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Abstract Tan spot, caused by Pyrenophora tritici-
repentis (Ptr), is a destructive foliar disease in all types
of cultivated wheat worldwide. Genetics of tan spot
resistance in wheat is complex, involving insensitivity
to fungal-produced necrotrophic effectors (NEs), major
resistance genes, and quantitative trait loci (QTL) con-
ferring race-nonspecific and race-specific resistance.
The Nebraska hard red winter wheat (HRWW) cultivar
‘Wesley’ is insensitive to Ptr ToxA and highly resistant
to multiple Ptr races, but the genetics of resistance in
this cultivar is unknown. In this study, we used a

recombinant inbred line (RIL) population derived from
a cross between Wesley and another Nebraska cultivar
‘Harry’ (Ptr ToxA sensitive and highly susceptible) to
identify QTL associated with reaction to tan spot caused
by multiple races/isolates. Sensitivity to Ptr ToxA con-
ferred by the Tsn1 gene was mapped to chromosome 5B
as expected. The Tsn1 locus was a major susceptibility
QTL for the race 1 and race 2 isolates, but not for the
race 2 isolate with the ToxA gene deleted. A second
major susceptibility QTL was identified for all the Ptr
ToxC-producing isolates and located to the distal end of
the chromosome 1A, which likely corresponds to the
Tsc1 locus. Three additional QTL with minor effects
were identified on chromosomes 7A, 7B, and 7D. This
work indicates that both Ptr ToxA-Tsn1 and Ptr ToxC-
Tsc1 interactions are important for tan spot development
in winter wheat, and Wesley is highly resistant largely
due to the absence of the two tan spot sensitivity genes.

Keywords Wheat leaf spot diseases . Host-selective
toxin . Sensitivity gene .Marker-assisted selection

Abbreviations
LOD Log of odds ratio
QTL Quantitative trait locus
MAS Marker-assisted selection
NE Necrotrophic effector
RIL Recombinant inbred line
Ptr Pyrenophora tritici-repentis
S Sensitivity gene
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SNP Single-nucleotide polymorphism
Tsn Tan spot necrosis
Tsc Tan spot chlorosis

Introduction

Tan or yellow spot, caused by Pyrenophora tritici-
repentis (Ptr), can occur on all cultivated wheat crops
including breadwheat (Triticum aestivum L.) and durum
wheat (T. turgidum L.). The foliar symptom of the
disease is a characteristic tan-colored and elliptical ne-
crotic lesion, often with a yellow halo (Friskop and Liu
2016). The fungal pathogen overwinters on wheat resi-
dues, and thus, it is believed that a wide adoption of no
or reduced tillage production systems has increased
disease incidence and made tan spot one of the most
important diseases in most wheat-growing regions
(Hosford 1982; Murray and Brennan 2009; Faris et al.
2013). Tan spot has been one of the most common
diseases in North Dakota and surrounding areas where
the majority of US hard red spring and durum wheat are
produced (Friskop and Liu 2016).

Yield losses due to tan spot can reach 50% on highly
susceptible cultivars when environmental conditions are
favorable (Rees et al. 1982; Lamari and Bernier 1989).
The disease can also diminish grain quality by causing
pink to red discoloration of the grain, known as red
smudge (Schilder and Bergstrom 1994). Disease man-
agement strategies for wheat tan spot include crop rota-
tion, residue removal, and timely application of protec-
tive and systemic fungicides (Friskop and Liu 2016).
Developing and deploying resistant cultivars is the most
desirable way to control tan spot of wheat. However, the
majority of wheat cultivars in North Dakota and sur-
rounding areas are susceptible (Singh et al. 2006a; Liu
et al. 2015; Friskop and Liu 2016). Breeding for tan spot
resistance has been difficult due to the diverse and
complex nature of pathogen virulence, host resistance,
and host-pathogen interactions.

Ptr is known to produce three necrotrophic effectors
(NE), namely Ptr ToxA, Ptr ToxB, and Ptr ToxC, which
interact with their wheat sensitivity genes to induce
necrosis or chlorosis disease symptoms (Ciuffetti et al.
2010). The global Ptr isolates have been grouped into
eight races according to their ability to produce combi-
nations of the three NEs (Strelkov and Lamari 2003).
However, new evidence has strongly suggested the

existence of additional races (Ali et al. 2010; Mereno
et al. 2015) as well as the presence of additional NEs in
the current races (Friesen et al. 2002;Moffat et al. 2014).
In addition, Ptr ToxA has been shown to have an epi-
static effect on other unidentified NEs (Manning and
Ciuffetti 2015; See et al. 2018).

Wheat sensitivity genes for the three Ptr NEs have
been identified andmapped to wheat chromosome arms,
which are Tsn1 on 5BL for Ptr ToxA (Faris et al. 1996),
Tsc1 on 1AS for Ptr ToxC (Effertz et al. 2002), and Tsc2
on 2BS for Ptr ToxB (Friesen and Faris 2004;
Abeysekara et al. 2009). Among them, Tsn1 has been
isolated from wheat and shown to be a NBS-LRR,
resistance-like gene (Faris et al. 2010). Because each
NE and host sensitivity gene interaction can lead to
susceptibility/disease, and their effects can be additive,
resistance is often seen as the lack of sensitivity genes,
and removal of these sensitivity genes from wheat cul-
tivars could reduce the levels of susceptibility (Liu et al.
2017). However, the effect of each pair of NE and host
sensitivity gene interaction on disease can be highly
variable, depending on the host genetic background
and the isolate used (Faris et al. 2012; Virdi et al. 2016).

In addition to the three major sensitivity
(susceptibility) genes, several studies have identified
qualitative and recessive resistance genes against specific
races/isolates of Ptr, including tsr2 on 3BL (Singh et al.
2006b), tsr3 on 3DL (Tadesse et al. 2006a), tsr4 on 3AL
(Tadesse et al. 2006b), and tsr5 on 3BL (Singh et al.
2008). Furthermore, many additional QTL conferring
resistance/susceptibility to tan spot have also been iden-
tified using biparental and association mapping studies
(Faris et al. 2013 review; Virdi et al. 2016; Kariyawasam
et al. 2016; Liu et al. 2015, 2017). It is interesting that
some of the identified QTL are race-nonspecific, confer-
ring resistance to multiple or all races (Faris and Friesen
2005; Chu et al. 2008; Kariyawasam et al. 2016).

Hard red winter wheat (HRWW) accounts for 3 to
10% of total wheat production in North Dakota (North
Dakota Wheat Commission, www.ndwheat.com,
accessed on July 5th 2018). Although growing
HRWW in North Dakota is risky because of harsh
winter conditions, HRWW has gained an increased
interest due to its higher yield and the ability to spread
seasonal workloads. ‘Jerry’, developed byNorth Dakota
State University and the USDA-ARS and released in
2001 (Peel et al. 2004), has been the leading HRWW
cultivar in the state. However, Jerry is highly susceptible
to tan spot (Liu et al. 2015). The HRWW cultivar
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‘Wesley’ from Nebraska has demonstrated resistance to
multiple races of Ptr (Liu et al. 2015). To better utilize
Wesley in breeding programs, resistance in this cultivar
needed to be characterized. The objectives of this study
were to mapWesley’s resistance to multiple Ptr races of
tan spot using a recombinant inbred line (RIL) popula-
tion derived from the cross between Harry and Wesley
(Hussain et al. 2017) and to investigate the role of NE-
wheat sensitivity gene interactions in the development
of tan spot disease in winter wheat.

Materials and methods

Plant materials

The population derived from Harry/Wesley, hereafter
referred to as HW population, consisted of 194 recom-
binant inbred lines (RILs). Both Harry and Wesley are
HRWW cultivars developed by Nebraska Agricultural
Experiment Station in collaboration with the USDA-
ARS. The HW population was originally developed
for the mapping of drought tolerance (Hussain et al.
2017). In a previous study, we found that Wesley is
insensitive to Ptr ToxA and highly resistant to major
Ptr races while Harry is sensitive and highly susceptible
(Liu et al. 2015). The two parental lines and all the RILs
were evaluated for disease resistance using multiple
races/isolates and NE infiltrations. In addition, four tan
spot differential lines: Salamouni (insensitive to all three
NEs), Glenlea (Ptr ToxA sensitive), 6B365 (Ptr ToxC
sensitive), and 6B662 (Ptr ToxB sensitive) were also
included making a total of 200 entries for each

evaluation. Planting and growing the seedling plants
followed the same protocols described in Liu et al.
(2015). Briefly, seeds were sown in super-cell containers
(Stuewe & Sons, Inc., Corvallis, OR) that were filled
with Sunshine SB100 soil (Sun Grow Horticulture,
Bellenvue, WA) and placed on RL98 trays (Stuewe &
Sons, Inc., Corvallis, OR). The cultivar Jerry, highly
susceptible to tan spot, was planted along the borders
of the each RL98 rack to minimize the potential edge
effect. The disease evaluations and NE infiltrations were
conducted on the plants at the two to three leaf seedling
stage, which required approximately 2 weeks of growth
under temperatures ranging from 20 to 25 °C after seeds
were sown. Three biological replications were per-
formed with a randomized complete block design
(RCBD) for each isolate and NE evaluation.

Fungal inoculations and NE infiltrations

Five Ptr isolates were tested individually on the HW
population, including Pti2, 86-124, 331-9, DW5, and
AR CrossB10, which represented races 1, 2, 3, 5, and
new race, respectively. These isolates were classified as
different races based on the production of NEs or viru-
lence on the differential lines (Table 1). The isolates 86-
124 (race 2), 331-9 (race 3), and DW5 (race 5) each
produce a single, known NE (Ptr ToxA, Ptr ToxC and
Ptr ToxB, respectively). The isolate Pti2 (race 1) pro-
duces both Ptr ToxA and Ptr ToxC. AR CrossB10 was
characterized as a new race because it produces no Ptr
ToxA but is virulent on Glenlea (Ptr ToxA sensitive)
(Ali et al. 2010). However, this isolate produces Ptr
ToxC (Kariyawasam et al. 2016). The fungal strain 86-

Table 1 Reaction of the parental lines and the HW population to Pyrenphora tritici-repentis races/isolates

Isolate (race)a NE producedb Harryc Wesleyc HW population mean HW population range

Pti2 (race 1) Ptr ToxA, Ptr ToxC 4.00 1.67 2.98 1.33–4.33

86-124 (race 2) Ptr ToxA 4.00 1.33 3.00 1.33–4.17

86-124ΔToxA – 4.00 2.00 2.76 1.17–4.17

331-9 (race 3) Ptr ToxC 4.50 2.00 3.20 1.83–4.67

DW5 (race 5) Ptr ToxB 4.00 1.33 2.74 1.17–4.17

AR CrossB10 (New) Ptr ToxC 4.00 2.00 3.13 1.83–4.33

a Six isolates representing different P. tritici-repentis races were used to evaluate the HW population and parental lines. Fungal strain 86-
124ΔToxA derives from 86 to 124 but lacks the ToxA gene (Kariyawasam et al. 2016)
b The Ptr races are known to produce different necrotrophic effectors (NEs): Ptr ToxA, Ptr ToxB, and Ptr ToxC. 86-124ΔToxA does not
produce Ptr ToxA, but it might produce other unknown effectors
c Disease was scored using a 1 to 5 scale with 1 being resistant and 5 being susceptible. Means of three replicates are given
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124ΔToxA was genetically modified from 86 to 124
(race 2) through deletion of the ToxA gene, thus produc-
ing no Ptr ToxA (Kariyawasam et al. 2016). Strain 86-
124ΔToxAwas used to test whether the effect of the 5B
QTL was due to a Ptr ToxA-Tsn1 interaction.

Fungal culturing and inoculum preparation follow-
ed the procedure described in Lamari and Bernier
(1989). Briefly, the fungus was grown in dark for
5 days followed by the sporulation treatments. The
conidiospores were harvested from the plates by
adding sterilized distilled water to the plates and gent-
ly scrapping the surface of the fungal cultures. The
concentration of the inoculum was defined by spore
counting under microscope and adjusted to approxi-
mately 3000 spores per mL and Tween-20 was added
at a rate of two drops per 100 mL of the spore suspen-
sion before spraying inoculum. Plants were inoculated
with the spore suspension using a paint sprayer (Hus-
ky; Home Depot) that was connected to an air pump
with a pressure set at 1.0 bar. Inocula were applied till
the leaves of all the plants were uniformly covered
with water drops. Inoculated plants were transferred to
a mist chamber with a 100% relative humidity and
incubated for 24 h at 21 °C. Then, they were moved to
and grown in a growth chamber with 12-h photoperiod
at 21 °C for 7 days. Disease severity was rated using a
lesion type-based scale from 1 to 5 where 1 is highly
resistant and 5 is highly susceptible (Lamari and
Bernier 1989). An intermediate score was given if
two types of reactions were observed. The disease
score lower than 2.5 was considered to be resistant.

The HW population was also evaluated for reaction
to Ptr ToxA and Ptr ToxB, which were produced from
genetically modified Pichia pastoris yeast strain X33
expressing the individual NE gene (Liu et al. 2009;
Abeysekara et al. 2010). The yeast P. pastoris strains
were cultured for 48 h at 30 °C and the culture filtrates
were harvested by centrifuging the yeast cells. Ap-
proximately 20 μl of the culture filtrate was infiltrated
into the fully expanded secondary leaf by using a 1-ml
syringe without the needle. The infiltrated region was
marked with a felt pen, and infiltrated plants were kept
in a growth chamber at 21 °C with 12-h photoperiod.
Reactions to NE were scored on the 5th day as 1
(sensitive, necrosis, or chlorosis developed on the
marked area) or 0 (insensitive, no reaction developed
on the marked area). The scored data were trans-
formed into marker data which were used for mapping
the sensitivity locus.

Statistical analysis and QTL mapping

Normality of the disease data for each isolate was eval-
uated using the Shapiro-Wilk test in PROC UNIVARI-
ATE in SAS 9.4 Software (SAS Institute 2016). Disease
data from different replicates were tested for homoge-
neity using Bartlett’s Chi-squared test (Snedecor and
Cochran 1989) if the data fitted a normal distribution,
or by Levene’s test (Levene 1960) if the data did not fit a
normal distribution. Analyses of variance were conduct-
ed using PROC GLM (SAS Institute 2016). The data
from homogeneous replications were combined to com-
pute disease means for each RIL, which were then used
in QTL analysis.

The genetic linkage map of the HW population
contained 3641 SNP markers from genotyping by se-
quencing (GBS) and covered all 21 wheat chromosomes
with a total genetic distance of 1959 cM and a marker
density of 1.8 cM per marker (Hussain et al. 2017). For
the QTL analysis, the linkage maps were reconstructed
to remove most co-segregating markers and some tight-
ly linked markers without affecting the quality of the
maps using MapDisto 1.7.7 (Lorieux 2012). The
resulting map consisted of 2749 markers that spanned
1911.84 cM with marker density at 1.43 cM. Because
the population segregated for reaction to Ptr ToxA,
sensitivity to Ptr ToxAwas also mapped as a qualitative
trait in the previous linkage map using MapDisto
(Lorieux 2012). QTL mapping was conducted using
QGene 4.4.0 (Joehanes and Nelson 2008). Simple inter-
val mapping (SIM) was used initially to identify the
genomic region associated with tan spot reaction and
to quantify the disease variations explained by the QTL
(R2). Composite interval mapping (CIM) was then per-
formed to define the genomic locations. A permutation
test with 1000 iterations resulted in a LOD threshold of
4.2 for an experiment-wise significance level of 0.05.

Results

Reactions of the parental lines to fungal inoculations
and NE infiltrations

Wesley exhibited black to brown colored, small size
lesions on the secondary leaves for all the isolates tested,
and it had average disease ratings ranging from 1.33 to
2.00 (Fig. 1, Table 1), indicating high levels of resis-
tance. In contrast, Harry developed large necrotic
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lesions or extensive chlorosis on the secondary leaves
and its disease rating ranged from 4.00 to 4.50, which
was highly susceptible (Fig. 1, Table 1). For Ptr ToxA
infiltration, Wesley was insensitive while Harry was
sensitive (Fig. 1). Although the differential line 6B662
had a sensitive reaction to Ptr ToxB, neither Wesley nor
Harry was sensitive to Ptr ToxB (Fig. 1). Extensive
chlorosis developed on the leaves of Harry when inoc-
ulated with Pti2, 331-9, and AR CrossB10, but did not
develop when inoculated with 86-124, 86-124ΔToxA,

and DW5 (Fig. 1). As Pti2, 331-9, and AR CrossB10 all
produce Ptr ToxC, and extensive chlorosis is character-
istic of the Ptr ToxC-Tsc1 interaction, Harry must carry
Tsc1 conferring sensitivity to Ptr ToxC.

Reactions of the HW population to Ptr ToxA infiltration
and mapping of sensitivity to Ptr ToxA

The HW population segregated for reaction to Ptr ToxA
as 92 sensitive to 100 insensitive, which fits a 1:1 ratio
(χ2 = 0.33, P = 0.56). Sensitivity to Ptr ToxA was
mapped to chromosome 5B as expected. The newly
constructed chromosome 5B map was 135.2 cM in
length and Tsn1 was located at 47.1 cM, between
markers HWGBS3693 and HWGBS3680.

Reaction of the HW population to fungal inoculations

The HW population segregated for reaction to tan spot
caused by all the isolates tested. The mean disease
severity for the whole population ranged from 2.74
(isolate DW5) to 3.20 (isolate 331-9) (Table 1, Fig. 2).
No obvious transgressive segregation was observed. For
all the isolates tested, the majority of RILs had interme-
diate reactions and only a few RILs had reactions similar
to the resistant or susceptible parents (Fig. 2). The fungal
strain 86-124ΔToxA produces no known NE, but still
caused disease on Harry and susceptible RILs strongly
indicating the presence of an unidentified NE(s) or
another virulence factor(s) (Fig. 2). Normality tests
rejected a normal distribution of the disease reaction to
all the isolates except the race1 isolate Pti2 (P = 0.07)
and race5 isolate DW5 (P = 0.26).

QTL identification

Homogeneity analysis with Barlett’s Chi-squared test
(for Pti2 and DW5) and Levene’s test (for the remaining
isolates) indicated that the variance among the replicates
for each isolate was not significant (P = 0.06–0.17).
Therefore, the means of the three replicates for each
isolate were used in QTL identification. A total of five
QTL associated with reaction to tan spot were identified
in the HW population. These QTL were located on
chromosomes 1A, 5B, 7A, 7B, and 7D, and were des-
ignated asQTs.zhl-1A,QTs.zhl-5B,QTs.zhl-7A,QTs.zhl-
7B, and QTs.zhl-7D, respectively (Table 2). The resis-
tance alleles for these QTL are all from Wesley, the
resistant parent (Table 2).

Fig. 1 Reaction of the parental lines to different Pyrenophora
tritici-repentis race/isolate inoculations and necrotrophic effector
infiltrations. The P. tritici-repentis races/isolates included Pti2
(race 1), 86-124 (race 2), 86-124ΔToxA, 331-9 (race 3), DW5
(race 5), and AR CrossB10 (new race) and P. tritici-repentis. The
NEs included Ptr ToxA and Ptr ToxB. W: Wesley, H: Harry. C:
control 6B662 (for the Ptr ToxB infiltration only)
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QTs.zhl-1A.1 was located on the distal end of 1AS
between markers HWGBS60 andHWGBS5150 and was
significant for Pti2, 331-9, and AR CrossB10, all of
which produce Ptr ToxC (Fig. 3, Table 2). The other
markers HWGBS58 and HWGBS59 co-segregated with
HWGBS60. This QTL is likely due to the Ptr ToxC-
Tsc1 interaction, had LOD values ranging from 9.9 to
46.9, and accounted for 10 to 64% of the variation in
disease.QTs.zhl-5B.1was identified for Pti2 and 86-124
which produce Ptr ToxA and mapped at the Tsn1 locus
which confers sensitivity to Ptr ToxA (Fig. 3, Table 1).
This QTLwas not associated with reactions to strain 86-
124ΔToxA, which does not produce Ptr ToxA (Fig. 3).
These results indicate that QTs.zhl-5B.1 is due to the Ptr
ToxA-Tsn1 interaction. The QTL had similar LOD and
R2 values for Pti2 and 86-124. QTs.zhl-7B.1 is a minor
QTL located on the short arm of chromosome 7B, and it
was the only QTL associatedwith reaction to DW5 (Fig.
3). The QTL explained 8% of the disease variation with
a LOD value of 6.6 (Table 2). This QTL was flanked by
HWGBS5696 andHWGBS5992 and two co-segregating
markers: HWGBS5678 and HWGBS5672 mapped very
closely to HWGBS5696 (Table 2 and Fig. 3). The QTL
on 7A and 7D: QTs.zhl-7A.1 and QTs.zhl-7D.1 were
identified for 86-124ΔToxA, the isolate producing no

known NE. QTs.zhl-7A.1 was flanked by HWGBS5420
and HWGBS5422 explaining 12% of the disease varia-
t ion and QTs.zhl-7D.1 was located between
HWGBS6047 and HWGBS6066 explaining 13% of the
disease variation (Fig. 3, Table 2). Three other markers
HWGBS6029, HWGBS6031, and HWGBS6046 co-
segregated with HWGBS6047 on 7D. Interestingly, the
two QTL were not identified using its wild-type isolate
86-124 (Fig. 3).

The additive effect of the identified QTL

Because QTs.zhl-1A and QTs.zhl-5B are the two major
QTL identified and they are due to the NE-wheat sensi-
tivity gene interactions, we also investigated the genetic
relationships between these two interactions by catego-
rizing the RILs based on the genotype at the two loci and
comparing the diseasemeans in the reaction to Pti2 which
produces both Ptr ToxA and Ptr ToxC. There are four
genotypic groups based on the combination of the paren-
tal alleles at two QTL including the Harry allele at both
loci (H,H), the Wesley allele at both loci (W,W), and the
Harry allele at one locus and Wesley at the other locus
(W,H and H,W) (Table 3). Significant differences were
obtained for the disease means among all four groups

Fig. 2 Histograms showing the disease reaction of the Harry ×
Wesley population to individual Pyrenophora tritici-repentis
races/isolates. The races/isolates used for the evaluations included
Pti2 (race1), 86-124 (race 2), 86124ΔToxA, 331-9 (race 3), DW5

(race 5), and ARCrossB10 (new race). The disease phenotypewas
rated using a 1–5 scale with 1 being highly resistant and 5 being
highly susceptible. The x-axis is the disease scale, and the y-axis is
the number of recombinant inbred lines
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with the genotypic group with Harry the allele at both loci
having the highest disease mean (3.51) and that with the
Wesley allele at both loci having the lowest disease mean
(2.54) (Table 3). It is very interesting to notice thatWesley
has a significant low disease mean than the group carry-
ing Wesley’s allele at both loci. This might be due to the
fact that Wesley does not have the susceptibility QTL on
7A, 7B, and 7D.

Discussion

Genetic resistance to tan spot has been shown to involve
multiple factors, including the lack of NE sensitivity
genes, the presence of race-nonspecific resistance
QTL, the presence of qualitative recessive resistance
genes, and other less well-characterized QTL (Faris
et al. 2013 for review; Liu et al. 2017). Wesley, which
was highly resistant to multiple races of tan spot patho-
gen, could be a good source of tan spot resistance in
breeding programs for winter wheat. Using QTL analy-
sis in a segregating winter wheat population derived
from Harry and Wesley, we characterized genetic resis-
tance in Wesley. Reaction to tan spot in this population
was primarily due to the two NE-wheat sensitivity gene
interactions: Ptr ToxA-Tsn1 and Ptr ToxC-Tsc1, which
indicate that resistance in Wesley is largely due to the
lack of NE sensitivity genes Tsn1 and Tsc1, rather than
the presence of any active resistance genes. Therefore,
breeders should place strong emphasis on selection for
the absence of the two NE sensitivity genes in segregat-
ing populations. Tsn1 has been cloned and a perfect
marker, Xfcp623, has been developed from the gene
itself, which can be used in marker-assisted selection
(Faris et al. 2010). However, Tsc1 has not yet been
cloned and the closest marker developed so far is
4.7 cM away from it (Faris et al. 2013). Three co-
segregating GBS markers: HWGBS58, HWGBS59, and
HWGBS60mapped in the HWpopulation were found to
underlie the peak of the 1AS QTL (Fig. 3), which might
be very close to Tsc1. These GBS markers can be
converted into PCR-based KASP or STARP (Semi-
Thermal Asymmetric Reverse PCR, Long et al. 2017)
markers for marker-aided selection against Tsc1.

The significance of the two major QTL, QTs.zhl-1A
and QTs.zhl-5B, in the respective Ptr ToxC-Tsc1 and Ptr
ToxA-Tsn1 interactions of this study, confirms their
important role in tan spot development in winter wheat
genetic backgrounds. Many studies have beenT

ab
le
2

Q
T
L
as
so
ci
at
ed

w
ith

re
ac
tio

n
to

ta
n
sp
ot

ca
us
ed

by
di
ff
er
en
tP

yr
en
op
ho
ra

tr
iti
ci
-r
ep
en
tis

ra
ce
s/
is
ol
at
es

in
th
e
H
W

po
pu
la
tio

n

Q
T
L

In
te
rv
al
(c
M
)

F
la
nk
in
g
m
ar
ke
rs

L
O
D
(R

2
)a

So
ur
ce

b

P
ti2

86
-1
24

86
12
4Δ

To
xA

33
1-
9

D
W
5

A
R
cr
os
sB

10

Q
Ts
.z
hl
-1
A

0.
0–
2.
0

H
W
G
B
S6
0-
H
W
G
B
S1
50

9.
9
(0
.1
0)

–
–

46
.9
(0
.6
4)

–
18
.6
(0
.3
1)

W

Q
Ts
.z
hl
-5
B

20
.0
–5
2.
0

H
W
G
B
S3
69
3-
H
W
G
B
S3
67
2

16
.9
(0
.2
8)

14
.9
(0
.2
2)

–
–

–
–

W

Q
Ts
.z
hl
-7
A

12
4.
0–
13
0.
0

H
W
G
B
S5
42
0-
H
W
G
B
S5
42
2

–
–

8.
8
(0
.1
2)

–
–

–
W

Q
Ts
.z
hl
-7
B

18
.0
–2
6.
0

H
W
G
B
S5
69
6-
H
W
G
B
S5
99
2

–
–

–
–

6.
6
(0
.0
8)

–
W

Q
Ts
.z
hl
-7
D

17
6.
0–
18
0.
0

H
W
G
B
S6
04
7-
H
W
G
B
S6
06
6

–
–

8.
2(
0.
13
)

–
–

–
W

a
A
pe
rm

ut
at
io
n
te
st
w
ith

10
00

ite
ra
tio

ns
yi
el
de
d
a
L
O
D
va
lu
e
of
4.
2
an
d
it
w
as

us
ed

as
th
e
cu
t-
of
ft
o
id
en
tif
y
si
gn
if
ic
an
tQ

T
L
.R

2
va
lu
es
ar
e
gi
ve
n
in
pa
re
nt
he
si
s
fo
re
ac
h
Q
T
L
,i
nd
ic
at
in
g
th
e

am
ou
nt

of
ph
en
ot
yp
ic
va
ri
at
io
n
ex
pl
ai
ne
d
by

th
e
Q
T
L

b
T
he

pa
re
nt
al
lin

e
th
at
co
nt
ri
bu
te
d
th
e
re
si
st
an
ta
lle
le
w
he
re

‘H
’=

H
ar
ry

an
d
‘W

’=
W
es
le
y

Mol Breeding (2018) 38: 140 Page 7 of 12 140



140 Page 8 of 12 Mol Breeding (2018) 38: 140



conducted to investigate the role of the Ptr ToxA-Tsn1
interaction in spring wheat germplasm and populations
(Faris et al. 2013; Dinglasan et al. 2018). Although the
Ptr ToxA-Tsn1 interaction usually plays a significant
role in hexaploid wheat backgrounds, it has never been
shown to be important in tetraploid wheat backgrounds
(Faris et al. 2013 for review; Virdi et al. 2016). Very
interestingly, SnToxA-Tsn1 interactions in the wheat-
Parastagonospora nodorum system have always been
shown to be important regardless of wheat polyploid
levels and host genotypes (Friesen et al. 2006; Virdi
et al. 2016). Sensitivity to Ptr ToxA has been found to
significantly correlate with susceptibility to Ptr ToxA-
producing races in winter wheat germplasm indicating
the importance of the Ptr ToxA-Tsn1 interaction in dis-
ease in winter wheat backgrounds (Noriel et al. 2011;
Kollers et al. 2014; Liu et al. 2015). In this study, we
used QTL mapping in a biparental population to further
confirm that Ptr ToxA-Tsn1 interaction is important for
tan spot development in winter wheat genetic
backgrounds.

Because Ptr ToxC cannot be easily obtained and
purified, the role of the Ptr ToxC-Tsc1 interaction in
disease has not been extensively investigated except
for a few QTL mapping studies, which suggested its
important role (Faris et al. 1997; Effertz et al. 2001,
2002; Sun et al. 2010; Kariyawasam et al. 2016; Liu
et al. 2017). Here, we demonstrated that the Ptr ToxC-
Tsc1 interaction is also important for disease in winter
wheat backgrounds. However, the effect of the inter-
action on disease, which was measured by R2, was
variable depending on the race/isolate used, i.e., 10%
for Pti2, 31% for AR CrossB10, and 64% for 331-9
(Table 2, Fig. 3). A similar result was obtained in a
study performed by Kariyawasam et al. (2016) using a
spring wheat population. Liu et al. (2017) demonstrat-
ed that the Ptr ToxA-Tsn1 interaction and the Ptr
ToxC-Tsc1 interaction made additive contributions to
the level of disease in a spring wheat population when
both interactions were present. Here, we showed that
the two interactions can also have an additive effect on
disease development in winter wheat backgrounds
(Table 3). This observation has been commonly found
in the wheat-P. nodorum system where multiple NE-
sensitivity gene interactions have been identified
(Oliver et al. 2012 for review). Therefore, for these
necrotrophic pathogens, the part of the disease system
that is based on inverse gene-for-gene interactions
involving multiple NE-host sensitivity gene combina-
tions, these interactions often have an additive effect
and produce quantitative differences in disease devel-
opment and resistance responses (Friesen and Faris
2010). Thus, in breeding programs, the sensitivity loci
should be removed systematically in order to obtain
higher levels of tan spot resistance.

The wheat-Ptr system has also been shown to involve
QTL conferring resistance to multiple or all Ptr races,
which was referred to as race-nonspecific resistance QTL
(Faris and Friesen 2005). Race-nonspecific resistance
QTL has been identified in hexaploid spring wheat lines
which showed resistance to multiple races (Faris and
Friesen 2005; Chu et al. 2010; Faris et al. 2012;
Kariyawasam et al. 2016). Some race-nonspecific resis-
tance QTL can have complete epistasis on the effect of
the Ptr ToxA-Tsn1 interaction, but partial epistasis on the
Ptr ToxC-Tsc1 interaction (Kariyawasam et al. 2016).
This type of resistance should be very useful in breeding
programs to develop wheat cultivars with resistance to
multiple races. Wesley is highly resistant to multiple
races, but we did not identify any QTL conferring

Table 3 Diseasemeans of four categories of RILs based on alleles
at QTs.zhl-1A.1 and QTs.zl-5B.1 for the reaction caused by race 1
isolate Pti2

Allele at QTs.zhl-1A,
QTs.zhl-5Ba

No. of RILs Pti2 (Race 1) b

H,H 49 3.51a

W,H 43 3.07b

H,W 49 2.83c

W,W 53 2.54d

Wesley – 1.67e

Harry – 4.00a

a The source of the allele at each QTL where H and W are the
alleles from Harry and Wesley, respectively. The parental lines
were included as controls
bMeans with different letters were significantly different

�Fig. 3 Composite interval regression maps of chromosomes 1A,
5B, 7A, 7B, and 7D containing QTLs significantly associated with
reaction to tan spot in the HW population. QTL mapping was
conducted on the HWpopulation for different Pyrenophora tritici-
repentis races/isolates, which are represented by different colors,
including Pti2 (race 1), 86-124 (race 2), 86124ΔToxA, 331-9 (race
3), DW5 (race 5), and AR crossB10 (new race). The positions of
marker loci are shown to the left of the linkage groups and genetic
scales in centiMorgan (cM) are shown to the right of each chro-
mosome. A solid line represents the logarithm of the odds (LOD)
significance threshold of 4.2. The LOD and R

2
values for each

QTL are presented in Table 2
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resistance to all the races tested in the population
(Table 3), indicating that Wesley does not carry race-
nonspecific resistance. The high levels of resistance to
multiple races in Wesley are most likely due to its insen-
sitivity to the three known NEs: Ptr ToxA, Ptr ToxB, and
Ptr ToxC, as well as other possibly unidentified NEs. It
remains unknown whether or not race-nonspecific resis-
tance is present in winter wheat germplasm.

The race 5 isolate DW5 produces Ptr ToxB, which
interacts with the sensitivity gene Tsc2 on 2BS to induce
chlorosis (Strelkov et al. 1999; Martinez et al. 2004;
Friesen and Faris 2004; Abeysekara et al. 2010). For this
isolate, we only identified a minor QTL (Qts.zhl-7B) on
7B (Table 3). The fact that no QTL were identified at the
Tsc2 locus (2BS) is due to the lack of Ptr ToxB sensi-
tivity in both Wesley and Harry (Fig. 1). There are two
possible reasons that can explain why no major QTL
was identified for DW5. First, it is possible that DW5
produced multiple unidentified NEs, but effects of
which are too small to detect in this population. Second,
the genetic linkage map developed in the HW popula-
tion has a poor coverage in most D genome chromo-
somes (Hussain et al. 2017) and it is possible that some
major or minor QTL could be missed or not identified.
Liu et al. (2015) conducted an association mapping in a
collection of winter wheat germplasm which included
Wesley and Harry, revealing a QTL on 7B for DW5.
This QTL might be the same as Qts.zhl-7B.1 identified
in the HW population. Tan spot resistance/susceptibility
QTL on 7B have been reported before, but the previous
studies used different races (Faris et al. 2012; Kollers
et al. 2014).

For AR CrossB10, QTs.zhl-1A, which is involved
in the Ptr ToxC-Tsn1 interaction, is the only QTL
identified in the HW population. AR CrossB10 was
defined as a new race because it does not produce
Ptr ToxA, but caused necrosis symptoms on the Ptr
ToxA differential line Glenlea (Ali et al. 2010). This
suggests that AR CrossB10 produces a different
NE(s) which interacts with an unidentified wheat
sensitivity gene(s). Previous studies using biparental
mapping or association mapping have revealed QTL
on a number of other wheat chromosomes (Patel
et al. 2013; Liu et al. 2015, 2017; Kariyawasam
et al. 2016). However, none of those QTL was
identified in the HW population, which might be
due to no segregation for these loci or the low
coverage in some areas of the genetic linkage maps
in the HW population.

The two fungal strains 86-124 and 86-124ΔToxA are
nearly identical except that 86-124ΔToxA is deficient in
the production of Ptr ToxA compared to the wild-type
86-124 (Kariyawasam et al. 2016). The Tsn1 locus was
associated with a major QTL for 86-124, but not for 86-
124ΔToxA which strongly indicates that this QTL in-
volves the Ptr ToxA-Tsn1 interaction. On the contrary,
two QTL, QTs.zhl-7A and QTs.zhl-7D, were identified
for 86-124ΔToxA, but not for 86-124 in this population
(Table 2). This suggests that the effect of these QTL is
masked by that of the Ptr ToxA-Tsn1 interaction. Epit-
asis of the Ptr ToxA-Tsn1 interaction over other interac-
tions has been reported in the wheat-Ptr system
(Manning and Ciuffetti 2015; See et al. 2018). As men-
tioned above, the effect of Ptr ToxA-Tsn1 interaction can
be completely masked by the action of race-nonspecific
resistance (Kariyawasam et al. 2016). These epistasis
mechanisms remain unknown, which hinders breeding
of tan spot-resistant cultivars.
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