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Nitrogen fertilizer recommendations for corn 
generated by AORS algorithms have proven to be 
inaccurate across a broad geographical region (Bean et 

al., 2018). Accounting for site-specific spatial and temporal vari-
ability may enhance AORS algorithm performance. Weather 
factors such as precipitation and temperature greatly influence 
crop N response and growth directly as well as affect soil con-
ditions (Tremblay and Bélec, 2006), which ultimately impact 
plant available N supply and yield. Many evaluations have dem-
onstrated how corn yield as well as within-field yield variability 
fluctuate in response to N management and rainfall (Teigen 
and Thompson, 1995; Tremblay, 2004; Kyveryga et al., 2007; 
Shanahan et al., 2008). Corn generally responds more to applied 
N fertilizer during years of above-average rainfall than years of 
below-average rainfall (Yamoah et al., 1998; Tremblay et al., 
2012). Additionally, across North America N fertilizer response 
is most affected by precipitation during June and July and by 
temperatures during July and August (Jeutong et al., 2000). 
Some have identified the distribution or evenness of rainfall 
as being significant in describing responsiveness to N fertilizer 
(Shaw, 1964; Reeves et al., 1993; Tremblay et al., 2012). As an 
example, increased responsiveness to N fertilizer observed at 
North American sites was attributed to early- and frequent 
rainfall events resulting in high soil moisture early in the grow-
ing season that promoted N loss through denitrification and 
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ABSTRACT
Active-optical reflectance sensors (AORS) use light reflectance 
characteristics from a crop canopy as an indicator of the plant’s 
N health. However, studies have shown AORS algorithms used 
in conjunction with measured reflectance characteristics for 
corn (Zea mays L.) N fertilizer rate recommendations are not 
consistently accurate. Our objective was to determine if soil and 
weather information could be utilized with an AORS algorithm 
developed at the University of Missouri (ALGMU) to improve 
in-season (~V9 corn development stage) N fertilizer recom-
mendations. Nitrogen response trials were conducted across 
eight states over three growing seasons, totaling 49 sites with 
soils ranging in productivity. Nitrogen fertilizer rates according 
to the ALGMU were compared to economic optimal nitrogen 
rate (EONR). Without soil and weather information included, 
the root mean square error (RMSE) of the difference between 
ALGMU and EONR (MUDIFF) was 81 and 74 kg N ha–1 for 
treatments receiving 0 and 45 kg N ha–1 applied at planting, 
respectively. When ALGMU was adjusted using weather (sea-
sonal precipitation and distribution prior to sidedress) and soil 
clay content, the RMSE was reduced by 24 to 26 kg N ha–1. 
Without adjustment, 20 and 29% of sites were within 34 kg N 
ha–1 of EONR with 0 and 45 kg N ha–1 at planting, respectively. 
But with adjustment for soil and weather data, 45 and 51% of 
sites were within 34 kg N ha–1 of EONR. These results show 
that weather and soil information could be used to improve 
ALGMU N recommendation performance. G.M. Bean, Dep. Natural Resources, Univ. of Missouri, Columbia, MO 

65201; N.R. Kitchen, USDA-ARS Cropping Syst. and Water Quality 
Res. Unit, Columbia, MO 65211; J.J. Camberato, Dep. of Agronomy, 
Purdue Univ., West Lafayette, IN 47907; R.B. Ferguson, Dep. of 
Agronomy and Horticulture, Univ. of Nebraska-Lincoln, Lincoln, 
NE 68583; F.G. Fernandez, Dep. of Soil, Water, and Climate, Univ. of 
Minnesota, St. Paul, MN 55108; D.W. Franzen, Dep. of Soil Science, 
North Dakota State Univ., Fargo, ND 58108; C.A.M. Laboski, Dep. of 
Soil Science, Univ. of Wisconsin-Madison, Madison, WI 53706; E.D. 
Nafziger, Dep. of Crop Sciences, Univ. of Illinois at Urbana-Champaign, 
Urbana, IL 61801 ; J.E. Sawyer, Dep. of Agronomy, Iowa State Univ., 
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(Emeritus), Univ. of Nebraska, Lincoln, NE 68586; J.S. Shanahan, 
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2018. *Corresponding author (gmacbean89@gmail.com).

Abbreviations: ALGMU, University of Missouri algorithm; AORS, 
active-optical reflectance sensor(s); BD, bulk density; EONR, 
economic optimal nitrogen rate; EONRSD, sidedress economic 
optimal nitrogen rate; EONRTot, total economic optimal nitrogen 
rate; MUDIFF, difference between the University of Missouri 
algorithm recommendation and economic optimal nitrogen rate; 
NIR, near-infrared waveband; PAWC, plant available water content; 
R, red waveband; RE, red-edge waveband; RS, RapidScan sensor; 
SDI, Shannon diversity index; SOM, soil organic matter; SSURGO, 
USDA-NRCS Soil Survey Geographical database.

Core Ideas
•	 Canopy sensor performance improved using site-specific informa-

tion.
•	 Evenness of early-season rainfall is crucial for adjusting N recom-

mendations.
•	 Adjusting N recommendations using measured vs. USDA mapped 

soil data performed alike
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leaching (Tremblay et al., 2012). Rainfall amount and distribu-
tion, and temperature have been found to directly affect yield-
limiting soil factors of soil oxygen levels, biological activity, 
decomposition of organic matter to soil mineral N, nutrient 
availability, N loss, plant available water content (PAWC), 
and ultimately crop yield (Power et al., 2001; Tremblay, 2004; 
Tremblay and Bélec, 2006; Kyveryga et al., 2007; Shanahan et 
al., 2008; Tremblay et al., 2012).

Understanding and quantifying how varied soil properties 
at the subfield to regional scales impact soil N and crop growth 
is crucial. Soil texture affects soil water flow, thus also affecting 
available N, PAWC, the transportation and availability of ions 
(Schaetzl and Anderson, 2014), and crop yield (Zhu et al., 2009; 
Armstrong et al., 2009; Tremblay et al., 2012). While conflict-
ing results exist, corn yield is generally greater on medium- and 
coarse-textured soils in wet years than dry years. Also, corn 
yields tend to be greater on fine-textured soils in dry years than 
wet years (Tremblay et al., 2011). Soil organic matter (SOM) has 
also proven to be related to corn yield (Kravchenko and Bullock, 
2000). Although SOM typically makes up a small percentage of 
the total soil volume (<5%) it has a large effect on many soil prop-
erties (Sylvia et al., 2005). As SOM increases, cation exchange 
capacity increases, soil aggregation improves, water infiltra-
tion rates rise, water holding capacity and aeration increase. 
Collectively, these effects ultimately improve growing conditions.

Soil properties (e.g., texture, SOM, and PAWC) interact with 
weather factors (e.g., total rainfall, distribution of rainfall, and 
temperature) in complex ways that alter plant N availability 
in crop production and loss to the surrounding environment 
(Power et al., 2001; Tremblay, 2004). When significant within-
field soil and landscape variability exists, multiple N loss pro-
cesses and pathways also exist, leading to short-range differences 
in available soil N (Scharf et al., 2005). Significant denitrifica-
tion (the conversion of NO3

– to NOx and N2 gases) most often 
occurs in fine-textured soils experiencing anaerobic soil condi-
tions from excessive rainfall and with warm soil temperatures 
(Blevins et al., 1996). In contrast, nitrate-N leaching below the 
rooting depth also occurs with high amounts of rainfall but is 
more pronounced on soils with low water holding capacity or 
coarse-textured soils (Power et al., 2001). Fifty-seven studies 
on smallholder farms in sub-Saharan Africa demonstrated that 
N fertilizer response was greater on soils with high clay con-
tent compared to loamy or sandy soils (Chivenge et al., 2011). 
Similarly, in North America, finer-textured soils were found 
to respond more to N fertilizer, but response was greatest with 
above average precipitation (Tremblay et al., 2012).

Soil property characteristics can be obtained from actual soil 
sample measurements or through soil map databases (Yang et 
al., 2011), such as the USDA-NRCS Soil Survey Geographical 
database (SSURGO) for the United States. Soil sampling and 
measurement are expensive and time intensive, generally requir-
ing sample preparation and laboratory analyses. Information 
from SSURGO is available to producers without financial 
fee and can be accessed at any time. However, SSURGO soil 
information can be inaccurate or outdated (Zylman et al., 
2005). Hence, research is needed that compares the ability of 
SSURGO descriptions of agricultural soils with actual field-
measured soil properties (Drohan et al., 2003) to better explain 
corn N responses.

Because weather and soil interactions result in varying field 
conditions for both N availability and crop N need, adaptive 
N management strategies are needed that can refine fertilizer 
applications. Active-optical reflectance sensors developed for 
in-season N applications help account for uncertainties in N 
availability caused by weather and soil variation. With AORS, 
canopy reflectance from different wavebands of light are used to 
determine the photosynthetic health, structural size, and overall 
N status of the plant (Raun et al., 2002; Kitchen et al., 2010; 
Franzen et al., 2016). Others have made efforts, with varying 
success, to improve the accuracy of canopy reflectance data. 
These include, reflectance measurement adjustments using soil 
electrical conductivity maps (Bausch and Brodahl, 2011), replac-
ing the high-N reference area with virtual N reference strips 
(Holland and Schepers, 2013), and comparing specific wave-
bands used in competing sensor models (Barker and Sawyer, 
2013). An algorithm transforms the reflectance information 
into an in-season N fertilizer recommendation. However, stud-
ies have shown AORS algorithms used for making N fertilizer 
recommendations are not consistently accurate when tested over 
large geographic regions (Bean et al., 2018).

Research is needed to explore the opportunity for using 
site-specific soil and weather information to improve AORS 
algorithms. Our objective was to determine if soil and weather 
measurements could be utilized with an AORS algorithm to 
improve in-season N fertilizer recommendations.

MATERIALS AND METHODS
Research Sites and Treatments

This research was conducted as part of a public-industry 
partnership between eight land-grant universities as detailed in 
Kitchen et al. (2017). Forty-nine corn N rate response trials were 
conducted from 2014 to 2016 in eight Midwestern Corn Belt 
States. Nitrogen fertilizer treatments were replicated four times 
in a randomized complete block design. Eight N fertilizer rates 
(0– 315 kg N ha–1 in 45 kg N ha–1 increments) applied as hand-
broadcast ammonium nitrate within 48 h of initial planting are 
designated “at planting” fertilizer rates. Six N fertilizer treat-
ments referred to as “split” applications received 45 kg N ha–1 
at planting and the remaining N during the V8 to V10 develop-
ment stages (45– 270 kg N ha–1 in 45 kg N ha–1 increments). 
Additional details about the trial sites, treatments, and measure-
ments have been previously documented (Kitchen et al., 2017).

Active-Optical Reflectance Sensing

Active-optical reflectance sensing measurements were col-
lected the same day or immediately preceding the split N applica-
tion using a RapidSCAN CS-45 (RS) Handheld Crop Sensor 
(Holland Scientific, Lincoln, NE). The RS provides reflectance 
information for three different wavebands of light: red (670 nm, 
R), red edge (720 nm, RE), and near-infrared (780 nm, NIR). 
Only the R and the NIR wavebands were utilized in this analysis. 
Further AORS setup information is detailed in Bean et al. (2018).

Reflectance Measurements and 
Algorithm Evaluated

The ALGMU tested is an equation developed for the V8–V10 
development stage and requires AORS values from both ade-
quately N fertilized corn used as an N reference (reference), and 
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un-fertilized or deficiently fertilized corn (target) for in-season 
N fertilization (Scharf et al., 2011). The vegetation index used in 
this algorithm is the inverse simple ratio (ISR) and is defined as:

ISR = R/NIR � [1]

where R= the red waveband and NIR = the near-infrared 
waveband.

Measurements were taken to obtain ISR values from both 
reference corn (ISRreference) and target corn (ISRtarget). The N 
recommendation was then calculated as follows:

 
 
 

target-1 -1
MU

reference

ISR
NRec = 280 kg N ha × - 224 kg N ha

ISR

�  [2]

where NRecMU = the nitrogen fertilizer recommendation in 
kg ha–1.

The N applications used to calculate an average site level refer-
ence were those that received 225 and 270 kg N ha–1 at plant-
ing. The exception was the 2015 Missouri claypan site where 
because of high early-season precipitation and visibly decreased 
availability of N to the plants, the plots that received 315 kg N 
ha–1 at planting were used as the reference. Nitrogen recom-
mendations were calculated using two scenarios to represent the 
target corn to be fertilized at ~V9 development stage. One was 
the average of all experimental units fertilized at planting with 
45 kg N ha–1 (n = 28 per site), and the other from unfertilized 
experimental units (0 kg N ha–1; n = 4 per site).

The ALGMU was developed with the Holland Scientific 
Crop Circle 210, an earlier sensor model than the RS used in 
this study. Thus, the AORS readings of this dataset were con-
verted to equivalent Crop Circle 210 measurements as previ-
ously described in Bean et al. (2018).

Soil and Weather

Both within-field soil measurements and SSURGO soil data 
were gathered for all sites and years (Kitchen et al., 2017). Soil 
apparent electrical conductivity (ECa) surveys, at two depths 
(0.3 and 0.9 m), were performed 1 to 4 wk before planting using 
a Veris 3100 electrical conductivity sensor (Veris Technologies, 
Salina, KS). Soil ECa survey data was collected on transects at 
approximately 5 m spacing on 1-s intervals, traveling 2 m s–1 
across the plot area, which corresponded to a measurement 
about every 2 m along the transects. Perpendicular passes were 
made through the plot area to aid in the creation of an interpo-
lated map. This map was used for selecting representative loca-
tions within the site’s replication blocks for deep core sampling.

Soil for characterization was collected by sampling two 1.2 m 
soil cores with a diameter of 4.76 cm from each of the four 
replications at each site using a Giddings Model no. 5-UV/
MGSRPSUV (Giddings Machine Company, Windsor, CO). 
Both cores were laid side by side, characterized and segments 
separated by pedogenic horizon. Soil from one core was used 
to determine bulk density (BD) and soil moisture while the 
other core was processed and sent to the University of Missouri 
Soil Health Assessment Center for additional soil property 
analyses. Analyses included: particle size determination by the 
pipette method (Soil Survey Staff, 2014; Nelson and Sommers, 

1996), SOM (loss on ignition; Nelson and Sommers, 1996), 
and BD (Soil Survey Staff, 2014). Plant available water content 
was determined according to Saxton and Rawls (2006). This 
equation uses sand and clay content along with SOM and BD 
to determine soil moisture at both the permanent wilting point 
and field capacity. The difference between the soil moisture at 
field capacity and permanent wilting point results in PAWC. 
Soil properties from the four cores per site were averaged 
together for a site-level assessment.

Soil organic matter, PAWC, and clay content values collected 
from both SSURGO and the University of Missouri’s Soil 
Health Assessment Center were depth weighted to two inter-
vals (0–30 and 0–60 cm).

Weather data, for the entire growing season, were collected 
using instrumented weather stations located at each site, 
with details described in Kitchen et al. (2017). However, only 
weather data from planting to the time of sidedress was used in 
this analysis. Daily temperatures were used to calculate growing 
degree days (GDD). Daily precipitation (including irrigation 
when applied) was used to calculate a precipitation evenness 
index using the Shannon diversity index (SDI; Tremblay et al., 
2012) and an index that is the product of SDI and total precipi-
tation, called abundant and well-distributed rainfall (AWDR; 
Tremblay et al., 2012). These were calculated as:

2
Max Min

Base
T TGDD T+

= −  [3]

where TMax = maximum daily temperature, TMin = minimum 
daily temperature and TBase = 10°C. All temperature values in 
degrees Celsius (°C).

( )
( )

 
 
−∑ 
  

ln pi
SDI = pi

ln n
 [4]

where pi = daily rainfall/total precipitation, n = number of days 
in the specified time period being used.

AWDR = SDI ´ total precipitation � [5]

where total precipitation and AWDR were measured in centime-
ters. Weather data used in these calculations were between the 
date of planting to the date of collected AORS measurements.

Performance Evaluation and Statistics

Data were analyzed using SAS version 9.2 (SAS Institute Inc., 
Cary, NC). First, EONR values were determined for each site 
using a corn grain price of $ 0.158 kg–1 (US$4.00 bu–1) and N 
fertilizer cost of $0.88 kg N–1 ($0.40 lb–1) as detailed in Kitchen 
et al. (2017). For this analysis, values for EONR were calculated 
using the split applied N rates, with 45 kg N ha–1 at planting and 
the remainder applied at the V9 development stage as a sidedress. 
This EONR is a season total amount of N fertilizer applied. For 
evaluating AORS for the target corn scenario that did not receive 
N at planting, the EONR value was used directly and is repre-
sented as EONRTot. For evaluating AORS for the target corn 
scenario that received 45 kg N ha–1 at planting, the EONR value 
was reduced by 45 kg N ha–1 so that the EONR represented the 
N fertilizer that was applied as sidedress. This is represented as 
EONRSD. Throughout the rest of this paper a non-subscripted 
“EONR” is used in the general sense to represent both situations.
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A difference between the NRecMU and EONR was calcu-
lated as follows:

MUDIFF = NRecMU – EONR � [6]

where MUDIFF is in kg N ha–1.
Using linear regression, significant (p < 0.05) single (one-way) 

and two-way interaction relationships between MUDIFF and 
soil properties (at both 0–30-cm and 0–60-cm depth intervals) 
and weather variables (Table 1) were examined using the PROC 
REG function in SAS 9.2. This was done independently for the 
two different at-planting (0 and 45 kg N ha–1) N fertilizer rates. 
Only the most significant single variable or two-way interaction 
was included for adjusting the ALGMU N fertilizer rate.

University of Missouri Algorithm Adjustment

Adjustments were made based on the output coefficients pro-
duced by the PROC GLMSELECT (p < 0.05). This modeling 
approach is a “leave one out” method to minimize model bias 
when a site is dissimilar from the rest. A total of five scenarios 
were explored for adjusting the ALGMU N fertilizer rate. The 
five adjustment scenarios included the following sets of soil and/
or weather information: (i) Weather, (ii) SSURGO soil proper-
ties, (iii) measured soil properties, (iv) Weather + SSURGO soil 
properties, and (v) Weather + measured soil properties. Final 
model results for each of these scenarios were used directly to 
modify the ALGMU N fertilizer rate. The previously mentioned 
adjustment process was also performed on two other AORS 
algorithms, namely the Holland Schepers and Oklahoma State 
University algorithms as defined in Bean et al. (2018).

Performance measurements were calculated for unadjusted 
and adjusted algorithms. These included: (i) median and range 
of the MUDIFF values (values closer to zero and smaller ranges 
indicate better performance); (ii) linear regression between 
the end-of-season EONR and the adjusted and unadjusted 
NRecMU (coefficient of determination and slope); (iii) root 
mean square error (RMSE) of MUDIFF; and (iv) percentage of 

Table 1. Soil and weather variables and potential two-way inter-
actions that were examined using linear regression for explaining 
the difference between economic optimal nitrogen rate (EONR) 
and the University of Missouri active-optical reflectance sensor 
algorithm (ALGMU). For soil variables, all were considered for 
both the 0 to 30- and 0- to 60-cm depths.
Weather/Soil Variable†
Weather SDI

GDD
PPT

AWDR
Measured Clay

PAWC
SOM

SSURGO Clay
PAWC
SOM

Weather × SSURGO SDI × Clay
SDI × PAWC
SDI × SOM
GDD × Clay

GDD × PAWC
GDD × SOM
PPT × Clay

PPT × PAWC
PPT × SOM

AWDR × Clay
AWDR × PAWC
AWDR × SOM

Weather × measured SDI × Clay
SDI × PAWC
SDI × SOM
GDD × Clay

GDD × PAWC
GDD × SOM
PPT × Clay

PPT × PAWC
PPT × SOM

AWDR × Clay
AWDR × PAWC
AWDR × SOM

† SDI, Shannon diversity index; GDD, growing degree days; PPT, total 
precipitation from time of planting to time of sensing (mm); AWDR, 
abundant and well distributed rainfall; Clay, % clay; PAWC, plant avail-
able water content (cm 30 cm–1); SOM, percent soil organic matter.

Table 2. Using linear regression, significant (p < 0.05) soil and 
weather variables found related to the difference between eco-
nomic optimum nitrogen rate (EONR) and the University of 
Missouri algorithm. Results shown are for both target corn at-
planting N rates (0 and 45 kg N ha–1). Weather variables were 
calculated using data from the time of planting to the time of 
sensing (approximately development stage V9).
N Rate Weather/Soil Variable† r2 p value
kg N ha–1

0 Weather SDI 0.19 0.001
Measured soil Clay30 0.08 0.033

Clay60 0.10 0.018
SOM30 0.07 0.035
SOM60 0.09 0.020

SSURGO Soil Clay30 0.09 0.023
Weather × Measured soil Clay30 × PPT 0.06 0.050

Clay60 × PPT 0.07 0.034
SOM60 × PPT 0.07 0.043
Clay60 × GDD 0.07 0.043

Weather × SSURGO soil Clay30 × PPT 0.08 0.029
Clay30 × GDD 0.06 0.050

45 Weather SDI 0.18 0.002
Measured soil Clay30 0.08 0.023

Clay60 0.11 0.012
SOM30 0.08 0.031
SOM60 0.09 0.023

PAWC60 0.07 0.043
SSURGO Soil Clay30 0.11 0.013

Clay60 0.07 0.034
Weather × measured soil Clay60 × GDD 0.07 0.041
Weather × SSURGO soil Clay30 × PPT 0.06 0.050

Clay30 × GDD 0.07 0.043
† SDI, Shannon diversity index; PPT, total precipitation from time of 
planting to time of sensing (mm); Clay30, % clay in the upper 30 cm of 
soil; Clay60, % clay in the upper 60 cm of soil; SOM60, soil organic mat-
ter in the upper 60 cm of soil; GDD, growing degree days; PAWC60, 
plant available water content in the upper 60 cm of soil (cm 30 cm–1).
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sites at which the recommended N fertilizer rate was within 34 
kg N ha–1 of EONR (Bean et al., 2018).

RESULTS AND DISCUSSION
Impact of Soil and Weather Information on the 

University of Missouri Algorithm
Regression analysis relating the MUDIFF to soil and weather 

variables produced several significant simple and two-way inter-
action effects between variables (Table 2). Though significant, 
coefficients of determination were <0.20. However, coefficient 
of determination values were also low for the unadjusted 
ALGMU (Table 3). For the two at-planting N rates, the single 
most significant simple or two-way weather/soil variables from 
Table 2 were used to adjust the ALGMU N fertilizer rate recom-
mendation (Table 3).

Unadjusted and adjusted ALGMU N fertilizer recommenda-
tions for all 49 sites were related to EONR for both corn receiv-
ing no N at planting (Fig. 1) and corn receiving 45 kg N ha–1 at 
planting (Fig. 2). Overall performance compared to EONR was 
summarized using box and whisker plots (Fig. 3). Points on or 
near the 1:1 diagonal lines in Fig. 1 and 2 represent sites that an 
algorithm performed reasonably well for making an N fertilizer 
recommendation. Whereas, points markedly below and above 
the 1:1 lines represent recommendations that under- and over-
estimated N need, respectively. Sites within the yellow shaded 
region were within 34 kg N ha–1 of EONR. As found with linear 
fit regressions between AORS algorithms and EONR (Table 4), 
modified algorithms resulted in higher coefficients of determi-
nation and improved fit to the 1:1 regression lines compared to 
the non-adjusted ALGMU. Slope values increased from 0.18 to 
approximately 0.47 for target corn with no N applied at planting 
and from 0.13 to approximately 0.43 for target corn that received 
45 kg N ha–1 at planting (Table 4). Generally better algorithm 
performance was observed when both soil and weather variables 
were used to adjust the ALGMU recommendation. This was 
expected since it has been previously noted that early-season pre-
cipitation and soil properties greatly affect corn N response over 
large geographical regions (Tremblay et al., 2012). Additionally, 

once adjusted with soil and weather variables, differences in 
algorithm performance between the two at-planting N rates were 
similar, demonstrating the importance of using soil and weather 
variables to adjust the ALGMU N fertilizer recommendation.

Distribution of rainfall using SDI was the only weather vari-
able that as a simple linear factor was significantly related to 
the MUDIFF (Table 2). These results support the importance of 
early-season precipitation distribution relative to soil N (Xie et 
al., 2013; Kaur et al., 2017) and N fertilizer response (Tremblay 
et al., 2012). Precipitation and its distribution can have a large 
influence on the availability of N early in the growing season. 
Too much precipitation can deprive facultative anaerobes of 
oxygen forcing them to use nitrate N as an oxygen source result-
ing in denitrification, decreasing the amount of plant available 
N and ultimately corn yield (Blevins et al., 1996; Power et al., 
2001; Kaur et al., 2017). An example of extensive denitrification 
was attributed to the 2015 MO LoneTree site (Kitchen et al., 
2017). This site experienced large amounts of rainfall (33 cm) 
from the time of planting to the time of AORS measurements 
with rainfall evenly distributed over the early part of the growing 
season (SDI = 0.75 with 1.0 being exactly even). Because of this 
extended period of soil wetness, it was assessed to have little N 
mineralization and extensive denitrification of existing mineral 
N. Therefore, as the ALGMU was adjusted for the SDI (Table 3), 
the N fertilizer recommendation for this site increased from 174 
to 290 kg N ha–1 (target corn = 0 N at planting) and from 176 
to 276 kg N ha–1 (target corn = 45 kg N ha–1 at planting). This 
single weather modification to the algorithm resulted in an N 
fertilizer recommendation for this site within 23 kg N ha–1 of 
EONR for target corn that received no N at planting and within 
7 kg N ha–1 of EONR for target corn that received 45 kg N ha–1.

The amount of clay in the upper 30 and 60 cm of soil 
(SSURGO Clay30, measured Clay60, and SSURGO Clay30 × 
PPT interaction) for both target corn N rates was also signifi-
cantly related to MUDIFF (Table 2). Soil texture has a major role 
in the diffusivity, tortuosity, and permeability of water in the 
soil. Clayey soils have smaller pore sizes and more surface area 
than medium- or coarse-textured soils, are mostly negatively 

Table 3. University of Missouri (ALGMU) performance for both at-planting target corn N rates (0 and 45 kg N ha–1) with and without soil 
and weather adjustments made to the ALGMU nitrogen fertilizer recommendation (Nrec). The root mean square error (RMSE), median 
of the differences between economic optimal nitrogen (EONR) rate and ALGMU, and the percentage of sites within 34 kg N ha–1 of 
EONR were all used to compare algorithm performances.
Target corn 
N rate

 
Adjustment†

 
Model equation

 
r2

 
p value

 
RMSE

 
Median

Sites within  
34 kg N ha–1 of EONR

kg N ha–1 —— kg N ha–1 —— %
0 None y = Nrec 0.14 0.004 81 –10 20

W y = Nrec– 231 + 444 × SDI 0.33 <0.001 58 –11 41
SSRGO y = Nrec + 97– 2 × Clay30 0.25 0.001 62 2 39
SMEAS y = Nrec + 94– 1.7 × Clay60 0.26 0.001 62 3 43

W + SSRGO y = Nrec– 219 + 492 × SDI– 0.009 × (PPT × Clay30) 0.43 <0.001 55 –1 45
W + SMEAS y = Nrec– 167 + 400 × SDI– 1.5 × (Clay60) 0.40 <0.001 57 –1 43

45 None y = Nrec 0.12 0.009 73 –43 29
W y = Nrec– 211 + 395 × SDI 0.29 <0.001 55 –2 43

SSRGO y = Nrec + 85– 2 × Clay30 0.23 0.003 57 –8 53
SMEAS y = Nrec + 82– 1.7 × Clay60 0.23 0.003 57 –2 55

W + SSRGO y = Nrec– 200 + 435 × SDI– 0.008 × (PPT × Clay30) 0.39 <0.001 50 –3 47
W + SMEAS y = Nrec– 201 + 430 × SDI– 0.006 × (PPT × Clay60) 0.38 <0.001 51 –2 51

† W, weather; SSRGO, SSURGO soil; SMEAS, measured soil; W + SSRGO, weather + SSURGO; W + SMEAS, weather + measured soil; SDI, Shannon 
diversity index; PPT, total precipitation from time of planting to time of sensing (mm); Clay30, % clay in the upper 30 cm of soil; Clay60, % clay in the 
upper 60 cm of soil.
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Fig. 1. For corn receiving no N at planting, performance of the University of Missouri active-optical reflectance sensor algorithm (ALGMU) 
for making N fertilizer recommendations, with and without weather (W) and soil (USDA SSURGO [SSRGO]; Measured [SMEAS]) 
adjustments, by comparing the recommendation to economic optimal nitrogen rate (EONRTOT). Points near the 1:1 line dissecting the 
graph indicate sites where the AORS algorithm was relatively accurate in recommending an N rate approximate to EONRTOT. Sites that 
fell within the yellow shaded region are those within 34 kg N ha–1 of EONRTOT, with the percentage of the 49 sites within this region 
indicated in the top right corner of each graph. The dashed line represents the linear fit regressions between ALGMU and EONRTOT.
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Fig. 2. For corn receiving 45 kg N ha–1 at planting, performance of the University of Missouri active-optical reflectance sensor algorithm 
(ALGMU) for making N fertilizer recommendations, with and without weather (W) and soil (USDA SSURGO [SSRGO]; Measured 
[SMEAS]) adjustments, by comparing the recommendation to economic optimal N rate (EONRSD). Points near the 1:1 line dissecting the 
graph indicate sites where the AORS algorithm was relatively accurate in recommending an N rate approximate to EONRSD. Sites that 
fell within the yellow shaded region are those within 34 kg N ha–1 of EONRSD, with the percentage of the 49 sites within this region 
indicated in the top right corner of each graph.
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charged, and strongly attract water by adhesion (Schaetzl and 
Anderson, 2014), creating conditions that decrease PAWC and 
promote denitrification losses, which can decrease corn yield 
(Blevins et al., 1996; Power et al., 2001; Kaur et al., 2017). Also, 
soils with large clay percentages close to the soil surface are 
prone to surface sealing, which promotes surface runoff due to 
slow infiltration rates (Schaetzl and Anderson, 2014; Conway 
et al., 2017). Nitrogen loss can also occur in soils with small 
clay percentages through leaching. We attribute significant N 
loss to leaching for both the 2014 and 2015 NE Brandes coarse-
textured sites. These sites have <10% clay and received substan-
tial amounts of early-season precipitation and or irrigation. 
For target corn with 45 kg N ha–1 at planting, using measured 
Clay60 to modify the ALGMU improved N recommendations 
at these two sites. The MUDIFF decreased by as much as 88 kg 
N ha–1, resulting in N recommendations that were all within 
3 kg N ha–1 of EONR. Additionally, the MUDIFF decreased 
by as much as 121 kg N ha–1 for the 2016 MN Becker coarse-
textured site when adjusted using soil and weather information, 
resulting in improved algorithm performance.

Considering pre-sidedress weather conditions was imperative 
to improving the ALGMU N fertilizer recommendation, and 
as others have found, is a critical period of the corn growing 
season that impacts soil N availability and N loss (Sogbedji et 
al., 2001; Kahabka et al., 2004). However, weather conditions 
after sidedress undoubtedly will also greatly influence N avail-
ability and crop N needs. At the time AORS measurements are 
taken and sidedress fertilizer rates applied, only 15 to 20% of 
total aboveground biomass has been accumulated and 25% of 
the total seasonal plant N absorbed (Hanway, 1962; Abendroth 
et al., 2011). Generally as post-sidedress precipitation increases, 

corn N response increases (Fox and Piekielek, 1998; Tremblay 
et al., 2012). Such post-sidedress information could also be used 
to adjust an AORS algorithm, but only if a reliable and accurate 
forecast of weather was available (Tremblay et al., 2012).

Comparison of Weather and Soil Adjustments

Soil and weather variables used to adjust the ALGMU 
enhanced overall algorithm performance. However, objectively 
determining which adjusted algorithm was best proved difficult. 
When comparing adjusted algorithms using either weather (SDI), 
soil (SSURGO or measured) or both and considering the two at-
planting N rates, the relative improvement varied slightly depend-
ing on which performance metric was considered (Tables 3 and 
4). Therefore, adjusting for either weather or soil variables alone 
cannot be placed above one another, but both variables should 
be considered. Even though the ALGMU adjusted with both 
weather and soil information did not always outperform the other 
adjusted algorithms in terms of the percentage of sites within 34 
kg N ha–1 of EONR, it produced the lowest median and RMSE 
values while having the highest r2 and linear fit slope values 
(Tables 3 and 4). Even with adjustment, the best resulting slope 
value of 0.47 (Table 4) gives a general overestimation for sites with 
low EONR and an underestimation for sites with high EONR.

The MUDIFF for some sites were simply not compensated for 
by the weather and soil variables used here. The 2015 MO Troth 
site (EONR = 270 kg N ha–1) was largely unaffected by the 
modified ALGMU (Fig. 1 and 2). There were extreme conditions 
in this field because the water table was near surface as a result 
of high Missouri River levels for 4 to 5 wk of the growing season 
as a consequence of exceptionally high rainfall. With some sites, 
weather and soil adjustments to ALGMU resulted in a poorer 
N recommendation. The 2015 Belmont site (EONR = 0) is an 
example where the adjusted N recommendation was less accu-
rate than the unadjusted algorithm (Fig. 1 and 2). Interestingly, 
in 2014, an adjacent and similarly managed field on this farm 
(not part of this analysis) did not respond to added N for rea-
sons unknown and yielded 14.7 Mg ha–1 (C.A.M. Laboski, 
personal communication, 2015). Exploring other soil, crop, and 
weather factors may be needed to help explain these responses.

Fig. 3. For corn receiving 0 and 45 kg N ha–1 at planting, 
performance of the University of Missouri active-optical 
reflectance sensor algorithm (ALGMU) for making N fertilizer 
recommendations, with and without weather (W) and soil 
[USDA SSURGO (SSRGO); Measured (SMEAS)] (USDA SSURGO 
[SSRGO]; Measured [SMEAS]) adjustments, by comparing the 
recommendation to economic optimal nitrogen rate (EONR) 
summarized by box and whisker plots of the difference (MUDIFF) 
between the ALGMU recommendation and economic optimal 
nitrogen rate (EONR). Whisker length represents the 90th 
percentile while black dots represent N recommendations 
that fall outside of the 90th percentile. Median values close 
to zero indicate better accuracy. Negative values represent 
an underestimation of EONR while positive values represent 
and overestimation of EONR. Box size and whisker length is a 
measure of precision with smaller box size and whisker length 
indicating greater precision. The dashed line represents linear fit 
regressions between ALGMU and EONRSD.

Table 4. Linear fit lines for each University of Missouri algorithm 
(ALGMU; x variable), unadjusted and adjusted compare to eco-
nomic optimal N fertilizer rate (y variable), with accompanying 
correlation coefficient values.
Target corn N rate Adjustment† Linear fit equation r2

kg N ha–1

0 None y = 0.183× + 80.52 0.14
W y = 0.393× + 99.94 0.31

SSRGO y = 0.273× + 120 0.21
SMEAS y = 0.301× + 84.55 0.24

W + SSRGO y = 0.471× + 87.60 0.39
W + SMEAS y = 0.444× + 91.77 0.36

45 None y = 0.130× + 63.02 0.13
W y = 0.337× + 80.16 0.30

SSRGO y = 0.235× + 92.60 0.24
SMEAS y = 0.230× + 93.10 0.25

W + SSRGO y = 0.429× + 69.04 0.40
W + SMEAS y = 0.414× + 70.85 0.40

† W, weather; SSRGO, SSURGO soil; SMEAS, measured soil; W + SSRGO, 
weather + SSURGO; W + SMEAS, weather + measured soil.
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Modification to Other Active-Optical 
Reflectance Sensor Algorithms

The same procedure used here to make soil and weather 
adjustments to the ALGMU was also performed using the 
Holland–Schepers and Oklahoma State University algorithms 
described in Bean et al. (2018). Using soil and weather infor-
mation also improved performance of these two algorithms 
(Tables 5 and 6). Relative improvement for each of the soil and 
weather scenarios was similar to that of the ALGMU. When 
considering both at planting target corn N fertilizer rates, the 
Holland–Schepers had 43 and the Oklahoma State University 
algorithm had 49% of the sites within 34 kg N ha–1 of EONR 
when adjusted with soil and weather information. However, it 
is important to stress that the specific soil and weather variables 
found significant and used for making the adjustments were not 
always the same as those used for the ALGMU (Table 3). The 
overall findings support the hypothesis that AORS N fertilizer 
management can be improved by including site-specific soil 
and weather information and adjustments, but soil and weather 
information may be specific for each algorithm.

CONCLUSIONS
We found that adjusting AORS algorithm recommendations 

with site-specific weather and soil information usually resulted 
in improved N fertilizer recommendations compared to the 
unadjusted ALGMU. Even though this subregionally developed 
(i.e., within the state of Missouri) ALGMU uses the corn plant 
as a bioassay to generally capture crop N status, additional direct 
and site-specific soil and weather measurements can be used 
to improve the algorithm’s performance regionally. Likewise 
following similar adjustments, two other AORS algorithm 
recommendations (Holland–Schepers and Oklahoma State 
University) enhanced their N rate predictability for the region. 
These indicate that a similar process may be applied to improve 
other AORS algorithm recommendations with site-specific soil 
and weather information.

Recommendations adjusted with either measured soil data 
or SSURGO soil data performed similarly. Because SSURGO 
soil variables are easier and less expensive to collect, using these 
data may be more advantageous compared to physically mea-
sured soil variables. Additional soil and weather variables not 
considered in this study such as field N tests (e.g., pre-plant and 
pre-sidedress soil nitrate, potentially mineralizable N), may 
also be explored for modifying the ALGMU for improved N 
fertilizer recommendations. Additionally, other management 
practice information (e.g., crop rotation, tillage, manure history, 
tile drainage) are known to impact N fertilizer response and are 
factors that need consideration into AORS algorithm modifica-
tion or development.

Table 5. Holland–Schepers (ALGHS) and Oklahoma State University (ALGOSU) algorithm performances for at-planting target corn N 
rates (0 and 45 kg N ha–1) with and without soil and weather adjustments made to the ALGHS and ALGOSU nitrogen fertilizer recom-
mendation (Nrec). The root mean square error (RMSE), median of the differences between economic optimal N rate (y variable) and 
algorithm N fertilizer recommendation (x variable), and the percentage of sites within 34 kg N ha–1 of economic optimal nitrogen rate 
(EONR) were all used to compare algorithm performances.

N Algorithm Adjustment† Equation R2 p value RMSE Median
Sites within  

34 kg N ha–1 of EONR
kg N ha–1 —— kg N ha–1 —— %
0 ALGHS None y = Nrec 0.16 0.002 62 –16 29

SSRGO y = Nrec + 57– 2 × (Clay30) 0.27 <0.001 57 –1 43
SMeas y = Nrec + 51– 1.7 × (Clay60) 0.26 0.001 58 –8 39

ALGOSU None y = Nrec 0.01 0.206 113 –93 14
W y = Nrec– 211 + 467 × SDI 0.25 0.002 55 –2 45

W + SMeas y = Nrec– 155 + 456 × SDI– 161 × (PAWC60) 0.33 <0.001 53 –6 49
45 ALGHS None y = Nrec 0.12 0.008 81 –64 29

W y = Nrec– 156 + 320 × SDI 0.24 0.002 59 –16 37
W + SSRGO y = Nrec– 79 + 273 × SDI– 2 × (Clay30) 0.33 <0.001 56 –13 43
W + SMeas y = Nrec– 83 + 275 × SDI– 1.7 × (Clay60) 0.33 <0.001 56 –4 37

ALGOSU None y = Nrec 0.002 0.297 118 –96 14
W y = Nrec– 213 + 479 × SDI 0.24 0.002 55 –1 45

W + SSRGO y = Nrec– 155 + 467 × SDI– 168 × (PAWC60) 0.33 <0.001 53 –3 49
† W, weather; SSRGO, SSURGO soil; SMEAS, measured soil; W + SSRGO, weather + SSURGO; W + SMEAS, weather + measured soil; SDI, Shannon 
diversity index; Clay30, % clay in the upper 30 cm of soil; Clay60, % clay in the upper 60 cm of soil; PAWC60, plant available water in the upper 60 cm 
of soil (cm 60 cm–1).

Table 6. Linear fit lines for Holland–Schepers (ALGHS) and 
Oklahoma State University (ALGOSU) algorithm N fertilizer recom-
mendation (x variable) compared to economic optimum N fertilizer 
rate (y variable), with accompanying correlation coefficient values.
Target corn  
N rate

 
Algorithm

 
Adjustment†

Linear fit  
equation

 
r2

kg N ha–1

0 ALGHS None y = 0.294× + 75.78 0.18
SSRGO y = 0.398× + 70.53 0.27
SMEAS y = 0.387× + 71.75 0.26

ALGOSU None y = 0.041× + 23.26 0.03
W y = 0.292× + 85.10 0.27

W + SMEAS y = 0.359× + 77.03 0.33
45 ALGHS None y = 0.243× + 41.09 0.14

W y = 0.364× + 64.25 0.25
W + SSRGO y = 0.430× + 56.27 0.32
W + SMEAS y = 0.480× + 63.35 0.33

ALGOSU None y = 0.027× + 19.27 0.02
W y = 0.283× + 86.15 0.27

W + SSRGO y = 0.353× + 77.72 0.33
† W, weather; SSRGO, SSURGO soil; SMEAS, measured soil; W + SSRGO, 
weather + SSURGO; W + SMEAS, weather + measured soil.
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Active-optical reflectance sensor algorithms for corn have 
primarily been developed using subregion or smaller datasets. 
Before this study, there was no dataset available for regional 
assessment of AORS algorithms. Further, this dataset could be 
used for the development of a regional AORS algorithm. Since 
the dataset includes numerous crop and soil measurements along 
with AORS data, additional testing could include how other N 
management decision tools (e.g., Maximum Return to Nitrogen, 
Pre-plant Soil Nitrate Test, crop growth models, soil health tests) 
might be used to adjust current AORS algorithms or inform the 
development of a new algorithm. The application of this work 
ultimately could lead to increased fertilizer N use efficiency and 
grower profit, and decreased negative environmental impacts.
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