Computer programs: CrysAlis PRO (Rigaku OD, 2017), OSCAIL (McArdle et al., 2004), SHELXT (Sheldrick, 2015a), ShelXle (Hübschle et al., 2011), SHELXL (Sheldrick, 2015b), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

of potassium carbonate and were recrystallized from methanol solutions, m.p. = 364-365 K for compound **1**, 371-373 K for **2**, 378-380 K for **3** and 370-371 K for **4**.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 7. All hydroxy hydrogen atoms were refined isotropically. C-bound H atoms were refined as riding with C-H = 0.95-0.98Å and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice (Coles & Gale, 2012).

References

- Aakeröy, C. B., Sinha, A. S., Epa, K. N., Chopade, P. D., Smith, M. M. & Desper, J. (2013). *Cryst. Growth Des.* **13**, 2687–2695.
- Abele, E., Abele, R. & Lukevics, E. (2008). Chem. Heterocycl. Cmpds, 44, 769–792.
- Canario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660–686.
- Chang, X.-H. (2006). Acta Cryst. E62, 05699-05700.
- Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.
- Dai, H., Chen, J., Li, G., Ge, S. S., Shi, Y. J., Fang, Y. & Ling, Y. (2017). Bioorg. Med. Chem. Lett. 27, 950–953.
- Dong, B., Zhang, Y. & Chen, J.-Z. (2010). Acta Cryst. E66, 02719.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Gomes, L. R., de Souza, M. V. N., Da Costa, C. F., Wardell, J. L. & Low, J. N. (2018). Acta Cryst. E74, 1480–1485.
- Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2012a). Acta Cryst. E68, 0484.
- Govindan, S., Vijayakumar, S., Jayakumar, S., Mannickam, B. & Sanmargam, A. (2012b). Acta Cryst. E68, o596.

research communications

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Huang, G., Zhao, H. R., Meng, Q. Q., Zhang, Q. J., Dong, J. Y., Zhu, B. Q. & Li, S. S. (2018). *Eur. J. Med. Chem.* **143**, 166–181.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Katalinić, M., Zandona, A., Ramić, A., Zorbaz, T., Primožic, I. & Kovarik, Z. (2017). *Molecules*, 22, 1234.
- Kozłowska, J., Potaniec, B., Żarowska, B. & Anioł, M. (2017). Molecules, 22, 1485.
- Lorke, D. E., Kalasz, H., Petroianu, G. A. & Tekes, K. (2008). Curr. Med. Chem. 15, 743–753.
- Low, J. N., Santos, L. M. N. B. F., Lima, C. F. R. A. C., Brandão, P. & Gomes, L. R. (2010). Eur. J. Chem. 1, 61–66.
- Low, J. N., Wardell, J. L., Da Costa, C. F., Souza, M. V. N. & Gomes, L. R. (2018). Eur. J. Chem. 9, 151–160.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Martínez-Pascual, R., Meza-Reyes, S., Vega-Baez, J. L., Merino-Montiel, P., Padrón, J. M., Mendoza, Á. & Montiel-Smith, S. (2017). *Steroids*, **122**, 24–33.
- McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.
- Mohassab, M., Hassan, H. A., Abdelhamid, D., Abdel-Aziz, M., Dalby, K. N. & Kaoud, T. S. (2017). *Bioorg. Chem.* **75**, 242–259.
- Nikitjuka, A. & Jirgensons, A. (2014). Chem. Heterocycl. Cmpd, 49, 1544–1559.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.

- Priya, B. S., Basappa, S. N., Anandalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2006). Anal. Sci.:X-Ray Structures Online, 22, x161-x162.
- Qin, H. L., Leng, J., Youssif, B. G. M., Amjad, M. W., Raja, M. A. G., Hussain, M. A., Hussain, Z., Kazmi, S. N. & Bukhari, S. N. A. (2017). *Chem. Biol. Drug Des.* **90**, 443–449.
- Radić, Z., Dale, T., Kovarik, Z., Berend, S., Garcia, E., Zhang, L., Amitai, G., Green, C., Radić, B., Duggan, B. M., Ajami, D., Rebek, J. Jr & Taylor, P. (2013). *Biochem. J.* 450, 231–242.
- Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sørensen, M., Neilson, E. H. J. & Møller, B. L. (2018). Mol. Plant. 11, 95–117.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378– 392.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suresh, G., Sabari, V., Srinivasan, J., Mannickam, B. & Aravindhan, S. (2012). Acta Cryst. E68, 0570.
- Voicu, V. A., Thiermann, H., Rădulescu, F. Ş., Mircioiu, C. & Miron, D. S. (2010). Basic Clin. Pharmacol. Toxicol. 106, 73–85.
- Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *Crystal Explorer*. The University of Western Australia.
- Yadav, P., Lal, K., Rani, P., Mor, S., Kumar, A. & Kumar, A. (2017). Med. Chem. Res. 26, 1469–1480.
- Zhao, S. Y., Li, K., Jin, Y. & Lin, J. (2018). Eur. J. Med. Chem. 144, 41–51.

Acta Cryst. (2018). E74, 1553-1560 [https://doi.org/10.1107/S2056989018014020]

Crystal structures and Hirshfeld surfaces of four methoxybenzaldehyde oxime derivatives, 2-MeO-XC₆H₃C&z-dbnd;NOH (X = H and 2-, 3- and 4-MeO): different conformations and hydrogen-bonding patterns

Ligia R. Gomes, Marcus V. N. de Souza, Cristiane F. Da Costa, James L. Wardell and John Nicolson Low

Computing details

For all structures, data collection: *CrysAlis PRO* (Rigaku OD, 2017); cell refinement: *CrysAlis PRO* (Rigaku OD, 2017); data reduction: *CrysAlis PRO* (Rigaku OD, 2017); program(s) used to solve structure: *OSCAIL* (McArdle *et al.*, 2004) and SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *OSCAIL* (McArdle *et al.*, 2004), *ShelXle* (Hübschle *et al.*, 2011) and *SHELXL* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *OSCAIL* (McArdle *et al.*, 2004), *SHELXL* (Sheldrick, 2015b) and *PLATON* (Spek, 2009).

2-Methoxy-benzaldehyde oxime (1)

Crystal data

 $C_8H_9NO_2$ $M_r = 151.16$ Orthorhombic, $Pna2_1$ a = 11.1719 (2) Å b = 16.4260 (3) Å c = 4.0249 (1) Å V = 738.61 (3) Å³ Z = 4F(000) = 320

Data collection

Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector diffractometer Radiation source: Rotating anode, Rigaku 007 HF Detector resolution: 10 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017) $D_x = 1.359 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 7376 reflections $\theta = 2.7-70.0^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.05 \times 0.05 \times 0.03 \text{ mm}$

 $T_{\min} = 0.848, T_{\max} = 1.000$ 12857 measured reflections
1345 independent reflections
1325 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$ $\theta_{\text{max}} = 68.2^{\circ}, \theta_{\text{min}} = 4.8^{\circ}$ $h = -13 \rightarrow 13$ $k = -19 \rightarrow 19$ $l = -4 \rightarrow 4$

Refinement

Refinement on F^2 Least-squares matrix: full	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0559P)^2 + 0.1277P]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.088$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.08	$\Delta ho_{ m max} = 0.17 \ { m e} \ { m \AA}^{-3}$
1345 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
102 parameters	Absolute structure: Refined as a perfect
1 restraint	inversion twin.
Hydrogen site location: inferred from neighbouring sites	Absolute structure parameter: 0.5

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
013	0.45979 (12)	0.42019 (8)	-0.4095 (4)	0.0311 (4)
H13	0.443792	0.464123	-0.506595	0.047*
O21	0.69333 (12)	0.21322 (8)	0.0350 (4)	0.0303 (4)
N12	0.56325 (15)	0.43011 (9)	-0.2166 (5)	0.0265 (4)
C1	0.72029 (18)	0.35490 (12)	0.0488 (5)	0.0260 (5)
C2	0.76289 (18)	0.27720 (11)	0.1386 (6)	0.0266 (5)
C3	0.86797 (18)	0.26830 (12)	0.3172 (6)	0.0296 (5)
H3	0.895987	0.215571	0.375132	0.036*
C4	0.93229 (19)	0.33707 (13)	0.4113 (6)	0.0316 (5)
H4	1.004194	0.331184	0.535045	0.038*
C5	0.89200 (18)	0.41434 (12)	0.3255 (6)	0.0310 (5)
H5	0.936169	0.461141	0.390355	0.037*
C6	0.78780 (18)	0.42272 (12)	0.1462 (6)	0.0296 (5)
H6	0.761062	0.475674	0.087081	0.035*
C11	0.61087 (18)	0.36135 (11)	-0.1461 (6)	0.0275 (5)
H11	0.573609	0.312951	-0.223553	0.033*
C21	0.7290 (2)	0.13337 (11)	0.1388 (7)	0.0319 (5)
H21A	0.668356	0.093725	0.069500	0.048*
H21B	0.736939	0.132217	0.381231	0.048*
H21C	0.805963	0.119570	0.036670	0.048*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O13	0.0346 (7)	0.0199 (6)	0.0389 (9)	-0.0001 (6)	-0.0067 (6)	0.0040 (6)
O21	0.0346 (7)	0.0172 (7)	0.0391 (9)	0.0000 (5)	-0.0025 (7)	0.0018 (6)
N12	0.0300 (8)	0.0215 (8)	0.0279 (9)	0.0012 (6)	0.0017 (7)	-0.0006 (7)
C1	0.0310 (10)	0.0206 (9)	0.0264 (11)	0.0008 (7)	0.0041 (9)	-0.0005 (8)

Acta Cryst. (2018). E74, 1553-1560

C2	0.0323 (9)	0.0194 (9)	0.0281 (11)	-0.0011 (7)	0.0048 (9)	-0.0007 (8)
C3	0.0348 (10)	0.0230 (9)	0.0310 (11)	0.0017 (8)	0.0036 (9)	0.0015 (9)
C4	0.0316 (10)	0.0307 (11)	0.0324 (12)	0.0001 (8)	0.0009 (9)	0.0006 (9)
C5	0.0350 (11)	0.0243 (10)	0.0337 (12)	-0.0043 (7)	0.0015 (9)	-0.0025 (10)
C6	0.0362 (11)	0.0203 (9)	0.0322 (11)	0.0003 (8)	0.0023 (9)	-0.0007 (9)
C11	0.0352 (11)	0.0181 (8)	0.0292 (11)	-0.0008 (7)	0.0030 (9)	-0.0011 (8)
C21	0.0390 (11)	0.0158 (9)	0.0408 (12)	0.0028 (7)	-0.0004 (10)	0.0028 (9)

Geometric parameters (Å, °)

O13—N12	1.402 (2)	С3—Н3	0.9500
O13—H13	0.8400	C4—C5	1.390 (3)
O21—C2	1.372 (2)	C4—H4	0.9500
O21—C21	1.433 (2)	C5—C6	1.377 (3)
N12—C11	1.280 (3)	С5—Н5	0.9500
C1—C6	1.401 (3)	С6—Н6	0.9500
C1—C2	1.409 (3)	C11—H11	0.9500
C1—C11	1.456 (3)	C21—H21A	0.9800
C2—C3	1.384 (3)	C21—H21B	0.9800
C3—C4	1.391 (3)	C21—H21C	0.9800
N12 012 1112	100.5	C6 C5 C4	110 (0 (19)
N12 - 013 - 013	109.5	C_{0}	119.09 (10)
$C_2 = 0.21 = 0.21$	117.07(10) 111.27(15)	C_{0}	120.2
C1 - N12 - O13	111.27(13) 117.80(10)	$C_4 - C_5 - C_5$	120.2
C_{0}	117.00(19) 122.00(17)	$C_{5} = C_{6} = C_{1}$	121.30 (16)
C_{0}	125.00(17) 110.18(17)	C_{1} C_{6} H_{6}	119.5
$C_2 = C_1 = C_1$	119.10(17) 122.97(17)	1 - 0 - 10	119.5
021 - 02 - 03	125.07(17) 115.11(18)	N12-C11-C1	122.10 (16)
$C_{2} = C_{2} = C_{1}$	113.11(10) 121.01(17)	$\mathbf{N}_{12} = \mathbf{C}_{11} = \mathbf{H}_{11}$	110.9
$C_3 = C_2 = C_1$	121.01(17) 110.58(18)	C1 = C1 = H11	100.5
$C_2 = C_3 = C_4$	119.38 (18)	O_{21} C_{21} $H_{21}P$	109.5
$C_2 = C_3 = H_3$	120.2	$U_{21} = U_{21} = U_{21}$	109.5
$C_{4} - C_{5} - H_{5}$	120.2	$\begin{array}{cccc} n_2 1 & n_2 1 & n_2 1 \\ 0 & 21 & 0 \\ \end{array}$	109.5
$C_{5} = C_{4} = C_{5}$	120.4 (2)	H_{21} C_{21} H_{21} H	109.5
$C_3 = C_4 = H_4$	119.0	$H_{21}R = C_{21} = H_{21}C$	109.5
C3—C4—n4	119.8	n21B-C21-n21C	109.3
C21—O21—C2—C3	4.2 (3)	C2—C3—C4—C5	-0.4 (3)
C21—O21—C2—C1	-176.10 (18)	C3—C4—C5—C6	0.0 (3)
C6-C1-C2-O21	-179.70 (18)	C4—C5—C6—C1	0.4 (3)
C11—C1—C2—O21	-1.2 (3)	C2-C1-C6-C5	-0.4 (3)
C6—C1—C2—C3	0.0 (3)	C11—C1—C6—C5	-178.8 (2)
C11—C1—C2—C3	178.5 (2)	O13—N12—C11—C1	179.25 (17)
O21—C2—C3—C4	-179.9 (2)	C6-C1-C11-N12	-6.4 (3)
C1—C2—C3—C4	0.4 (3)	C2-C1-C11-N12	175.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>	
013—H13…N12 ⁱ	0.84	1.93	2.764 (2)	170	
С3—Н3…О13 ^{іі}	0.95	2.50	3.442 (2)	174	
C21—H21 <i>C</i> ···O13 ⁱⁱⁱ	0.98	2.57	3.506 (3)	160	

 $D_{\rm x} = 1.383 {\rm Mg m^{-3}}$

 $\theta = 4.6 - 67.5^{\circ}$

 $\mu = 0.87 \text{ mm}^{-1}$

Needle, colourless

 $0.30 \times 0.05 \times 0.02 \text{ mm}$

 $T_{\min} = 0.507, T_{\max} = 1.000$ 7835 measured reflections 1596 independent reflections 1371 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 68.2^{\circ}, \ \theta_{\text{min}} = 4.6^{\circ}$ $h = -5 \rightarrow 5$

T = 100 K

 $R_{\rm int} = 0.095$

 $k = -15 \rightarrow 15$ $l = -17 \rightarrow 16$

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 2093 reflections

Symmetry codes: (i) -*x*+1, -*y*+1, *z*-1/2; (ii) *x*+1/2, -*y*+1/2, *z*+1; (iii) *x*+1/2, -*y*+1/2, *z*.

2,3-Dimethoxy-benzaldehyde oxime (2)

Crystal data

C₉H₁₁NO₃ $M_r = 181.19$ Orthorhombic, $P2_12_12_1$ a = 4.6775 (2) Å b = 13.0996 (5) Å c = 14.1984 (5) Å V = 869.98 (6) Å³ Z = 4F(000) = 384

Data collection

Rigaku 007HF equipped with Varimax confocal
mirrors and an AFC11 goniometer and HyPix
6000 detector
diffractometer
Radiation source: Rotating anode, Rigaku 007
HF
Detector resolution: 10 pixels mm ⁻¹
profile data from ω -scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)

Refinement

5	
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.058$	$w = 1/[\sigma^2(F_o^2) + (0.1064P)^2]$
$wR(F^2) = 0.151$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
1596 reflections	$\Delta ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$
124 parameters	$\Delta ho_{ m min}$ = -0.20 e Å $^{-3}$
0 restraints	Absolute structure: Flack x determined using
Hydrogen site location: mixed	474 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i>
	2013)
	Absolute structure parameter: 0.2 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
O13	-0.3161 (6)	0.81289 (19)	0.42174 (19)	0.0376 (7)
H13	-0.382 (10)	0.799 (3)	0.485 (3)	0.045 (12)*
O21	0.3629 (5)	0.73710 (18)	0.18056 (18)	0.0331 (6)
O31	0.6683 (6)	0.57595 (18)	0.1198 (2)	0.0370 (7)
N12	-0.1250 (7)	0.7305 (2)	0.4137 (2)	0.0328 (7)
C1	0.1671 (8)	0.6379 (3)	0.3072 (3)	0.0311 (8)
C2	0.3440 (8)	0.6450 (2)	0.2283 (3)	0.0309 (8)
C3	0.5135 (8)	0.5622 (2)	0.1997 (3)	0.0315 (8)
C4	0.5069 (9)	0.4725 (3)	0.2525 (2)	0.0331 (9)
H4	0.620619	0.415756	0.234431	0.040*
C5	0.3334 (9)	0.4664 (3)	0.3318 (3)	0.0344 (8)
Н5	0.332576	0.405472	0.368039	0.041*
C6	0.1631 (9)	0.5468 (3)	0.3588 (3)	0.0338 (9)
H6	0.042859	0.540487	0.412457	0.041*
C11	-0.0229 (8)	0.7232 (2)	0.3309 (3)	0.0332 (8)
H11	-0.069638	0.772807	0.284541	0.040*
C21	0.2048 (9)	0.7399 (3)	0.0942 (3)	0.0374 (9)
H21A	0.230310	0.806598	0.064099	0.056*
H21B	0.001542	0.728827	0.107410	0.056*
H21C	0.274481	0.686165	0.052004	0.056*
C31	0.8511 (10)	0.4933 (3)	0.0919 (3)	0.0390 (10)
H31A	0.952242	0.511808	0.033893	0.059*
H31B	0.735578	0.432080	0.080781	0.059*
H31C	0.990297	0.479650	0.141905	0.059*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
013	0.0411 (16)	0.0292 (13)	0.0423 (16)	0.0088 (12)	0.0053 (13)	0.0027 (11)
O21	0.0339 (14)	0.0250 (12)	0.0405 (14)	-0.0027 (11)	0.0009 (12)	0.0020 (10)
O31	0.0340 (14)	0.0291 (12)	0.0478 (15)	0.0042 (11)	0.0072 (13)	-0.0015 (11)
N12	0.0294 (16)	0.0244 (14)	0.0446 (18)	0.0025 (13)	-0.0001 (15)	-0.0001 (12)
C1	0.0277 (18)	0.0277 (17)	0.038 (2)	-0.0008 (15)	-0.0021 (17)	-0.0004 (14)
C2	0.0297 (17)	0.0244 (17)	0.0387 (19)	-0.0018 (15)	-0.0012 (17)	0.0017 (14)
C3	0.0285 (18)	0.0262 (16)	0.040 (2)	0.0016 (15)	0.0002 (16)	-0.0029 (15)
C4	0.0315 (18)	0.0236 (17)	0.044 (2)	0.0017 (16)	-0.0025 (17)	-0.0036 (14)
C5	0.036 (2)	0.0286 (17)	0.039 (2)	0.0000 (16)	-0.0054 (18)	0.0019 (15)
C6	0.034 (2)	0.0298 (18)	0.038 (2)	0.0001 (17)	-0.0004 (17)	0.0019 (15)
C11	0.0353 (19)	0.0238 (16)	0.040 (2)	0.0010 (17)	0.0001 (18)	0.0007 (15)
C21	0.040 (2)	0.0324 (18)	0.040(2)	-0.0016 (17)	0.0010 (17)	0.0037 (15)
C31	0.035 (2)	0.0296 (18)	0.052 (2)	0.0034 (16)	0.009 (2)	-0.0068 (16)

Geometric parameters (Å, °)

013—N12	1.405 (4)	C4—C5	1.389 (5)	
O13—H13	0.97 (4)	C4—H4	0.9500	
O21—C2	1.386 (4)	C5—C6	1.375 (5)	
O21—C21	1.432 (4)	С5—Н5	0.9500	
O31—C3	1.357 (4)	С6—Н6	0.9500	
O31—C31	1.435 (4)	C11—H11	0.9500	
N12—C11	1.273 (5)	C21—H21A	0.9800	
C1—C2	1.396 (5)	C21—H21B	0.9800	
C1—C6	1.401 (5)	C21—H21C	0.9800	
C1C11	1.467 (5)	C31—H31A	0.9800	
C2—C3	1.404 (5)	C31—H31B	0.9800	
C3—C4	1.394 (5)	C31—H31C	0.9800	
N12—O13—H13	97 (3)	C5—C6—C1	119.9 (4)	
C2	114.1 (3)	С5—С6—Н6	120.1	
C3—O31—C31	116.6 (3)	С1—С6—Н6	120.1	
C11—N12—O13	111.8 (3)	N12—C11—C1	119.7 (3)	
C2C1C6	119.0 (3)	N12-C11-H11	120.1	
C2C1C11	119.5 (3)	C1—C11—H11	120.1	
C6-C1-C11	121.4 (3)	O21—C21—H21A	109.5	
O21—C2—C1	119.2 (3)	O21—C21—H21B	109.5	
O21—C2—C3	119.7 (3)	H21A—C21—H21B	109.5	
C1—C2—C3	121.0 (3)	O21—C21—H21C	109.5	
O31—C3—C4	125.0 (3)	H21A—C21—H21C	109.5	
O31—C3—C2	116.1 (3)	H21B—C21—H21C	109.5	
C4—C3—C2	118.9 (3)	O31—C31—H31A	109.5	
C5—C4—C3	119.8 (3)	O31—C31—H31B	109.5	
С5—С4—Н4	120.1	H31A—C31—H31B	109.5	
C3—C4—H4	120.1	O31—C31—H31C	109.5	
C6—C5—C4	121.4 (3)	H31A—C31—H31C	109.5	
С6—С5—Н5	119.3	H31B—C31—H31C	109.5	
C4—C5—H5	119.3			
C21—O21—C2—C1	-103.3 (4)	C1—C2—C3—C4	-1.2 (5)	
C21—O21—C2—C3	80.0 (4)	O31—C3—C4—C5	-178.1 (4)	
C6-C1-C2-O21	-175.9 (3)	C2—C3—C4—C5	0.2 (5)	
C11—C1—C2—O21	7.9 (5)	C3—C4—C5—C6	1.1 (6)	
C6—C1—C2—C3	0.8 (5)	C4—C5—C6—C1	-1.4 (6)	
C11—C1—C2—C3	-175.4 (4)	C2-C1-C6-C5	0.5 (6)	
C31—O31—C3—C4	-4.0 (5)	C11—C1—C6—C5	176.6 (3)	
C31—O31—C3—C2	177.6 (4)	O13—N12—C11—C1	-176.2 (3)	
O21—C2—C3—O31	-6.0 (5)	C2-C1-C11-N12	-161.0 (3)	
C1—C2—C3—O31	177.3 (3)	C6—C1—C11—N12	22.8 (6)	
O21—C2—C3—C4	175.5 (3)			

Hydrogen-bond geometry (Å, °) Cg1 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
O13—H13…N12 ⁱ	0.97 (4)	1.87 (5)	2.805 (4)	161 (4)
C4—H4···O21 ⁱⁱ	0.95	2.63	3.284 (4)	126
C21—H21 <i>B</i> ···O31 ⁱⁱⁱ	0.98	2.54	3.323 (5)	136
C31—H31 <i>B</i> ···O13 ^{iv}	0.98	2.51	3.448 (5)	161
C31—H31 C ··· $Cg1^{v}$	0.98	2.73	3.599 (5)	148

Symmetry codes: (i) x-1/2, -y+3/2, -z+1; (ii) -x+1, y-1/2, -z+1/2; (iii) x-1, y, z; (iv) -x, y-1/2, -z+1/2; (v) x+1, y, z.

2,4-Dimethoxybenzaldehyde oxime (3)

Crystal data

C₉H₁₁NO₃ $M_r = 181.19$ Triclinic, *P*1 a = 4.9441 (2) Å b = 8.2188 (4) Å c = 12.1308 (3) Å a = 108.849 (3)° $\beta = 92.288$ (3)° $\gamma = 106.273$ (4)° V = 443.17 (3) Å³

Data collection

Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector diffractometer Radiation source: Rotating anode, Rigaku 007 HF Detector resolution: 10 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.101$ S = 0.881594 reflections 124 parameters 0 restraints

Special details

Z = 2 F(000) = 192 $D_x = 1.358 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 3758 reflections $\theta = 3.9-69.9^{\circ}$ $\mu = 0.86 \text{ mm}^{-1}$ T = 100 K Block, colourless $0.20 \times 0.10 \times 0.05 \text{ mm}$

 $T_{\min} = 0.802, T_{\max} = 1.000$ 7618 measured reflections 1594 independent reflections 1462 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{\max} = 68.2^{\circ}, \theta_{\min} = 3.9^{\circ}$ $h = -5 \rightarrow 5$ $k = -9 \rightarrow 9$ $l = -14 \rightarrow 13$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0775P)^2 + 0.1273P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
013	-0.22417 (16)	0.06653 (12)	0.08642 (7)	0.0311 (2)	
O21	0.29524 (16)	0.56560 (10)	0.41358 (7)	0.0261 (2)	
O41	1.14895 (16)	0.88605 (11)	0.31075 (7)	0.0273 (2)	
N12	0.05891 (19)	0.17759 (13)	0.09919 (8)	0.0255 (3)	
C1	0.3951 (2)	0.45758 (15)	0.22073 (10)	0.0231 (3)	
C2	0.4791 (2)	0.58860 (15)	0.33490 (9)	0.0228 (3)	
C3	0.7331 (2)	0.72870 (15)	0.36234 (9)	0.0237 (3)	
H3	0.789071	0.815115	0.439846	0.028*	
C4	0.9063 (2)	0.74213 (15)	0.27541 (10)	0.0238 (3)	
C5	0.8276 (2)	0.61490 (15)	0.16177 (10)	0.0247 (3)	
H5	0.945380	0.624026	0.102665	0.030*	
C6	0.5741 (2)	0.47475 (15)	0.13657 (10)	0.0245 (3)	
H6	0.520758	0.387495	0.059294	0.029*	
C11	0.1194 (2)	0.31641 (15)	0.19252 (10)	0.0242 (3)	
H11	-0.017316	0.328624	0.244952	0.029*	
C21	0.3513 (2)	0.70704 (15)	0.52560 (9)	0.0281 (3)	
H21A	0.196509	0.679099	0.571095	0.042*	
H21B	0.364539	0.821605	0.514202	0.042*	
H21C	0.531398	0.717369	0.568289	0.042*	
C41	1.3260 (2)	0.90933 (16)	0.22272 (10)	0.0278 (3)	
H41A	1.490351	1.018155	0.257704	0.042*	
H41B	1.216391	0.922054	0.158580	0.042*	
H41C	1.392155	0.803696	0.191690	0.042*	
H13	-0.235 (4)	-0.031 (2)	0.0244 (16)	0.049 (5)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
013	0.0234 (4)	0.0320 (5)	0.0287 (5)	-0.0008 (3)	0.0076 (3)	0.0062 (4)
O21	0.0251 (4)	0.0298 (4)	0.0202 (4)	0.0037 (3)	0.0072 (3)	0.0081 (3)
O41	0.0227 (4)	0.0309 (5)	0.0241 (4)	0.0022 (3)	0.0068 (3)	0.0089 (3)
N12	0.0212 (5)	0.0278 (5)	0.0252 (5)	0.0032 (4)	0.0044 (4)	0.0100 (4)
C1	0.0229 (6)	0.0248 (6)	0.0230 (6)	0.0079 (4)	0.0033 (4)	0.0099 (4)
C2	0.0222 (5)	0.0285 (6)	0.0216 (6)	0.0092 (4)	0.0060 (4)	0.0123 (5)
C3	0.0235 (6)	0.0279 (6)	0.0196 (5)	0.0072 (5)	0.0034 (4)	0.0086 (4)
C4	0.0198 (6)	0.0269 (6)	0.0257 (6)	0.0063 (4)	0.0029 (4)	0.0114 (5)
C5	0.0236 (6)	0.0306 (6)	0.0229 (6)	0.0100 (5)	0.0077 (4)	0.0113 (5)
C6	0.0252 (6)	0.0271 (6)	0.0208 (5)	0.0083 (5)	0.0036 (4)	0.0077 (4)
C11	0.0242 (6)	0.0288 (6)	0.0221 (6)	0.0080 (5)	0.0058 (4)	0.0118 (4)
C21	0.0295 (6)	0.0324 (6)	0.0195 (6)	0.0065 (5)	0.0077 (4)	0.0075 (5)
C41	0.0250 (6)	0.0333 (6)	0.0258 (6)	0.0059 (5)	0.0085 (4)	0.0131 (5)
041	0.0250 (0)	0.0555 (0)	0.0250 (0)	0.0057 (5)	0.0005 (+)	0.012

Geometric parameters (Å, °)

013—N12	1.4112 (12)	С3—Н3	0.9500
O13—H13	0.893 (18)	C4—C5	1.3939 (16)
O21—C2	1.3648 (13)	C5—C6	1.3869 (16)
O21—C21	1.4294 (13)	С5—Н5	0.9500
O41—C4	1.3632 (13)	С6—Н6	0.9500
O41—C41	1.4339 (13)	C11—H11	0.9500
N12—C11	1.2728 (15)	C21—H21A	0.9800
C1—C6	1.3931 (16)	C21—H21B	0.9800
C1—C2	1.4107 (15)	C21—H21C	0.9800
C1C11	1.4634 (15)	C41—H41A	0.9800
C2—C3	1.3864 (16)	C41—H41B	0.9800
C3—C4	1.3971 (16)	C41—H41C	0.9800
N12—O13—H13	103.5 (11)	C1—C6—C5	122.23 (10)
C2—O21—C21	117.44 (8)	C1—C6—H6	118.9
C4—O41—C41	116.82 (9)	С5—С6—Н6	118.9
C11—N12—O13	111.40 (9)	N12—C11—C1	121.37 (10)
C6—C1—C2	117.84 (10)	N12—C11—H11	119.3
C6-C1-C11	122.31 (10)	C1-C11-H11	119.3
C2-C1-C11	119.74 (10)	O21—C21—H21A	109.5
O21—C2—C3	123.79 (10)	O21—C21—H21B	109.5
O21—C2—C1	115.34 (10)	H21A—C21—H21B	109.5
C3—C2—C1	120.88 (10)	O21—C21—H21C	109.5
C2—C3—C4	119.64 (10)	H21A—C21—H21C	109.5
С2—С3—Н3	120.2	H21B—C21—H21C	109.5
С4—С3—Н3	120.2	O41—C41—H41A	109.5
O41—C4—C3	115.11 (10)	O41—C41—H41B	109.5
O41—C4—C5	124.27 (10)	H41A—C41—H41B	109.5
C3—C4—C5	120.62 (10)	O41—C41—H41C	109.5
C6—C5—C4	118.78 (10)	H41A—C41—H41C	109.5
С6—С5—Н5	120.6	H41B—C41—H41C	109.5
С4—С5—Н5	120.6		
C21—O21—C2—C3	8.36 (15)	C2—C3—C4—O41	179.03 (9)
C21—O21—C2—C1	-171.96 (9)	C2—C3—C4—C5	-0.70 (17)
C6-C1-C2-O21	179.72 (9)	O41—C4—C5—C6	-179.69 (9)
C11—C1—C2—O21	3.38 (15)	C3—C4—C5—C6	0.01 (17)
C6—C1—C2—C3	-0.59 (16)	C2—C1—C6—C5	-0.11 (17)
C11—C1—C2—C3	-176.93 (9)	C11—C1—C6—C5	176.12 (9)
O21—C2—C3—C4	-179.34 (9)	C4—C5—C6—C1	0.40 (17)
C1—C2—C3—C4	1.00 (16)	O13—N12—C11—C1	-175.95 (9)
C41—O41—C4—C3	-177.21 (9)	C6-C1-C11-N12	17.32 (17)
C41—O41—C4—C5	2.51 (16)	C2-C1-C11-N12	-166.51 (10)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H···A	D—H	Н…А	D····A	D—H···A
O13—H13…N12 ⁱ	0.893 (18)	1.995 (19)	2.8124 (13)	151.5 (15)
C41—H41A····O13 ⁱⁱ	0.98	2.63	3.0680 (15)	107
C41—H41 C ··· $Cg1$ ⁱⁱⁱ	0.98	2.60	3.4479 (13)	144

F(000) = 768

 $\theta = 2.1 - 32.1^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block, colourless

 $0.20 \times 0.15 \times 0.13$ mm

 $T_{\rm min} = 0.935, T_{\rm max} = 1.000$

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$

38753 measured reflections

4082 independent reflections

3761 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.020$

 $h = -9 \rightarrow 9$

 $k = -27 \rightarrow 27$

 $l = -14 \rightarrow 14$

 $D_{\rm x} = 1.348 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71075$ Å

Absorption correction: multi-scan

(CrysAlis PRO; Rigaku OD, 2017)

Cell parameters from 21005 reflections

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) *x*+2, *y*+1, *z*; (iii) *x*+1, *y*, *z*.

2,5-Dimethoxybenzaldehyde oxime (4)

Crystal data

 $C_{9}H_{11}NO_{3}$ $M_{r} = 181.19$ Monoclinic, $P2_{1}/c$ a = 7.6480 (1) Å b = 21.3380 (4) Å c = 10.9421 (2) Å $\beta = 90.555$ (2)° V = 1785.59 (5) Å³ Z = 8

Data collection

Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector diffractometer Radiation source: Rotating Anode, Rigaku FRE+ Confocal mirrors, VHF Varimax monochromator Detector resolution: 10 pixels mm⁻¹ profile data from ω–scans

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.031$	and constrained refinement
$wR(F^2) = 0.086$	$w = 1/[\sigma^2(F_o^2) + (0.0477P)^2 + 0.5056P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
4082 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
247 parameters	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
0121	1.05737 (9)	0.46081 (3)	0.23188 (6)	0.01640 (15)
O221	0.33772 (9)	0.09728 (3)	0.32374 (6)	0.01705 (15)
0151	0.88735 (9)	0.21358 (3)	0.13343 (6)	0.01629 (14)
O213	0.63115 (9)	0.03239 (3)	0.60782 (6)	0.01852 (15)
H213	0.6028 (19)	-0.0064 (7)	0.5898 (13)	0.036 (4)*
O251	0.47197 (9)	0.34248 (3)	0.46029 (6)	0.01810 (15)
O113	0.84907 (9)	0.45697 (3)	0.56752 (6)	0.01890 (15)
H113	0.905 (2)	0.4914 (7)	0.5868 (13)	0.036 (4)*
N112	0.92134 (10)	0.44408 (4)	0.45300 (7)	0.01543 (16)
N212	0.53640 (10)	0.06589 (4)	0.51894 (7)	0.01507 (16)
C11	0.92057 (11)	0.36690 (4)	0.29191 (8)	0.01265 (17)
C12	1.01564 (11)	0.40037 (4)	0.20387 (8)	0.01345 (17)
C13	1.06269 (12)	0.37068 (4)	0.09534 (8)	0.01520 (18)
H13	1.125790	0.393201	0.035247	0.018*
C14	1.01792 (11)	0.30839 (4)	0.07452 (8)	0.01529 (18)
H14	1.051935	0.288508	0.000789	0.018*
C15	0.92359 (11)	0.27498 (4)	0.16103 (8)	0.01354 (17)
C16	0.87441 (11)	0.30442 (4)	0.26854 (8)	0.01321 (17)
H16	0.808499	0.281887	0.327125	0.016*
C21	0.47308 (11)	0.17198 (4)	0.45403 (8)	0.01312 (17)
C22	0.36691 (11)	0.15892 (4)	0.35049 (8)	0.01327 (17)
C23	0.29914 (11)	0.20820 (4)	0.28236 (8)	0.01541 (18)
H23	0.229476	0.199464	0.212053	0.018*
C24	0.33136 (12)	0.27053 (4)	0.31516 (8)	0.01597 (18)
H24	0.284202	0.303707	0.267240	0.019*
C25	0.43233 (11)	0.28369 (4)	0.41782 (8)	0.01448 (18)
C26	0.50301 (11)	0.23437 (4)	0.48551 (8)	0.01430 (17)
H26	0.573634	0.243537	0.555138	0.017*
C111	0.86582 (11)	0.39220 (4)	0.40987 (8)	0.01383 (17)
H111	0.784786	0.368751	0.456649	0.017*
C121	1.16522 (14)	0.49466 (5)	0.14906 (9)	0.0233 (2)
H12A	1.188699	0.536566	0.181970	0.035*
H12B	1.105118	0.498388	0.069891	0.035*
H12C	1.275896	0.472247	0.138464	0.035*
C151	0.79088 (13)	0.17920 (4)	0.22231 (9)	0.01864 (19)
H15A	0.769266	0.136629	0.192162	0.028*
H15B	0.679003	0.200181	0.236846	0.028*
H15C	0.858216	0.177225	0.298868	0.028*
C211	0.55768 (11)	0.12487 (4)	0.53198 (8)	0.01470 (18)
H211	0.632715	0.139016	0.595943	0.018*
C221	0.24158 (15)	0.08339 (5)	0.21389 (9)	0.0238 (2)
H22A	0.233090	0.037865	0.203679	0.036*
H22B	0.302042	0.101530	0.143698	0.036*
H22C	0.123897	0.101296	0.219223	0.036*
C251	0.41248 (14)	0.39453 (4)	0.38939 (9)	0.0225 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H25A	0.453866	0.433561	0.426991	0.034*
H25B	0.284384	0.394557	0.386171	0.034*
H25C	0.458345	0.391238	0.306319	0.034*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
0121	0.0203 (3)	0.0116 (3)	0.0174 (3)	-0.0029 (2)	0.0052 (2)	-0.0001 (2)
O221	0.0220 (3)	0.0133 (3)	0.0157 (3)	-0.0018 (2)	-0.0063 (2)	-0.0012 (2)
0151	0.0188 (3)	0.0128 (3)	0.0173 (3)	-0.0015 (2)	0.0015 (2)	-0.0033 (2)
O213	0.0230 (3)	0.0136 (3)	0.0189 (3)	0.0017 (3)	-0.0077 (3)	0.0021 (2)
O251	0.0208 (3)	0.0111 (3)	0.0223 (3)	-0.0006 (2)	-0.0048 (3)	0.0004 (2)
0113	0.0263 (4)	0.0160 (3)	0.0145 (3)	-0.0053 (3)	0.0077 (3)	-0.0043 (2)
N112	0.0186 (4)	0.0148 (4)	0.0129 (3)	-0.0001 (3)	0.0039 (3)	-0.0015 (3)
N212	0.0165 (4)	0.0146 (4)	0.0140 (4)	0.0020 (3)	-0.0027 (3)	0.0020 (3)
C11	0.0114 (4)	0.0128 (4)	0.0137 (4)	0.0010 (3)	-0.0013 (3)	-0.0004 (3)
C12	0.0123 (4)	0.0122 (4)	0.0158 (4)	0.0007 (3)	-0.0006 (3)	0.0003 (3)
C13	0.0151 (4)	0.0163 (4)	0.0142 (4)	0.0007 (3)	0.0015 (3)	0.0019 (3)
C14	0.0152 (4)	0.0173 (4)	0.0133 (4)	0.0021 (3)	0.0003 (3)	-0.0024 (3)
C15	0.0116 (4)	0.0126 (4)	0.0164 (4)	0.0013 (3)	-0.0030 (3)	-0.0015 (3)
C16	0.0117 (4)	0.0133 (4)	0.0146 (4)	0.0001 (3)	-0.0004 (3)	0.0010 (3)
C21	0.0125 (4)	0.0141 (4)	0.0128 (4)	-0.0005 (3)	0.0012 (3)	0.0007 (3)
C22	0.0126 (4)	0.0133 (4)	0.0139 (4)	-0.0012 (3)	0.0012 (3)	-0.0007 (3)
C23	0.0140 (4)	0.0175 (4)	0.0147 (4)	0.0001 (3)	-0.0017 (3)	-0.0001 (3)
C24	0.0145 (4)	0.0153 (4)	0.0180 (4)	0.0020 (3)	-0.0010 (3)	0.0026 (3)
C25	0.0128 (4)	0.0127 (4)	0.0179 (4)	-0.0009 (3)	0.0017 (3)	-0.0003 (3)
C26	0.0133 (4)	0.0159 (4)	0.0137 (4)	-0.0010 (3)	-0.0008 (3)	-0.0002 (3)
C111	0.0139 (4)	0.0135 (4)	0.0141 (4)	-0.0004 (3)	0.0016 (3)	0.0010 (3)
C121	0.0312 (5)	0.0160 (4)	0.0228 (5)	-0.0063 (4)	0.0096 (4)	0.0015 (4)
C151	0.0245 (5)	0.0131 (4)	0.0183 (4)	-0.0024 (3)	0.0002 (4)	-0.0005 (3)
C211	0.0145 (4)	0.0160 (4)	0.0135 (4)	-0.0011 (3)	-0.0018 (3)	-0.0005 (3)
C221	0.0321 (5)	0.0188 (4)	0.0204 (5)	-0.0043 (4)	-0.0119 (4)	-0.0020 (4)
C251	0.0280 (5)	0.0131 (4)	0.0263 (5)	0.0018 (4)	-0.0035 (4)	0.0027 (4)

Geometric parameters (Å, °)

0121—C12	1.3628 (10)	C21—C26	1.3935 (12)
O121—C121	1.4275 (11)	C21—C22	1.4151 (12)
O221—C22	1.3653 (10)	C21—C211	1.4651 (12)
O221—C221	1.4339 (11)	C22—C23	1.3866 (12)
O151—C15	1.3721 (10)	C23—C24	1.3988 (12)
O151—C151	1.4291 (11)	C23—H23	0.9500
O213—N212	1.4029 (9)	C24—C25	1.3858 (12)
O213—H213	0.877 (15)	C24—H24	0.9500
O251—C25	1.3706 (10)	C25—C26	1.3929 (12)
O251—C251	1.4268 (11)	C26—H26	0.9500
O113—N112	1.4017 (9)	C111—H111	0.9500
O113—H113	0.875 (16)	C121—H12A	0.9800

N112—C111	1.2747 (11)	C121—H12B	0.9800
N212—C211	1.2767 (12)	C121—H12C	0.9800
C11—C16	1.4020 (12)	C151—H15A	0.9800
C11—C12	1.4072 (12)	C151—H15B	0.9800
C11—C111	1.4639 (12)	C151—H15C	0.9800
C12—C13	1.3962 (12)	C211—H211	0.9500
C13—C14	1.3908 (12)	C221—H22A	0.9800
C13—H13	0.9500	C221—H22B	0.9800
C14—C15	1 3921 (12)	C221—H22C	0 9800
C14—H14	0.9500	C251—H25A	0.9800
C15-C16	1 3887 (12)	C251—H25B	0.9800
C16—H16	0.9500	C251—H25C	0.9800
	0.9500	0201 11200	0.9000
C12—O121—C121	118.13 (7)	C23—C24—H24	120.1
C22—O221—C221	117.40 (7)	O251—C25—C24	125.45 (8)
C15—O151—C151	116.42 (7)	O251—C25—C26	115.32 (8)
N212—O213—H213	101.5 (10)	C24—C25—C26	119.23 (8)
C25—O251—C251	117.38 (7)	C25—C26—C21	121.89 (8)
N112—O113—H113	100.6 (10)	C25—C26—H26	119.1
C111—N112—O113	111.63 (7)	C21—C26—H26	119.1
C211—N212—O213	111.12 (7)	N112—C111—C11	123.34 (8)
C16—C11—C12	119.24 (8)	N112—C111—H111	118.3
C16—C11—C111	115.96 (8)	C11—C111—H111	118.3
C12—C11—C111	124.79 (8)	O121—C121—H12A	109.5
O121—C12—C13	123.99 (8)	O121—C121—H12B	109.5
O121—C12—C11	116.60 (8)	H12A—C121—H12B	109.5
C13—C12—C11	119.41 (8)	O121—C121—H12C	109.5
C14—C13—C12	120.53 (8)	H12A—C121—H12C	109.5
C14—C13—H13	119.7	H12B—C121—H12C	109.5
С12—С13—Н13	119.7	O151—C151—H15A	109.5
C13—C14—C15	120.42 (8)	O151—C151—H15B	109.5
C13—C14—H14	119.8	H15A—C151—H15B	109.5
C15—C14—H14	119.8	0151—C151—H15C	109.5
O151—C15—C16	124.23 (8)	H15A—C151—H15C	109.5
0151 - C15 - C14	116.36 (8)	H15B—C151—H15C	109.5
C16-C15-C14	119.40 (8)	N212-C211-C21	123.80 (8)
C_{15} $-C_{16}$ $-C_{11}$	120.99 (8)	N212—C211—H211	118.1
C15-C16-H16	119.5	$C_{21} - C_{211} - H_{211}$	118.1
C11—C16—H16	119.5	0221—C221—H22A	109.5
$C_{26} - C_{21} - C_{22}$	118.53 (8)	0221—C221—H22B	109.5
$C_{26} = C_{21} = C_{211}$	116.18 (8)	H22A—C221—H22B	109.5
$C_{22} = C_{21} = C_{211}$	125.29 (8)	0221 - C221 - H22C	109.5
0221 - C22 - C23	123 76 (8)	$H_{22}A - C_{22}I - H_{22}C$	109.5
0221 - 022 - 023	116.92 (8)	H22B - C221 - H22C	109.5
C_{23} C_{22} C_{21}	119.32 (8)	0251—C251—H25A	109.5
C^{22} C^{22} C^{24}	121 27 (8)	0251 - 0251 - H25R	109.5
C22 C23 C24	119.4	H25A_C251_H25B	109.5
C24—C23—H23	119.4	0251 - C251 - H25D	109.5
\bigcirc	11/1	0201 0201 11200	107.5

C25—C24—C23	119.74 (8)	H25A—C251—H25C	109.5
C25—C24—H24	120.1	H25B—C251—H25C	109.5
C121—O121—C12—C13	-4.21 (13)	C211—C21—C22—O221	1.91 (13)
C121—O121—C12—C11	175.24 (8)	C26—C21—C22—C23	1.31 (12)
C16—C11—C12—O121	-179.74 (7)	C211—C21—C22—C23	-177.99 (8)
C111—C11—C12—O121	-0.50 (13)	O221—C22—C23—C24	179.06 (8)
C16—C11—C12—C13	-0.26 (13)	C21—C22—C23—C24	-1.05 (13)
C111—C11—C12—C13	178.98 (8)	C22—C23—C24—C25	-0.22 (13)
O121—C12—C13—C14	178.77 (8)	C251—O251—C25—C24	-3.63 (13)
C11—C12—C13—C14	-0.67 (13)	C251—O251—C25—C26	175.86 (8)
C12—C13—C14—C15	0.80 (13)	C23—C24—C25—O251	-179.32 (8)
C151—O151—C15—C16	0.74 (12)	C23—C24—C25—C26	1.21 (13)
C151—O151—C15—C14	179.85 (8)	O251—C25—C26—C21	179.53 (8)
C13—C14—C15—O151	-179.15 (8)	C24—C25—C26—C21	-0.94 (13)
C13—C14—C15—C16	0.01 (13)	C22—C21—C26—C25	-0.32 (13)
O151—C15—C16—C11	178.13 (8)	C211—C21—C26—C25	179.03 (8)
C14—C15—C16—C11	-0.95 (13)	O113—N112—C111—C11	-179.60 (8)
C12—C11—C16—C15	1.08 (13)	C16—C11—C111—N112	168.18 (8)
C111—C11—C16—C15	-178.23 (8)	C12—C11—C111—N112	-11.08 (14)
C221—O221—C22—C23	4.54 (13)	O213—N212—C211—C21	-178.99 (8)
C221—O221—C22—C21	-175.35 (8)	C26—C21—C211—N212	176.46 (8)
C26—C21—C22—O221	-178.79 (8)	C22—C21—C211—N212	-4.24 (14)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H···A	D—H	Н…А	$D \cdots A$	D—H··· A
O113—H113…O121 ⁱ	0.875 (16)	2.247 (15)	2.8944 (9)	130.7 (12)
O113—H113…N112 ⁱ	0.875 (16)	1.965 (16)	2.7567 (10)	149.9 (13)
O213—H213…O221 ⁱⁱ	0.877 (15)	2.204 (15)	2.8758 (9)	133.1 (12)
O213—H213····N212 ⁱⁱ	0.877 (15)	2.034 (15)	2.8160 (10)	147.9 (13)
C111—H111···O251	0.95	2.46	3.2458 (11)	140
C121—H12C···N212 ⁱⁱⁱ	0.98	2.53	3.4400 (13)	155
C151—H15A····O113 ^{iv}	0.98	2.50	3.3947 (11)	152
C14—H14…Cg2 ⁱⁱⁱ	0.95	2.98	3.6656 (9)	130
C151—H15 <i>B</i> ··· <i>C</i> g2	0.98	2.72	3.5973 (10)	149
C24—H24···Cg1 v	0.95	2.67	3.4281 (10)	137
C211—H211····Cg1 ^{vi}	0.95	2.78	3.6272 (9)	149
C151—H15 A ···O113 ^{iv} C14—H14··· $Cg2^{iii}$ C151—H15 B ··· $Cg2$ C24—H24··· $Cg1^{v}$ C211—H211··· $Cg1^{vi}$	0.98 0.95 0.98 0.95 0.95	2.50 2.98 2.72 2.67 2.78	3.3947 (11) 3.6656 (9) 3.5973 (10) 3.4281 (10) 3.6272 (9)	152 130 149 137 149

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*+1, -*y*+1/2, *z*-1/2; (iv) *x*, -*y*+1/2, *z*-1/2; (v) *x*-1, *y*, *z*; (vi) *x*, -*y*+1/2, *z*+1/2.