

# research communications



Received 13 April 2015 Accepted 21 April 2015

Edited by A. J. Lough, University of Toronto, Canada

**Keywords**: crystal structure; drug design; chromones; conformation; supramolecular structure; hydrogen bonding

CCDC references: 1025354; 1025353; 1025352; 1025255; 1025257; 1025254 Supporting information: this article has supporting information at journals.iucr.org/e





New insights in the discovery of novel *h*-MAO-B inhibitors: structural characterization of a series of *N*-phenyl-4-oxo-4*H*-chromene-3-carboxamide derivatives

Ligia R. Gomes,<sup>a</sup> John Nicolson Low,<sup>b</sup>\* Fernando Cagide,<sup>c</sup> Daniel Chavarria<sup>c</sup> and Fernanda Borges<sup>c</sup>

<sup>a</sup>FP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, <sup>b</sup>Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and <sup>c</sup>CIQ/Departamento de Qu*u*mica e Bioq*u*umica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal. \*Correspondence e-mail: jnlow111@gmail.com

Six N-substituted-phenyl 4-oxo-4H-chromene-3-carboxamides, namely N-(2nitrophenyl)-4-oxo-4H-chromene-3-carboxamide, C<sub>16</sub>H<sub>10</sub>N<sub>2</sub>O<sub>5</sub> (2b), N-(3-methoxyphenyl)-4-oxo-4*H*-chromene-3-carboxamide,  $C_{17}H_{13}NO_4$ , (3a), N-(3-bromophenyl)-4-oxo-4H-chromene-3-carboxamide, C<sub>16</sub>H<sub>10</sub>BrNO<sub>3</sub>, (3b), N-(4-methoxyphenyl)-4-oxo-4H-chromene-3-carboxamide, C17H13NO4, (4a), N-(4-methylphenyl)-4-oxo-4H-chromene-3-carboxamide, C<sub>17</sub>H<sub>13</sub>NO<sub>3</sub>, (4d), and N-(4-hydroxyphenyl)-4-oxo-4H-chromene-3-carboxamide, C<sub>16</sub>H<sub>11</sub>NO<sub>4</sub>, (4e), have been structurally characterized. All compounds exhibit an anti conformation with respect to the C-N rotamer of the amide and a *trans*-related conformation with the carbonyl groups of the chromone ring of the amide. These structures present an intramolecular hydrogen-bonded network comprising an  $N-H\cdots O$ hydrogen bond between the amide N atom and the O atom of the carbonyl group of the pyrone ring, forming an S(6) ring, and a weak  $C_{ar}-H\cdots O$ hydrogen bond in which the carbonyl group of the amide acts as acceptor for the H atom of an ortho-C atom of the exocyclic phenyl ring, which results in another S(6) ring. The N-H···O intramolecular hydrogen bond constrains the carboxamide moiety such that it is virtually coplanar with the chromone ring.

#### 1. Chemical context

Chromones are a group of natural and synthetic oxygen heterocyclic compounds having a high degree of chemical diversity that is frequently linked to a broad array of biological activities. The chromone-3-(phenyl)carboxamide derivatives, depicted the scheme, have emerged as promising compounds for the management of neurodegenerative diseases such as Alzheimer's and Parkinson's since they display selective inhibition activities against h-MAO-B. Recent data (Cagide et al., 2015) suggest that the activity and selectivity towards that enzyme is dependent on the nature and position of the substituent located in the exocyclic phenyl ring. When compared with the unsubstituted compound (1), the para substitution in the exocyclic phenyl ring seems to play an important role in the enzymatic interaction: the presence of para-Cl (4c) and  $-CH_3$  (4d) substituents favours the potency while an -OH (4e) substituent has the opposite effect. The data acquired so far point out the importance of a structureactivity relationship study to optimize the potency vs selectivity of this type of inhibitor, namely performing structural and electronic changes in the substituents.

Thus, the results for the structural characterization of some chromone-3-phenylcarboxamide derivatives are presented

# research communications

and discussed. These compounds are as follows - (1): N-phenyl-4-oxo-4H-chromene-3-carboxamide (Cagide et al., N-(2-methoxyphenyl)-4-oxo-4H-chromene-2015): (2a): 3-carboxamide (Gomes et al., 2013); (2b): N-(2-nitrophenyl)-4-oxo-4H-chromone-3-carboxamide (CCDC 1025354); (3a): N-(3-methoxyphenyl)-4-oxo-4H-chromene-3-carboxamide (CCDC 102353); (3b): N-(3-bromophenyl)-4-oxo-4H-chromene-3-carboxamide (CCDC 1025352); (4a): N-(4-methoxyphenyl)-4-oxo-4H-chromene-3-carboxamide (CCDC 1025355); (4b): N-(4-bromophenyl)-4-oxo-4H-chromene-3carboxamide (Gomes et al., 2015); (4c): N-(4-chlorophenyl)-4oxo-4H-chromene-3-carboxamide (Gomes et al., 2015); (4d): *N*-(4-methylphenyl)-4-oxo-4*H*-chromene-3-carboxamide; (4e): N-(4-hydroxyphenyl)-4-oxo-4H-chromene-3-carbox amide (CCDC 102524). Compounds with CCDC numbers given were deposited by the current authors, Gomes, Borges and Low, in the Cambridge Structural Database (CSD; Groom & Allen, 2014).



#### 2. Structural commentary

#### 2.1. Molecular structures

# Conformations and intramolecular hydrogen-bond network

The structural analysis confirms that the molecules are 4chromone derivatives with a phenylamide substituent on position number 3 of the pyrone ring. Fig. 1 to 6 show the



#### Figure 1

A view of the asymmetric unit of (2b) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.



#### Figure 2

A view of the asymmetric unit of (3a) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.





A view of the asymmetric unit of (3b) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.



Figure 4

A view of the asymmetric unit of (4a) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.





A view of the asymmetric unit of (4d) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

displacement ellipsoid diagrams with the adopted labelling scheme for (2b), (3a), (3b), (4a), (4d) and (4e), the structurally characterized compounds in this work. As seen, the molecules exhibit an anti conformation with respect to the C-N rotamer of the amide following a pattern given by compound (1), which was previously described by Cagide et al. (2015). Due to the asymmetry of the chromone residue, the anti conformation can assume several geometries depending on the relative position of the carbonyl groups of the chromone ring and the amide group which can be *cis* or *trans* related. Compounds (1)–(4) exhibit a *trans* relation between these bonds as can be seen in Figs. 1 to 6. This molecular conformation allows the establishment of two or three intramolecular hydrogen bonds. Details of the intramolecular hydrogen bonding are given in Tables 2–7. Generally, as seen in the scheme below, there is an intramolecular hydrogen bond involving the amide and the chromone where the amide nitrogen atom acts as donor to the oxo oxygen atom of the chromone ring, forming an S(6) ring; the carboxyl oxygen of the amide acts as acceptor for a weak H interaction with the C-H group located at the ortho position of the phenyl ring, forming another S(6) ring. This hydrogenbonding network probably enhances the planarity of the molecules and may prevent them from adopting some other possible conformations by restraining their geometries. Compounds (2a) and (2b) have substituents located at the ortho position on the benzyl ring with oxygen atoms (methoxy and nitro, respectively) that act as acceptors for the amide nitrogen atom of the carboxamide residue, hence forming a third intramolecular hydrogen bond (see scheme).



#### Molecular geometries

The values for bond lengths involving the atoms of the carboxamide residue assume the expected ranges for amides with aromatic substituents. The C3–C31 bond ranges from 1.49 to 1.51 Å, which are the typical range values for an  $Csp^3$ – $Csp^3$  bond (Allen *et al.*, 1987). The C31–O3 bond lengths range from 1.22 to 1.25 Å and the C31–N3 bond lengths are within the 1.33 to 1.37 Å interval, showing the the partial  $sp^2$  character of the amide nitrogen atom attributed to those compounds.

Table 1 details selected dihedral angles between the mean planes of aromatic rings,  $\theta_{Chr-Phe}$ , between the chromone ring and the amide moiety (the plane defined by atoms O3, C31and



A view of the asymmetric unit of (4e) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

N3),  $\theta_{\text{Chr-amide}}$ , and between the exocyclic phenyl ring and the amide,  $\theta_{\text{Phe-amide}}$ . Those dihedral angles are primarily due to the rotation of the rings around the C3-C31 and N3-C311 bonds with exception of (3a) that assumes mainly a bent conformation between the rings. The structural analysis of (1) performed previously (Cagide et al., 2015) revealed that the amide moiety is practically planar with the chromone ring: it makes a dihedral angle of  $4.31 (12)^{\circ}$  with the plane defined by the O, C and N atoms of the amide residue. The loss of planarity for the overall molecule results from the slight twist of the exocyclic phenyl substituent around the amidic N-C bond, which is the main factor affecting the value for the dihedral angle of  $9.48(12)^{\circ}$  between the best plane of the exocyclic phenyl ring and the O-C-N amidic plane. The dihedral angle between the mean plane of the chromone ring and that of the exocyclic phenyl ring is  $10.77 (4)^{\circ}$ . The  $\theta_{\text{Chr-amide}}$  dihedral angles for the substituted compounds are

Table 1

Selected dihedral angles (°).

 $\theta_{\text{Chr-Phe}}$  is the dihedral angle between the mean planes of the chromene and the phenyl ring.  $\theta_{\text{Chr-amide}}$  is the dihedral angle between the mean planes of the chromone ring and the plane defined by atoms O3, C31 and N3.  $\theta_{\text{amide-Phe}}$  is the dihedral angle between the mean planes of the phenyl ring and the plane defined by atoms O3, C31 and N3. The suffices A and B for compound (2*a*) denote the polymeric forms. Basic Conf. denotes the primary shape given by the relative position of the aromatic rings around the carboxamide linkage.

| -                       |                             | -                             |                         | -           |
|-------------------------|-----------------------------|-------------------------------|-------------------------|-------------|
| Compound                | $\theta_{\mathrm{Chr-Phe}}$ | $\theta_{\mathrm{Chr-amide}}$ | $\theta_{ m amide-Phe}$ | Basic Conf. |
| (1)                     | 10.77 (4)                   | 4.31 (12)                     | 9.48 (12)               | Rotation    |
| $(2a \text{ mol}1_A)$   | 11.64 (5)                   | 8.72 (14)                     | 20.35 (13)              | Rotation    |
| $(2a \text{ mol}2_A)$   | 2.47 (5)                    | 1.75 (2)                      | 2.2 (2)                 | Planar      |
| $(2a \text{ mol}1_B)$   | 6.50 (18)                   | 15.0 (5)                      | 10.1 (6)                | Rotation    |
| $(2a \text{ mol}2_{B})$ | 10.52 (17)                  | 1.8 (6)                       | 12.27 (6)               | Rotation    |
| (2b)                    | 35.96 (9)                   | 2.35 (4)                      | 33.6 (2)                | Rotation    |
| (3 <i>a</i> )           | 15.61 (8)                   | 9.3 (3)                       | 11.7 (2)                | Bent        |
| (3b) mol1               | 2.68 (10)                   | 2.0 (4)                       | 4.0 (4)                 | Planar      |
| (3b) mol2               | 10.31 (12)                  | 0.6 (4)                       | 10.42 (12)              | Rotation    |
| (4 <i>a</i> )           | 11.48 (6)                   | 5.2 (5)                       | 6.5 (4)                 | Rotation    |
| (4 <i>b</i> )           | 4.90 (10)                   | 2.0 (4)                       | 2.9 (4)                 | Planar      |
| (4c)                    | 1.95 (7)                    | 5.7 (3)                       | 4.4 (3)                 | Planar      |
| (4d)                    | 22.88 (4)                   | 2.71 (8)                      | 23.90 (5)               | Rotation    |
| (44e) mol1              | 3.58 (17)                   | 5.9 (2)                       | 9.5 (3)                 | Rotation    |
| (44e) mol2              | 10.02 (15)                  | 10.69 (2)                     | 19.8 (2)                | Rotation    |
|                         |                             |                               |                         |             |

# research communications

| Table 2                                           |  |
|---------------------------------------------------|--|
| Hydrogen-bond geometry (Å, $^{\circ}$ ) for (2b). |  |

| $D - H \cdots A$                                                | D-H           | $H \cdot \cdot \cdot A$             | $D \cdots A$              | $D - H \cdots A$          |
|-----------------------------------------------------------------|---------------|-------------------------------------|---------------------------|---------------------------|
| N3-H3···O4                                                      | 0.96 (4)      | 1.95 (4)                            | 2.718 (3)                 | 136 (3)                   |
| N3-H3···O32                                                     | 0.96 (4)      | 1.96 (4)                            | 2.633 (3)                 | 126 (3)                   |
| C316-H316···O3                                                  | 0.95          | 2.40                                | 2.902 (4)                 | 113                       |
| $C8-H8\cdots O32^{i}$                                           | 0.95          | 2.58                                | 3.210 (4)                 | 124                       |
| C5−H5···O1 <sup>ii</sup>                                        | 0.95          | 2.60                                | 3.375 (4)                 | 139                       |
| $C313-H313\cdots O3^{iii}$                                      | 0.95          | 2.49                                | 3.299 (4)                 | 143                       |
| Symmetry codes:<br>$-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}.$ | (i) $-x, y +$ | $\frac{1}{2}, -z + \frac{1}{2};$ (i | i) $-x, y - \frac{1}{2},$ | $-z + \frac{1}{2};$ (iii) |

 Table 3

 Hydrogen-bond geometry (Å, °) for (3a).

| $D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H$ $N3-H3\cdots O4$ $0.95$ (2) $1.89$ (2) $2.7147$ (17) $143.8$ ( $C312-H312\cdots O3$ $0.95$ $2.25$ $2.855$ (2) $121$ | riyarogen bona geo                                      | meny (11,                | ) 101 (34).              |                                       |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|--------------------------|---------------------------------------|-----------------------------|
| N3-H3···O4 0.95 (2) 1.89 (2) 2.7147 (17) 143.8 (<br>C312-H312···O3 0.95 2.25 2.855 (2) 121                                                                            | $D - H \cdots A$                                        | D-H                      | $H \cdot \cdot \cdot A$  | $D \cdot \cdot \cdot A$               | $D - H \cdot \cdot \cdot A$ |
| $C2-H2\cdots O3^{1}$ 0.95 2.37 3.243 (2) 153                                                                                                                          | $N3-H3\cdotsO4$ $C312-H312\cdotsO3$ $C2-H2\cdotsO3^{i}$ | 0.95 (2)<br>0.95<br>0.95 | 1.89 (2)<br>2.25<br>2.37 | 2.7147 (17)<br>2.855 (2)<br>3.243 (2) | 143.8 (18)<br>121<br>153    |

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

below 15° for all the compounds, suggesting that the amide moiety is essentially planar with the chromone ring. The strong N3–H3···O4 hydrogen contact may preclude higher rotations around the C3–C31 bond in spite of its  $Csp^3-Csp^3$ character. The  $\theta_{Phe-amide}$  angles present more widely spread values, ranging between 2 and 33°. The substituents with oxygen atoms located at the *ortho* position on the exocyclic phenyl ring in (2) which, simultaneously, cause steric hindrance and act as acceptors for the hydrogen atom of the amide, thus forming an intramolecular hydrogen bond, suggest that a tricky balance between those two factors allows the formation of several energetically accessible rotated conformations. This fact is especially noticeable in the various conformation polymorphs of (2*a*).

The remaining compounds are not constrained by steric hindrance of the *ortho*-substituents but they still present a wide range of values for the  $\theta_{\text{Phe-amide}}$  dihedral angles (between 3 and 24°). The  $\theta_{\text{Chr-Phe}}$  values may be used as a measure of the relative positioning of the two aromatic rings which may define the primary conformation for the molecules.



#### Figure 7

View of the sheet formed by the interconnection of three C-H···O hydrogen bonded chains in compound (2*b*). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes (from bottom to top rows and left to right). Bottom:  $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}; -x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$ . Middle: x, -y, z; x, y, z; x, y + 1, z. Top:  $-x, y - \frac{1}{2}, -z + \frac{3}{2}; -x, y + \frac{1}{2}, -z + \frac{3}{2}$ .]

The aromatic rings are usually rotated or co-planar, with exception of (3a) where they are bent with respect to each other. The chromones with halogen substituents assume the most planar conformations, probably related to the typical positive mesomeric effects on the  $\pi$  system. Considering the fact that the *para*-substituent on the exocyclic phenyl ring for chromone-3-phenylcarboxamides has a positive effect on their activity, and the requirement of establishing the factors that can modulate the enzyme–ligand interaction, it can be assumed their *h*-MAO-B activity is strongly dependent on the electronic environment of the substituent. This is not a preferred conformation that reduces or enhances the activity, so it may be assumed that the electronic environment provided by the substituent is the primary condition for the pharmacological activities displayed by those molecules.

In compound (3*b*) there are two molecules in the asymmetric unit. A calculation using *Molfit* with Quaternion Transformation Method (Mackay, 1984) gave the following fit: weighted/unit weight r.m.s. fits: 0.133/0.144 Å for 23 atoms with molecule 1 inverted on molecule 2, 21 atoms. The largest individual displacement is 0.178 Å(Br13/Br23). The r.m.s. bond fit = 0.0052 Å and the r.m.s. angle fit = 0.437°.

#### 3. Supramolecular features

The carboxamide H atom is not involved in any intermolecular interaction in any of the compounds.

In (2*b*), the molecules are linked by C8–H8···O32(–*x*,  $y + \frac{1}{2}, -z + \frac{1}{2}$ ), C5–H5···O1(–*x*,  $y - \frac{1}{2}, -z + \frac{1}{2}$ ) and C313–H313···O3(–*x*,  $y - \frac{1}{2}, -z + \frac{3}{2}$ ) hydrogen bonds which, by the action of twofold screw axes running parallel to the *b* axis, link the molecules into corrugated sheets which lie parallel to the





View of the dimer formed across the inversion centre  $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$  in (3*a*). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity.

| Table 4                |          |                   |
|------------------------|----------|-------------------|
| Hydrogen-bond geometry | (Å, °) f | or (3 <i>b</i> ). |

| $D-\mathrm{H}\cdots A$      | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------|-------------------------|--------------|---------------------------|
| N13-H13···O14               | 0.88 | 1.93                    | 2.686 (3)    | 143                       |
| N23-H23···O24               | 0.88 | 1.94                    | 2.698 (3)    | 143                       |
| C12-H12···O131              | 0.95 | 2.34                    | 2.727 (4)    | 104                       |
| C22-H22···O231              | 0.95 | 2.33                    | 2.725 (4)    | 104                       |
| C132-H132···O131            | 0.95 | 2.26                    | 2.860 (4)    | 121                       |
| C232-H232···O231            | 0.95 | 2.28                    | 2.865 (4)    | 119                       |
| $C12-H12\cdots O14^{i}$     | 0.95 | 2.49                    | 3.221 (4)    | 134                       |
| $C22-H22\cdots O24^{i}$     | 0.95 | 2.43                    | 3.185 (4)    | 136                       |
| $C15-H15\cdots O11^{ii}$    | 0.95 | 2.68                    | 3.587 (4)    | 160                       |
| $C25-H25\cdots O21^{ii}$    | 0.95 | 2.58                    | 3.530 (4)    | 177                       |
| C136-H136O131 <sup>ii</sup> | 0.95 | 2.43                    | 3.282 (4)    | 149                       |
| $C236-H236\cdots O231^{ii}$ | 0.95 | 2.41                    | 3.270 (4)    | 151                       |

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Table 5

Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (4*a*).

| $D - H \cdot \cdot \cdot A$                                | D-H                        | $H \cdot \cdot \cdot A$    | $D \cdot \cdot \cdot A$                 | $D - H \cdots A$         |
|------------------------------------------------------------|----------------------------|----------------------------|-----------------------------------------|--------------------------|
| $N3-H3\cdots O4$ $C312-H312\cdots O3$ $C2-H2\cdots O4^{i}$ | 0.901 (17)<br>0.95<br>0.95 | 1.903 (16)<br>2.37<br>2.47 | 2.6919 (13)<br>2.9441 (17)<br>3.212 (3) | 145.0 (15)<br>119<br>134 |
| $C316-H316\cdots O3^n$                                     | 0.95                       | 2.33                       | 3.201 (2)                               | 152                      |

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.

Table 6

Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (4*d*).

| $D - H \cdot \cdot \cdot A$                                                        | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|------------------------------------------------------------------------------------|----------------|-------------------------|--------------|------------------|
| $N3-H3\cdots O4$ $C312-H312\cdots O3$                                              | 0.900 (18)     | 1.916 (18)              | 2.7098 (13)  | 146.1 (15)       |
|                                                                                    | 0.95           | 2.37                    | 2.9240 (16)  | 116              |
| $\begin{array}{c} C2 - H2 \cdots O4^{i} \\ C316 - H316 \cdots O3^{ii} \end{array}$ | 0.95           | 2.40                    | 3.1280 (14)  | 133              |
|                                                                                    | 0.95           | 2.44                    | 3.3644 (14)  | 164              |

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

(101) plane, and which form a distorted chequerboard pattern comprised of  $R_2^2(15)$  and  $R_4^4(23)$  rings (Table 2 and Fig. 7).

In (3*a*), the molecules are linked by the C2– $H2\cdots O3(-x + 1, -y + 1, -z + 1)$  hydrogen bond, forming centrosymmetric dimers across the inversion centre at (1/2, 1/2, 1/2) (Table 3 and Fig. 8).



Figure 9

View of the two independent ladders formed linked  $R_2^2(13)$  rings which run parallel to the *a* axis in compound (3*b*). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes (bottom to top): x - 1, y, z; x, y, z; x + 1, y, z.]





In (3*b*), independent ladders of molecule 1 and molecule 2 are propagated along the *a*-axis direction by unit translation. These are formed by chains of  $R_2^2(13)$  rings produced by the weak  $Cx2-Hx2\cdots Ox4(x + 1, y, z)$  and Cx36- $Hx36\cdots Ox3(x - 1, y, z)$  interactions, where x = 1 or 2 (Table 4 and Fig. 9).

A common feature found for compounds with para substituents, (4a)-(4d) is the formation of a ladder structure composed of molecules propagated by unit axial translations involving intermolecular hydrogen bonds between C2 and O4 of the chromone ring and the C atom located at the ortho position of the exocyclic phenyl ring and the carboxamide O atom. This is also found in (1) and in compound (3b), which has a Br substituent located at the meta position, in which the ladder structure is supplemented by an intermolecular hydrogen bond between C5 and O1 of the chromone moiety. In (4*a*), the molecules are linked by C2–H2···O4 (x, y - 1, z) and C316-H316···O3 (x, y + 1, z) hydrogen bonds, forming  $R_2^2(13)$  rings structures which are propagated along the *b*-axis direction by unit translation (Table 5 and Fig. 10). In (4d), the molecules are linked by C2-H2···O4(x + 1, y, z) and C316-H316···O3(x - 1, y, z) hydrogen bonds, forming  $R_2^2(13)$  ring structures which are propagated along the *a*-axis direction by unit translation (Table 6 and Fig. 11).

In the hydroxyl compound (4*e*), the molecules in the asymmetric unit are linked by the O114-H114···O23 hydrogen bond, forming a dimer. These dimers are linked by the O214-H214···O13(x - 1, 1 + y, z) and weak C16-H16···O114(x, y, z - 1), C18-H18···O24(x + 1, y - 1, z - 1), C26-H26···O214(x, y, z + 1) and C28-H28···O14(x, y, z + 1) hydrogen bonds, which link the molecules into sheets that form a chequerboard pattern and which lie parallel to the

# research communications

| Table 7                |     |        |                |
|------------------------|-----|--------|----------------|
| Hydrogen-bond geometry | (Å, | °) for | (4 <i>e</i> ). |

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------|----------|-------------------------|--------------|------------------|
| N13-H13···O14               | 0.94 (4) | 1.88 (4)                | 2.693 (4)    | 143 (4)          |
| N23-H23···O24               | 0.90 (4) | 1.95 (4)                | 2.698 (4)    | 139 (4)          |
| C112-H112···O13             | 0.95     | 2.23                    | 2.833 (4)    | 121              |
| C212-H212···O23             | 0.95     | 2.28                    | 2.845 (4)    | 117              |
| O114-H114O23                | 0.91 (6) | 1.76 (6)                | 2.647 (4)    | 167 (5)          |
| $O214-H214\cdots O13^{i}$   | 0.88 (5) | 1.81 (5)                | 2.668 (4)    | 165 (5)          |
| $C16-H16\cdots O114^{ii}$   | 0.95     | 2.46                    | 3.411 (5)    | 174              |
| $C18-H18\cdots O24^{iii}$   | 0.95     | 2.56                    | 3.481 (5)    | 163              |
| C22-H22···O114              | 0.95     | 2.58                    | 3.508 (4)    | 166              |
| $C26-H26\cdots O214^{iv}$   | 0.95     | 2.51                    | 3.454 (5)    | 175              |
| $C28-H28\cdots O14^{iv}$    | 0.95     | 2.46                    | 3.391 (5)    | 165              |

Symmetry codes: (i) x - 1, y + 1, z; (ii) x, y, z - 1; (iii) x + 1, y - 1, z - 1; (iv) x, y, z + 1.

(110) plane, comprised of  $R_3^2(15)$  and  $R_3^3(24)$  rings (Table 7 and Fig. 12).

Selected  $\pi$ - $\pi$  contacts, with centroid-to-centroid distances less than 4.0 Å and with angles between planes of less than 10° for compounds (2*b*), (3*b*), (4*a*) and (4*d*) are listed in Table 8. No interactions were found for (3*a*).

#### 4. Synthesis and crystallization

The compounds were obtained by synthetic strategies described elsewhere (Cagide *et al.*, 2011). Chromone-3-carboxamide derivatives were synthesized using chromone-3-carboxylic acid as starting material which, after *in situ* activation with phosphorus(V) oxychloride (POCl<sub>3</sub>) in dimethyl-formamide, react with the different substituted anilines. Crystals were recrystallized from ethylacetate forming colourless plates whose dimensions are given in Table 9.



Figure 11

View of the ladder formed by the linked  $R_2^2(13)$  rings which run parallel to the *a* axis in compound (4*d*). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes (bottom to top): x - 1, y, z; x, y, z; x + 1, y, z.]



Figure 12

View of the sheet formed by the interconnection of three  $C-H\cdots O$  hydrogen-bonded chains in compound (4*e*). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes (from bottom to top rows and left to right). Bottom: x + 1, y - 1, z - 1; x + 1, y - 1, z - 1; x + 1, y - 1, z + 1. Middle two rows: x, y, z - 1; x, y, z; x, y, z + 1. Top: x - 1, y + 1, z - 1; x - 1, y + 1, z; x - 1, y + 1, z + 1.]

#### 5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 9.

In (3b) there are two molecules in the asymmetric unit. The largest difference map peaks are associated with the Br atoms.

In all compounds, H atoms attached to C atoms were treated as riding atoms with C–H(aromatic) = 0.95 Å with  $U_{iso}(H) = 1.2U_{eq}(C)$ ; C–H(methyl), = 0.98 Å with  $U_{iso}=1.5U_{eq}(C)$ . In all compounds, the amino H atoms were refined with the exception of (3b) where these atoms were refined as riding atoms with N–H = 0.88 Å with  $U_{iso} = 1.2U_{eq}(C)$  and in (4e) in which the positional parameters of the amino and hydroxyl H atoms were refined but their  $U_{iso}$  values were

Table 8

Selected  $\pi$ - $\pi$  contacts (Å, °) for compounds (2*b*), (3*b*) (molecule 1), (4*a*) and (4*d*).

Cg1, Cg2 and Cg3(Cg7) are the centroids of the pyrone, of the chromone phenyl and of the carboxamide phenyl rings, respectively. \* indicates contacts in which the planes involved are inclined to each other, the perpendicular distance between the planes is an average value and the angle between the planes is given in place of a slippage. Only interplanar interactions with  $Cg\cdots Cg$  distances less than or equal to 4.0 Å or with angles between the planes of less than 10° are included.

| Compound      | contacts               | distance    | perp. distance | Slippage*      |
|---------------|------------------------|-------------|----------------|----------------|
| (2 <i>b</i> ) | $Cg1 \cdots Cg1^{iii}$ | 3.859 (3)   | 3.4223*        | $4.0(13)^{*}$  |
|               | $Cg1 \cdots Cg2^{iv}$  | 3.564 (3)   | 3.3951*        | 3.86 (13)*     |
|               | $Cg2 \cdots Cg2^{iv}$  | 3.674 (3)   | 3.4035*        | 4.0 (13)*      |
|               | $Cg3 \cdots Cg3^{i}$   | 3.649 (3)   | 3.3049 (11)    | 1.546          |
| (3 <i>b</i> ) | $Cg1 \cdots Cg3^{v}$   | 3.6621 (17) | 3.4150*        | 2.91 (13)      |
| × /           | $Cg2 \cdots Cg3^{vi}$  | 3.6851 (18) | 3.3587*        | $2.47(14)^{*}$ |
|               | $Cg2 \cdots Cg3^{v}$   | 3.7278 (17) | $3.4360^{*}$   | $2.47(14)^{*}$ |
| (4 <i>a</i> ) | $Cg2 \cdots Cg3^{ii}$  | 3.780 (3)   | 3.383*         | $1.90(6)^{*}$  |
| (4d)          | $Cg1 \cdots Cg1^{vii}$ | 3.4831 (7)  | 3.3257 (4)     | 1.035          |
| · /           | $Cg1 \cdots Cg2^{Vii}$ | 3.6037 (7)  | 3.3137*        | $2.46(5)^{*}$  |
| (4 <i>e</i> ) | $Cg1 \cdots Cg3^{vi}$  | 3.669 (2)   | 3.3741*        | $3.50(17)^*$   |
| × /           | $Cg1 \cdots Cg7^{v}$   | 3.768 (2)   | $3.3792^{*}$   | 3.09 (17)*     |

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii)  $\frac{3}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z$ ; (iii)  $x, \frac{3}{2} - y, -\frac{1}{2} + z$ ; (iv)  $x, \frac{3}{2} - y, \frac{1}{2} + z$ ; (v) 1 - x, 1 - y, -z; (vi) 1 - x, -y, -z; (vii) 1 - x, -y, 1 - z.

Table 9 Experimental details

| Experimental details.                                                        |                                                                |                                                                |                                                                |
|------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
|                                                                              | (2b)                                                           | (3a)                                                           | (3b)                                                           |
| Crystal data                                                                 |                                                                |                                                                |                                                                |
| Chemical formula                                                             | $C_{16}H_{10}N_2O_5$                                           | C <sub>17</sub> H <sub>13</sub> NO <sub>4</sub>                | C <sub>16</sub> H <sub>10</sub> BrNO <sub>3</sub>              |
| $M_{ m r}$                                                                   | 310.26                                                         | 295.28                                                         | 344.16                                                         |
| Crystal system, space group                                                  | Monoclinic, $P2_1/c$                                           | Monoclinic, $P2_1/n$                                           | Triclinic, P1                                                  |
| Temperature (K)                                                              |                                                                | 100                                                            | 120                                                            |
| a, b, c (A)                                                                  | 14.104 (9), 12.692 (8), 7.340 (5)                              | 9.6903 (2), 5.5303 (4), 24.9335 (18)                           | 6.7435 (1), 7.3012 (1), 28.0740 (9)                            |
| $\alpha, \beta, \gamma$ (°)                                                  | 90, 100.065 (13), 90                                           | 90, 99.162 (5), 90                                             | 85.309 (4), 89.164 (4), 70.645 (3)                             |
| V (A)                                                                        | 1293.7 (15)                                                    | 1319.15 (14)                                                   | 1299.64 (5)                                                    |
| Radiation type                                                               | 4<br>Μο Κα                                                     | 4<br>Μο Κα                                                     | 4<br>Μο Κα                                                     |
| $\mu (\text{mm}^{-1})$                                                       | 0.12                                                           | 0.11                                                           | 3.17                                                           |
| Crystal size (mm)                                                            | $0.09 \times 0.02 \times 0.01$                                 | $0.16 \times 0.11 \times 0.02$                                 | $0.38 \times 0.34 \times 0.06$                                 |
| Data collection                                                              |                                                                |                                                                |                                                                |
| Diffractometer                                                               | Rigaku Saturn724+                                              | Rigaku Saturn724+                                              | Rigaku R-AXIS conversion                                       |
| Absorption correction                                                        | Multi-scan (CrystalClear-SM                                    | Multi-scan (CrystalClear-SM                                    | Multi-scan (CrystalClear-SM                                    |
|                                                                              | Expert; Rigaku, 2012)                                          | Expert; Rigaku, 2012)                                          | Expert; Rigaku, 2012)                                          |
| $T_{\min}, T_{\max}$                                                         | 0.989, 0.999                                                   | 0.983, 0.998                                                   | 0.379, 0.833                                                   |
| No. of measured, independent                                                 | 8466, 2947, 2215                                               | 7859, 2665, 1952                                               | 16781, 5939, 5633                                              |
| and observed $[I > 2\sigma(I)]$                                              |                                                                |                                                                |                                                                |
| reflections<br>P                                                             | 0.061                                                          | 0.055                                                          | 0.045                                                          |
| $\Lambda_{\text{int}}$<br>(sin $\theta$ ) (Å <sup>-1</sup> )                 | 0.640                                                          | 0.055                                                          | 0.650                                                          |
| $(\sin \theta/\lambda)_{\rm max}$ (A)                                        | 0.049                                                          | 0.025                                                          | 0.050                                                          |
| Refinement                                                                   |                                                                |                                                                |                                                                |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.077, 0.153, 1.16                                             | 0.041, 0.108, 0.98                                             | 0.044, 0.116, 1.08                                             |
| No. of reflections                                                           | 2947                                                           | 2665                                                           | 5939                                                           |
| No. of parameters                                                            | 212                                                            | 205                                                            | 379                                                            |
| H-atom treatment                                                             | H atoms treated by a mixture of<br>independent and constrained | H atoms treated by a mixture of<br>independent and constrained | H-atom parameters constrained                                  |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$            | 0.24, -0.31                                                    | 0.270.28                                                       | 1.79, -0.86                                                    |
|                                                                              |                                                                |                                                                | ,                                                              |
|                                                                              | (4 <i>a</i> )                                                  | (4 <i>d</i> )                                                  | (4 <i>e</i> )                                                  |
| Crystal data                                                                 |                                                                |                                                                |                                                                |
| Chemical formula                                                             | $C_{17}H_{13}NO_4$                                             | $C_{17}H_{13}NO_3$                                             | $C_{16}H_{11}NO_4$                                             |
| $M_{ m r}$                                                                   | 295.28                                                         | 279.28                                                         | 281.26                                                         |
| Crystal system, space group                                                  | Monoclinic, $P2_1/n$                                           | Triclinic, P1                                                  | Triclinic, P1                                                  |
| Temperature (K)                                                              | 100                                                            | 100                                                            |                                                                |
| a, b, c (A)                                                                  | 14.1629 (10), 6.772 (5), 15.1898 (11)                          | 6.6106(5), 7.0143(5), 15.3749(11)                              | 7.0/56 (5), 12.5125 (9), 14.2944 (10)                          |
| $\alpha, \beta, \gamma$ (°)                                                  | 90, 116.607 (11), 90                                           | 91.444 (6), 95.238 (6), 112.551 (8)                            | 86.267 (8), 83.839 (8), 84.588 (8)                             |
| V(A)<br>Z                                                                    | 1502.0 (10)                                                    | 2                                                              | 1250.08 (10)                                                   |
| Radiation type                                                               | -<br>Μο Κα                                                     | 2<br>Μο Κα                                                     | τ<br>Μο Κα                                                     |
| $\mu \text{ (mm}^{-1})$                                                      | 0.11                                                           | 0.10                                                           | 0.11                                                           |
| Crystal size (mm)                                                            | $0.15 \times 0.07 \times 0.01$                                 | $0.16 \times 0.09 \times 0.02$                                 | $0.14 \times 0.04 \times 0.04$                                 |
|                                                                              |                                                                |                                                                |                                                                |
| Data collection                                                              | Digola Soturn 724                                              | Digoku Soturp 724                                              | Digola Soturn 724                                              |
| Absorption correction                                                        | Multi scop (CrustalClaar SM                                    | Multi scon (CrystalClaar SM                                    | Nigaku Saturii/24+<br>Multi soon (CrustalClaar SM              |
| Absorption correction                                                        | Expert: Riggku 2012)                                           | Expert: Bigsky 2012)                                           | Expert: Bigsky 2012)                                           |
| T + T                                                                        | 0 984 0 999                                                    | 0.985_0.998                                                    | 0.985_0.996                                                    |
| No of measured independent                                                   | 16554 2987 2617                                                | 9400 2986 2645                                                 | 5627 5627 4343                                                 |
| and observed $[I > 2\sigma(I)]$                                              | ,,                                                             | ,,                                                             |                                                                |
| reflections                                                                  |                                                                |                                                                |                                                                |
| R <sub>int</sub>                                                             | 0.042                                                          | 0.035                                                          |                                                                |
| $(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$                              | 0.650                                                          | 0.651                                                          | 0.652                                                          |
| Refinement                                                                   |                                                                |                                                                |                                                                |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.037, 0.103, 0.92                                             | 0.043, 0.123, 1.08                                             | 0.085, 0.252, 1.18                                             |
| No. of reflections                                                           | 2987                                                           | 2986                                                           | 5627                                                           |
| No. of parameters                                                            | 204                                                            | 196                                                            | 392                                                            |
| H-atom treatment                                                             | H atoms treated by a mixture of<br>independent and constrained | H atoms treated by a mixture of<br>independent and constrained | H atoms treated by a mixture of<br>independent and constrained |
| $\Delta \rho_{\text{max}}$ , $\Delta \rho_{\text{min}}$ (e Å <sup>-3</sup> ) | 0.390.18                                                       | 0.33, -0.26                                                    | 0.41, -0.38                                                    |
| $-r \max$ , $-r \min (-r + -)$                                               |                                                                |                                                                |                                                                |

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009), Flipper 25 (Oszlányi & Sütő, 2004), OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and Mercury (Macrae et al., 2006).

constrained to be  $U_{iso}(N) = 1.2U_{eq}(N)$  and  $U_{iso}(O)b= 1.5U_{eq}(O)$ . The final positions of these atoms were checked in a difference Fourier map, as were the positions of the H atoms in any methyl groups. The quality of the crystals for (4e) was poor and the crystals were twinned. The completeness is 97%. The crystal studied was refined as a two-component twin [twin law: 2-axis (001) [105], BASF = 0.40].

#### Acknowledgements

The authors thank the National Crystallographic Service, University of Southampton for the data collection and for their help and advice (Coles & Gale, 2012) and the Foundation for Science and Technology (FCT), Portugal, for financial support. FC (grant SFRH/BPDF/QUI-QUI/74491/2010) is also supported by the FCT.

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Cagide, F., Reis, J., Gaspar, A. & Borges, F. (2011). *Tetrahedron Lett.* **52**, 6446–6449.
- Cagide, F., Reis, J., Gaspar, A., Borges, F., Gomes, L. & Low, J. N. (2015). *Chem. Commun.* **14**, 2832–2835.
- Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.
- Gomes, L. R., Low, J. N., Borges, F. & Cagide, F. (2013). Acta Cryst. C69, 927–933.
- Gomes, L. R., Low, J. N., Cagide, F. & Borges, F. (2015). Acta Cryst. E71, 88–93.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Mackay, A. L. (1984). Acta Cryst. A40, 165-166.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 30–309.
- Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.
- Rigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

Acta Cryst. (2015). E71, 547-554 [doi:10.1107/S2056989015007859]

# New insights in the discovery of novel *h*-MAO-B inhibitors: structural characterization of a series of *N*-phenyl-4-oxo-4*H*-chromene-3-carboxamide derivatives

## Ligia R. Gomes, John Nicolson Low, Fernando Cagide, Daniel Chavarria and Fernanda Borges

#### **Computing details**

For all compounds, data collection: *CrystalClear-SM Expert* (Rigaku, 2012); cell refinement: *CrystalClear-SM Expert* (Rigaku, 2012); data reduction: *CrystalClear-SM Expert* (Rigaku, 2012). Program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *Flipper 25* (Oszlányi & Sütő, 2004) for (2b), (3a), (4a), (4d), (4e); *SHELXS97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *Flipper 25* (Oszlányi & Sütő, 2004) for (2b), (3a), (4a), (4d), (4e); *SHELXS97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *Flipper 25* (Oszlányi & Sütő, 2004); for (3b). Program(s) used to refine structure: *OSCAIL* (McArdle *et al.*, 2004), *ShelXle* (Hübschle *et al.*, 2011) and *SHELXL2014* (Sheldrick, 2015) for (2b), (3a), (4a), (4d), (4e); *OSCAIL* (McArdle *et al.*, 2004), *ShelXle* (Hübschle *et al.*, 2006). Software used to prepare material for publication: *OSCAIL* (McArdle *et al.*, 2004), *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009) for (2b), (3a), (4a), (4d), (4e); *OSCAIL* (McArdle *et al.*, 2004), *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009) for (2b), (3a), (4a), (4d), (4e); *OSCAIL* (McArdle *et al.*, 2004), *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009) for (2b), (3a), (4a), (4d), (4e); *OSCAIL* (McArdle *et al.*, 2004), *SHELXL* (Sheldrick, 2015) and *PLATON* (Spek, 2009) for (2b),

#### (2b) N-(2-Nitrophenyl)-4-oxo-4H-chromene-3-carboxamide

| Crystal data                                         |                                                                     |
|------------------------------------------------------|---------------------------------------------------------------------|
| $C_{16}H_{10}N_2O_5$                                 | F(000) = 640                                                        |
| $M_r = 310.26$                                       | $D_{\rm x} = 1.593 {\rm Mg} {\rm m}^{-3}$                           |
| Monoclinic, $P2_1/c$                                 | Mo $K\alpha$ radiation, $\lambda = 0.71075$ Å                       |
| a = 14.104 (9)  Å                                    | Cell parameters from 3262 reflections                               |
| b = 12.692 (8) Å                                     | $\theta = 2.2 - 31.3^{\circ}$                                       |
| c = 7.340(5) Å                                       | $\mu = 0.12 \text{ mm}^{-1}$                                        |
| $\beta = 100.065 \ (13)^{\circ}$                     | T = 100  K                                                          |
| $V = 1293.7 (15) \text{ Å}^3$                        | Rod, yellow                                                         |
| Z = 4                                                | $0.09 \times 0.02 \times 0.01 \text{ mm}$                           |
| Data collection                                      |                                                                     |
| Rigaku Saturn724+ (2x2 bin mode)                     | 8466 measured reflections                                           |
| diffractometer                                       | 2947 independent reflections                                        |
| Radiation source: Rotating Anode                     | 2215 reflections with $I > 2\sigma(I)$                              |
| Confocal monochromator                               | $R_{\rm int} = 0.061$                                               |
| Detector resolution: 28.5714 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$ |
| profile data from $\omega$ -scans                    | $h = -18 \rightarrow 18$                                            |
| Absorption correction: multi-scan                    | $k = -16 \rightarrow 15$                                            |
| (CrystalClear-SM Expert; Rigaku, 2012)               | $l = -9 \rightarrow 9$                                              |
| $T_{\min} = 0.989, \ T_{\max} = 0.999$               |                                                                     |
|                                                      |                                                                     |

Refinement

| Refinement on $F^2$             | Hydrogen site location: mixed                              |
|---------------------------------|------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent                |
| $R[F^2 > 2\sigma(F^2)] = 0.077$ | and constrained refinement                                 |
| $wR(F^2) = 0.153$               | $w = 1/[\sigma^2(F_o^2) + (0.0365P)^2 + 1.6526P]$          |
| <i>S</i> = 1.16                 | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 2947 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 212 parameters                  | $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$    |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x            | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|-------------|-----------------------------|--|
| 01   | 0.06264 (13) | 0.90167 (15) | 0.2131 (3)  | 0.0216 (5)                  |  |
| O3   | 0.33472 (14) | 0.85362 (16) | 0.4843 (3)  | 0.0253 (5)                  |  |
| O4   | 0.15266 (14) | 0.59520 (16) | 0.2912 (3)  | 0.0261 (5)                  |  |
| O31  | 0.37222 (16) | 0.41995 (16) | 0.8305 (3)  | 0.0296 (5)                  |  |
| O32  | 0.27802 (14) | 0.48771 (16) | 0.5956 (3)  | 0.0261 (5)                  |  |
| N3   | 0.32255 (17) | 0.67310 (19) | 0.4733 (3)  | 0.0200 (5)                  |  |
| H3   | 0.278 (3)    | 0.616 (3)    | 0.447 (5)   | 0.049 (11)*                 |  |
| N31  | 0.35685 (17) | 0.48317 (19) | 0.7022 (3)  | 0.0219 (6)                  |  |
| C2   | 0.1510(2)    | 0.8769 (2)   | 0.3047 (4)  | 0.0209 (6)                  |  |
| H2   | 0.1918       | 0.9337       | 0.3523      | 0.025*                      |  |
| C3   | 0.18677 (19) | 0.7789 (2)   | 0.3351 (4)  | 0.0180 (6)                  |  |
| C4   | 0.1266 (2)   | 0.6879 (2)   | 0.2674 (4)  | 0.0201 (6)                  |  |
| C4A  | 0.03017 (19) | 0.7160 (2)   | 0.1659 (4)  | 0.0191 (6)                  |  |
| C5   | -0.0351 (2)  | 0.6377 (2)   | 0.0908 (4)  | 0.0206 (6)                  |  |
| H5   | -0.0180      | 0.5655       | 0.1071      | 0.025*                      |  |
| C6   | -0.1244 (2)  | 0.6653 (2)   | -0.0068 (4) | 0.0249 (7)                  |  |
| H6   | -0.1681      | 0.6119       | -0.0588     | 0.030*                      |  |
| C7   | -0.1509 (2)  | 0.7710 (3)   | -0.0296 (4) | 0.0246 (7)                  |  |
| H7   | -0.2126      | 0.7889       | -0.0969     | 0.030*                      |  |
| C8   | -0.0884 (2)  | 0.8501 (2)   | 0.0448 (4)  | 0.0232 (6)                  |  |
| H8   | -0.1063      | 0.9222       | 0.0311      | 0.028*                      |  |
| C8A  | 0.0017 (2)   | 0.8203 (2)   | 0.1405 (4)  | 0.0212 (6)                  |  |
| C31  | 0.2891 (2)   | 0.7728 (2)   | 0.4371 (4)  | 0.0211 (6)                  |  |
| C311 | 0.4162 (2)   | 0.6460 (2)   | 0.5629 (4)  | 0.0202 (6)                  |  |
| C312 | 0.43423 (19) | 0.5536 (2)   | 0.6708 (4)  | 0.0196 (6)                  |  |
| C313 | 0.5268 (2)   | 0.5248 (2)   | 0.7552 (4)  | 0.0221 (6)                  |  |
| H313 | 0.5367       | 0.4627       | 0.8284      | 0.027*                      |  |
| C314 | 0.6038 (2)   | 0.5870 (2)   | 0.7320 (4)  | 0.0250 (7)                  |  |
| H314 | 0.6673       | 0.5677       | 0.7880      | 0.030*                      |  |
| C315 | 0.5883 (2)   | 0.6778 (2)   | 0.6266 (4)  | 0.0236 (7)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| H315 | 0.6416     | 0.7203     | 0.6103     | 0.028*     |
|------|------------|------------|------------|------------|
| C316 | 0.4957 (2) | 0.7078 (2) | 0.5439 (4) | 0.0223 (6) |
| H316 | 0.4866     | 0.7711     | 0.4739     | 0.027*     |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| 01   | 0.0174 (10) | 0.0192 (10) | 0.0275 (12) | 0.0018 (8)   | 0.0020 (8)   | 0.0005 (9)   |
| 03   | 0.0215 (11) | 0.0186 (10) | 0.0348 (13) | -0.0029 (9)  | 0.0027 (9)   | -0.0010 (9)  |
| 04   | 0.0214 (11) | 0.0163 (10) | 0.0381 (13) | 0.0011 (9)   | -0.0016 (9)  | 0.0017 (9)   |
| 031  | 0.0355 (12) | 0.0219 (11) | 0.0300 (13) | 0.0006 (10)  | 0.0022 (10)  | 0.0077 (10)  |
| O32  | 0.0190 (10) | 0.0229 (11) | 0.0341 (13) | -0.0012 (9)  | -0.0017 (9)  | 0.0027 (9)   |
| N3   | 0.0160 (12) | 0.0170 (12) | 0.0258 (14) | 0.0010 (10)  | 0.0004 (10)  | 0.0022 (10)  |
| N31  | 0.0217 (12) | 0.0191 (12) | 0.0256 (14) | 0.0015 (10)  | 0.0057 (11)  | 0.0013 (10)  |
| C2   | 0.0169 (14) | 0.0236 (15) | 0.0223 (16) | 0.0015 (12)  | 0.0033 (12)  | -0.0012 (12) |
| C3   | 0.0173 (13) | 0.0185 (13) | 0.0182 (14) | -0.0004 (12) | 0.0029 (11)  | 0.0009 (12)  |
| C4   | 0.0190 (14) | 0.0209 (14) | 0.0210 (15) | 0.0016 (12)  | 0.0053 (11)  | 0.0029 (12)  |
| C4A  | 0.0162 (13) | 0.0221 (14) | 0.0189 (15) | -0.0015 (12) | 0.0028 (11)  | 0.0005 (12)  |
| C5   | 0.0209 (14) | 0.0182 (14) | 0.0229 (15) | 0.0010 (12)  | 0.0042 (12)  | 0.0002 (12)  |
| C6   | 0.0233 (15) | 0.0272 (16) | 0.0238 (16) | -0.0018 (13) | 0.0033 (12)  | -0.0020 (13) |
| C7   | 0.0187 (14) | 0.0318 (16) | 0.0236 (16) | 0.0039 (14)  | 0.0044 (12)  | 0.0003 (13)  |
| C8   | 0.0238 (15) | 0.0252 (15) | 0.0215 (15) | 0.0046 (13)  | 0.0062 (12)  | 0.0007 (13)  |
| C8A  | 0.0197 (14) | 0.0231 (15) | 0.0212 (15) | -0.0005 (12) | 0.0048 (11)  | -0.0019 (12) |
| C31  | 0.0204 (14) | 0.0217 (14) | 0.0220 (16) | -0.0012 (12) | 0.0063 (12)  | 0.0004 (12)  |
| C311 | 0.0174 (13) | 0.0217 (14) | 0.0207 (15) | 0.0014 (12)  | 0.0014 (11)  | -0.0012 (12) |
| C312 | 0.0177 (13) | 0.0187 (14) | 0.0225 (15) | -0.0012 (12) | 0.0034 (11)  | -0.0003 (12) |
| C313 | 0.0230 (15) | 0.0211 (14) | 0.0216 (16) | 0.0023 (12)  | 0.0021 (12)  | -0.0018 (12) |
| C314 | 0.0199 (14) | 0.0270 (16) | 0.0264 (17) | 0.0041 (13)  | -0.0005 (12) | -0.0063 (13) |
| C315 | 0.0175 (14) | 0.0263 (15) | 0.0273 (16) | -0.0025 (13) | 0.0048 (12)  | -0.0057 (13) |
| C316 | 0.0181 (14) | 0.0217 (15) | 0.0269 (17) | -0.0006 (12) | 0.0033 (12)  | -0.0016 (12) |

| 01—C2    | 1.346 (3) | С5—Н5     | 0.9500    |  |
|----------|-----------|-----------|-----------|--|
| O1—C8A   | 1.389 (3) | C6—C7     | 1.395 (4) |  |
| O3—C31   | 1.228 (4) | С6—Н6     | 0.9500    |  |
| O4—C4    | 1.235 (3) | C7—C8     | 1.384 (4) |  |
| O31—N31  | 1.227 (3) | С7—Н7     | 0.9500    |  |
| O32—N31  | 1.244 (3) | C8—C8A    | 1.392 (4) |  |
| N3—C31   | 1.360 (4) | C8—H8     | 0.9500    |  |
| N3—C311  | 1.411 (4) | C311—C316 | 1.396 (4) |  |
| N3—H3    | 0.96 (4)  | C311—C312 | 1.413 (4) |  |
| N31—C312 | 1.460 (4) | C312—C313 | 1.392 (4) |  |
| C2—C3    | 1.346 (4) | C313—C314 | 1.378 (4) |  |
| С2—Н2    | 0.9500    | С313—Н313 | 0.9500    |  |
| C3—C4    | 1.468 (4) | C314—C315 | 1.383 (4) |  |
| C3—C31   | 1.508 (4) | C314—H314 | 0.9500    |  |
| C4—C4A   | 1.476 (4) | C315—C316 | 1.394 (4) |  |
|          |           |           |           |  |

| C4A—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.385 (4)  | C315—H315                                  | 0.9500              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------|---------------------|
| C4A—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.401 (4)  | С316—Н316                                  | 0.9500              |
| C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.381 (4)  |                                            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                            |                     |
| C2—O1—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.3 (2)  | C7—C8—C8A                                  | 117.7 (3)           |
| C31—N3—C311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125.6 (2)  | С7—С8—Н8                                   | 121.2               |
| C31—N3—H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118 (2)    | C8A—C8—H8                                  | 121.2               |
| C311—N3—H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116 (2)    | C4A—C8A—O1                                 | 120.9 (3)           |
| O31—N31—O32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122.1 (2)  | C4A—C8A—C8                                 | 123.0 (3)           |
| O31—N31—C312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119.0 (2)  | O1—C8A—C8                                  | 116.1 (3)           |
| O32—N31—C312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.9 (2)  | O3—C31—N3                                  | 125.1 (3)           |
| O1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125.9 (3)  | O3—C31—C3                                  | 120.4 (3)           |
| O1—C2—H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117.1      | N3—C31—C3                                  | 114.5 (2)           |
| С3—С2—Н2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117.1      | C316—C311—N3                               | 121.3 (3)           |
| C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.6 (3)  | C316—C311—C312                             | 117.0 (3)           |
| C2—C3—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115.4 (3)  | N3—C311—C312                               | 121.8 (3)           |
| C4—C3—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125.0 (3)  | C313—C312—C311                             | 122.0 (3)           |
| Q4—C4—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 124.2 (3)  | C313—C312—N31                              | 115.9 (3)           |
| 04—C4—C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.8(3)   | C311 - C312 - N31                          | 122.0(2)            |
| $C_3 - C_4 - C_4 A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1140(2)    | $C_{314} - C_{313} - C_{312}$              | 122.0(2)<br>1195(3) |
| C8A - C4A - C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1180(2)    | C314—C313—H313                             | 120.2               |
| C8A - C4A - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121 3 (3)  | C312—C313—H313                             | 120.2               |
| C5-C4A-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.7(3)   | $C_{313} - C_{314} - C_{315}$              | 1197(3)             |
| C6-C5-C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.1(3)   | $C_{313}$ $C_{314}$ $H_{314}$              | 120.2               |
| C6-C5-H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.0      | C315—C314—H314                             | 120.2               |
| C4A - C5 - H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.0      | $C_{314} - C_{315} - C_{316}$              | 120.2<br>121.1(3)   |
| $C_{5}-C_{6}-C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.5 (3)  | C314—C315—H315                             | 119 5               |
| C5-C6-H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.8      | C316—C315—H315                             | 119.5               |
| C7—C6—H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.8      | $C_{315} - C_{316} - C_{311}$              | 120.7(3)            |
| C8-C7-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 7 (3)  | C315—C316—H316                             | 119.7               |
| C8—C7—H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.6      | C311—C316—H316                             | 119.7               |
| C6-C7-H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.6      |                                            | 117.7               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11).0      |                                            |                     |
| C8A-01-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.6(4)    | C311—N3—C31—O3                             | -3.2(5)             |
| 01-C2-C3-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.9(5)    | $C_{311} = N_3 = C_{31} = C_3$             | 178.5 (3)           |
| 01 - C2 - C3 - C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 178.3 (3)  | $C_{2}$ $C_{3}$ $C_{31}$ $C_{31}$ $C_{31}$ | -1.0(4)             |
| $C_2 - C_3 - C_4 - O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -178.8(3)  | C4-C3-C31-O3                               | 178.1 (3)           |
| $C_{31} - C_{3} - C_{4} - O_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20(5)      | $C_{2}$ $C_{3}$ $C_{31}$ $N_{3}$           | 1773(3)             |
| $C_{2}$ $C_{3}$ $C_{4}$ $C_{4A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13(4)      | C4-C3-C31-N3                               | -35(4)              |
| $C_{31}$ $C_{3}$ $C_{4}$ $C_{4A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -177.9(3)  | $C_{31}$ $N_{3}$ $C_{311}$ $C_{316}$       | -322(4)             |
| 04-C4-C4A-C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179 8 (3)  | $C_{31} N_{3} C_{311} C_{312}$             | 1498(3)             |
| $C_3 - C_4 - C_{4A} - C_{8A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.3(4)    | $C_{316} - C_{311} - C_{312} - C_{313}$    | 01(4)               |
| 04-C4-C4A-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.7(4)    | N3-C311-C312-C313                          | 178 1 (3)           |
| $C_{3}$ $C_{4}$ $C_{4}$ $C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 179 2 (3)  | $C_{316} - C_{311} - C_{312} - N_{31}$     | 179 4 (3)           |
| C8A - C4A - C5 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7(4)     | N3_C311_C312_N31                           | -26(4)              |
| C4-C4A-C5-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -178 8 (3) | 031 - 031 - 0312 - 0313                    | 2.0(-)              |
| C4A = C5 = C6 = C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.8(4)    | 032 - N31 - C312 - C313                    | -1613(3)            |
| $C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{}C_{-$ | 0.1 (5)    | 031 - N31 - C312 - C313                    | -1622(3)            |
| $C_{J} = C_{J} = C_{J} = C_{J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1 (3)    | 031—IN31—0312—0311                         | 102.2 (3)           |

| C6—C7—C8—C8A  | 0.8 (4)    | O32—N31—C312—C311   | 19.3 (4)   |
|---------------|------------|---------------------|------------|
| C5—C4A—C8A—O1 | 179.3 (3)  | C311—C312—C313—C314 | -0.8 (4)   |
| C4—C4A—C8A—O1 | -1.2 (4)   | N31—C312—C313—C314  | 179.8 (3)  |
| C5—C4A—C8A—C8 | 0.2 (4)    | C312—C313—C314—C315 | 0.6 (4)    |
| C4—C4A—C8A—C8 | 179.7 (3)  | C313—C314—C315—C316 | 0.3 (5)    |
| C2—O1—C8A—C4A | 1.7 (4)    | C314—C315—C316—C311 | -1.1 (5)   |
| C2—O1—C8A—C8  | -179.2 (3) | N3-C311-C316-C315   | -177.2 (3) |
| C7—C8—C8A—C4A | -0.9 (5)   | C312—C311—C316—C315 | 0.8 (4)    |
| C7—C8—C8A—O1  | 179.9 (3)  |                     |            |
|               |            |                     |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                     | D—H      | H···A    | D···A     | D—H···A |
|-----------------------------|----------|----------|-----------|---------|
| N3—H3…O4                    | 0.96 (4) | 1.95 (4) | 2.718 (3) | 136 (3) |
| N3—H3…O32                   | 0.96 (4) | 1.96 (4) | 2.633 (3) | 126 (3) |
| C316—H316…O3                | 0.95     | 2.40     | 2.902 (4) | 113     |
| C8—H8…O32 <sup>i</sup>      | 0.95     | 2.58     | 3.210 (4) | 124     |
| С5—Н5…О1іі                  | 0.95     | 2.60     | 3.375 (4) | 139     |
| C313—H313…O3 <sup>iii</sup> | 0.95     | 2.49     | 3.299 (4) | 143     |

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2; (iii) -x+1, y-1/2, -z+3/2.

#### (3a) N-(3-Methoxyphenyl)-4-oxo-4H-chromene-3-carboxamide

Crystal data

C<sub>17</sub>H<sub>13</sub>NO<sub>4</sub>  $M_r = 295.28$ Monoclinic,  $P2_1/n$  a = 9.6903 (2) Å b = 5.5303 (4) Å c = 24.9335 (18) Å  $\beta = 99.162$  (5)° V = 1319.15 (14) Å<sup>3</sup> Z = 4

#### Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer Graphite Monochromator monochromator Detector resolution: 28.5714 pixels mm<sup>-1</sup> profile data from  $\omega$ -scans Absorption correction: multi-scan (*CrystalClear-SM Expert*; Rigaku, 2012)  $T_{\min} = 0.983$ ,  $T_{\max} = 0.998$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.041$  $wR(F^2) = 0.108$ S = 0.982665 reflections F(000) = 616  $D_x = 1.487 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71075 \text{ Å}$ Cell parameters from 7535 reflections  $\theta = 2.4-27.5^{\circ}$   $\mu = 0.11 \text{ mm}^{-1}$  T = 100 KPlate, yellow  $0.16 \times 0.11 \times 0.02 \text{ mm}$ 

7859 measured reflections 2665 independent reflections 1952 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.055$  $\theta_{max} = 26.4^\circ, \ \theta_{min} = 3.0^\circ$  $h = -8 \rightarrow 12$  $k = -6 \rightarrow 4$  $l = -31 \rightarrow 31$ 

205 parameters0 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement

| $w = 1/[\sigma^2(F_o^2) + (0.0608P)^2]$ | $\Delta  ho_{ m max} = 0.27$ e Å <sup>-3</sup>             |
|-----------------------------------------|------------------------------------------------------------|
| where $P = (F_o^2 + 2F_c^2)/3$          | $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ |
| $(\Delta/\sigma)_{\rm max} < 0.001$     |                                                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x             | У          | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|---------------|------------|-------------|-----------------------------|--|
| 01   | 0.26521 (11)  | 0.7928 (2) | 0.57868 (4) | 0.0171 (3)                  |  |
| 03   | 0.44760 (12)  | 0.7936 (2) | 0.44346 (5) | 0.0232 (3)                  |  |
| 04   | 0.18474 (11)  | 0.2131 (2) | 0.47561 (5) | 0.0180 (3)                  |  |
| 031  | 0.59354 (12)  | 0.7141 (2) | 0.26613 (5) | 0.0203 (3)                  |  |
| N3   | 0.35790 (14)  | 0.4246 (3) | 0.41394 (6) | 0.0165 (3)                  |  |
| Н3   | 0.301 (2)     | 0.299 (4)  | 0.4246 (9)  | 0.041 (6)*                  |  |
| C2   | 0.32706 (16)  | 0.7700 (3) | 0.53426 (7) | 0.0161 (4)                  |  |
| H2   | 0.3919        | 0.8917     | 0.5280      | 0.022 (5)*                  |  |
| C3   | 0.30423 (16)  | 0.5879 (3) | 0.49791 (6) | 0.0142 (4)                  |  |
| C4   | 0.20852 (16)  | 0.3913 (3) | 0.50574 (6) | 0.0142 (4)                  |  |
| C4A  | 0.13765 (16)  | 0.4230 (3) | 0.55341 (6) | 0.0145 (4)                  |  |
| C5   | 0.03520 (16)  | 0.2597 (3) | 0.56506 (7) | 0.0166 (4)                  |  |
| Н5   | 0.0134        | 0.1214     | 0.5427      | 0.020*                      |  |
| C6   | -0.03398 (17) | 0.2980 (3) | 0.60851 (7) | 0.0171 (4)                  |  |
| H6   | -0.1032       | 0.1868     | 0.6159      | 0.020*                      |  |
| C7   | -0.00212 (17) | 0.5010 (3) | 0.64171 (7) | 0.0187 (4)                  |  |
| H7   | -0.0508       | 0.5275     | 0.6714      | 0.022*                      |  |
| C8   | 0.09905 (17)  | 0.6627 (3) | 0.63182 (7) | 0.0177 (4)                  |  |
| H8   | 0.1221        | 0.7986     | 0.6548      | 0.021*                      |  |
| C8A  | 0.16685 (16)  | 0.6224 (3) | 0.58735 (7) | 0.0152 (4)                  |  |
| C31  | 0.37825 (16)  | 0.6126 (3) | 0.44949 (6) | 0.0159 (4)                  |  |
| C311 | 0.39490 (16)  | 0.4120 (3) | 0.36136 (6) | 0.0158 (4)                  |  |
| C312 | 0.48345 (16)  | 0.5805 (3) | 0.34230 (7) | 0.0158 (4)                  |  |
| H312 | 0.5242        | 0.7080     | 0.3650      | 0.019*                      |  |
| C313 | 0.51050 (16)  | 0.5572 (3) | 0.28940 (7) | 0.0160 (4)                  |  |
| C314 | 0.45126 (17)  | 0.3717 (3) | 0.25555 (7) | 0.0181 (4)                  |  |
| H314 | 0.4695        | 0.3599     | 0.2193      | 0.022*                      |  |
| C315 | 0.36543 (17)  | 0.2046 (3) | 0.27535 (7) | 0.0190 (4)                  |  |
| H315 | 0.3256        | 0.0763     | 0.2527      | 0.023*                      |  |
| C316 | 0.33721 (17)  | 0.2231 (3) | 0.32799 (7) | 0.0181 (4)                  |  |
| H316 | 0.2787        | 0.1074     | 0.3413      | 0.022*                      |  |
| C317 | 0.67728 (17)  | 0.8800 (3) | 0.30136 (7) | 0.0203 (4)                  |  |
| H31A | 0.7369        | 0.9724     | 0.2805      | 0.030*                      |  |
| H31B | 0.7359        | 0.7902     | 0.3303      | 0.030*                      |  |
| H31C | 0.6164        | 0.9911     | 0.3174      | 0.030*                      |  |
|      |               |            |             |                             |  |

|      | $U^{11}$   | $U^{22}$    | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|------|------------|-------------|------------|-------------|-------------|-------------|
| 01   | 0.0184 (6) | 0.0160 (6)  | 0.0181 (6) | -0.0038 (5) | 0.0064 (5)  | -0.0022 (5) |
| O3   | 0.0268 (7) | 0.0212 (7)  | 0.0243 (7) | -0.0100 (6) | 0.0118 (5)  | -0.0044 (5) |
| O4   | 0.0198 (6) | 0.0159 (6)  | 0.0192 (6) | -0.0040(5)  | 0.0059 (5)  | -0.0033 (5) |
| O31  | 0.0223 (6) | 0.0216 (7)  | 0.0188 (6) | -0.0063(5)  | 0.0087 (5)  | -0.0010 (5) |
| N3   | 0.0148 (7) | 0.0169 (8)  | 0.0192 (8) | -0.0037 (6) | 0.0064 (6)  | -0.0013 (6) |
| C2   | 0.0131 (8) | 0.0182 (9)  | 0.0174 (9) | -0.0007 (7) | 0.0036 (7)  | 0.0043 (7)  |
| C3   | 0.0110 (8) | 0.0155 (8)  | 0.0162 (8) | 0.0008 (7)  | 0.0019 (6)  | 0.0021 (7)  |
| C4   | 0.0121 (8) | 0.0160 (9)  | 0.0136 (8) | 0.0028 (7)  | -0.0011 (6) | 0.0031 (7)  |
| C4A  | 0.0119 (8) | 0.0149 (8)  | 0.0165 (8) | 0.0022 (7)  | 0.0012 (6)  | 0.0022 (7)  |
| C5   | 0.0144 (8) | 0.0162 (9)  | 0.0184 (9) | -0.0013 (7) | 0.0001 (7)  | 0.0020 (7)  |
| C6   | 0.0133 (8) | 0.0195 (9)  | 0.0185 (9) | -0.0010 (7) | 0.0026 (7)  | 0.0056 (7)  |
| C7   | 0.0172 (9) | 0.0224 (10) | 0.0171 (9) | 0.0040 (7)  | 0.0049 (7)  | 0.0043 (7)  |
| C8   | 0.0199 (9) | 0.0152 (9)  | 0.0176 (9) | 0.0020 (7)  | 0.0020 (7)  | -0.0010 (7) |
| C8A  | 0.0119 (8) | 0.0150 (9)  | 0.0183 (8) | -0.0009 (7) | 0.0015 (6)  | 0.0050 (7)  |
| C31  | 0.0118 (8) | 0.0171 (9)  | 0.0185 (9) | 0.0001 (7)  | 0.0012 (6)  | 0.0021 (7)  |
| C311 | 0.0123 (8) | 0.0175 (9)  | 0.0179 (9) | 0.0032 (7)  | 0.0037 (6)  | 0.0009 (7)  |
| C312 | 0.0123 (8) | 0.0162 (9)  | 0.0188 (9) | -0.0007 (7) | 0.0026 (6)  | -0.0006 (7) |
| C313 | 0.0108 (8) | 0.0166 (9)  | 0.0213 (9) | 0.0024 (7)  | 0.0047 (6)  | 0.0023 (7)  |
| C314 | 0.0172 (9) | 0.0209 (9)  | 0.0169 (8) | 0.0036 (7)  | 0.0049 (7)  | -0.0003 (7) |
| C315 | 0.0168 (9) | 0.0185 (9)  | 0.0214 (9) | -0.0011 (7) | 0.0024 (7)  | -0.0050(7)  |
| C316 | 0.0152 (8) | 0.0167 (9)  | 0.0235 (9) | -0.0018 (7) | 0.0068 (7)  | -0.0004 (7) |
| C317 | 0.0174 (9) | 0.0210 (10) | 0.0232 (9) | -0.0051 (7) | 0.0056 (7)  | -0.0001 (8) |
|      |            |             |            |             |             |             |

Atomic displacement parameters  $(Å^2)$ 

| 01-C2    | 1.3464 (18) | С6—Н6     | 0.9500    |
|----------|-------------|-----------|-----------|
| O1—C8A   | 1.3815 (19) | C7—C8     | 1.378 (2) |
| O3—C31   | 1.228 (2)   | С7—Н7     | 0.9500    |
| O4—C4    | 1.239 (2)   | C8—C8A    | 1.394 (2) |
| O31—C313 | 1.3733 (19) | C8—H8     | 0.9500    |
| O31—C317 | 1.430 (2)   | C311—C316 | 1.396 (2) |
| N3—C31   | 1.360 (2)   | C311—C312 | 1.400 (2) |
| N3—C311  | 1.4146 (19) | C312—C313 | 1.391 (2) |
| N3—H3    | 0.95 (2)    | C312—H312 | 0.9500    |
| C2—C3    | 1.349 (2)   | C313—C314 | 1.393 (2) |
| C2—H2    | 0.9500      | C314—C315 | 1.386 (2) |
| C3—C4    | 1.462 (2)   | C314—H314 | 0.9500    |
| C3—C31   | 1.506 (2)   | C315—C316 | 1.386 (2) |
| C4—C4A   | 1.475 (2)   | C315—H315 | 0.9500    |
| C4A—C8A  | 1.391 (2)   | C316—H316 | 0.9500    |
| C4A—C5   | 1.406 (2)   | C317—H31A | 0.9800    |
| C5—C6    | 1.378 (2)   | C317—H31B | 0.9800    |
| С5—Н5    | 0.9500      | C317—H31C | 0.9800    |
| С6—С7    | 1.400 (2)   |           |           |
|          |             |           |           |

| C2—O1—C8A                                            | 118.25 (13)  | O1—C8A—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 116.09 (14)              |
|------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| C313—O31—C317                                        | 117.35 (13)  | C4A—C8A—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.32 (15)              |
| C31—N3—C311                                          | 127 55 (14)  | O3—C31—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124 66 (14)              |
| C31_N3_H3                                            | 1140(13)     | 03 - C31 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.80(15)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 117.0(13)    | N2 C21 C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.00(13)               |
| C311—N3—H3                                           | 117.9 (13)   | $N_3 - C_3 - C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114.51 (14)              |
| 01-02-03                                             | 125.13 (15)  | C316—C311—C312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.30 (14)              |
| O1—C2—H2                                             | 117.4        | C316—C311—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116.92 (14)              |
| С3—С2—Н2                                             | 117.4        | C312—C311—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.78 (15)              |
| C2—C3—C4                                             | 120.32 (14)  | C313—C312—C311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.59 (15)              |
| C2—C3—C31                                            | 115.01 (15)  | С313—С312—Н312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.7                    |
| C4—C3—C31                                            | 124.61 (14)  | C311—C312—H312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.7                    |
| O4—C4—C3                                             | 124.85 (14)  | O31—C313—C312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 123.62 (15)              |
| Q4—C4—C4A                                            | 121 19 (14)  | 031 - C313 - C314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114 96 (14)              |
| $C_3 - C_4 - C_4 A$                                  | 113 96 (14)  | $C_{312}$ $C_{313}$ $C_{314}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.90(11)               |
| $C_{2}^{2}$                                          | 117.70(14)   | $C_{212}^{215} = C_{213}^{215} = C_{213}^{213}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.40(15)<br>110.22(15) |
| $C_{0A} = C_{4A} = C_{5}$                            | 117.72(14)   | $C_{215} = C_{214} = C_{215}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.22 (13)              |
| C8A - C4A - C4                                       | 120.57 (14)  | C315—C314—H314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.4                    |
| C5—C4A—C4                                            | 121.67 (15)  | C313—C314—H314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.4                    |
| C6—C5—C4A                                            | 120.76 (16)  | C314—C315—C316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.53 (16)              |
| С6—С5—Н5                                             | 119.6        | С314—С315—Н315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.7                    |
| C4A—C5—H5                                            | 119.6        | С316—С315—Н315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.7                    |
| C5—C6—C7                                             | 119.94 (15)  | C315—C316—C311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.94 (15)              |
| С5—С6—Н6                                             | 120.0        | C315—C316—H316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.0                    |
| С7—С6—Н6                                             | 120.0        | C311—C316—H316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.0                    |
| C8—C7—C6                                             | 120 73 (15)  | O31—C317—H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                    |
| C8-C7-H7                                             | 119.6        | O31_C317_H31B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                    |
| C6 C7 H7                                             | 110.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5                    |
| $C_0 = C_1 = \Pi_1$                                  | 119.0        | $\frac{1131}{12} = \frac{1131}{12} = $ | 109.5                    |
| $C/-C\delta-C\delta A$                               | 118.52 (15)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5                    |
| C/C8H8                                               | 120.7        | H31A—C317—H31C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5                    |
| C8A—C8—H8                                            | 120.7        | H31B—C317—H31C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5                    |
| O1—C8A—C4A                                           | 121.59 (14)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| C8A—O1—C2—C3                                         | -2.3 (2)     | C7—C8—C8A—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 178.69 (14)              |
| O1—C2—C3—C4                                          | -1.6(3)      | C7—C8—C8A—C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.2(3)                  |
| 01 - C2 - C3 - C31                                   | 175.74 (14)  | C311—N3—C31—O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -8.8(3)                  |
| $C_{2}-C_{3}-C_{4}-O_{4}$                            | -17746(16)   | $C_{311} = N_3 = C_{31} = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 169 44 (14)              |
| $C_{31} - C_{3} - C_{4} - O_{4}$                     | 5 5 (3)      | $C_{2}$ $C_{3}$ $C_{31}$ $C_{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -35(2)                   |
| $C_2 C_3 C_4 C_4 \Lambda$                            | 3.5(3)       | $C_2 = C_3 = C_{31} = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 173.63(15)               |
| $C_2 = C_3 = C_4 = C_4 A$                            | 3.3(2)       | $C_{4} = C_{3} = C_{31} = 0_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 173.03(13)               |
| $C_3I = C_3 = C_4 = C_4 A$                           | -1/3.32(14)  | $C_2 = C_3 = C_3 = N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/8.11 (15)              |
| 04—C4—C4A—C8A                                        | 1/9.08 (15)  | C4—C3—C31—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4./(2)                  |
| C3—C4—C4A—C8A                                        | -1.8 (2)     | C31—N3—C311—C316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -166.55 (16)             |
| O4—C4—C4A—C5                                         | -3.4 (2)     | C31—N3—C311—C312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.6 (2)                 |
| C3—C4—C4A—C5                                         | 175.72 (14)  | C316—C311—C312—C313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0 (2)                  |
| C8A—C4A—C5—C6                                        | 0.4 (2)      | N3—C311—C312—C313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -178.12 (14)             |
| C4—C4A—C5—C6                                         | -177.26 (15) | C317—O31—C313—C312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.6 (2)                 |
| C4A—C5—C6—C7                                         | -0.2 (2)     | C317—O31—C313—C314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -168.72 (14)             |
| C5—C6—C7—C8                                          | -0.7(3)      | C311—C312—C313—O31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 178.79 (15)              |
| C6—C7—C8—C8A                                         | 1.3 (2)      | C311—C312—C313—C314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2 (2)                  |
| C2-01-C8A-C4A                                        | 4.0 (2)      | O31—C313—C314—C315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -179.81 (14)             |
|                                                      | ···· \_/     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |

| C2—O1—C8A—C8  | -175.85 (14) | C312—C313—C314—C315 | -1.1 (2)    |
|---------------|--------------|---------------------|-------------|
| C5—C4A—C8A—O1 | -179.53 (14) | C313—C314—C315—C316 | 0.8 (2)     |
| C4—C4A—C8A—O1 | -1.9 (2)     | C314—C315—C316—C311 | 0.3 (2)     |
| C5—C4A—C8A—C8 | 0.4 (2)      | C312—C311—C316—C315 | -1.2 (2)    |
| C4—C4A—C8A—C8 | 178.01 (15)  | N3-C311-C316-C315   | 177.90 (15) |

Hydrogen-bond geometry (Å, °)

| D—H···A               | D—H      | Н…А      | D····A      | <i>D</i> —H… <i>A</i> |
|-----------------------|----------|----------|-------------|-----------------------|
| N3—H3…O4              | 0.95 (2) | 1.89 (2) | 2.7147 (17) | 143.8 (18)            |
| С312—Н312…О3          | 0.95     | 2.25     | 2.855 (2)   | 121                   |
| C2—H2…O3 <sup>i</sup> | 0.95     | 2.37     | 3.243 (2)   | 153                   |

Symmetry code: (i) -x+1, -y+2, -z+1.

#### (3b) N-(3-Bromophenyl)-4-oxo-4H-chromene-3-carboxamide

Crystal data

C<sub>16</sub>H<sub>10</sub>BrNO<sub>3</sub>  $M_r = 344.16$ Triclinic,  $P\overline{1}$  a = 6.7435 (1) Å b = 7.3012 (1) Å c = 28.0740 (9) Å a = 85.309 (4)°  $\beta = 89.164$  (4)°  $\gamma = 70.645$  (3)° V = 1299.64 (5) Å<sup>3</sup>

#### Data collection

| Rigaku RAXIS conversion                              |
|------------------------------------------------------|
| diffractometer                                       |
| Radiation source: Sealed Tube                        |
| Graphite Monochromator monochromator                 |
| Detector resolution: 10.0000 pixels mm <sup>-1</sup> |
| profile data from $\omega$ -scans                    |
| Absorption correction: multi-scan                    |
| (CrystalClear-SM Expert; Rigaku, 2012)               |
| $T_{\min} = 0.379, T_{\max} = 0.833$                 |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.116$ S = 1.085939 reflections 379 parameters 0 restraints Z = 4 F(000) = 688  $D_x = 1.759 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71075 \text{ Å}$ Cell parameters from 6848 reflections  $\theta = 1.5-27.5^{\circ}$   $\mu = 3.17 \text{ mm}^{-1}$  T = 120 KPlate, colourless  $0.38 \times 0.34 \times 0.06 \text{ mm}$ 

16781 measured reflections 5939 independent reflections 5633 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.045$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.5^{\circ}$  $h = -7 \rightarrow 8$  $k = -9 \rightarrow 9$  $l = -36 \rightarrow 36$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0487P)^2 + 2.2824P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 1.79$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.85$  e Å<sup>-3</sup>

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x            | У           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|-------------|---------------|-----------------------------|--|
| Br13 | 0.19823 (5)  | 0.50533 (5) | 0.21591 (2)   | 0.02468 (10)                |  |
| O11  | 0.1612 (3)   | 0.1960 (3)  | -0.09282 (8)  | 0.0234 (5)                  |  |
| O14  | 0.7153 (3)   | 0.1950 (3)  | -0.03480 (8)  | 0.0242 (5)                  |  |
| O131 | 0.1525 (4)   | 0.3349 (4)  | 0.04468 (8)   | 0.0256 (5)                  |  |
| N13  | 0.5020 (4)   | 0.3021 (4)  | 0.04552 (9)   | 0.0199 (5)                  |  |
| H13  | 0.6134       | 0.2758      | 0.0272        | 0.024*                      |  |
| C12  | 0.1726 (5)   | 0.2403 (4)  | -0.04764 (10) | 0.0213 (6)                  |  |
| H12  | 0.0470       | 0.2721      | -0.0297       | 0.026*                      |  |
| C13  | 0.3488 (5)   | 0.2431 (4)  | -0.02576 (10) | 0.0187 (6)                  |  |
| C14  | 0.5473 (5)   | 0.1936 (4)  | -0.05181 (10) | 0.0182 (6)                  |  |
| C14A | 0.5333 (5)   | 0.1413 (4)  | -0.10070 (10) | 0.0193 (6)                  |  |
| C15  | 0.7097 (5)   | 0.0851 (4)  | -0.12974 (11) | 0.0217 (6)                  |  |
| H15  | 0.8429       | 0.0789      | -0.1177       | 0.026*                      |  |
| C16  | 0.6925 (5)   | 0.0387 (5)  | -0.17555 (11) | 0.0258 (7)                  |  |
| H16  | 0.8131       | 0.0022      | -0.1951       | 0.031*                      |  |
| C17  | 0.4978 (5)   | 0.0448 (5)  | -0.19347 (11) | 0.0248 (6)                  |  |
| H17  | 0.4873       | 0.0114      | -0.2251       | 0.030*                      |  |
| C18  | 0.3209 (5)   | 0.0991 (4)  | -0.16563 (11) | 0.0227 (6)                  |  |
| H18  | 0.1882       | 0.1043      | -0.1778       | 0.027*                      |  |
| C18A | 0.3417 (5)   | 0.1459 (4)  | -0.11934 (10) | 0.0203 (6)                  |  |
| C131 | 0.5316 (5)   | 0.3428 (4)  | 0.09256 (10)  | 0.0185 (6)                  |  |
| C132 | 0.3685 (5)   | 0.4007 (4)  | 0.12504 (10)  | 0.0190 (6)                  |  |
| H132 | 0.2278       | 0.4166      | 0.1163        | 0.023*                      |  |
| C133 | 0.4191 (5)   | 0.4344 (4)  | 0.17065 (10)  | 0.0203 (6)                  |  |
| C134 | 0.6201 (5)   | 0.4156 (4)  | 0.18499 (11)  | 0.0224 (6)                  |  |
| H134 | 0.6488       | 0.4403      | 0.2164        | 0.027*                      |  |
| C135 | 0.7799 (5)   | 0.3588 (5)  | 0.15156 (11)  | 0.0234 (6)                  |  |
| H135 | 0.9200       | 0.3447      | 0.1604        | 0.028*                      |  |
| C136 | 0.7379 (5)   | 0.3226 (4)  | 0.10580 (11)  | 0.0217 (6)                  |  |
| H136 | 0.8483       | 0.2842      | 0.0835        | 0.026*                      |  |
| C137 | 0.3224 (5)   | 0.2985 (4)  | 0.02492 (10)  | 0.0192 (6)                  |  |
| Br23 | -0.07137 (5) | 1.08718 (5) | 0.28460 (2)   | 0.02772 (10)                |  |
| O21  | -0.0747 (3)  | 0.5655 (3)  | 0.59280 (7)   | 0.0223 (4)                  |  |
| O24  | 0.4533 (4)   | 0.6676 (3)  | 0.54070 (8)   | 0.0259 (5)                  |  |
| O231 | -0.1079 (4)  | 0.8225 (4)  | 0.45807 (8)   | 0.0276 (5)                  |  |
| N23  | 0.2310 (4)   | 0.8203 (4)  | 0.45937 (9)   | 0.0218 (5)                  |  |
| H23  | 0.3452       | 0.7817      | 0.4775        | 0.026*                      |  |
| C22  | -0.0700 (5)  | 0.6501 (4)  | 0.54886 (10)  | 0.0211 (6)                  |  |
| H22  | -0.1952      | 0.6861      | 0.5301        | 0.025*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C23  | 0.0968 (5) | 0.6891 (4) | 0.52871 (10) | 0.0202 (6) |
|------|------------|------------|--------------|------------|
| C24  | 0.2927 (5) | 0.6380 (4) | 0.55608 (11) | 0.0204 (6) |
| C24A | 0.2867 (5) | 0.5466 (4) | 0.60466 (10) | 0.0197 (6) |
| C25  | 0.4612 (5) | 0.4903 (4) | 0.63557 (11) | 0.0224 (6) |
| H25  | 0.5876     | 0.5111     | 0.6254       | 0.027*     |
| C26  | 0.4502 (5) | 0.4048 (5) | 0.68070 (11) | 0.0249 (6) |
| H26  | 0.5692     | 0.3671     | 0.7015       | 0.030*     |
| C27  | 0.2653 (5) | 0.3732 (5) | 0.69597 (11) | 0.0244 (6) |
| H27  | 0.2594     | 0.3149     | 0.7272       | 0.029*     |
| C28  | 0.0911 (5) | 0.4256 (5) | 0.66619 (11) | 0.0231 (6) |
| H28  | -0.0345    | 0.4031     | 0.6763       | 0.028*     |
| C28A | 0.1050 (5) | 0.5124 (4) | 0.62079 (10) | 0.0206 (6) |
| C231 | 0.2488 (5) | 0.9119 (4) | 0.41434 (11) | 0.0213 (6) |
| C232 | 0.0957 (5) | 0.9487 (4) | 0.37790 (10) | 0.0212 (6) |
| H232 | -0.0274    | 0.9138     | 0.3826       | 0.025*     |
| C233 | 0.1333 (5) | 1.0386 (5) | 0.33470 (11) | 0.0230 (6) |
| C234 | 0.3077 (5) | 1.0949 (5) | 0.32614 (11) | 0.0253 (6) |
| H234 | 0.3257     | 1.1583     | 0.2963       | 0.030*     |
| C235 | 0.4566 (5) | 1.0555 (5) | 0.36291 (12) | 0.0259 (7) |
| H235 | 0.5788     | 1.0917     | 0.3580       | 0.031*     |
| C236 | 0.4281 (5) | 0.9640 (5) | 0.40655 (11) | 0.0239 (6) |
| H236 | 0.5315     | 0.9367     | 0.4312       | 0.029*     |
| C237 | 0.0609 (5) | 0.7833 (4) | 0.47874 (10) | 0.0208 (6) |
|      |            |            |              |            |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|------|--------------|--------------|--------------|---------------|--------------|---------------|
| Br13 | 0.02787 (18) | 0.03148 (18) | 0.01601 (16) | -0.01088 (13) | 0.00215 (11) | -0.00539 (12) |
| 011  | 0.0200 (11)  | 0.0311 (12)  | 0.0190 (10)  | -0.0076 (9)   | -0.0011 (8)  | -0.0052 (9)   |
| O14  | 0.0211 (11)  | 0.0323 (12)  | 0.0204 (11)  | -0.0096 (9)   | 0.0003 (8)   | -0.0056 (9)   |
| 0131 | 0.0242 (11)  | 0.0364 (13)  | 0.0187 (10)  | -0.0122 (10)  | 0.0021 (8)   | -0.0068 (9)   |
| N13  | 0.0217 (13)  | 0.0238 (13)  | 0.0145 (11)  | -0.0073 (10)  | 0.0007 (9)   | -0.0039 (9)   |
| C12  | 0.0237 (15)  | 0.0239 (15)  | 0.0160 (13)  | -0.0072 (12)  | 0.0009 (11)  | -0.0038 (11)  |
| C13  | 0.0200 (14)  | 0.0178 (13)  | 0.0183 (13)  | -0.0062 (11)  | -0.0012 (10) | -0.0016 (10)  |
| C14  | 0.0221 (14)  | 0.0149 (13)  | 0.0169 (13)  | -0.0054 (11)  | -0.0001 (10) | -0.0002 (10)  |
| C14A | 0.0245 (15)  | 0.0157 (13)  | 0.0174 (13)  | -0.0063 (11)  | 0.0011 (11)  | -0.0006 (10)  |
| C15  | 0.0210 (15)  | 0.0207 (14)  | 0.0227 (15)  | -0.0061 (11)  | 0.0019 (11)  | -0.0015 (11)  |
| C16  | 0.0332 (17)  | 0.0206 (15)  | 0.0210 (15)  | -0.0051 (12)  | 0.0065 (12)  | -0.0039 (11)  |
| C17  | 0.0367 (18)  | 0.0205 (15)  | 0.0155 (14)  | -0.0070 (13)  | -0.0001 (12) | -0.0027 (11)  |
| C18  | 0.0271 (16)  | 0.0200 (14)  | 0.0190 (14)  | -0.0052 (12)  | -0.0045 (11) | -0.0008 (11)  |
| C18A | 0.0265 (15)  | 0.0173 (13)  | 0.0155 (13)  | -0.0052 (11)  | -0.0008 (11) | 0.0001 (10)   |
| C131 | 0.0253 (15)  | 0.0158 (13)  | 0.0148 (13)  | -0.0075 (11)  | -0.0018 (11) | 0.0000 (10)   |
| C132 | 0.0221 (14)  | 0.0183 (14)  | 0.0164 (13)  | -0.0067 (11)  | -0.0004 (11) | -0.0004 (10)  |
| C133 | 0.0247 (15)  | 0.0177 (13)  | 0.0177 (14)  | -0.0055 (11)  | -0.0009 (11) | -0.0023 (10)  |
| C134 | 0.0292 (16)  | 0.0195 (14)  | 0.0180 (14)  | -0.0069 (12)  | -0.0052 (11) | -0.0024 (11)  |
| C135 | 0.0196 (15)  | 0.0237 (15)  | 0.0276 (16)  | -0.0077 (12)  | -0.0059 (11) | -0.0026 (12)  |
| C136 | 0.0212 (15)  | 0.0223 (15)  | 0.0217 (14)  | -0.0072 (11)  | 0.0006 (11)  | -0.0016 (11)  |
| C137 | 0.0226 (14)  | 0.0177 (14)  | 0.0169 (13)  | -0.0059 (11)  | -0.0011 (11) | -0.0016 (10)  |

| Br23 | 0.02983 (19) | 0.03229 (19) | 0.01703 (16) | -0.00573 (13) | -0.00026 (12) | 0.00149 (12) |
|------|--------------|--------------|--------------|---------------|---------------|--------------|
| O21  | 0.0225 (11)  | 0.0276 (11)  | 0.0171 (10)  | -0.0087 (9)   | -0.0008 (8)   | -0.0010 (8)  |
| O24  | 0.0219 (11)  | 0.0330 (13)  | 0.0234 (11)  | -0.0108 (9)   | -0.0011 (8)   | 0.0012 (9)   |
| O231 | 0.0235 (12)  | 0.0375 (13)  | 0.0202 (11)  | -0.0089 (10)  | -0.0036 (9)   | 0.0018 (9)   |
| N23  | 0.0230 (13)  | 0.0256 (13)  | 0.0151 (11)  | -0.0061 (10)  | -0.0028 (9)   | 0.0005 (10)  |
| C22  | 0.0247 (15)  | 0.0206 (14)  | 0.0169 (13)  | -0.0057 (11)  | 0.0007 (11)   | -0.0039 (11) |
| C23  | 0.0229 (15)  | 0.0192 (14)  | 0.0164 (13)  | -0.0038 (11)  | -0.0002 (11)  | -0.0029 (11) |
| C24  | 0.0218 (15)  | 0.0175 (13)  | 0.0203 (14)  | -0.0039 (11)  | 0.0002 (11)   | -0.0040 (11) |
| C24A | 0.0220 (14)  | 0.0170 (13)  | 0.0192 (14)  | -0.0046 (11)  | 0.0007 (11)   | -0.0041 (10) |
| C25  | 0.0223 (15)  | 0.0206 (14)  | 0.0230 (15)  | -0.0046 (11)  | -0.0018 (11)  | -0.0048 (11) |
| C26  | 0.0281 (16)  | 0.0216 (15)  | 0.0228 (15)  | -0.0046 (12)  | -0.0040 (12)  | -0.0046 (12) |
| C27  | 0.0324 (17)  | 0.0221 (15)  | 0.0160 (14)  | -0.0056 (12)  | 0.0003 (12)   | -0.0012 (11) |
| C28  | 0.0262 (16)  | 0.0231 (15)  | 0.0196 (14)  | -0.0072 (12)  | 0.0022 (11)   | -0.0035 (11) |
| C28A | 0.0213 (14)  | 0.0201 (14)  | 0.0188 (14)  | -0.0039 (11)  | -0.0013 (11)  | -0.0042 (11) |
| C231 | 0.0247 (15)  | 0.0174 (14)  | 0.0191 (14)  | -0.0030 (11)  | 0.0021 (11)   | -0.0026 (11) |
| C232 | 0.0245 (15)  | 0.0185 (14)  | 0.0183 (14)  | -0.0039 (11)  | 0.0022 (11)   | -0.0018 (11) |
| C233 | 0.0219 (15)  | 0.0219 (15)  | 0.0204 (14)  | -0.0007 (11)  | 0.0027 (11)   | -0.0026 (11) |
| C234 | 0.0273 (16)  | 0.0222 (15)  | 0.0229 (15)  | -0.0040 (12)  | 0.0069 (12)   | -0.0010 (12) |
| C235 | 0.0272 (16)  | 0.0223 (15)  | 0.0281 (16)  | -0.0076 (12)  | 0.0073 (12)   | -0.0060 (12) |
| C236 | 0.0240 (15)  | 0.0225 (15)  | 0.0245 (15)  | -0.0065 (12)  | 0.0006 (12)   | -0.0039 (12) |
| C237 | 0.0247 (15)  | 0.0194 (14)  | 0.0169 (13)  | -0.0050 (11)  | -0.0003 (11)  | -0.0030 (11) |
|      |              |              |              |               |               |              |

| Br13—C133 | 1.909 (3) | Br23—C233 | 1.913 (3) |
|-----------|-----------|-----------|-----------|
| O11—C12   | 1.344 (4) | O21—C22   | 1.339 (4) |
| O11—C18A  | 1.376 (4) | O21—C28A  | 1.380 (4) |
| O14—C14   | 1.240 (4) | O24—C24   | 1.238 (4) |
| O131—C137 | 1.223 (4) | O231—C237 | 1.221 (4) |
| N13—C137  | 1.359 (4) | N23—C237  | 1.359 (4) |
| N13—C131  | 1.408 (4) | N23—C231  | 1.404 (4) |
| N13—H13   | 0.8800    | N23—H23   | 0.8800    |
| C12—C13   | 1.352 (4) | C22—C23   | 1.354 (4) |
| С12—Н12   | 0.9500    | C22—H22   | 0.9500    |
| C13—C14   | 1.467 (4) | C23—C24   | 1.460 (4) |
| C13—C137  | 1.503 (4) | C23—C237  | 1.497 (4) |
| C14—C14A  | 1.467 (4) | C24—C24A  | 1.475 (4) |
| C14A—C18A | 1.390 (4) | C24A—C28A | 1.391 (4) |
| C14A—C15  | 1.397 (4) | C24A—C25  | 1.399 (4) |
| C15—C16   | 1.373 (4) | C25—C26   | 1.378 (5) |
| С15—Н15   | 0.9500    | C25—H25   | 0.9500    |
| C16—C17   | 1.398 (5) | C26—C27   | 1.397 (5) |
| C16—H16   | 0.9500    | C26—H26   | 0.9500    |
| C17—C18   | 1.379 (5) | C27—C28   | 1.380 (5) |
| С17—Н17   | 0.9500    | C27—H27   | 0.9500    |
| C18—C18A  | 1.391 (4) | C28—C28A  | 1.393 (4) |
| C18—H18   | 0.9500    | C28—H28   | 0.9500    |
| C131—C132 | 1.395 (4) | C231—C236 | 1.392 (5) |
|           | · · ·     |           |           |

| C131—C136      | 1.402 (4) | C231—C232      | 1.409 (4) |
|----------------|-----------|----------------|-----------|
| C132—C133      | 1.391 (4) | C232—C233      | 1.392 (4) |
| С132—Н132      | 0.9500    | С232—Н232      | 0.9500    |
| C133—C134      | 1.379 (5) | C233—C234      | 1.380 (5) |
| C134—C135      | 1.397 (5) | C234—C235      | 1.395 (5) |
| C134—H134      | 0.9500    | C234—H234      | 0.9500    |
| C135—C136      | 1.384 (4) | C235—C236      | 1.389 (5) |
| С135—Н135      | 0.9500    | С235—Н235      | 0.9500    |
| С136—Н136      | 0.9500    | С236—Н236      | 0.9500    |
|                |           |                |           |
| C12—O11—C18A   | 118.6 (2) | C22—O21—C28A   | 118.1 (2) |
| C137—N13—C131  | 128.0 (3) | C237—N23—C231  | 128.6 (3) |
| C137—N13—H13   | 116.0     | C237—N23—H23   | 115.7     |
| C131—N13—H13   | 116.0     | C231—N23—H23   | 115.7     |
| O11—C12—C13    | 125.2 (3) | O21—C22—C23    | 126.0 (3) |
| O11—C12—H12    | 117.4     | O21—C22—H22    | 117.0     |
| С13—С12—Н12    | 117.4     | С23—С22—Н22    | 117.0     |
| C12—C13—C14    | 119.6 (3) | C22—C23—C24    | 119.3 (3) |
| C12—C13—C137   | 115.5 (3) | C22—C23—C237   | 115.3 (3) |
| C14—C13—C137   | 124.9 (3) | C24—C23—C237   | 125.4 (3) |
| O14—C14—C13    | 123.9 (3) | O24—C24—C23    | 124.0 (3) |
| O14—C14—C14A   | 121.5 (3) | O24—C24—C24A   | 121.4 (3) |
| C13—C14—C14A   | 114.6 (3) | C23—C24—C24A   | 114.6 (3) |
| C18A—C14A—C15  | 118.1 (3) | C28A—C24A—C25  | 118.1 (3) |
| C18A—C14A—C14  | 120.3 (3) | C28A—C24A—C24  | 120.2 (3) |
| C15—C14A—C14   | 121.6 (3) | C25—C24A—C24   | 121.7 (3) |
| C16—C15—C14A   | 120.6 (3) | C26—C25—C24A   | 120.2 (3) |
| С16—С15—Н15    | 119.7     | С26—С25—Н25    | 119.9     |
| C14A—C15—H15   | 119.7     | C24A—C25—H25   | 119.9     |
| C15—C16—C17    | 120.2 (3) | C25—C26—C27    | 120.4 (3) |
| C15—C16—H16    | 119.9     | C25—C26—H26    | 119.8     |
| C17—C16—H16    | 119.9     | С27—С26—Н26    | 119.8     |
| C18—C17—C16    | 120.6 (3) | C28—C27—C26    | 120.8 (3) |
| C18—C17—H17    | 119.7     | С28—С27—Н27    | 119.6     |
| C16—C17—H17    | 119.7     | С26—С27—Н27    | 119.6     |
| C17—C18—C18A   | 118.3 (3) | C27—C28—C28A   | 117.9 (3) |
| C17—C18—H18    | 120.8     | C27—C28—H28    | 121.0     |
| C18A—C18—H18   | 120.8     | C28A—C28—H28   | 121.0     |
| O11—C18A—C14A  | 121.8 (3) | O21—C28A—C24A  | 121.8 (3) |
| O11—C18A—C18   | 116.0 (3) | O21—C28A—C28   | 115.6 (3) |
| C14A—C18A—C18  | 122.2 (3) | C24A—C28A—C28  | 122.6 (3) |
| C132—C131—C136 | 120.4 (3) | C236—C231—N23  | 116.9 (3) |
| C132—C131—N13  | 123.3 (3) | C236—C231—C232 | 120.5 (3) |
| C136—C131—N13  | 116.3 (3) | N23—C231—C232  | 122.5 (3) |
| C133—C132—C131 | 117.7 (3) | C233—C232—C231 | 116.8 (3) |
| C133—C132—H132 | 121.2     | С233—С232—Н232 | 121.6     |
| C131—C132—H132 | 121.2     | C231—C232—H232 | 121.6     |
| C134—C133—C132 | 123.5 (3) | C234—C233—C232 | 124.0 (3) |
|                |           |                |           |

| C134—C133—Br13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.6 (2)            | C234—C233—Br23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.6 (2)                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| C132—C133—Br13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.9 (2)            | C232—C233—Br23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.4 (2)                     |
| C133—C134—C135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.5 (3)            | C233—C234—C235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.6 (3)                     |
| C133—C134—H134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.3                | C233—C234—H234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.2                         |
| C135—C134—H134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.3                | C235—C234—H234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.2                         |
| C136—C135—C134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.2 (3)            | C236—C235—C234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.7 (3)                     |
| C136—C135—H135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.4                | C236—C235—H235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.6                         |
| C134—C135—H135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.4                | C234—C235—H235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.6                         |
| C135—C136—C131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.7 (3)            | C235—C236—C231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.2 (3)                     |
| C135—C136—H136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.2                | C235—C236—H236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.9                         |
| C131—C136—H136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.2                | C231—C236—H236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.9                         |
| 0131—C137—N13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124.8 (3)            | 0231 - C237 - N23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124 2 (3)                     |
| 0131 - C137 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.3(3)             | 0231 - C237 - C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.2(3)<br>121.8(3)          |
| N13-C137-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.3(3)<br>1138(3)  | $N_{23}$ $C_{237}$ $C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1140(3)                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115.6 (5)            | 1125 6257 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 114.0 (5)                     |
| C18A—O11—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2 (5)              | C28A—O21—C22—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2(4)                        |
| 011-012-013-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.5(5)              | 021 - C22 - C23 - C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.4(5)                       |
| 011 - C12 - C13 - C137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 179.6(3)             | 021 - 022 - 023 - 021<br>021 - 022 - 023 - 0237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1795(3)                       |
| C12 - C13 - C14 - O14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179.0(3)             | $C_{22} = C_{23} = C_{24} = 0.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 179.9(3)                      |
| $C_{137}$ $C_{13}$ $C_{14}$ $O_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.2(5)              | $C_{237} - C_{23} - C_{24} - O_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0(5)                        |
| C12-C13-C14-C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.9(4)              | $C_{23}$ $C_{23}$ $C_{24}$ $C$ | -0.2(4)                       |
| $C_{137}$ $C_{13}$ $C_{14}$ $C_{14A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1790(3)              | $C_{237} - C_{23} - C_{24} - C_{24A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179.9(3)                      |
| 014-C14-C14A-C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1783(3)             | 024 - C24 - C24A - C28A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1791(3)                      |
| $C_{13}$ $C_{14}$ $C_{14A}$ $C_{18A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16(4)                | $C^{23}$ $C^{24}$ $C^{24A}$ $C^{28A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11(4)                         |
| 014-C14-C14A-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20(5)                | 024 - C24 - C24A - C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3(4)                        |
| $C_{13}$ $C_{14}$ $C_{14A}$ $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1782(3)             | $C^{23}$ $C^{24}$ $C^{24}$ $C^{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1795(3)                      |
| C18A - C14A - C15 - C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9(5)               | $C_{28} = C_{24} = C_{25} = C_{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.4(4)                       |
| $C_{14}$ $C_{14}$ $C_{15}$ $C_{16}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1793(3)             | $C_{24}$ $C_{24}$ $C_{25}$ $C_{26}$ $C$ | -179.8(3)                     |
| $C_{14} = C_{15} = C_{16} = C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.8(5)              | $C_{24} = C_{25} = C_{26} = C_{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01(5)                         |
| $C_{15}$ $C_{16}$ $C_{17}$ $C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0(5)               | $C_{2} = C_{2} = C_{2$ | 0.1(5)                        |
| $C_{15} = C_{10} = C_{17} = C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.4(5)              | $C_{25} = C_{20} = C_{27} = C_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.7(5)                       |
| $C_{12} = 0_{11} = C_{18} = C_{16} = C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.4(3)              | $C_{20} = C_{21} = C_{20} = C_{20} + C$ | 0.7(3)                        |
| $C_{12} = 0_{11} = C_{18A} = C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 179.2(3)             | $C_{22} = 021 = 020 \text{ M} = 024 \text{ M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179.8(3)                      |
| $C_{12} = C_{144} = C_{184} = 0_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179.2(3)<br>178.8(3) | $C_{22} = 021 = 020 A = 020 A$ | 179.3(3)<br>179.2(3)          |
| $C_{14} - C_{14} - C_{18} - C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10(4)               | $C_{23} = C_{24} = C_{28} = C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -14(4)                        |
| $C_{14} = C_{14A} = C_{18A} = C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.8(4)              | $C_{24} = C_{24A} = C_{28A} = C_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2(4)                        |
| $C_{14}$ $C_{14A}$ $C_{18A}$ $C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170 4 (3)            | $C_{23} = C_{24} + C_{26} + C$ | 179.6(3)                      |
| C17 - C18 - C18A - O11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -179.4(3)            | $C_{24} = C_{24} + C_{26} + C$ | -178.7(3)                     |
| C17 C18 C18A C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 179.0(3)             | $C_{27} = C_{28} = C_{28A} = C_{21A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 178.7(3)                      |
| $C_{17} = C_{18} = C_{18} = C_{14} = C$ | -4.7(5)              | $C_{27} = C_{20} = C$ | 1685(3)                       |
| $C_{137} = N_{13} = C_{131} = C_{132}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3)                  | $C_{237} = N_{23} = C_{231} = C_{230}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -124(5)                       |
| $C_{13}^{126} = C_{131}^{121} = C_{132}^{122} = C_{133}^{122}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.8(4)              | $C_{23}^{-1} = C_{23}^{-1} = C_{23}^{-1} = C_{23}^{-2} = C_{23}^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.2(4)                       |
| 130 - 131 - 132 - 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.8(4)              | $C_{230} - C_{231} - C_{232} - C_{233}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.2(4)<br>-170.3(3)          |
| $C_{121} = C_{132} = C_{132} = C_{133}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 179.3(3)             | $N_{23} = C_{231} = C_{232} = C_{233}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10(4)                        |
| $C_{131} = C_{132} = C_{133} = C_{134}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1780(2)             | $C_{231} = C_{232} = C_{233} = C_{234}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.0(4)<br>170 4 (2)          |
| $C_{131}$ $-C_{132}$ $-C_{133}$ $-D_{113}$ $C_{124}$ $C_{125}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.3(5)              | $C_{231} = C_{232} = C_{233} = DI_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/9.4 ( <i>2</i> )<br>1 2 (5) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3(3)<br>178 $1(2)$ | $C_{232} - C_{233} - C_{234} - C_{235}$<br>Br23 C223 C224 C225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -170.0(2)                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/0.4(2)<br>-0.1(5)  | D123 - C233 - C234 - C233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1/9.0(2)                     |
| 0133-0134-0133-0130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.1 (3)             | UZ33—UZ34—UZ33—UZ30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.4 (3)                      |

| C134—C135—C136—C131<br>C132—C131—C136—C135<br>N13—C131—C136—C135<br>C131—N13—C137—O131<br>C131—N13—C137—O131<br>C12—C13—C137—O131<br>C14—C13—C137—O131<br>C12—C13—C137—N13<br>C14—C13—C137—N13<br>O | 0.5 (5)<br>-179.6 (3)<br>.5 (5)<br>-178.2 (3)<br>.1 (4)<br>-178.8 (3)<br>-179.2 (3)<br>0.9 (4) | N23—C231—C236—C235<br>C232—C231—C236—C235<br>C231—N23—C237—O231<br>C231—N23—C237—O231<br>C22—C23—C237—O231<br>C24—C23—C237—O231<br>C22—C23—C237—O231<br>C22—C23—C237—N23<br>C24—C23—C237—N23 | -179.9 (3)<br>1.0 (4)<br>2.0 (5)<br>-177.8 (3)<br>0.4 (4)<br>-179.8 (3)<br>-179.8 (3)<br>0.0 (4) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|

Hydrogen-bond geometry (Å, °)

| D—H···A                      | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|------------------------------|-------------|-------|--------------|---------|
| N13—H13…O14                  | 0.88        | 1.93  | 2.686 (3)    | 143     |
| N23—H23…O24                  | 0.88        | 1.94  | 2.698 (3)    | 143     |
| C12—H12…O131                 | 0.95        | 2.34  | 2.727 (4)    | 104     |
| C22—H22···O231               | 0.95        | 2.33  | 2.725 (4)    | 104     |
| C132—H132…O131               | 0.95        | 2.26  | 2.860 (4)    | 121     |
| C232—H232…O231               | 0.95        | 2.28  | 2.865 (4)    | 119     |
| C12—H12…O14 <sup>i</sup>     | 0.95        | 2.49  | 3.221 (4)    | 134     |
| C22—H22…O24 <sup>i</sup>     | 0.95        | 2.43  | 3.185 (4)    | 136     |
| C15—H15…O11 <sup>ii</sup>    | 0.95        | 2.68  | 3.587 (4)    | 160     |
| C25—H25…O21 <sup>ii</sup>    | 0.95        | 2.58  | 3.530 (4)    | 177     |
| C136—H136…O131 <sup>ii</sup> | 0.95        | 2.43  | 3.282 (4)    | 149     |
| C236—H236…O231 <sup>ii</sup> | 0.95        | 2.41  | 3.270 (4)    | 151     |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.

### (4a) N-(4-Methoxyphenyl)-4-oxo-4H-chromene-3-carboxamide

Crystal data

| $C_{17}H_{13}NO_4$ $M_r = 295.28$ Monoclinic, $P2_1/n$ $a = 14.1629 (10) Å$ $b = 6.772 (5) Å$ $c = 15.1898 (11) Å$ $\beta = 116.607 (11)^\circ$ $V = 1302.6 (10) Å^3$ $Z = 4$                                                                                                                                            | F(000) = 616<br>$D_x = 1.506 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71075 \text{ Å}$<br>Cell parameters from 15826 reflections<br>$\theta = 2.6-27.5^{\circ}$<br>$\mu = 0.11 \text{ mm}^{-1}$<br>T = 100  K<br>Plate, colourless<br>$0.15 \times 0.07 \times 0.01 \text{ mm}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |
| Rigaku Saturn724+ (2x2 bin mode)<br>diffractometer<br>Graphite Monochromator monochromator<br>Detector resolution: 28.5714 pixels mm <sup>-1</sup><br>profile data from $\omega$ -scans<br>Absorption correction: multi-scan<br>( <i>CrystalClear-SM Expert</i> ; Rigaku, 2012)<br>$T_{min} = 0.984$ , $T_{max} = 0.999$ | 16554 measured reflections<br>2987 independent reflections<br>2617 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.042$<br>$\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$<br>$h = -18 \rightarrow 16$<br>$k = -8 \rightarrow 8$<br>$l = -19 \rightarrow 19$                 |

Refinement

| Refinement on $F^2$             | Hydrogen site location: mixed                              |
|---------------------------------|------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent                |
| $R[F^2 > 2\sigma(F^2)] = 0.037$ | and constrained refinement                                 |
| $wR(F^2) = 0.103$               | $w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 0.664P]$           |
| S = 0.92                        | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 2987 reflections                | $(\Delta/\sigma)_{\rm max} = 0.005$                        |
| 204 parameters                  | $\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$    |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x           | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|--------------|--------------|-----------------------------|--|
| 01   | 0.61512 (6) | 0.04824 (12) | 0.04192 (6)  | 0.0222 (2)                  |  |
| O4   | 0.63888 (6) | 0.60878 (12) | 0.15264 (6)  | 0.0221 (2)                  |  |
| O314 | 0.64113 (7) | 0.68423 (13) | 0.66556 (6)  | 0.0260 (2)                  |  |
| O3   | 0.61112 (8) | 0.10549 (13) | 0.30685 (7)  | 0.0281 (2)                  |  |
| N3   | 0.63425 (8) | 0.44104 (15) | 0.31133 (7)  | 0.0206 (2)                  |  |
| Н3   | 0.6347 (12) | 0.541 (3)    | 0.2725 (12)  | 0.034 (4)*                  |  |
| C2   | 0.62017 (9) | 0.08077 (18) | 0.13108 (8)  | 0.0207 (2)                  |  |
| H2   | 0.6193      | -0.0316      | 0.1681       | 0.025*                      |  |
| C3   | 0.62644 (8) | 0.26035 (17) | 0.17274 (8)  | 0.0196 (2)                  |  |
| C4   | 0.63203 (8) | 0.43834 (17) | 0.12051 (8)  | 0.0187 (2)                  |  |
| C4A  | 0.62683 (8) | 0.40077 (17) | 0.02284 (8)  | 0.0192 (2)                  |  |
| C5   | 0.62976 (9) | 0.55604 (18) | -0.03704 (9) | 0.0219 (2)                  |  |
| H5   | 0.6382      | 0.6881       | -0.0136      | 0.026*                      |  |
| C6   | 0.62051 (9) | 0.51790 (19) | -0.12981 (9) | 0.0239 (3)                  |  |
| H6   | 0.6233      | 0.6235       | -0.1697      | 0.029*                      |  |
| C7   | 0.60702 (9) | 0.32347 (19) | -0.16527 (9) | 0.0241 (3)                  |  |
| H7   | 0.5993      | 0.2987       | -0.2297      | 0.029*                      |  |
| C8   | 0.60487 (9) | 0.16788 (18) | -0.10756 (9) | 0.0233 (3)                  |  |
| H8   | 0.5961      | 0.0361       | -0.1314      | 0.028*                      |  |
| C8A  | 0.61592 (8) | 0.20886 (17) | -0.01329 (8) | 0.0199 (2)                  |  |
| C31  | 0.62381 (9) | 0.25962 (17) | 0.27073 (9)  | 0.0206 (2)                  |  |
| C311 | 0.63093 (8) | 0.49421 (17) | 0.40033 (8)  | 0.0194 (2)                  |  |
| C312 | 0.64385 (9) | 0.36073 (18) | 0.47503 (8)  | 0.0218 (2)                  |  |
| H312 | 0.6515      | 0.2237       | 0.4665       | 0.026*                      |  |
| C313 | 0.64547 (9) | 0.42952 (18) | 0.56178 (9)  | 0.0221 (2)                  |  |
| H313 | 0.6542      | 0.3385       | 0.6125       | 0.027*                      |  |
| C314 | 0.63439 (9) | 0.63048 (18) | 0.57565 (8)  | 0.0207 (2)                  |  |
| C315 | 0.61990 (9) | 0.76285 (17) | 0.50058 (8)  | 0.0215 (2)                  |  |
| H315 | 0.6110      | 0.8996       | 0.5086       | 0.026*                      |  |
| C316 | 0.61854 (9) | 0.69445 (17) | 0.41378 (8)  | 0.0208 (2)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| H316 | 0.6090       | 0.7854       | 0.3629      | 0.025*     |
|------|--------------|--------------|-------------|------------|
| C317 | 0.62986 (11) | 0.88959 (19) | 0.67957 (9) | 0.0273 (3) |
| H31A | 0.6389       | 0.9118       | 0.7466      | 0.041*     |
| H31B | 0.5594       | 0.9338       | 0.6321      | 0.041*     |
| H31C | 0.6835       | 0.9643       | 0.6696      | 0.041*     |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|------|------------|------------|------------|-------------|------------|-------------|
| 01   | 0.0260 (4) | 0.0173 (4) | 0.0241 (4) | -0.0006 (3) | 0.0119 (3) | -0.0015 (3) |
| O4   | 0.0272 (4) | 0.0173 (4) | 0.0224 (4) | -0.0011 (3) | 0.0116 (3) | -0.0010 (3) |
| O314 | 0.0354 (5) | 0.0222 (4) | 0.0223 (4) | 0.0018 (4)  | 0.0148 (4) | 0.0009 (3)  |
| O3   | 0.0406 (5) | 0.0187 (4) | 0.0294 (5) | -0.0028 (4) | 0.0195 (4) | 0.0016 (3)  |
| N3   | 0.0246 (5) | 0.0176 (5) | 0.0194 (5) | -0.0011 (4) | 0.0097 (4) | 0.0011 (4)  |
| C2   | 0.0205 (5) | 0.0191 (5) | 0.0222 (5) | 0.0002 (4)  | 0.0092 (4) | 0.0010 (4)  |
| C3   | 0.0186 (5) | 0.0182 (5) | 0.0208 (5) | 0.0003 (4)  | 0.0077 (4) | 0.0007 (4)  |
| C4   | 0.0158 (5) | 0.0180 (5) | 0.0205 (5) | 0.0001 (4)  | 0.0065 (4) | -0.0002 (4) |
| C4A  | 0.0166 (5) | 0.0198 (5) | 0.0206 (5) | 0.0007 (4)  | 0.0077 (4) | 0.0000 (4)  |
| C5   | 0.0211 (5) | 0.0204 (5) | 0.0242 (5) | 0.0006 (4)  | 0.0100 (4) | 0.0008 (4)  |
| C6   | 0.0234 (5) | 0.0251 (6) | 0.0240 (6) | 0.0016 (5)  | 0.0114 (5) | 0.0033 (5)  |
| C7   | 0.0224 (5) | 0.0301 (7) | 0.0209 (5) | 0.0009 (5)  | 0.0106 (4) | -0.0019 (5) |
| C8   | 0.0210 (5) | 0.0241 (6) | 0.0245 (6) | -0.0003 (4) | 0.0100 (4) | -0.0039 (5) |
| C8A  | 0.0170 (5) | 0.0196 (5) | 0.0227 (5) | 0.0003 (4)  | 0.0084 (4) | 0.0002 (4)  |
| C31  | 0.0192 (5) | 0.0194 (5) | 0.0222 (5) | 0.0001 (4)  | 0.0084 (4) | 0.0008 (4)  |
| C311 | 0.0184 (5) | 0.0203 (5) | 0.0187 (5) | -0.0014 (4) | 0.0077 (4) | -0.0004 (4) |
| C312 | 0.0223 (5) | 0.0187 (5) | 0.0231 (6) | -0.0004 (4) | 0.0089 (4) | 0.0017 (4)  |
| C313 | 0.0236 (6) | 0.0207 (6) | 0.0218 (5) | -0.0001 (4) | 0.0100 (4) | 0.0041 (4)  |
| C314 | 0.0195 (5) | 0.0230 (6) | 0.0193 (5) | -0.0011 (4) | 0.0085 (4) | -0.0001 (4) |
| C315 | 0.0219 (5) | 0.0189 (5) | 0.0226 (5) | 0.0008 (4)  | 0.0088 (4) | 0.0002 (4)  |
| C316 | 0.0217 (5) | 0.0189 (5) | 0.0201 (5) | -0.0005 (4) | 0.0077 (4) | 0.0033 (4)  |
| C317 | 0.0366 (7) | 0.0231 (6) | 0.0255 (6) | 0.0020 (5)  | 0.0166 (5) | -0.0013 (5) |

| 01—C2     | 1.3420 (14) | С6—Н6     | 0.9500      |
|-----------|-------------|-----------|-------------|
| O1—C8A    | 1.3767 (15) | С7—С8     | 1.3797 (19) |
| O4—C4     | 1.2399 (16) | С7—Н7     | 0.9500      |
| O314—C314 | 1.3747 (14) | C8—C8A    | 1.3969 (16) |
| O314—C317 | 1.4266 (18) | C8—H8     | 0.9500      |
| O3—C31    | 1.2293 (16) | C311—C316 | 1.3941 (19) |
| N3—C31    | 1.3528 (17) | C311—C312 | 1.3971 (16) |
| N3—C311   | 1.4201 (15) | C312—C313 | 1.3881 (17) |
| N3—H3     | 0.901 (17)  | C312—H312 | 0.9500      |
| C2—C3     | 1.3553 (18) | C313—C314 | 1.3967 (19) |
| С2—Н2     | 0.9500      | C313—H313 | 0.9500      |
| C3—C4     | 1.4645 (17) | C314—C315 | 1.3916 (17) |
| C3—C31    | 1.5055 (16) | C315—C316 | 1.3894 (16) |
| C4—C4A    | 1.4742 (16) | С315—Н315 | 0.9500      |
|           |             |           |             |

| C4A—C8A                                | 1.3921 (18)              | C316—H316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9500              |
|----------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| C4A—C5                                 | 1.4031 (17)              | C317—H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9800              |
| C5—C6                                  | 1.3799 (17)              | C317—H31B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9800              |
| С5—Н5                                  | 0.9500                   | C317—H31C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9800              |
| C6—C7                                  | 1.403 (2)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
|                                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| C2                                     | 118.29 (10)              | O1—C8A—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 116.09 (11)         |
| C314—O314—C317                         | 116.34 (9)               | C4A—C8A—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122.10 (11)         |
| C31—N3—C311                            | 128.37 (10)              | O3—C31—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 125.15 (11)         |
| C31—N3—H3                              | 114.6 (10)               | O3—C31—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.16 (11)         |
| C311—N3—H3                             | 116.4 (10)               | N3—C31—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113.68 (10)         |
| O1—C2—C3                               | 125.53 (11)              | C316—C311—C312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.31 (11)         |
| O1—C2—H2                               | 117.2                    | C316—C311—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.50 (10)         |
| С3—С2—Н2                               | 117.2                    | C312—C311—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.13 (11)         |
| C2—C3—C4                               | 119.58 (11)              | C313—C312—C311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.62 (12)         |
| C2—C3—C31                              | 115.67 (10)              | C313—C312—H312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.2               |
| C4—C3—C31                              | 124.72 (10)              | C311—C312—H312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.2               |
| O4—C4—C3                               | 124.51 (11)              | C312—C313—C314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.00 (11)         |
| O4—C4—C4A                              | 121.10 (10)              | С312—С313—Н313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5               |
| C3-C4-C4A                              | 114.37 (10)              | C314—C313—H313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5               |
| C8A - C4A - C5                         | 118.31 (11)              | O314—C314—C315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.24 (12)         |
| C8A - C4A - C4                         | 120.31 (10)              | O314—C314—C313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116.45 (10)         |
| C5-C4A-C4                              | 121.36 (11)              | $C_{315} - C_{314} - C_{313}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119 30 (11)         |
| C6-C5-C4A                              | 120.33(11)               | $C_{316} - C_{315} - C_{314}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.81 (12)         |
| С6—С5—Н5                               | 119.8                    | C316—C315—H315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1               |
| C4A - C5 - H5                          | 119.8                    | $C_{314} - C_{315} - H_{315}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.1               |
| $C_{5}$ $C_{6}$ $C_{7}$                | 120.14 (11)              | $C_{315} - C_{316} - C_{311}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.1<br>120.94(11) |
| C5-C6-H6                               | 110.0                    | $C_{315}$ $C_{316}$ H316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110 5               |
| C7-C6-H6                               | 119.9                    | C311—C316—H316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5               |
| $C_{8}^{-}C_{7}^{-}C_{6}^{-}$          | 119.9<br>120 71 (12)     | O314_C317_H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5               |
| $C_{3}$ $C_{7}$ $H_{7}$                | 110.6                    | $O_{314} = C_{317} = H_{31R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5               |
| C6-C7-H7                               | 119.0                    | $H_{314} - C_{317} - H_{31B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5               |
| $C_{7}$ $C_{8}$ $C_{8}$                | 119.0                    | $\begin{array}{c} 11317 \\ \hline 0314 \\ \hline 0317 \\ \hline 11310 \\ \hline 1$ | 109.5               |
| $C_{1}^{-}C_{0}^{-}C_{0}^{-}H_{0}^{0}$ | 110.30 (12)              | $H_{21A} = C_{217} = H_{21C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5               |
| $C^{0} = C^{0} = H^{0}$                | 120.8                    | $H_{21} = C_{217} = H_{21C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5               |
| $C_{0} = C_{0} = C_{0}$                | 120.0<br>121.81(11)      | H31B-C317-H31C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5               |
| 01-08A-04A                             | 121.01 (11)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| $C^{8}$ $O^{1}$ $C^{2}$ $C^{3}$        | -0.22(17)                | $C7$ $C^{\circ}$ $C^{\circ}$ $O^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _179 99 (10)        |
| $C_{0}A = 01 = C_{2} = C_{3}$          | -0.22(17)                | C/-Co-CoA-OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -170.00(10)         |
| 01 - 02 - 03 - 04                      | -2.23(18)                | C/-Co-CoA-C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.20(17)            |
| 01 - 02 - 03 - 031                     | 1/0.01(10)<br>170.22(11) | $C_{311} = N_3 = C_{31} = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.40(19)           |
| $C_2 = C_3 = C_4 = 0_4$                | -1/9.33(11)              | $C_{311} = N_{3} = C_{31} = C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/7.21(10)          |
| $C_{31} - C_{3} - C_{4} - O_{4}$       | 2.58 (18)                | $C_2 - C_3 - C_3 - C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.68 (17)          |
| $C_2 - C_3 - C_4 - C_4 A$              | 1./9(15)                 | $U_4 - U_3 - U_3 I_3 - U_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 /4.48 (11)        |
| $C_3 = C_4 = C_4 = C_4 = C_4$          | -1/6.31 (10)             | $U_2 - U_3 - U_3 I_3 - N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1//.65 (10)         |
| U4 - C4 - C4A - C8A                    | -178.03(10)              | C4—C3—C31—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4.19 (16)          |
| C3—C4—C4A—C8A                          | 0.89 (15)                | C31—N3—C311—C316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -165.10 (11)        |
| 04—C4—C4A—C5                           | 0.21 (17)                | C31—N3—C311—C312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.83 (18)          |
| C3—C4—C4A—C5                           | 179.13 (10)              | C316—C311—C312—C313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.79 (17)          |

| $\begin{array}{c} C8A - C4A - C5 - C6 \\ C4 - C4A - C5 - C6 \\ C4A - C5 - C6 - C7 \\ C5 - C6 - C7 - C8 \\ C6 - C7 - C8 - C8A \\ C2 - O1 - C8A - C4A \\ C2 - O1 - C8A - C8 \end{array}$ | 0.89 (17)<br>-177.38 (10)<br>0.64 (18)<br>-1.26 (18)<br>0.31 (17)<br>3.11 (15)<br>-176 72 (9) | N3—C311—C312—C313<br>C311—C312—C313—C314<br>C317—O314—C314—C315<br>C317—O314—C314—C313<br>C312—C313—C314—O314<br>C312—C313—C314—O314<br>C312—C313—C314—C315<br>O314—C314—C315—C316 | 176.21 (10)<br>-0.02 (17)<br>1.46 (16)<br>179.96 (11)<br>-177.58 (10)<br>1.00 (17)<br>177.30 (10) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| $C_{5} - C_{6} - C_{7} - C_{8}$                                                                                                                                                        | -1.26(18)<br>0.31(17)                                                                         | $C_{317} - O_{314} - C_{314} - C_{313}$                                                                                                                                            | 179.96(11)<br>-177.58(10)                                                                         |
| C2—C1—C8A—C4A                                                                                                                                                                          | 3.11 (15)                                                                                     | C312—C313—C314—C315                                                                                                                                                                | 1.00 (17)                                                                                         |
| C2—O1—C8A—C8                                                                                                                                                                           | -176.72 (9)                                                                                   | O314—C314—C315—C316                                                                                                                                                                | 177.30 (10)                                                                                       |
| C5—C4A—C8A—O1                                                                                                                                                                          | 178.30 (10)                                                                                   | C313—C314—C315—C316                                                                                                                                                                | -1.16 (17)                                                                                        |
| C4—C4A—C8A—O1                                                                                                                                                                          | -3.41 (16)                                                                                    | C314—C315—C316—C311                                                                                                                                                                | 0.36 (17)                                                                                         |
| C5—C4A—C8A—C8                                                                                                                                                                          | -1.88 (16)                                                                                    | C312—C311—C316—C315                                                                                                                                                                | 0.63 (17)                                                                                         |
| C4—C4A—C8A—C8                                                                                                                                                                          | 176.42 (10)                                                                                   | N3—C311—C316—C315                                                                                                                                                                  | -176.60 (10)                                                                                      |

Hydrogen-bond geometry (Å, °)

| D—H···A                     | D—H        | Н…А        | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|-----------------------------|------------|------------|--------------|-------------------------|
| N3—H3…O4                    | 0.901 (17) | 1.903 (16) | 2.6919 (13)  | 145.0 (15)              |
| С312—Н312…О3                | 0.95       | 2.37       | 2.9441 (17)  | 119                     |
| C2— $H2$ ···O4 <sup>i</sup> | 0.95       | 2.47       | 3.212 (3)    | 134                     |
| C316—H316…O3 <sup>ii</sup>  | 0.95       | 2.33       | 3.201 (2)    | 152                     |

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*, *y*+1, *z*.

#### (4d) N-(4-Methylphenyl)-4-oxo-4H-chromene-3-carboxamide

Crystal data

 $\begin{array}{l} C_{17}H_{13}NO_3\\ M_r = 279.28\\ Triclinic, P1\\ a = 6.6106~(5) \text{ Å}\\ b = 7.0143~(5) \text{ Å}\\ c = 15.3749~(11) \text{ Å}\\ a = 91.444~(6)^\circ\\ \beta = 95.238~(6)^\circ\\ \gamma = 112.551~(8)^\circ\\ V = 654.25~(9) \text{ Å}^3 \end{array}$ 

#### Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer Radiation source: Sealed Tube Mirrors monochromator Detector resolution: 28.5714 pixels mm<sup>-1</sup> profile data from  $\omega$ -scans Absorption correction: multi-scan (*CrystalClear-SM Expert*; Rigaku, 2012)  $T_{\min} = 0.985$ ,  $T_{\max} = 0.998$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.043$  $wR(F^2) = 0.123$ S = 1.08 Z = 2 F(000) = 292  $D_x = 1.418 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71075 \text{ Å}$ Cell parameters from 8940 reflections  $\theta = 3.2-27.5^{\circ}$   $\mu = 0.10 \text{ mm}^{-1}$  T = 100 KPlate, colourless  $0.16 \times 0.09 \times 0.02 \text{ mm}$ 

9400 measured reflections 2986 independent reflections 2645 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.035$  $\theta_{max} = 27.6^{\circ}, \theta_{min} = 3.2^{\circ}$  $h = -8 \rightarrow 8$  $k = -9 \rightarrow 8$  $l = -19 \rightarrow 19$ 

2986 reflections 196 parameters 0 restraints Hydrogen site location: mixed

| H atoms treated by a mixture of independent       | $(\Delta/\sigma)_{\rm max} = 0.004$                       |
|---------------------------------------------------|-----------------------------------------------------------|
| and constrained refinement                        | $\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$ |
| $w = 1/[\sigma^2(F_o^2) + (0.0687P)^2 + 0.1454P]$ | $\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$  |
| where $P = (F_o^2 + 2F_c^2)/3$                    |                                                           |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|      | x            | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|--------------|--------------|--------------|-------------------------------|
| 01   | 0.82225 (13) | 0.28691 (13) | 0.53040 (5)  | 0.0234 (2)                    |
| O3   | 0.75229 (13) | 0.36263 (14) | 0.27108 (6)  | 0.0285 (2)                    |
| O4   | 0.21316 (13) | 0.23497 (13) | 0.42176 (5)  | 0.0245 (2)                    |
| N3   | 0.38310 (16) | 0.28969 (15) | 0.26610 (6)  | 0.0217 (2)                    |
| Н3   | 0.282 (3)    | 0.276 (3)    | 0.3036 (11)  | 0.043 (5)*                    |
| C2   | 0.78092 (18) | 0.30515 (17) | 0.44464 (8)  | 0.0220 (2)                    |
| H2   | 0.8985       | 0.3286       | 0.4097       | 0.032 (4)*                    |
| C3   | 0.58640 (17) | 0.29301 (16) | 0.40379 (7)  | 0.0197 (2)                    |
| C4   | 0.39777 (18) | 0.24920 (16) | 0.45362 (7)  | 0.0198 (2)                    |
| C4A  | 0.44234 (18) | 0.22256 (16) | 0.54690 (7)  | 0.0197 (2)                    |
| C5   | 0.27553 (19) | 0.17259 (18) | 0.60293 (8)  | 0.0230 (2)                    |
| Н5   | 0.1298       | 0.1528       | 0.5803       | 0.028*                        |
| C6   | 0.3225 (2)   | 0.15213 (19) | 0.69049 (8)  | 0.0264 (3)                    |
| Н6   | 0.2086       | 0.1160       | 0.7279       | 0.032*                        |
| C7   | 0.5381 (2)   | 0.18446 (19) | 0.72459 (8)  | 0.0274 (3)                    |
| H7   | 0.5697       | 0.1734       | 0.7853       | 0.033*                        |
| C8   | 0.7048 (2)   | 0.23214 (18) | 0.67093 (8)  | 0.0256 (3)                    |
| H8   | 0.8509       | 0.2541       | 0.6939       | 0.031*                        |
| C8A  | 0.65314 (18) | 0.24727 (17) | 0.58227 (8)  | 0.0210 (2)                    |
| C311 | 0.32431 (18) | 0.28817 (17) | 0.17506 (7)  | 0.0222 (2)                    |
| C312 | 0.4436 (2)   | 0.24849 (19) | 0.11163 (8)  | 0.0271 (3)                    |
| H312 | 0.5759       | 0.2289       | 0.1284       | 0.032*                        |
| C313 | 0.3675 (2)   | 0.23785 (19) | 0.02375 (8)  | 0.0296 (3)                    |
| H313 | 0.4502       | 0.2118       | -0.0191      | 0.036*                        |
| C314 | 0.1735 (2)   | 0.26422 (18) | -0.00357 (8) | 0.0273 (3)                    |
| C315 | 0.0570 (2)   | 0.30296 (19) | 0.06084 (8)  | 0.0263 (3)                    |
| H315 | -0.0762      | 0.3208       | 0.0440       | 0.032*                        |
| C316 | 0.13057 (19) | 0.31625 (18) | 0.14920 (8)  | 0.0241 (3)                    |
| H316 | 0.0489       | 0.3445       | 0.1919       | 0.029*                        |
| C317 | 0.0915 (2)   | 0.2486 (2)   | -0.09925 (8) | 0.0335 (3)                    |
| H31C | -0.0432      | 0.2766       | -0.1057      | 0.050*                        |
| H31D | 0.0598       | 0.1090       | -0.1244      | 0.050*                        |
| H31E | 0.2045       | 0.3500       | -0.1299      | 0.050*                        |
| C31  | 0.58315 (18) | 0.31961 (17) | 0.30716 (8)  | 0.0216 (2)                    |
|      |              | × /          | ~ /          | × /                           |

|      | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$   | $U^{13}$    | $U^{23}$    |
|------|------------|------------|------------|------------|-------------|-------------|
| 01   | 0.0174 (4) | 0.0264 (4) | 0.0264 (4) | 0.0091 (3) | 0.0004 (3)  | 0.0004 (3)  |
| O3   | 0.0202 (4) | 0.0359 (5) | 0.0297 (5) | 0.0098 (4) | 0.0080 (3)  | 0.0047 (4)  |
| O4   | 0.0174 (4) | 0.0332 (5) | 0.0252 (4) | 0.0120 (3) | 0.0028 (3)  | 0.0048 (3)  |
| N3   | 0.0194 (5) | 0.0256 (5) | 0.0213 (5) | 0.0096 (4) | 0.0042 (4)  | 0.0033 (4)  |
| C2   | 0.0188 (5) | 0.0203 (5) | 0.0261 (6) | 0.0068 (4) | 0.0027 (4)  | 0.0001 (4)  |
| C3   | 0.0182 (5) | 0.0166 (5) | 0.0245 (6) | 0.0069 (4) | 0.0033 (4)  | 0.0010 (4)  |
| C4   | 0.0178 (5) | 0.0172 (5) | 0.0249 (5) | 0.0073 (4) | 0.0021 (4)  | 0.0013 (4)  |
| C4A  | 0.0201 (5) | 0.0168 (5) | 0.0226 (5) | 0.0080 (4) | 0.0011 (4)  | 0.0001 (4)  |
| C5   | 0.0222 (5) | 0.0221 (5) | 0.0264 (6) | 0.0104 (4) | 0.0031 (4)  | 0.0011 (4)  |
| C6   | 0.0296 (6) | 0.0267 (6) | 0.0254 (6) | 0.0129 (5) | 0.0060 (5)  | 0.0014 (4)  |
| C7   | 0.0343 (6) | 0.0268 (6) | 0.0221 (5) | 0.0140 (5) | -0.0007 (5) | -0.0006 (4) |
| C8   | 0.0251 (6) | 0.0250 (6) | 0.0267 (6) | 0.0114 (5) | -0.0042 (4) | -0.0026 (4) |
| C8A  | 0.0202 (5) | 0.0175 (5) | 0.0257 (6) | 0.0078 (4) | 0.0020 (4)  | -0.0004 (4) |
| C311 | 0.0224 (5) | 0.0203 (5) | 0.0218 (5) | 0.0058 (4) | 0.0036 (4)  | 0.0020 (4)  |
| C312 | 0.0245 (6) | 0.0278 (6) | 0.0285 (6) | 0.0091 (5) | 0.0059 (4)  | 0.0011 (5)  |
| C313 | 0.0313 (6) | 0.0297 (6) | 0.0253 (6) | 0.0077 (5) | 0.0102 (5)  | -0.0003 (5) |
| C314 | 0.0318 (6) | 0.0217 (5) | 0.0228 (6) | 0.0040 (5) | 0.0037 (5)  | 0.0019 (4)  |
| C315 | 0.0269 (6) | 0.0256 (6) | 0.0253 (6) | 0.0093 (5) | 0.0012 (4)  | 0.0025 (4)  |
| C316 | 0.0245 (6) | 0.0252 (6) | 0.0233 (6) | 0.0099 (5) | 0.0044 (4)  | 0.0020 (4)  |
| C317 | 0.0425 (7) | 0.0301 (6) | 0.0224 (6) | 0.0083 (6) | 0.0029 (5)  | 0.0009 (5)  |
| C31  | 0.0201 (5) | 0.0198 (5) | 0.0257 (6) | 0.0078 (4) | 0.0047 (4)  | 0.0026 (4)  |

Atomic displacement parameters  $(Å^2)$ 

| O1—C2       | 1.3414 (14) | С7—С8      | 1.3799 (18) |
|-------------|-------------|------------|-------------|
| O1—C8A      | 1.3779 (14) | С7—Н7      | 0.9500      |
| O3—C31      | 1.2296 (14) | C8—C8A     | 1.3914 (16) |
| O4—C4       | 1.2386 (13) | C8—H8      | 0.9500      |
| N3—C31      | 1.3488 (14) | C311—C316  | 1.3935 (16) |
| N3—C311     | 1.4168 (14) | C311—C312  | 1.3948 (16) |
| N3—H3       | 0.900 (18)  | C312—C313  | 1.3878 (17) |
| С2—С3       | 1.3494 (15) | C312—H312  | 0.9500      |
| С2—Н2       | 0.9500      | C313—C314  | 1.3939 (18) |
| C3—C4       | 1.4590 (15) | С313—Н313  | 0.9500      |
| C3—C31      | 1.5013 (16) | C314—C315  | 1.3907 (17) |
| C4—C4A      | 1.4688 (15) | C314—C317  | 1.5068 (16) |
| C4A—C8A     | 1.3926 (15) | C315—C316  | 1.3889 (16) |
| C4A—C5      | 1.4047 (16) | С315—Н315  | 0.9500      |
| С5—С6       | 1.3773 (16) | C316—H316  | 0.9500      |
| С5—Н5       | 0.9500      | C317—H31C  | 0.9800      |
| C6—C7       | 1.4023 (17) | C317—H31D  | 0.9800      |
| С6—Н6       | 0.9500      | C317—H31E  | 0.9800      |
| C2—O1—C8A   | 118.52 (9)  | O1—C8A—C4A | 121.24 (10) |
| C31—N3—C311 | 127.52 (10) | C8—C8A—C4A | 122.38 (11) |
|             |             |            |             |

| C31—N3—H3                             | 112.7 (11)               | C316—C311—C312                                       | 119.49 (11)              |
|---------------------------------------|--------------------------|------------------------------------------------------|--------------------------|
| C311—N3—H3                            | 119.7 (11)               | C316—C311—N3                                         | 117.29 (10)              |
| Q1—C2—C3                              | 125.51 (10)              | C312—C311—N3                                         | 123.11 (10)              |
| 01—C2—H2                              | 117.2                    | C313—C312—C311                                       | 119.44 (11)              |
| C3—C2—H2                              | 117.2                    | C313—C312—H312                                       | 120.3                    |
| $C^2 - C^3 - C^4$                     | 119 57 (10)              | $C_{311} - C_{312} - H_{312}$                        | 120.3                    |
| $C_2 = C_3 = C_3 $                    | 115.13 (10)              | $C_{312}$ — $C_{313}$ — $C_{314}$                    | 120.0<br>122.04(11)      |
| C4-C3-C31                             | 125 27 (10)              | $C_{312}$ $C_{313}$ H313                             | 119.0                    |
| 04 - C4 - C3                          | 123.27 (10)              | $C_{314}$ $C_{313}$ $H_{313}$                        | 119.0                    |
| 04-C4-C4A                             | 121.11(10)<br>121.31(10) | $C_{315} - C_{314} - C_{313}$                        | 117.49 (11)              |
| $C_3 - C_4 - C_4 A$                   | 114 58 (9)               | $C_{315} = C_{314} = C_{317}$                        | 121.24(12)               |
| C8A - C4A - C5                        | 118.12(10)               | $C_{313}$ $C_{314}$ $C_{317}$                        | 121.21(12)<br>121.26(12) |
| C8A - C4A - C4                        | 120.48(10)               | $C_{316}$ $C_{315}$ $C_{314}$                        | 121.20(12)<br>121.62(11) |
| $C_{0}$                               | 120.40(10)<br>121.39(10) | $C_{316} C_{315} H_{315}$                            | 119.2                    |
| $C_{5} = C_{4} + \Lambda_{-} + C_{4}$ | 121.39(10)<br>120.25(11) | $C_{314} = C_{315} = H_{315}$                        | 119.2                    |
| C6 C5 H5                              | 110.0                    | $C_{315} = C_{316} = C_{311}$                        | 119.2                    |
| $C_{4}$ $C_{5}$ $H_{5}$               | 119.9                    | $C_{315} = C_{316} = C_{316}$                        | 119.91 (11)              |
| $C_{4A} = C_{5} = M_{5}$              | 119.9                    | $C_{313} = C_{316} = H_{316}$                        | 120.0                    |
| $C_{5} = C_{6} = C_{7}$               | 120.20 (11)              | $C_{314} = C_{317} = H_{310}$                        | 120.0                    |
| $C_{2}$                               | 119.9                    | $C_{214} = C_{217} = H_{21D}$                        | 109.5                    |
| $C^{*}$                               | 119.9                    | $H_{21C} = C_{217} = H_{21D}$                        | 109.5                    |
| $C_{8} = C_{7} = U_{7}$               | 120.70 (11)              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5                    |
| $C_{6} = C_{7} = H_{7}$               | 119.0                    | 1210 - 217 - 1131E                                   | 109.5                    |
| $C_0 - C_1 - H_1$                     | 119.0                    | $H_{21D} = C_{217} = H_{21E}$                        | 109.5                    |
| $C^{-}$                               | 110.25 (11)              | $O_2 C_{21} N_2$                                     | 109.3<br>124.02(11)      |
| $C^{0} = C^{0} = H^{0}$               | 120.9                    | 03 - 03 - 03                                         | 124.93(11)<br>120.72(10) |
| $C_{0}A - C_{0} - H_{0}$              | 120.9                    | $V_{2} = C_{2} = C_{2}$                              | 120.75(10)<br>114.22(0)  |
| 01-C8A-C8                             | 110.38 (10)              | N3-C31-C3                                            | 114.33 (9)               |
| C8A—O1—C2—C3                          | 1.72 (17)                | C4—C4A—C8A—O1                                        | -3.26 (16)               |
| O1—C2—C3—C4                           | -2.37 (17)               | C5—C4A—C8A—C8                                        | -2.55 (17)               |
| O1—C2—C3—C31                          | 179.75 (9)               | C4—C4A—C8A—C8                                        | 177.21 (10)              |
| C2—C3—C4—O4                           | -179.91 (10)             | C31—N3—C311—C316                                     | -161.26 (11)             |
| C31—C3—C4—O4                          | -2.27 (18)               | C31—N3—C311—C312                                     | 22.52 (18)               |
| C2—C3—C4—C4A                          | 0.18 (15)                | C316—C311—C312—C313                                  | 0.07 (18)                |
| C31—C3—C4—C4A                         | 177.83 (9)               | N3—C311—C312—C313                                    | 176.21 (10)              |
| O4—C4—C4A—C8A                         | -177.42 (10)             | C311—C312—C313—C314                                  | -0.46 (19)               |
| C3—C4—C4A—C8A                         | 2.48 (15)                | C312—C313—C314—C315                                  | 0.26 (19)                |
| O4—C4—C4A—C5                          | 2.32 (17)                | C312—C313—C314—C317                                  | -178.96 (11)             |
| C3—C4—C4A—C5                          | -177.77 (10)             | C313—C314—C315—C316                                  | 0.35 (18)                |
| C8A—C4A—C5—C6                         | 0.93 (17)                | C317—C314—C315—C316                                  | 179.57 (11)              |
| C4—C4A—C5—C6                          | -178.83 (10)             | C314—C315—C316—C311                                  | -0.73 (18)               |
| C4A—C5—C6—C7                          | 1.07 (18)                | C312—C311—C316—C315                                  | 0.51 (18)                |
| C5—C6—C7—C8                           | -1.57 (18)               | N3—C311—C316—C315                                    | -175.85 (10)             |
| C6—C7—C8—C8A                          | 0.02 (18)                | C311—N3—C31—O3                                       | 4.35 (19)                |
| C2—O1—C8A—C8                          | -179.25 (9)              | C311—N3—C31—C3                                       | -174.78 (10)             |
| C2—O1—C8A—C4A                         | 1.19 (15)                | C2—C3—C31—O3                                         | -4.51 (16)               |
| C7—C8—C8A—O1                          | -177.48 (10)             | C4—C3—C31—O3                                         | 177.76 (10)              |
| C7—C8—C8A—C4A                         | 2.07 (17)                | C2—C3—C31—N3                                         | 174.67 (10)              |
|                                       |                          |                                                      | ()                       |

| C5—C4A—C8A—O1                 | 176.98 (10) | C4—C3—C31—N3 | -3.07 (16)   |            |
|-------------------------------|-------------|--------------|--------------|------------|
| Hydrogen-bond geometry (Å, °) |             |              |              |            |
| D—H···A                       | <i>D</i> —Н | H···A        | $D \cdots A$ | D—H···A    |
| N3—H3…O4                      | 0.900 (18)  | 1.916 (18)   | 2.7098 (13)  | 146.1 (15) |
| С312—Н312…О3                  | 0.95        | 2.37         | 2.9240 (16)  | 116        |
| C2—H2····O4 <sup>i</sup>      | 0.95        | 2.40         | 3.1280 (14)  | 133        |
| C316—H316…O3 <sup>ii</sup>    | 0.95        | 2.44         | 3.3644 (14)  | 164        |

Z = 4

F(000) = 584

 $\theta = 2.9 - 27.5^{\circ}$ 

 $\mu = 0.11 \text{ mm}^{-1}$ 

Block, colourless

 $0.14 \times 0.04 \times 0.04$  mm

 $T_{\rm min} = 0.985, T_{\rm max} = 0.996$ 

5627 measured reflections

 $\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$ 

5627 independent reflections

4343 reflections with  $I > 2\sigma(I)$ 

T = 100 K

 $h = -9 \rightarrow 9$ 

 $k = -16 \rightarrow 16$  $l = -4 \rightarrow 18$ 

 $D_{\rm x} = 1.494 {\rm Mg m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71075$  Å

Cell parameters from 14545 reflections

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.

#### (4e) N-(4-Hydroxyphenyl)-4-oxo-4H-chromene-3-carboxamide

#### Crystal data

C<sub>16</sub>H<sub>11</sub>NO<sub>4</sub>  $M_r = 281.26$ Triclinic,  $P\overline{1}$  a = 7.0756 (5) Å b = 12.5125 (9) Å c = 14.2944 (10) Å a = 86.267 (8)°  $\beta = 83.839$  (8)°  $\gamma = 84.588$  (8)° V = 1250.68 (16) Å<sup>3</sup>

#### Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer Radiation source: Sealed Tube Mirrors monochromator Detector resolution: 28.5714 pixels mm<sup>-1</sup> profile data from  $\omega$ -scans Absorption correction: multi-scan (*CrystalClear-SM Expert*; Rigaku, 2012)

#### Refinement

| Refinement on $F^2$             | Hydrogen site location: mixed                             |
|---------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent               |
| $R[F^2 > 2\sigma(F^2)] = 0.085$ | and constrained refinement                                |
| $wR(F^2) = 0.252$               | $w = 1/[\sigma^2(F_o^2) + (0.1127P)^2 + 0.9725P]$         |
| S = 1.18                        | where $P = (F_o^2 + 2F_c^2)/3$                            |
| 5627 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                       |
| 392 parameters                  | $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$ |
| 0 restraints                    | $\Delta \rho_{\min} = -0.38 \text{ e} \text{ Å}^{-3}$     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x           | у           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|-------------|---------------|-----------------------------|--|
| 011  | 0.8738 (4)  | -0.0689 (2) | -0.21765 (17) | 0.0295 (6)                  |  |
| O13  | 0.7750 (4)  | -0.0154 (2) | 0.06141 (17)  | 0.0339 (6)                  |  |
| O14  | 0.5168 (4)  | 0.1945 (2)  | -0.14104 (17) | 0.0311 (6)                  |  |
| O114 | 0.4248 (4)  | 0.2817 (2)  | 0.40213 (18)  | 0.0379 (7)                  |  |
| H114 | 0.353 (8)   | 0.344 (5)   | 0.412 (4)     | 0.057*                      |  |
| N13  | 0.5991 (4)  | 0.1441 (2)  | 0.0370 (2)    | 0.0270 (6)                  |  |
| H13  | 0.546 (6)   | 0.188 (3)   | -0.011 (3)    | 0.032*                      |  |
| C12  | 0.8371 (5)  | -0.0430 (3) | -0.1277 (2)   | 0.0280 (7)                  |  |
| H12  | 0.8983      | -0.0883     | -0.0820       | 0.034*                      |  |
| C13  | 0.7215 (5)  | 0.0413 (3)  | -0.0963 (2)   | 0.0254 (7)                  |  |
| C14  | 0.6239 (5)  | 0.1147 (3)  | -0.1638 (2)   | 0.0258 (7)                  |  |
| C14A | 0.6635 (5)  | 0.0847 (3)  | -0.2619 (2)   | 0.0259 (7)                  |  |
| C15  | 0.5814 (5)  | 0.1460 (3)  | -0.3350 (3)   | 0.0311 (8)                  |  |
| H15  | 0.4998      | 0.2090      | -0.3212       | 0.037*                      |  |
| C16  | 0.6177 (6)  | 0.1161 (3)  | -0.4271 (3)   | 0.0342 (8)                  |  |
| H16  | 0.5602      | 0.1578      | -0.4761       | 0.041*                      |  |
| C17  | 0.7399 (6)  | 0.0235 (3)  | -0.4478 (3)   | 0.0360 (8)                  |  |
| H17  | 0.7644      | 0.0031      | -0.5111       | 0.043*                      |  |
| C18  | 0.8250 (5)  | -0.0382 (3) | -0.3772 (3)   | 0.0330 (8)                  |  |
| H18  | 0.9083      | -0.1005     | -0.3910       | 0.040*                      |  |
| C18A | 0.7842 (5)  | -0.0058 (3) | -0.2852 (2)   | 0.0274 (7)                  |  |
| C111 | 0.5570 (5)  | 0.1758 (3)  | 0.1308 (2)    | 0.0252 (7)                  |  |
| C112 | 0.6421 (5)  | 0.1236 (3)  | 0.2077 (2)    | 0.0282 (7)                  |  |
| H112 | 0.7315      | 0.0626      | 0.1985        | 0.034*                      |  |
| C113 | 0.5955 (5)  | 0.1611 (3)  | 0.2966 (2)    | 0.0294 (7)                  |  |
| H113 | 0.6544      | 0.1259      | 0.3482        | 0.035*                      |  |
| C114 | 0.4642 (5)  | 0.2494 (3)  | 0.3121 (2)    | 0.0288 (7)                  |  |
| C115 | 0.3799 (5)  | 0.3017 (3)  | 0.2363 (3)    | 0.0295 (8)                  |  |
| H115 | 0.2910      | 0.3628      | 0.2458        | 0.035*                      |  |
| C116 | 0.4259 (5)  | 0.2644 (3)  | 0.1463 (2)    | 0.0288 (7)                  |  |
| H116 | 0.3669      | 0.2999      | 0.0948        | 0.035*                      |  |
| C131 | 0.7013 (5)  | 0.0543 (3)  | 0.0076 (2)    | 0.0256 (7)                  |  |
| O21  | 0.3577 (4)  | 0.4196 (2)  | 0.68202 (17)  | 0.0291 (6)                  |  |
| O23  | 0.2438 (4)  | 0.4764 (2)  | 0.40951 (18)  | 0.0340 (6)                  |  |
| O24  | 0.0699 (4)  | 0.7076 (2)  | 0.61185 (18)  | 0.0329 (6)                  |  |
| O214 | -0.0597 (4) | 0.7840 (2)  | 0.07027 (17)  | 0.0335 (6)                  |  |
| H214 | -0.127 (7)  | 0.846 (4)   | 0.061 (4)     | 0.050*                      |  |
| N23  | 0.1222 (4)  | 0.6485 (2)  | 0.4321 (2)    | 0.0271 (6)                  |  |
| H23  | 0.083 (6)   | 0.697 (4)   | 0.476 (3)     | 0.033*                      |  |
| C22  | 0.3224 (5)  | 0.4471 (3)  | 0.5933 (2)    | 0.0279 (7)                  |  |
| H22  | 0.3692      | 0.3977      | 0.5467        | 0.033*                      |  |
| C23  | 0.2255 (5)  | 0.5396 (3)  | 0.5643 (2)    | 0.0251 (7)                  |  |
| C24  | 0.1521 (5)  | 0.6191 (3)  | 0.6325 (2)    | 0.0269 (7)                  |  |
| C24A | 0.1811 (5)  | 0.5846 (3)  | 0.7308 (2)    | 0.0265 (7)                  |  |
| C25  | 0.1072 (5)  | 0.6482 (3)  | 0.8058 (2)    | 0.0292 (7)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H25  | 0.0377      | 0.7154     | 0.7934     | 0.035*     |
|------|-------------|------------|------------|------------|
| C26  | 0.1346 (6)  | 0.6140 (3) | 0.8973 (3) | 0.0339 (8) |
| H26  | 0.0833      | 0.6574     | 0.9476     | 0.041*     |
| C27  | 0.2386 (6)  | 0.5147 (3) | 0.9163 (3) | 0.0358 (9) |
| H27  | 0.2567      | 0.4913     | 0.9796     | 0.043*     |
| C28  | 0.3146 (6)  | 0.4509 (3) | 0.8432 (3) | 0.0310 (8) |
| H28  | 0.3866      | 0.3844     | 0.8552     | 0.037*     |
| C28A | 0.2824 (5)  | 0.4874 (3) | 0.7521 (2) | 0.0269 (7) |
| C211 | 0.0775 (5)  | 0.6804 (3) | 0.3389 (2) | 0.0267 (7) |
| C212 | 0.1618 (5)  | 0.6283 (3) | 0.2592 (2) | 0.0282 (7) |
| H212 | 0.2525      | 0.5680     | 0.2658     | 0.034*     |
| C213 | 0.1131 (5)  | 0.6645 (3) | 0.1709 (3) | 0.0310 (8) |
| H213 | 0.1699      | 0.6284     | 0.1170     | 0.037*     |
| C214 | -0.0177 (5) | 0.7531 (3) | 0.1599 (2) | 0.0273 (7) |
| C215 | -0.0999 (5) | 0.8059 (3) | 0.2387 (2) | 0.0281 (7) |
| H215 | -0.1887     | 0.8670     | 0.2317     | 0.034*     |
| C216 | -0.0524 (5) | 0.7694 (3) | 0.3276 (2) | 0.0279 (7) |
| H216 | -0.1093     | 0.8057     | 0.3813     | 0.033*     |
| C231 | 0.1984 (5)  | 0.5522 (3) | 0.4620 (2) | 0.0257 (7) |
|      |             |            |            |            |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| O11  | 0.0371 (14) | 0.0262 (13) | 0.0243 (12) | 0.0048 (10)  | -0.0052 (10) | -0.0025 (10) |
| 013  | 0.0470 (16) | 0.0281 (14) | 0.0255 (12) | 0.0065 (11)  | -0.0081 (11) | -0.0009 (10) |
| 014  | 0.0372 (14) | 0.0265 (13) | 0.0289 (12) | 0.0033 (11)  | -0.0047 (10) | -0.0017 (10) |
| 0114 | 0.0536 (17) | 0.0314 (15) | 0.0277 (13) | 0.0109 (12)  | -0.0098 (12) | -0.0072 (11) |
| N13  | 0.0329 (15) | 0.0240 (15) | 0.0234 (13) | 0.0013 (12)  | -0.0042 (11) | 0.0009 (11)  |
| C12  | 0.0331 (18) | 0.0278 (18) | 0.0233 (16) | -0.0015 (14) | -0.0053 (13) | -0.0008 (13) |
| C13  | 0.0286 (16) | 0.0230 (16) | 0.0253 (16) | -0.0045 (13) | -0.0052 (13) | 0.0004 (13)  |
| C14  | 0.0253 (16) | 0.0244 (17) | 0.0273 (16) | -0.0035 (13) | -0.0028 (13) | 0.0024 (13)  |
| C14A | 0.0292 (17) | 0.0231 (17) | 0.0254 (16) | -0.0047 (13) | -0.0022 (13) | -0.0001 (13) |
| C15  | 0.0351 (19) | 0.0292 (19) | 0.0286 (17) | -0.0024 (15) | -0.0032 (14) | 0.0005 (14)  |
| C16  | 0.041 (2)   | 0.035 (2)   | 0.0261 (17) | -0.0012 (16) | -0.0059 (15) | 0.0024 (15)  |
| C17  | 0.045 (2)   | 0.039 (2)   | 0.0234 (16) | -0.0030 (17) | -0.0032 (15) | -0.0015 (15) |
| C18  | 0.037 (2)   | 0.033 (2)   | 0.0286 (17) | -0.0003 (15) | -0.0015 (15) | -0.0049 (15) |
| C18A | 0.0289 (17) | 0.0305 (18) | 0.0231 (15) | -0.0050 (14) | -0.0048 (13) | 0.0033 (13)  |
| C111 | 0.0290 (17) | 0.0232 (16) | 0.0240 (15) | -0.0033 (13) | -0.0029 (13) | -0.0034 (13) |
| C112 | 0.0320 (18) | 0.0245 (17) | 0.0281 (16) | 0.0012 (14)  | -0.0050 (13) | -0.0032 (13) |
| C113 | 0.0398 (19) | 0.0228 (17) | 0.0259 (16) | 0.0016 (14)  | -0.0096 (14) | 0.0006 (13)  |
| C114 | 0.0355 (18) | 0.0255 (17) | 0.0258 (16) | -0.0010 (14) | -0.0038 (14) | -0.0053 (13) |
| C115 | 0.0342 (18) | 0.0230 (17) | 0.0313 (18) | 0.0040 (14)  | -0.0077 (14) | -0.0039 (14) |
| C116 | 0.0353 (18) | 0.0248 (17) | 0.0266 (16) | 0.0008 (14)  | -0.0072 (14) | -0.0022 (13) |
| C131 | 0.0300 (17) | 0.0216 (16) | 0.0253 (16) | -0.0020 (13) | -0.0045 (13) | -0.0003 (13) |
| O21  | 0.0383 (14) | 0.0233 (12) | 0.0252 (12) | 0.0029 (10)  | -0.0067 (10) | -0.0012 (10) |
| O23  | 0.0462 (15) | 0.0276 (13) | 0.0275 (12) | 0.0057 (11)  | -0.0067 (11) | -0.0044 (10) |
| O24  | 0.0414 (15) | 0.0269 (13) | 0.0299 (13) | 0.0050 (11)  | -0.0084 (11) | -0.0028 (10) |
| O214 | 0.0446 (15) | 0.0296 (14) | 0.0250 (12) | 0.0064 (11)  | -0.0081 (11) | 0.0007 (10)  |
|      |             |             |             |              |              |              |

| N23  | 0.0357 (16) | 0.0221 (15) | 0.0238 (14) | 0.0006 (12)  | -0.0068 (12) | -0.0009 (11) |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C22  | 0.0329 (18) | 0.0267 (18) | 0.0249 (16) | -0.0022 (14) | -0.0055 (13) | -0.0031 (14) |
| C23  | 0.0281 (16) | 0.0226 (16) | 0.0248 (15) | -0.0009 (13) | -0.0047 (13) | -0.0030 (13) |
| C24  | 0.0298 (17) | 0.0245 (17) | 0.0270 (16) | -0.0016 (13) | -0.0065 (13) | -0.0005 (13) |
| C24A | 0.0296 (17) | 0.0243 (17) | 0.0261 (16) | -0.0035 (13) | -0.0035 (13) | -0.0015 (13) |
| C25  | 0.0345 (18) | 0.0258 (18) | 0.0276 (17) | -0.0008 (14) | -0.0055 (14) | -0.0027 (14) |
| C26  | 0.043 (2)   | 0.0299 (19) | 0.0290 (18) | -0.0007 (16) | -0.0042 (15) | -0.0051 (15) |
| C27  | 0.050(2)    | 0.034 (2)   | 0.0243 (17) | -0.0014 (17) | -0.0085 (16) | 0.0007 (15)  |
| C28  | 0.041 (2)   | 0.0238 (17) | 0.0287 (17) | -0.0023 (15) | -0.0056 (15) | 0.0010 (14)  |
| C28A | 0.0318 (17) | 0.0247 (17) | 0.0247 (16) | -0.0036 (14) | -0.0038 (13) | -0.0027 (13) |
| C211 | 0.0302 (17) | 0.0250 (17) | 0.0253 (16) | -0.0033 (13) | -0.0052 (13) | 0.0005 (13)  |
| C212 | 0.0314 (17) | 0.0239 (17) | 0.0285 (17) | 0.0038 (13)  | -0.0046 (14) | -0.0017 (14) |
| C213 | 0.0369 (19) | 0.0283 (18) | 0.0270 (17) | 0.0025 (15)  | -0.0021 (14) | -0.0042 (14) |
| C214 | 0.0312 (17) | 0.0262 (17) | 0.0246 (16) | -0.0014 (14) | -0.0066 (13) | 0.0018 (13)  |
| C215 | 0.0305 (17) | 0.0229 (17) | 0.0306 (17) | 0.0006 (13)  | -0.0054 (14) | -0.0005 (13) |
| C216 | 0.0328 (18) | 0.0247 (17) | 0.0263 (16) | -0.0014 (14) | -0.0041 (13) | -0.0026 (13) |
| C231 | 0.0292 (17) | 0.0243 (17) | 0.0236 (15) | -0.0003 (13) | -0.0046 (12) | -0.0022 (13) |
|      |             |             |             |              |              |              |

| 011—C12   | 1.339 (4) | O21—C22   | 1.336 (4) |
|-----------|-----------|-----------|-----------|
| O11—C18A  | 1.377 (4) | O21—C28A  | 1.384 (4) |
| O13—C131  | 1.241 (4) | O23—C231  | 1.244 (4) |
| O14—C14   | 1.235 (4) | O24—C24   | 1.234 (4) |
| O114—C114 | 1.366 (4) | O214—C214 | 1.369 (4) |
| O114—H114 | 0.91 (6)  | O214—H214 | 0.88 (5)  |
| N13—C131  | 1.343 (4) | N23—C231  | 1.337 (4) |
| N13—C111  | 1.416 (4) | N23—C211  | 1.424 (4) |
| N13—H13   | 0.94 (4)  | N23—H23   | 0.90 (4)  |
| C12—C13   | 1.343 (5) | C22—C23   | 1.353 (5) |
| C12—H12   | 0.9500    | C22—H22   | 0.9500    |
| C13—C14   | 1.469 (5) | C23—C24   | 1.459 (5) |
| C13—C131  | 1.495 (5) | C23—C231  | 1.492 (5) |
| C14—C14A  | 1.466 (5) | C24—C24A  | 1.473 (5) |
| C14A—C18A | 1.389 (5) | C24A—C28A | 1.386 (5) |
| C14A—C15  | 1.401 (5) | C24A—C25  | 1.403 (5) |
| C15—C16   | 1.383 (5) | C25—C26   | 1.377 (5) |
| C15—H15   | 0.9500    | C25—H25   | 0.9500    |
| C16—C17   | 1.406 (6) | C26—C27   | 1.409 (5) |
| C16—H16   | 0.9500    | C26—H26   | 0.9500    |
| C17—C18   | 1.385 (5) | C27—C28   | 1.388 (5) |
| С17—Н17   | 0.9500    | С27—Н27   | 0.9500    |
| C18—C18A  | 1.394 (5) | C28—C28A  | 1.387 (5) |
| C18—H18   | 0.9500    | C28—H28   | 0.9500    |
| C111—C116 | 1.390 (5) | C211—C216 | 1.388 (5) |
| C111—C112 | 1.405 (5) | C211—C212 | 1.399 (5) |
| C112—C113 | 1.379 (5) | C212—C213 | 1.381 (5) |
| C112—H112 | 0.9500    | C212—H212 | 0.9500    |

| C113—C114                    | 1.388 (5)            | C213—C214                            | 1.387 (5)            |
|------------------------------|----------------------|--------------------------------------|----------------------|
| С113—Н113                    | 0.9500               | C213—H213                            | 0.9500               |
| C114—C115                    | 1.389 (5)            | C214—C215                            | 1.388 (5)            |
| C115—C116                    | 1.392 (5)            | C215—C216                            | 1.388 (5)            |
| C115—H115                    | 0.9500               | C215—H215                            | 0.9500               |
| С116—Н116                    | 0.9500               | C216—H216                            | 0.9500               |
|                              |                      |                                      |                      |
| C12—O11—C18A                 | 118.3 (3)            | C22—O21—C28A                         | 118.5 (3)            |
| C114—O114—H114               | 119 (3)              | C214—O214—H214                       | 118 (3)              |
| C131—N13—C111                | 127.5 (3)            | C231—N23—C211                        | 126.8 (3)            |
| C131—N13—H13                 | 114 (3)              | C231—N23—H23                         | 118 (3)              |
| C111—N13—H13                 | 118 (3)              | C211—N23—H23                         | 115 (3)              |
| 011-C12-C13                  | 125 8 (3)            | 021 - C22 - C23                      | 1253(3)              |
| 011-C12-H12                  | 117.1                | 021 - 022 - 023<br>021 - 022 - 023   | 117.3                |
| $C_{13}$ $-C_{12}$ $-H_{12}$ | 117.1                | $C^{23}$ $C^{22}$ $H^{22}$           | 117.3                |
| $C_{12}$ $C_{13}$ $C_{14}$   | 119.6 (3)            | $C_{22} = C_{23} = C_{24}$           | 119.8 (3)            |
| $C_{12}$ $C_{13}$ $C_{131}$  | 119.0(3)             | $C^{22}$ $C^{23}$ $C^{231}$          | 116.2(3)             |
| $C_{12} = C_{13} = C_{131}$  | $123 \ 8 \ (3)$      | C22 = C23 = C231<br>C24 = C23 = C231 | 1240(3)              |
| 014-C14-C14A                 | 123.0(3)<br>122.2(3) | 024 - 023 - 0231                     | 124.0(3)<br>124.3(3) |
| 014-C14-C13                  | 122.2(3)<br>123.7(3) | 024 - 024 - 025                      | 124.5(3)<br>121.5(3) |
| $C_{14} - C_{14} - C_{13}$   | 123.7(3)<br>114.0(3) | $C_{24} = C_{24} = C_{24} = C_{24}$  | 121.5(3)<br>114.2(3) |
| $C_{18A}$ $C_{14A}$ $C_{15}$ | 117.0(3)             | $C_{23} = C_{24} = C_{24} + C_{25}$  | 117.2(3)             |
| C18A = C14A = C13            | 117.8(3)<br>120.9(3) | $C_{28A} = C_{24A} = C_{23}$         | 117.0(3)             |
| $C_{10} = C_{14} = C_{14}$   | 120.9(3)<br>121.3(3) | $C_{20}A - C_{24}A - C_{24}$         | 120.7(3)             |
| C16 C15 C14A                 | 121.3(3)<br>120.8(4) | $C_{25} = C_{24} = C_{24}$           | 121.0(3)<br>120.6(3) |
| $C_{10} - C_{15} - C_{14}$   | 120.8 (4)            | $C_{20} = C_{23} = C_{24} = C_{24}$  | 120.0 (5)            |
| $C_{10} - C_{15} - H_{15}$   | 119.0                | $C_{20} = C_{23} = H_{23}$           | 119.7                |
| C15 $C16$ $C17$              | 119.0                | $C_{24}A - C_{23} - H_{23}$          | 119.7                |
| C15 - C16 - U16              | 119.7 (5)            | $C_{23} = C_{20} = C_{27}$           | 120.1 (5)            |
|                              | 120.2                | $C_{23} = C_{20} = H_{20}$           | 120.0                |
| C17 - C10 - H10              | 120.2                | $C_2/-C_20-H_20$                     | 120.0                |
| C18 - C17 - C16              | 121.0 (5)            | $C_{28} = C_{27} = C_{26}$           | 120.5 (5)            |
| C16_C17_H17                  | 119.5                | $C_{28} = C_{27} = H_{27}$           | 119.8                |
|                              | 119.5                | $C_{20} = C_{27} = H_{27}$           | 119.8                |
| C17 - C18 - C18A             | 117.7 (4)            | $C_{28A} = C_{28} = C_{27}$          | 118.0 (3)            |
| C17—C18—H18                  | 121.1                | C28A—C28—H28                         | 121.0                |
| C18A—C18—H18                 | 121.1                | C27—C28—H28                          | 121.0                |
| OII—CI8A—CI4A                | 121.3 (3)            | 021—C28A—C24A                        | 121.2 (3)            |
| OII—CI8A—CI8                 | 115.6 (3)            | 021—C28A—C28                         | 115.6 (3)            |
| C14A—C18A—C18                | 123.1 (3)            | C24A—C28A—C28                        | 123.2 (3)            |
| C116—C111—C112               | 118.9 (3)            | C216—C211—C212                       | 119.1 (3)            |
| C116—C111—N13                | 117.5 (3)            | C216—C211—N23                        | 117.7 (3)            |
| C112—C111—N13                | 123.5 (3)            | C212—C211—N23                        | 123.2 (3)            |
| C113—C112—C111               | 119.7 (3)            | C213—C212—C211                       | 120.0 (3)            |
| C113—C112—H112               | 120.1                | C213—C212—H212                       | 120.0                |
| C111—C112—H112               | 120.1                | C211—C212—H212                       | 120.0                |
| C112—C113—C114               | 121.3 (3)            | C212—C213—C214                       | 120.8 (3)            |
| C112—C113—H113               | 119.3                | C212—C213—H213                       | 119.6                |
| C114—C113—H113               | 119.3                | C214—C213—H213                       | 119.6                |

| O114—C114—C113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.9 (3)            | O214—C214—C213                              | 117.5 (3)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|----------------------|
| O114—C114—C115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122.8 (3)            | O214—C214—C215                              | 123.1 (3)            |
| C113—C114—C115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.3 (3)            | C213—C214—C215                              | 119.4 (3)            |
| C114—C115—C116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.8 (3)            | C216—C215—C214                              | 120.0 (3)            |
| C114—C115—H115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.1                | C216—C215—H215                              | 120.0                |
| C116—C115—H115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.1                | $C_{214}$ $C_{215}$ $H_{215}$               | 120.0                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.1<br>120.9(3)    | $C_{215}$ $C_{216}$ $C_{211}$               | 120.0<br>120.7(3)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.5                | C215 C216 H216                              | 110.7 (5)            |
| C115 C116 H116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.5                | $C_{213} = C_{216} = H_{216}$               | 119.7                |
| 013 - 013 - 013 - 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.5                | $C_{211} - C_{210} - H_{210}$               | 117.7<br>172.2(2)    |
| 013 - 013 - 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123.0(3)<br>120.5(3) | 023 - 023 - 023 - 023                       | 123.3(3)<br>121.0(3) |
| N12 C121 C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.3(3)             | 023 - 0231 - 023                            | 121.0(3)<br>115.6(2) |
| N13-C131-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 115.9 (5)            | N23-C231-C23                                | 115.0 (5)            |
| C18A—O11—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.2 (5)             | C28A—O21—C22—C23                            | 3.5 (5)              |
| O11—C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.4 (6)             | O21—C22—C23—C24                             | 0.6 (6)              |
| O11—C12—C13—C131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 179.8 (3)            | O21—C22—C23—C231                            | -178.4 (3)           |
| C12—C13—C14—O14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -179.3 (3)           | C22—C23—C24—O24                             | 176.5 (4)            |
| C131—C13—C14—O14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5 (5)              | C231—C23—C24—O24                            | -4.6 (6)             |
| C12-C13-C14-C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1 (5)              | $C_{22}$ $C_{23}$ $C_{24}$ $C_{24A}$        | -4.4(5)              |
| $C_{131}$ $-C_{13}$ $-C_{14}$ $-C_{14A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1792(3)             | $C_{231} - C_{23} - C_{24} - C_{24A}$       | 174.6(3)             |
| 014— $C14$ — $C14A$ — $C18A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -179.8(3)            | 024-024-024A-028A                           | -176.6(3)            |
| $C_{13}$ $C_{14}$ $C_{14A}$ $C_{18A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.2(5)              | $C^{23}$ $C^{24}$ $C^{24A}$ $C^{28A}$       | 43(5)                |
| 014 - C14 - C14A - C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2(5)               | 024 - C24 - C24A - C25                      | 3.7(5)               |
| $C_{13} = C_{14} = C_{14} + C_{15} + C$ | 1700(3)              | $C_{24} = C_{24} = C_{24} = C_{25}$         | -175 A (3)           |
| C18A C14A C15 C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/9.9(5)             | $C_{23} = C_{24} = C_{24} = C_{25}$         | -0.3(5)              |
| $C_{10} = C_{14} = C_{15} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1701(3)             | $C_{26} = C_{24} = C_{25} = C_{26}$         | 170 A (3)            |
| $C_{14} = C_{14} = C_{15} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.6(6)              | $C_{24} = C_{24} = C_{25} = C_{20}$         | 1/9.4(3)             |
| C14A - C13 - C10 - C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0(0)              | $C_{24A} = C_{23} = C_{20} = C_{27}$        | 0.4(0)               |
| C16 - C17 - C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.1(6)              | $C_{25} = C_{20} = C_{27} = C_{28}$         | 0.2(0)               |
| C10 - C1/ - C18 - C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4 (6)              | $C_{20} = C_{2} = C_{28} = C_{28} = C_{28}$ | -0.9 (6)             |
| C12 - O11 - C18A - C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1 (5)              | $C_{22} = 021 = C_{28A} = C_{24A}$          | -3.5(5)              |
| C12—O11—C18A—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -178.7(3)            | C22—O21—C28A—C28                            | 176.2 (3)            |
| C15—C14A—C18A—O11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178.6 (3)            | C25—C24A—C28A—O21                           | 179.2 (3)            |
| C14—C14A—C18A—O11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.4 (5)             | C24—C24A—C28A—O21                           | -0.5(5)              |
| C15—C14A—C18A—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.6(5)              | C25—C24A—C28A—C28                           | -0.5(5)              |
| C14—C14A—C18A—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 179.4 (3)            | C24—C24A—C28A—C28                           | 179.8 (3)            |
| C17—C18—C18A—O11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -179.3 (3)           | C27—C28—C28A—O21                            | -178.6(3)            |
| C17—C18—C18A—C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.1 (6)             | C27—C28—C28A—C24A                           | 1.1 (6)              |
| C131—N13—C111—C116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -170.9 (3)           | C231—N23—C211—C216                          | 160.2 (3)            |
| C131—N13—C111—C112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.9 (6)              | C231—N23—C211—C212                          | -21.6 (6)            |
| C116—C111—C112—C113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.4 (5)             | C216—C211—C212—C213                         | -1.0(5)              |
| N13—C111—C112—C113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.8 (3)            | N23—C211—C212—C213                          | -179.2 (3)           |
| C111—C112—C113—C114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6 (6)              | C211—C212—C213—C214                         | 0.6 (6)              |
| C112—C113—C114—O114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179.8 (3)            | C212—C213—C214—O214                         | -179.6 (3)           |
| C112—C113—C114—C115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.8 (6)             | C212—C213—C214—C215                         | 0.2 (6)              |
| O114—C114—C115—C116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -179.8 (4)           | O214—C214—C215—C216                         | 179.2 (3)            |
| C113—C114—C115—C116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8 (6)              | C213—C214—C215—C216                         | -0.6 (5)             |
| C112—C111—C116—C115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5 (5)              | C214—C215—C216—C211                         | 0.2 (5)              |
| N13—C111—C116—C115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -178.8 (3)           | C212—C211—C216—C215                         | 0.6 (5)              |

# supporting information

| C114—C115—C116—C111<br>C111—N13—C131—O13<br>C111—N13—C131—C13<br>C12—C13—C131—O13<br>C14—C13—C131—O13<br>C12—C13—C131—O13<br>C12—C13—C131—N13 | -0.7 (6)<br>0.1 (6)<br>179.5 (3)<br>-6.3 (5)<br>173.9 (3)<br>174.3 (3) | N23—C211—C216—C215<br>C211—N23—C231—O23<br>C211—N23—C231—C23<br>C22—C23—C231—O23<br>C24—C23—C231—O23<br>C22—C23—C231—O23<br>C22—C23—C231—N23 | 178.9 (3)<br>1.2 (6)<br>-178.4 (3)<br>7.8 (5)<br>-171.1 (3)<br>-172.6 (3) |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| C12—C13—C131—N13                                                                                                                              | 174.3 (3)                                                              | C22—C23—C231—N23                                                                                                                             | -172.6 (3)                                                                |
| C14—C13—C131—N13                                                                                                                              | -5.5 (5)                                                               | C24—C23—C231—N23                                                                                                                             | 8.5 (5)                                                                   |

## Hydrogen-bond geometry (Å, °)

|                            | D—H      | H···A    | D···A     | D—H···A |
|----------------------------|----------|----------|-----------|---------|
| N13—H13…O14                | 0.94 (4) | 1.88 (4) | 2.693 (4) | 143 (4) |
| N23—H23…O24                | 0.90 (4) | 1.95 (4) | 2.698 (4) | 139 (4) |
| C112—H112…O13              | 0.95     | 2.23     | 2.833 (4) | 121     |
| C212—H212…O23              | 0.95     | 2.28     | 2.845 (4) | 117     |
| O114—H114…O23              | 0.91 (6) | 1.76 (6) | 2.647 (4) | 167 (5) |
| O214—H214…O13 <sup>i</sup> | 0.88 (5) | 1.81 (5) | 2.668 (4) | 165 (5) |
| C16—H16…O114 <sup>ii</sup> | 0.95     | 2.46     | 3.411 (5) | 174     |
| C18—H18…O24 <sup>iii</sup> | 0.95     | 2.56     | 3.481 (5) | 163     |
| C22—H22…O114               | 0.95     | 2.58     | 3.508 (4) | 166     |
| C26—H26…O214 <sup>iv</sup> | 0.95     | 2.51     | 3.454 (5) | 175     |
| C28—H28…O14 <sup>iv</sup>  | 0.95     | 2.46     | 3.391 (5) | 165     |

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) *x*, *y*, *z*-1; (iii) *x*+1, *y*-1, *z*-1; (iv) *x*, *y*, *z*+1.