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Simulating the Impacts of Irrigation Levels on Soybean Production in Texas High Plains to

Manage Diminishing Groundwater Levels

Vaishali Sharda, Prasanna H. Gowda, Gary Marek, Isaya Kisekka, Chittaranjan Ray, and Pradip Adhikari

Research Impact Statement: Soybean in Texas High Plains can be irrigated at a lower total amount of irriga-
tion application without compromising yields, thus conserving water and contributing toward lesser groundwa-
ter withdrawals.

ABSTRACT: There is an increasing need to strategize and plan irrigation systems under varied climatic condi-
tions to support efficient irrigation practices while maintaining and improving the sustainability of groundwater
systems. This study was undertaken to simulate the growth and production of soybean [Glycine max (L.)] under
different irrigation scenarios. The objectives of this study were to calibrate and validate the CROPGRO-Soybean
model under Texas High Plains’ (THP) climatic conditions and to apply the calibrated model to simulate the
impacts of different irrigation levels and triggers on soybean production. The methodology involved combining
short-term experimental data with long-term historical weather data (1951–2012), and use of mechanistic crop
growth simulation algorithms to determine optimum irrigation management strategies. Irrigation was scheduled
based on five different plant extractable water levels (irrigation threshold [ITHR]) set at 20%, 35%, 50%, 65%,
and 80%. The calibrated model was able to satisfactorily reproduce measured leaf area index, biomass, and
evapotranspiration for soybean, indicating it can be used for investigating different strategies for irrigating soy-
bean in the THP. Calculations of crop water productivity for biomass and yield along with irrigation water use
efficiency indicated soybean can be irrigated at ITHR set at 50% or 65% with minimal yield loss as compared to
80% ITHR, thus conserving water and contributing toward lower groundwater withdrawals. Editor’s note: This
paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the
February 2019 issue for the introduction and background to the series.

(KEYWORDS: CROPGRO-Soybean; irrigation water use efficiency; crop water productivity; deficit irrigation; ir-
rigation strategy.)

INTRODUCTION

Due to changing climate and inconsistent precipi-
tation patterns, groundwater is becoming a promi-
nent source of water in arid and semiarid regions of
the world (Ruud et al. 2004; Uddameri et al. 2017).
Dwindling groundwater resources pose a threat to

global food security (Hanjra and Qureshi 2010) and
adversely impact rural economies worldwide (Burke
and Moench 2000; Wang et al. 2017). Agriculture
uses approximately 80% of ground and surface water
in the United States (U.S.) annually (USDA 2013).
Additionally, recent decline in water availability and
droughts are becoming critical factors impacting crop
yield goals in the U.S. (Lobell and Field 2007). In
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recent years, sustainability of groundwater for agri-
cultural production has received substantial attention
from the research community along with development
of strategies to balance crop production and optimize
irrigation water requirements (Tilman 1999; Scanlon
et al. 2012; Guzman et al. 2018).

In the Ogallala aquifer region comprising of
Nebraska, Kansas, Texas, Oklahoma, and parts of
South Dakota, Wyoming, Colorado, and New Mexico
groundwater from underlying Ogallala aquifer is the
primary source of irrigation for production of crops
such as cotton, corn, sorghum, soybean, peanuts, and
winter wheat (USDA-NASS 2017). In recent times, it
has become important to improve water use efficiency
(Modala et al. 2015; Dietzel et al. 2016) to sustain
the use of groundwater from the Ogallala aquifer
while maintaining crop water productivity (CWP)
(Araya et al. 2017). Several past studies have shown
that managing groundwater depletion can be
achieved using deficit or limited irrigation methods
that decrease irrigation input while maintaining crop
production (Klocke et al. 2012; Lamm et al. 2014).

Soybean (Glycine max L.) is one of the main crops
grown around the world and the U.S. as an important
source of oil and protein for the animal feed industry.
In a three-year study conducted in Nebraska (Schneek-
loth et al. 1991), it was found that deficit irrigation on
soybean did not significantly affect yields and con-
served an average 119 mm of seasonal water over full
irrigation treatment. Depending on the maturity char-
acteristics of the hybrid planted and annual weather
conditions, soybean requires about 400–635 mm water
in the Texas High Plains (THP) (Bean and Miller
1998). In soybean crops, reproductive and vegetative
growth coexist for some duration of the growth cycle
(Setiyono et al. 2007). Soybean is sensitive to water
stress at all stages of growth and grain yields are usu-
ally linearly related to water use from the stage when
seed yield begins to accumulate until the point of maxi-
mum yield is reached. However, soybean typically
requires less irrigation as compared to other irrigated
crops such as corn and water saving irrigation strate-
gies can be useful in maintaining soybean yields
(Lamm et al. 2007). Some researchers have found that
the time between flowering and the beginning of seed
formation is the soybean reproductive stages that are
most susceptible to water stress. Water stress imposed
on a soybean crop during these stages reduces vegeta-
tive growth, therefore affecting yield (Hodges and
Heatherly 1983). Some studies (Spetch et al. 1989;
Garcia y Garcia et al. 2010) have shown that irrigating
only during reproductive stages could result in yields
comparable to that under full irrigation, thus allowing
for water stress during less critical growth stages. Def-
icit irrigation of soybean has been found to maximize
CWP without significant reduction in yield by timing

the irrigation applications with critical periods for
water stress (Irmak et al. 2014), which might require
understating the response of each growth stage of the
crop to water stress (Dogan et al. 2007a, b).

The total irrigation amount is greatly affected by
the decision on when to initiate the irrigation during
the growing season. Among other approaches, mea-
surements or estimates of soil available water and crop
water use rates present a more reliable strategy to
schedule irrigation for soybean (Rogers 2015) than
growth-based scheduling. Irrigation scheduling in this
form can be achieved by using either soil water mea-
surement devices or evapotranspiration (ET)-based
irrigation scheduling (Ciampitti et al. 2018). Studies
have shown that scheduling irrigation for soybean by
soil water depletion method (30% or 60% of plant avail-
able water) uses relatively less water (Ciampitti et al.
2018). The larger the threshold for soil water deple-
tion, the fewer the number of irrigations that were
applied. Therefore, a management approach using
estimates of soil water content could help to optimize
irrigation water use while not reducing soybean yields.

Given the erratic climate patterns that exist in the
THP, the biggest challenge is to optimally implement
deficit irrigation strategies without compromising
yield and economic returns. Combining short-term
field experiments with crop growth models using long-
term historic climate data can be a useful tool in identi-
fying suitable irrigation strategies (Kisekka et al.
2016). The Decision Support System for Agrotechnol-
ogy Transfer (DSSAT) (Hoogenboom et al. 2015) is one
of the most widely used crop simulation models for
evaluating agricultural management options (Thorp
et al. 2008) and to simulate crop water use and yield
along with the development of management strategies
for different soil and climatic conditions (McNider
et al. 2015). DSSAT version 4.6 is comprised of models
for more than 28 crops that simulate crop growth,
development, and yield along with management
strategies that involve irrigation, fertilizer application,
crop rotations, and others (Sharda et al. 2017).

The CROPGRO-Soybean model, included in
DSSAT, has been used to simulate crop phenology
(Salmeron and Purcell 2016) and yield along with
analyzing the impact of crop management parameters
on soybean growth (Dogan et al. 2007a, b; Salmeron
et al. 2017) along with being used in several climate
change studies (Bao et al. 2015; Battisti et al. 2017;
Walikar et al. 2018). The CROPGRO-Soybean model
has also been used to evaluate how various water
stress environments affected the yield of soybean in
Iowa (Paz et al. 1998) and Mississippi Delta Region
(Guzman et al. 2018). Sincik et al. (2008) investigated
the effects of deficit irrigation on soybean during field
studies and found that dryland and all deficit irriga-
tion treatments significantly decreased biomass and
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yield. However, relatively few studies have been con-
ducted in semiarid environments (Garside et al.
1992). Since there are multiple factors that could
affect soybean growth and yields for a region, it is
imperative that modeling approaches be implemented
to strategize irrigation for sustainable use of limited
groundwater resources at a regional level. Therefore,
this study was designed with an overall goal to iden-
tify irrigation management strategies that optimize
yield and maximize irrigation water use efficiency
(IWUE) while maximizing CWP in the THP. The
specific objectives of this study were to (1) calibrate
and validate the DSSAT-CROPGRO-Soybean model
for simulating soybean growth and yield in the THP
and (2) identify and evaluate different deficit irriga-
tion strategies that conserve water while providing
optimum crop yields.

METHODOLOGY

Study Area

Soybean was grown under sprinkler irrigation at
the U.S. Department of Agriculture/Agricultural
Research Service (USDA-ARS) Conservation and Pro-
duction Research Laboratory (CPRL) near Bushland,
Texas (35°11.N, 102°6.W, 1170 m elevation above
mean sea level) in the THP. This region has semiarid
climate with an annual precipitation of approxi-
mately 460 mm (Marek et al. 2017), with nearly
325 mm of precipitation falling from May to Septem-
ber. The region experiences high diurnal temperature
variability with a mean temperature during soybean
growing season of approximately 24°C. The soil at
the study site is Pullman silty clay loam (fine, mixed,
thermic Torrertic Paleustoll). The experiment site
was a nearly square field of nearly 20 ha that was
subdivided into four 4.73 ha plots, each having a
large weighing lysimeter (built and managed by the
USDA-ARS CPRL) located in its center (Figure 1).
The fields slope to the east at ~0.15% and are usually
furrow diked to reduce runoff. The four fields were
designated according to the cardinal points as the
NE, SE, NW, and SW fields. The NE and SE lysime-
ter fields were irrigated with a 10-span, 457 m lateral
move irrigation system equipped with mid-elevation
spray application sprinkler drops (~1.5 m height).

Experimental Data

Hybrid soybean variety Pioneer 94B73RR was
grown in 2003 and 2004 in both NE and SE lysimeter

fields (Figure 1). Soybeans were inoculated with
Nitragin granular at 5.6 kg/ha in-furrow. Daily ET
values were measured using precision large weighing
lysimeters located at the center of each field. A neu-
tron probe measured weekly soil water content (to a
depth of 1.5 m) using two access tubes installed in
the lysimeters (Marek et al. 2017). Based on the
information obtained from the neutron probes, irriga-
tions were scheduled in a way that the soil water con-
tent can be maintained at a level to prevent water
stress (Marek et al. 2017).

The sowing dates for soybean were May 19 and
May 12 in 2003 and 2004, respectively, with a popu-
lation of 46 plants/m2 planted at a depth of 3 cm in
rows 0.76 m apart. Nitrogen (10 kg/ha) was applied
four days before planting and 63-14-48 kg/ha N-P-K
was applied 68 days after planting. Plant samples
were collected at different growth stages and plant
height, leaf area, above ground dry matter, and yield
were recorded. In season, plant sampling was done
from the surrounding field and no destructive sam-
pling was performed on the lysimeters until harvest,
at which time all biomass and yield was collected
from the lysimeter. Recommended pesticides were
used to control weeds, diseases, and insects. The soy-
bean management conditions used in this field study
are assumed to be representative for the THP.

DSSAT Description

The DSSAT-CROPGRO-Soybean (version 4.6)
(Boote et al. 1998; Hoogenboom et al. 2015) was used
to simulate soybean yields with a variety of climate
inputs over a 62-year period (1951–2012) in seasonal
analysis mode (Thorton and Hoogenboom 1994). Sea-
sonal analysis helps in comparing the crop perfor-
mance variability based on different management
practices and weather conditions over a range of
years.

CROPGRO-Soybean. CROPGRO-soybean uses
differential sensibility of growth stages to environ-
mental factors such as temperature, photoperiod,
along with water and nutrient stress to simulate soy-
bean phenology (Boote et al. 1998). CROPGRO calcu-
lates crop water demand at a daily time step by
combining a tipping bucket-type soil water movement
model with a root water uptake model (Ritchie et al.
1998). Factors like soil water availability, drained
upper limit and lower limit, and root density, control
the water uptake rate by roots (Mercau et al. 2007).

DSSAT Input Data. Long-term daily weather data
for a 62-year period (1951–2012) were compiled from the
Texas High Plains Evapotranspiration Network (Porter
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et al. 2012), and National Climate Data Center (NCDC
2012) data from around Bushland. The variables
include maximum and minimum air temperature, pre-
cipitation, and solar radiation. Soil Survey Geographic
database (NCSS 2013) was used to download the soil
profile for study area and was then converted to a
DSSAT soil profile using the methodology given in
Sharda et al. (2017). The soil parameters required by
the model are given in Table 1 and the profile of Pull-
man silty clay loam soil for the study area are presented
in Figure 2.

Cultivar Calibration — LAI, Biomass, and ET

Yield and phenology in CROPGRO-Soybean are
determined by 18 genetic coefficients, and the purpose
of calibration was to obtain reasonable estimates of
these coefficients by comparing simulated data with
observed data. The simulated occurrence dates of dif-
ferent phenological stages are important parameters

for planning farm management actions, while the
adjusted cultivar (CUL) coefficients (Table 2) are vital
in simulating the growth and development of soybean,
and to compare the observed and simulated yield
(Talacuece et al. 2016). ET is a very significant portion
of the water budget in semiarid environments. It is
an important component in estimation of resulting
irrigation demand for improved understanding of
impacts of irrigation practices on groundwater
resources (Marek et al. 2016). The model input data
were prepared as per DSSAT file formats to be
included in CROPGRO-Soybean model for calibration
(Hoogenboom et al. 2015). The model was calibrated
with soils, weather, and actual crop management data
from both NE and SE fields (Figure 1) using experi-
mental data and observed values of leaf area index
(LAI), biomass, and ET from the 2003 growing season.
The crop management data used were the actual dates
of planting, application of fertilizer (dates, amount,
and depth), irrigation, and harvest at both the field
locations.

FIGURE 1. The site of field experiment for soybean (thick boundary, NE and SE fields) at the United States Department of
Agriculture/Agricultural Research Service (USDA-ARS) Conservation and Production Research Laboratory (CPRL) near Bushland, Texas.

Figure adapted from Marek et al. (2016).
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The methods used to simulate various processes in
the model include the FAO 56 (Allen et al. 1998) and
the Suleiman–Ritchie (Suleiman and Ritchie 2003)
options for estimating reference ET and soil evapora-
tion, respectively, and the Soil Conservation Service
option for estimating infiltration. When calibrating
the model, the beginning soybean genetic coefficients
were selected from a default soybean maturity group
IV CUL (Bean et al. 2001) within the DSSAT data-
base. Generalized likelihood uncertainty estimation
(GLUE) (Beven and Binle 1992) was used to modify
the genetic coefficients to reduce the difference

between simulated and observed parameters being
adjusted. The sensitive model parameters were fur-
ther manually adjusted to compare simulated and
observed values of LAI, biomass, and ET until these
closely matched each other while simultaneously
evaluating the model performance statistics. Accord-
ing to DSSAT calibration guidelines, first the sensi-
tive parameters affecting crop growth were adjusted
with reasonable values until a satisfactory match
between simulated and observed LAI was achieved.
Thereafter, the parameters affecting biomass and ET
were adjusted until the predicted and observed
results matched well (Table 2).

Initially, with default maturity group IV soybean
CUL, the DSSAT underpredicted LAI across all
growth stages for both years at both the sites. To
reduce the error between observed and simulated val-
ues, model parameters related to soil conditions
(SLPF, soil fertility factor) were adjusted for both the
sites and years of the study. After using GLUE to get
an initial set of CUL coefficients, parameters such as
LFMAX (maximum leaf photosynthesis rate at 30°C,
350 vpm CO2, and high light (mg CO2/m2-s)), SLAVR
(specific leaf area of CUL under standard growth con-
ditions (cm2/g)), SIZLF (maximum size of full leaf
(three leaflets; cm2)), and FL-SH (time between first
flower and first pod (R3) (photothermal days)) were
adjusted to obtain satisfactory simulations of LAI,
ET, and biomass.

Statistical parameters, including the coefficient of
determination (R2) (Legates and McCabe 1999), root-
mean-square error (RMSE), and coefficient of agree-
ment (d) (Wilmott 1981) were used to check the good-
ness of fit. The target variables for model validation
were grain yield, end of the growing season biomass,
LAI, and ET for year 2004. The aim of calibration

TABLE 1. Soil properties available from NCSS (2013) database
required for Decision Support System for Agrotechnology Transfer

(DSSAT) (adapted from Wu et al. 2010).

DSSAT soil
variable Definition Units

SITE Site name —
COUNTRY Country name —
LAT Latitude Degrees
LONG Longitude Degrees
SLSOURCE Soils data source —
SLTX Soil texture —
SLDESCRIP Soil description —
SCSFAM Soil family —
SLDP Soil depth cm
SLDR Soil drainage rate Fraction

per day
SLRO Runoff curve number —
SLPF Soil fertility factor 0–1
SLB Depth until base of layer cm
SLCL Clay %
SLSI Silt %
SLOC Soil organic carbon concentration %
SLHW pH in water —
SCEC Soil cation exchange capacity cmol(+) per kg

FIGURE 2. DSSAT soil profile for Pullman silty clay loam at site of field experiment for soybean at the USDA-ARS
CPRL near Bushland, Texas.
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procedure was to achieve a resultant CUL so that the
coefficient of determination (R2) was high (>0.70),
RMSE was low, and the coefficient of agreement (d)
was high (>0.80). The calibrated values for soybean
CUL Pioneer 94B73RR were copied into DSSAT CUL
file to further simulate soybean and evaluate the
results.

Irrigation Management Strategies

After the model was satisfactorily evaluated using
field experiment data, it was used to simulate soy-
bean yields and study the impact of different irriga-
tion management strategies using long-term historic
climatic data (1951–2012). The seasonal analysis pro-
gram (Tsuji et al. 1998) was used to run the simula-
tion for comparing variability associated with crop
performance based on management options over a
number of years.

DSSAT uses water thresholds called irrigation
threshold (ITHR) to define different levels of plant

extractable water for crop growth. This available
water is the difference between field capacity and
permanent wilting point. Plant extractable soil water
for a specific irrigation depth defined by the user is
checked by the model at a daily time step based on
comprehensive calculations of the soil water balance.
Irrigation periods in DSSAT can be activated or deac-
tivated using ITHR values while setting up the simu-
lation control module.

Seven irrigation treatments were set up for seasonal
analysis in the DSSAT model. To study the effect of
irrigation amounts and timing on yield and water pro-
ductivity, ITHR was set to rainfed, 20%, 35%, 50%,
65%, and 80% levels. For all management strategies, a
fixed amount of 25 mm was applied whenever irriga-
tion was necessary based on the ITHR settings. The
application of a fixed amount matched the widely used
center pivot or linear irrigation systems in the THP.
Irrigation efficiency was set at 80%, assuming an effi-
cient irrigation system. To investigate the effect of dif-
ferent irrigation treatments on crop yield, biomass,
and ET, each of the irrigation scenarios was used to

TABLE 2. CROPGRO-Soybean genetic coefficients calibrated for cultivar (CUL) Pioneer 94B73RR.

CUL
coefficient Description Initial value Calibrated value

CSDL Critical Short-Day Length below which reproductive development
progresses with no day length effect (for short-day plants) (hour)

13.09 13.06

PPSEN Slope of the relative response of development to photoperiod
with time (positive for short-day plants) (1/hour)

0.294 0.291

EM-FL Time between plant emergence and flower
appearance (R1) (photothermal days)

19.4 17.93

FL-SH Time between first flower and first
pod (R3) (photothermal days)

7.0 7.3

FL-SD Time between first flower and first
seed (R5) (photothermal days)

15.0 12.50

SD-PM Time between first seed (R5) and physiological
maturity (R7) (photothermal days)

34.00 35.75

FL-LF Time between first flower (R1) and end of
leaf expansion (photothermal days)

26.00 30.00

LFMAX Maximum leaf photosynthesis rate at 30°C, 350 vpm CO2,
and high light (mg CO2/m

2-s)
1.030 1.197

SLAVR Specific leaf area of CUL under
standard growth conditions (cm2/g)

375.0 250.0

SIZLF Maximum size of full leaf (three leaflets) (cm2) 180.0 152.6
XFRT Maximum fraction of daily growth that

is partitioned to seed + shell
1.00 1.00

WTPSD Maximum weight per seed (g) 0.19 0.17
SFDUR Seed filling duration for pod cohort at standard

growth conditions (photothermal days)
23.0 17.26

SDPDV Average seed per pod under standard
growing conditions (#/pod)

2.20 1.799

PODUR Time required for CUL to reach final pod load
under optimal conditions (photothermal days)

10.0 10.0

THRSH Threshing percentage. The maximum ratio of
(seed/(seed + shell)) at maturity. Causes seeds to stop growing as
their dry weight increases until shells are filled in a cohort.

77.0 77.0

SDPRO Fraction protein in seeds (g(protein)/g(seed)) 0.405 0.405
SDLIP Fraction oil in seeds (g(oil)/g(seed)) 0.205 0.205
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calculate CWP (Zwart and Bastiaansen 2004) using
Equations (1 and 2)

CWPy ¼ Y

ET
ð1Þ

CWPb ¼ B

ET
; ð2Þ

where Y is crop yield (kg/ha), ET is evapotranspira-
tion (mm), and B is biomass (kg/ha). Both yield and
biomass are end of the season values on dry matter
basis. Another parameter evaluated was IWUE (kg/
m3) which was calculated (Howell 2001) using the fol-
lowing Equation (3):

IWUE ¼ Yi � Y0

W
; ð3Þ

where Yi represents the irrigated yield (kg/ha), Y0 is
the nonirrigated yield (kg/ha), and W (mm) is the
amount of water used for irrigation during the season
in the irrigated treatment.

RESULTS AND DISCUSSION

CUL Calibration — LAI, Biomass, and ET

The final values of calibrated CUL coefficients are
given in Table 2. The close agreement between the
observed and simulated values for days of emergence,
anthesis, appearance of first pod, and maturity dates

(Table 3) indicated that phenological CUL coefficients
were calibrated well. The deviation between observed
and simulated phenological phases varied between
�2.0% and 14.0% (Table 3). In general, it was
observed that the soybean CUL grown was satisfacto-
rily represented by the genetic coefficients presented
in Table 2.

The CROPGRO-Soybean model was evaluated by
comparing observed and simulated data of temporal
changes in LAI, biomass, and ET. The temporal
changes in LAI for year 2003 in both the experimen-
tal sites are presented in Figure 3a. It was found that
the simulated LAI values closely agreed with the
observed data during most of the vegetative and
reproductive soybean growth cycle. Upon careful
examination of Figure 3a, it can be seen that during
the early exponential rise phase of LAI development,
the model overpredicted LAI, and under predicted
the maximum LAI. This may be partly due to earlier
simulation of maximum LAI than the observed date.
The plausible explanation to this lies in the phe-
nomenon of progressive senescence of green leaves in
a soybean plant which can cause reduction in LAI. It
was observed that the field data on rate of leaf area
expansion was high in the mid-vegetative stage, and
the simulated maximum LAI was lower than the
observed (Figure 3b). These results are in close agree-
ment with several studies that have used CROPGRO-
Soybean to simulate soybean growth in other parts of
the country (Boote et al. 1997; Alagarswamy et al.
2000; Nielsen et al. 2002; Wang et al. 2003).

Similar results were obtained for biomass simula-
tions as well (Figures 4a,4b) with biomass predictions
being very close to the observed values during the
reproductive growth stage of soybean plants. It is not
surprising as biomass is calculated using the simu-
lated LAI. CROPGRO-Soybean simulated time series

TABLE 3. A comparison of observed and simulated values and percentage difference in the phenological development stages of soybean at
two experimental sites (NE and SE) for calibration and validation.

Phenological stage

NE (calibration) NE (validation)

Measured Simulated %Deviation Measured Simulated %Deviation

Emergence day (dap) 9 8 11 7 6 14
Anthesis day (dap) 50 50 0 48 49 �2
First pod (dap) 65 66 �1 70 65 7
Physiological maturity day (dap) 122 121 1 118 119 �1

SE (calibration) SE (validation)

Measured Simulated %Deviation Measured Simulated %Deviation

Emergence day (dap) 9 8 11 7 6 14
Anthesis day (dap) 50 50 0 48 49 �2
First pod (dap) 65 66 �1 70 65 7
Physiological maturity day (dap) 122 120 2 118 120 �2
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of biomass accumulation fairly well for both the experi-
ment sites during calibration and validation periods.

It has been reported (Kisekka et al. 2016) that
DSSAT is unable to relate soil water stress factors to
phenological development in water stress environ-
ment. Since water stress factors are related to bio-
mass accumulation, this could have resulted in
overestimation of biomass during certain stages of
growth. Model evaluation response for soybean at a
temporal scale for both LAI and biomass during cali-
bration and validation period showed that the model
performed well statistically during growing seasons
for the CUL used at both the experimental sites at
CPRL (Table 4). The goodness-of-fit statistics calcu-
lated for model validation (2004) showed that the
model was able to simulate the parameters ade-
quately with high index of agreement (>0.84) and R2

values (0.73–0.90) (Table 4).
The ET of soybean was simulated with a RMSE of

0.8 and index of agreement of 0.94 for calibration per-
iod (Table 4). Similar results were also observed for
the validation period (Table 4). Upon careful study of
Figure 5b, it can be seen that there was a period of

overestimation of ET later in the growing season.
Marek et al. (2016) found comparable results for ET
estimation in the THP along with studies conducted
in other parts of the world (Nielsen et al. 2002;
Dogan et al. 2007a, b) reporting similar findings.
Despite the overestimation of ET during later part of
the soybean growing season, based on the statistical
parameters, it can be said that the ET of the experi-
mental CUL was satisfactorily simulated.

Overall, the statistical evaluation showed that the
model simulated the LAI, biomass, and ET of soybean
very well and can be used to assess the impact of irri-
gation treatments on crop productivity of soybean to
determine best limited irrigation scenarios for THP
using long-term historical weather data (1951–2012).

Irrigation Management Strategies

Average of all the ITHRs simulated over the years
exhibited that higher irrigation amounts increased
soybean yield in the THP (Figure 6) with the average
yields varying between 2,200 and 5,400 kg/ha. These
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FIGURE 3. Comparison of simulated and observed leaf area index (LAI) of soybean during model calibration at the NE and SE fields at
CPRL, Bushland, Texas. (a) LAI over the growing season and (b) observed vs. simulated LAI.
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results are in agreement with another soybean study
conducted in the High Plains Region that found that
irrigated soybean increased by 38 kg/ha as compared
to 24 kg/ha for dryland soybean over 25 years (Ciam-
pitti et al. 2018). However, it was also concluded in
the same study that the maximum soybean yield
occurred using a 50% ITHR criterion, which used less
water than other higher application treatments. Nev-
ertheless, the challenge is to find an optimum ITHR
scenario that can produce significantly higher yield

as compared to rainfed conditions, while sustaining
the available groundwater resources.

It was observed that there was a strong relation
between yield and total amount of water (rain-
fall + irrigation) received for all the irrigation treat-
ments with some inherent variability, with the
rainfed treatment being the most variable (Figure 7).
The results indicate that increase in supplemental
irrigation increased the yield and these results
agreed with previous soybean irrigation studies
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TABLE 4. Goodness-of-fit statistics for observed and simulated growth parameters and evapotranspiration (ET) during calibration and vali-
dation for soybean at CPRL, Bushland, Texas.

Parameter

Calibration Validation

R2 RMSE d R2 RMSE d

LAI 0.77 0.85 0.86 0.90 0.50 0.95
Biomass 0.97 1,135.5 0.98 0.81 2,439.7 0.84
ET 0.81 0.68 0.94 0.80 0.73 0.94
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conducted around the U.S. (Sweeney et al. 2003; Gar-
cia y Garcia et al. 2010).

Mean soybean yield averaged over the 62 growing
seasons for different ITHRs (Table 5) indicates that
there was a significant difference (p < 0.05) between
yields in ITHRs of 20%, 35%, 50%, 65%, and 80%,
and the rainfed treatment. As expected, the yield
increased as more water was available during the
growing season. These results differ from some stud-
ies conducted in other parts of the country (Guzman
et al. 2018) that found little or no change in yield
(33.6 kg/ha) with increased application of irrigation
but are similar to the findings of Garcia y Garcia
et al. (2010) who found that the yield increased at a
rate of 7.2 kg/mm of water applied. It is important to
note that over the length of the study period and the
irrigation treatments, total rainfall, total number of
irrigation applications, and amount of irrigations var-
ied due to difference of the vegetative and reproduc-
tive growth stages of the crop. On an average, the
20% ITHR received six irrigation applications for a
total of 150 mm, ITHR 35% received nine irrigation
applications while ITHR 50% and 65% received 11
and 12 irrigations, respectively, while ITHR 80% irri-
gation treatment received 14 irrigation applications
for a total of 350 mm. It has been reported (Garside
et al. 1992) that for every mm of accumulation of pan
evaporation between irrigation applications, 6–8 kg/ha
of soybean seed yield is lost. Garside et al. (1992) also
reported that for soybean, more frequent irrigation
enhances the growth rates of all plant components in
a semiarid environment of Australia.

Similar results were obtained for biomass, whose
values tended to increase with irrigation, with mean
simulated biomass of 4,457 kg/ha for rainfed treat-
ment and 9,864 kg/ha for the irrigation treatment
where ITHR was set to 80% (Figure 7). These results
were in agreement with Mercau et al. (2007); Dogan
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et al. (2007a, b); Rogers (2015); and Ciampitti et al.
(2018) and showed that soybean biomass responds
well to irrigation.

Though above results establish that soybean
responds well to irrigation applications, numerous
research studies across the High Plains have con-
firmed that there is a beneficial timing and allowable
soil water depletion level for irrigation applications to
conserve water without compromising on yield.
Extension agents at Kansas State University (Rogers
2015), after several multiyear experiments on irri-
gated soybeans, have concluded that using a criteria
of 50%–60% depletion allows for maximum water use
efficiency. Based on simulations using CROPGRO-
Soybean, it was found that ITHR of 65% applied only
one more irrigation as compared to ITHR 50% and
had an average yield benefit of 173 kg/ha. Over the
course of the simulation period, average 55 mm in
irrigation amounts resulted in only 315 kg/ha simu-
lated yield reduction. Therefore, to achieve a 7%
increase in soybean yield, about 20% of additional
irrigation water was needed. These trends are similar
to those found by Bronson et al. (2001) for cotton in
the THP.

The highest CWPy and CPWb were obtained for
65% ITHR treatment and there were differences in
biomass and yield water productivities among differ-
ent levels of irrigation (Table 6). The results of ITHR
65% and 50% for both yield and biomass productivity

were not substantially different. These results
showed that either 65% ITHR or 50% ITHR irrigation
treatment were more productive than higher irriga-
tion level treatments (ITHR 80%). These trends in
the water productivity were similar to those reported
in Adeboye et al. (2015) and Irmak et al. (2014) who
found that water productivity may be increased by
skipping irrigation during certain growth stages of
soybeans.

IWUE ranged between 8 and 10.5 kg/m3 (Figure 8)
with IWUE for 50% and 65% ITHR being 9.6 and
9 kg/m3, respectively. The simulated IWUE decreased
with increased irrigation amounts, a trend that has
been observed in other field and modeling studies
(Sincik et al. 2008; Modala et al. 2015; Lopez et al.
2017). The ITHR 80% irrigation treatment had lowest
irrigation water use efficiency with the possible
explanation that the soil water levels were high,
which did not allow to capture and store rainfall dur-
ing the growing season.

These results enforce the argument that irrigation
applications scheduled based on soil water depletion
may be the best management practice for improving

0

50

100

150

200

250

300

350

400

0

2000

4000

6000

8000

10000

12000

RF 20 35 50 65 80

m
m

kg
/h

a

Irrigation Threshold

Biomass
Yield
Irrigation

0

4

8

12

16

kg
/m

3

Irrigation Threshold

20 35 50 65 80

(a)

(b)

FIGURE 8. (a) Aboveground biomass (kg/ha), yield (kg/ha), and
seasonal irrigation (mm) amount of soybean under various ITHRs
and (b) irrigation water use efficiency at different ITHR levels for
soybean simulations averaged over 1951–2012 along with standard
deviation error bars at CPRL, Bushland, Texas.

TABLE 5. Mean soybean yields for different ITHR treatments
averaged over 62 years (1951–2012) of historic weather data at

CPRL, Bushland, Texas.

ITHR treatment Mean yield (kg/ha) SD (kg/ha)

RF 2,261 785.36
20% 3,797 463.85
35% 4,496 595.96
50% 4,773 636.43
65% 4,946 668.93
80% 5,057 629.44

TABLE 6. Mean crop water productivity (CWP) for soybean yields
(y) and biomass (b) for different ITHR treatments averaged over

62 years (1951–2012) of historic weather data at CPRL,
Bushland, Texas.

ITHR treatment CWPy (kg/m3) CPWb (kg/m3)

RF 4.62 9.10
20% 6.66 11.89
35% 7.41 13.51
50% 7.64 14.38
65% 7.75 14.88
80% 7.59 14.80
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the utilization of groundwater resources in the THP.
Irrigation scheduling in this form can be accom-
plished using either soil water measurement devices
or ET-based irrigation scheduling. It is important to
note that the utilization of deficit irrigation strategies
to maximize CWP could, however, be impacted by
several crop management factors like weather
(amount of precipitation received), CUL characteris-
tics, planting date, soil type, and antecedent soil
moisture condition.

SUMMARY AND CONCLUSIONS

As producer interest in soybean production broad-
ens in the THP, and supplies of irrigation water
dwindle due to hydrological or other constraints,
producers and water managers in the region face
production and economic risks. This uncertainty and
risk can be mitigated with the use of improved
management tools. This study used DSSAT-CROP-
GRO-Soybean v 4.6 crop simulation model to study
irrigation strategies for effectively managing the
applications in a way to conserve water while not
compromising on the seed yield of soybeans and aid-
ing in the sustainability of diminishing groundwater
resources in the semiarid THP. The model was cali-
brated and validated using experimental data from
the USDA-ARS CPRL near Bushland, Texas and
then applied to simulate biomass production and
yield, and to calculate water productivity and IWUE
to determine irrigation management strategies
based on long-term historic weather data (1951–
2012).

The study demonstrated the implementation of
conservative irrigation management by selecting an
ITHR that can provide reasonable yields as com-
pared to higher ITHRs. It was found that a lower
total amount of irrigation can be applied without
compromising soybean yields. The ITHRs between
50% and 65% present a reasonable alternative as
compared to initiating irrigation at a higher soil
water content (i.e., lower depletion). This strategy
could potentially lower the total volume of ground-
water withdrawn and provide a decision-making
tool to weigh alternatives for irrigation management
and groundwater withdrawal and could be useful
for other semiarid regions where water for irriga-
tion is limited. Water is, and will remain a major
factor limiting soybean production. Under limited
water resources, efficient use of water could be
achieved through the use of new irrigation strate-
gies (Rosadi et al. 2005) such as those investigated
in this study.

As it is in most modeling studies, this investigation
is based on assumptions of optimum environmental
conditions, i.e., no effects of pest, disease, and weeds
on the crop simulated, which may set apart the simu-
lation results obtained from true field situations.
However, this is a compromise that the scientific com-
munity is willing to make based on the benefits of
studies like this and the foresight these tools provide
to face the challenges that the crop production com-
munity faces today due to erratic climate patterns
and dwindling natural resources.
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