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1. Introduction

Epilepsy surgery is an option for patients with medically
refractory epilepsy. To achieve a better outcome post surgery, it is
very important to take various presurgical evaluations into
account for determining an appropriate surgical plan. Over the
past two decades, more comprehensive presurgical assessments
and advanced techniques have become available. High-resolution
magnetic resonance imaging (MRI) has been known as the best
preoperative diagnosis for patients with lesional refractory

neocortical epilepsy (NE).1–3 Digital video electroencephalography
(VEEG) provides us with a definitive diagnosis of seizure-like
events, while intracranial VEEG (iVEEG) is commonly used to
define the ictal onset zone (IOZ). However, surgical resection of the
IOZ alone does not always yield a favorable operative outcome
because iVEEG electrodes only record signals in their direct vicinity
and are blind for other areas, making it difficult to judge whether
the IOZ really represents the ictal generator or is the result of
propagation from elsewhere.4 However, in a number of reports,5 it
was pointed out that it is also difficult to judge whether spike foci
represent the epileptogenic zone. Furthermore, Holmes et al.6

reported that only unifocal interictal epileptiform discharges
(IEDs) restricted to the seizure onset zone could be used as a
marker for epileptogenicity, while others showed that (rapid) spike
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A B S T R A C T

Purpose: To investigate whether interictal magnetoencephalography (MEG) concordant with other

techniques can predict surgical outcome in patients with lesional and nonlesional refractory neocortical

epilepsy (NE).

Methods: 23 Patients with lesional NE and 20 patients with nonlesional NE were studied. MEG was

recorded for all patients with a 275 channel whole-head system. Synthetic aperture magnetometry

(SAM) with excess kurtosis (g2) and conventional Equivalent Current Dipole (ECD) were used for MEG

data analysis. 27 Patients underwent long-term extraoperative intracranial video electroencephalogra-

phy (iVEEG) monitoring. Surgical outcomes were assessed based on more than 1-year of post-surgical

follow-up using Engel classification system.

Results: As we expected, both favorable outcomes (Engel class I or II) and seizure freedom outcomes

(Engel class IA) were higher for the concordance condition (MEG findings are concordant with MRI or

iVEEG findings) versus the discordance condition. Also the seizure free rate was significantly higher

(x2 = 5.24, P < 0.05) for the patients with lesional NE than for the patients with nonlesional NE. In 30% of

the patients with nonlesional NE, the MEG findings proved to be valuable for intracranial electrode

implantation.

Conclusions: This study demonstrates that a favorable post-surgical outcome can be obtained in most

patients with concordant MEG and MRI results even without extraoperative iVEEG monitoring, which

indicates that the concordance among different modalities could indicate a likelihood of better

postsurgical outcomes. However, extraoperative iVEEG monitoring remains prerequisite to the patients

with discordant MEG and MRI findings. For nonlesional cases, our results showed that MEG could provide

critical information in the placement of intracranial electrodes.

� 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

* Corresponding author. Tel.: +86 025 86518887.

E-mail address: neurosurg001@njmu.edu.cn (Z. Fu).

Contents lists available at ScienceDirect

Seizure

jou r nal h o mep age: w ww.els evier . co m/lo c ate /ys eiz

1059-1311/$ – see front matter � 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.seizure.2011.06.021

http://dx.doi.org/10.1016/j.seizure.2011.06.021
mailto:neurosurg001@njmu.edu.cn
http://www.sciencedirect.com/science/journal/10591311
http://dx.doi.org/10.1016/j.seizure.2011.06.021
proyster2
Typewritten Text
Open Access per https://www.ncbi.nlm.nih.gov/pubmed/21782477

proyster2
Typewritten Text



onset discharges may be useful for defining the epileptogenic zone
but not the subsequent propagation of the discharges, for both EEG7

and MEG.8 Thus, precise identification of epileptogenic zone remains
one of the greatest challenges for successful epilepsy surgery.

Magnetoencephalography (MEG) was first introduced in
1968,9 and it detects magnetic fields generated by cortical
neuronal activity. As a new and noninvasive technique, it has
shined a light on localizing epileptogenic zones. In comparison to
the conventional electroencephalography (EEG), MEG has poten-
tial advantages in precisely localizing epileptogenic zones
because magnetic signals can pass through the human skull
and other tissues without significant distortion while electrical
signals can be significantly distorted by brain tissues. In addition,
MEG spikes usually have a shorter duration and a steeper
ascending slope than EEG spikes. So the signal-to-noise ratio
(SNR) of more superficial sources is larger in MEG than in EEG,
which indicates MEG is more suitable for accurate localization of
neocortical epileptiform sources.10,11 Consequently, interictal
MEG is increasingly used in epilepsy presurgical evaluation, and
MEG localization of interictal spike zone has shown excellent
agreement with invasive iVEEG.12–14 MEG is not suitable for
chronic recording. Therefore, MEG signals typically provide
interictal but rarely ictal data, which is usually distorted by head
movement.15 The advancements of MEG techniques have allowed
it to become a clinically valuable diagnostic tool14–25 in
presurgical evaluation for both the localization of the epilepto-
genic zone and the prognosis of surgical outcome. Although MEG
cannot totally substitute for ECoG yet, the noninvasively detected
interictal MEG regions, which are highly associated with interictal
intracranial subdural electrocorticography (ECoG), have been
used to assist in the placements of intracranial electrodes and
provide complementary information for presurgical evaluation.26

However, interictal MEG spikes which define the so-called
irritative zone for prognosis of surgical outcome is still under
discussion. It has been found that successful surgical outcome
usually is associated with the high agreements among MRI,
interictal EEG and together with iVEEG which converge to a
singular zone of ictal onset.26,27 Thus, the message that concor-
dance of (either EEG or MEG) spike foci and MRI or iVEEG better
predicts outcome is not new. The question remains, however, as to
whether MEG has any additional value compared to EEG for
prediction. Or in other words, is there a better concordance for
MEG than for EEG in relation to MRI or iVEEG for the patients
studied? Our hypothesis is that the high concordance between
interictal MEG and MRI findings for patients with lesional NE and
the high concordance between interictal MEG and iVEEG for
patients with nonlesional NE can be a better predictor of post
surgical outcomes than EEG in some cases.

Although MRI plays an important role in presurgical evaluation
for lesional NE patients, it does not aid in the presurgical evaluation
for patients who had a normal MRI or showed nonspecific findings
in their MRI.28 The nonlesional NE patients are the true challenges
in the presurgical evaluation for epilepsy surgery. As a gold
standard, long-term extraoperative iVEEG monitoring was needed
for almost all patients with nonlesional NE. However, the surgical
outcomes in nonlesional NE patients were not as ideal as in
patients with lesional NE. Moreover, the contribution of MEG
during presurgical evaluation in comparison with other techniques
was assessed by several studies.29,30,31,46 Stefan et al. presented the
largest series consisting of 455 epilepsy patients undergoing MEG
investigations. In 131 of the 455 patients (28.8%) who underwent
surgical treatment, MEG succeeded in identifying the epileptogen-
ic zone in 89% of patients. The authors quantified the contribution
of MEG to the general result of presurgical evaluation in 104
patients. MEG supplied additional information in 5% of patients
and crucial information for the final decision in 10% of patients.

Synthetic aperture magnetometry (SAM) is an adaptive
beamformer technique using a spatial filtering algorithm on
MEG signals to estimate the magnetic activities at specified region
of interest (ROI). Excess kurtosis (g2) is a statistical measurement
of the steepness of spikes at each voxel. A method called SAM (g2),
which is a combination of SAM and g2 and an automated interictal
spike localization approach, provides source locations of intracra-
nial epileptic discharges. Previous studies have shown that SAM
(g2) can localize MEG interictal spikes31–35 and has several
advantages compared with conventional Equivalent Current
Dipole (ECD) method.36 First, SAM (g2) analysis identifies and
localizes spikes in one step. Second, it can automatically analyze
MEG signals, including spikes. And finally, it is considerably
computationally faster than the conventional ECD analysis which
requires manual spike marking and dipole fit. However, there is
one important disadvantage of SAM (g2) compared to ECD that is
highly relevant when trying to localize the interictal onset zone.
SAM (g2) yields a stationary distribution of the source strength and
makes it difficult to distinguish the interictal onset (irritative) zone
and the subsequent propagation areas. Thus, in the present study,
we reported not only on the interictal MEG with regard to the
spatially related SAM (g2), but we also list the distinct clusters of
spikes.

In this study, we implemented SAM (g2) and conventional
Equivalent Current Dipole (ECD) methods on interictal MEG data.
We also retrospectively analyzed clinical profiles, iVEEG findings
from extraoperative intracranial invasive monitoring, surgical
procedures, and pathology as to their relation to post-surgical
seizure outcomes in a cohort of patients with either lesional or
nonlesional NE, who underwent epilepsy surgery for refractory NE.
We investigated the spatial correlation between MEG and MRI
findings for patients with lesional NE, and the spatial correlation
between MEG and resection volume for patients with nonlesional
NE. By studying these spatial correlations between interictal MEG
and other modalities, we hope to associate concordant MEG
findings with better postsurgical outcomes.

2. Methods

2.1. Patients

During the period of January, 2006 and June, 2009, 147 patients
with refractory epilepsy were admitted to the epilepsy center of
the Brain Hospital of Nanjing Medical University (Nanjing, China)
and underwent presurgical evaluation. 79 Patients (53.7%)
ultimately had cortical resection to treat their epilepsy. Exclusion
criteria included (1) patients with generalized seizure; (2) patients
who did not have surgery; (3) patients with mesial temporal lobe
epilepsy (MTLE); (4) patients who could not be classified as having
either MTLE or temporal neocortical epilepsy (TNE); (5) patients
with no MEG examination; (6) patients with follow-up time less
than 12 months. According to the above exclusion criteria, 36
patients were excluded, including 21 patients with MTLE, 6
patients who could not be classified as having either MTLE or TNE,
and 9 patients without interictal MEG examination. The remaining
43 patients fulfilled inclusion criteria and refractory NE diagnostic
criteria. Inclusion criteria included (1) partial seizure or second
generalized seizure; (2) epileptogenic zone which was located in
the neocortical region; (3) non MTLE or non TLE with dual
pathology; (4) patients who underwent surgery for resection of
epileptogenic zone; (5) follow-up time >12 months. The mean age
of the patient group was 19.9 � 9.4 years old. There were 26 males
and 17 females in the group. The mean duration of epilepsy prior to
surgery was 8.9 � 5.8 years. 24 Patients had more than one type of
seizure. All patients were treated in the epilepsy center of the Brain
Hospital of Nanjing Medical University. The study was approved by
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the Medical Ethics Committee of the hospital. Informed consent for
the study was obtained from all participants.

2.2. MRI scan

All patients had MRI scans with a GE Sigma scanner (GE
Healthcare, Milwaukee, WI, USA). The protocol included the
following sequences: axial and sagittal T1 weighted, axial and
coronal T2 weighted, axial and coronal fluid-attenuated inversion
recovery (FLAIR) images, and three-dimensional (3D) Spoiled
Gradient Recalled (SPGR). Three fiducial points were placed in
identical locations as the ones used in the MEG recordings so that
3D MRI and MEG data could be co-registered precisely to yield a
MSI using these three landmarks. Two neuroradiologists, who
were blinded to the clinical information analyzed all the MRI
images preoperatively. We defined nonlesional findings in MRI as
normal findings or nonfocal abnormalities, such as diffuse brain
atrophy, nonspecific white matter signal changes and periven-
tricular leukomalacia et al. MRI criteria used in this study were
adapted from previous studies.37,38 Based on MRI findings, the
patients were divided into group A consisting of 23 patients with
lesional epilepsy and group B consisting of 20 patients with
nonlesional epilepsy.

2.3. MEG recording

MEG data acquisitions were performed using a 275 channel
whole-head system (CTF VSM MedTech Systems Inc., Coquitlam,
BC, Canada) in a magnetically shield room (MSR) (Vacuum-
Schmelze, Hanau, Germany) that was designed to reduce
environmental magnetic noise. Before the MEG scan, there was
no reduction in the antiepileptic medication due to the potential
risk factor. To increase the likelihood of capturing spike events, we
used sleep deprivation. The head position relative to the sensor
arrays for each patient was measured using three coils affixed to
the nasion and preauricular points before MEG data recording. We
recorded 15 epochs (120 s long per epoch) of spontaneous MEG
recording for each patient. If the head movement during the
recording was greater than 5 millimeters (mm), the epoch was
recorded again. Seizures were not recorded during MEG recording.

Synthetic aperture magnetometry (SAM) with excess kurtosis
(g2) and conventional Equivalent Current Dipole (ECD) methods
were used to analyze our MEG data. We defined the MEG spike
distributions by the number and density according to dipole.
Clusters consisted of six or more spikes with 1 cm between
adjacent sources; scatters consisted of fewer than six spikes
regardless of the distance between spikes or with >1 cm between
sources regardless of the number of sources in a group.39,40 SAM
(g2) is a novel epilepsy analysis based on spatial filtering
technique, which automatically estimates spike locations from
raw MEG signals and provides source waveforms for these spike
locations. The SAM (g2) images were computed for the whole head
in 5 mm steps using 20–70 Hz frequency range which provided
optimal image contrast for interictal spike activity. The SAM (g2)
results generated a list of the local maxima, and SAM virtual
sensors were computed for each location in the list to obtain the
source time series. The SAM (g2) image was then co-registered
with the corresponding MRI of each patient using Magnetic Source
Locator (MSL) software.41,42 We define evSAM (g2) as a voxel that
has a local kurtosis value higher than half of the maximum
(highest) kurtosis value in each data set.35 The distance between
the lesion margin and the evSAM (g2) was quantitatively measured
for each patient with lesional NE, and it was used as an indicator for
the spatial relationship between the focal lesion on the MRI and the
evSAM (g2). If the location of evSAM (g2) was on the lesion margin
or within 2 cm, we classified these patients with lesional NE to one

sub-group A1 (MEG findings were concordant with MRI findings).
Otherwise, we classified them to the other sub-group A2 (MEG
findings were discordant with MRI findings). The determination
criteria for dividing group A to two sub-groups was based on the
results from Awad et al.21 and Stefan et al.43

2.4. Video EEG monitoring

All patients had long-term scalp digital video-EEG (VEEG)
monitoring using a 32-channel Bio-Logic digital VEEG system
(Natus medical Inc., San Carlos, CA, USA) with 19 scalp electrodes
according to international 10–20 scalp electrode placement system.
Three or more seizures were captured during VEEG monitoring. Both
interictal and ictal epileptic discharges were analyzed by a
neurologist. 27 Patients (7 patients with lesional MRI findings in
group A; all 20 patients with nonlesional MRI findings in group B)
had extraoperative intracranial VEEG (iVEEG) monitoring from
subdural grid or strip electrodes with a 128 channel Bio-Logic digital
VEEG system (Natus medical Inc., San Carlos, CA, USA). We placed
intracranial electrodes based on evidence from MRI, VEEG, MEG,
seizure semiology, and neurologic examination. On average, 2–12
seizures were captured during iVEEG recording.

2.5. Surgery and outcome

A 2 * 6 surface electrode array for intraoperative electrocortico-
graphy (ECoG) was placed on the group A1 patients. For this group of
patients, the area of resection was primarily determined by the cross
results from MRI-visible lesions, interictal irritative zone based on
evSAM (g2) and intraoperative ECoG. For the groups A2 and B
patients, the extent of resection included the ictal onset zone (IOZ)
on the extraoperative iVEEG and part of ictal symptomatogenic
zones, and active interictal zones adjacent to the ictal onset zone.44

In six cases, the IOZs were related to motor or language functional
regions. We only delineated the part of the IOZs preventing damage
of eloquent cortex in order to minimize neurological deficits post
surgery. Intraoperative navigation system was used if necessary.
Surgical procedures consisted of lobectomy, corticectomy, multiple
subpial transaction (MST) or a combination. All of the patients had
MRI scans within 24 h after their operation. A neuroradiologist and a
radiologist with great experience in MEG data, who were both
blinded to the surgical procedures and outcomes, examined the
relationship between volume of surgical resection and evSAM (g2)
only for the group B patients. We defined ‘‘concordance’’ as the
majority of evSAM (g2) (�2/3) being in the volume of resection and
‘‘discordance’’ as the majority of evSAM (g2) (>1/3) being outside of
the volume of resection. This criteria was based on a previous
study.45 According to this, the nonlesional NE patients were divided
into 2 sub groups made up of the group B1 (concordance) and the
group B2 (discordance).

All patients were regularly followed up with for more than a
year (mean: 26.9 � 11.7 months; range: 12–52 months). Surgical
outcome was classified using a modified Engel classification46: (1)
seizure freedom for more than a year post-surgery (Engel class IA); (2)
favorable operative outcome: seizure free or significantly improved
seizures rare (Engel class I or II: more than 90% reduction in seizure
frequency) and (3) unfavorable operative outcome: worthwhile or no
worthwhile improvements (Engel class III or IV: less than 90%
reduction in seizure frequency).

2.6. Statistical analysis

The x2 test was used to evaluate whether there were significant
differences between group A and group B. To demonstrate the
relationship between MEG localization and surgical outcome, the
patients were divided into two sub groups within the group. For
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Table 1
Clinical profiles, MRI, MEG, EEG, surgical procedures, pathology, and outcomes of lesional epilepsy.

No. Age

(year)/gender

Seizure

duration

(year)

Seizure

type

MRI (lesion

location)

Interictal MEG EEG Surgical procedures Pathology Outcomes

follow up

(months)/

Engel

SAM (g2) ECD Scalp Intro/extraoperation

1 31/Male 2.5 CP LT (lat, mid-ant) LT (lesion-ant) Clusters LFT LT (lesion-ant, sup) Lesionectomy + corticectomy

(lesion-ant) + MST

(perilesion)

Angiomalformation 52/IA

2 20/Female 11 Aura, CP, 2G RPO RPO Scatters Nonlaterlized RP (perilesion) Lesionectomy + corticectomy

(perilesion)

Ganglioneuroma 43/IA

3 3/Female 2 CP RF (lat, mid-sup) RF (lesion-ant) Clusters Bilaterial F RF (lesion-ant) Lesionectomy + corticectomy

(lesion-ant)

Ganglioneuroma 40/IA

4 22/Female 6 CP LT (lat, mid-inf) LT (lesion-pos, sup) Clusters Nonlaterlized LT (perilesion) Lesionectomy + corticectomy

(lesion-pos, sup)

Gliosis 47/IA

5 39/Male 4.5 SP, 2G Rprecentral (lat, inf) RFC Scatters RFCT RF (lesion-ant) Lesionectomy + corticectomy

(lesion-ant)

Gliosis 26/IIB

6 22/Female 4 Aura, CP, 2G LT (lat, ant) LT (lesion-pos) Clusters NA LT (lesion-pos) Lesionectomy + corticectomy

(lesion-A)

Pilocytic

Astrocytoma

46/IA

7 19/Female 3 Aura, CP RTO RTO (lesion-pos, sup) Scatters Bilaterial T,P,O RTO (perilesion) Lesionectomy + corticectomy

(lesion-p,s) + MST

(visional area)

Heterotopia 37/IA

8 17/Male 8 Aura, CP RT (bas-lat, mid) RT (perilesion) Clusters RT RT (perilesion) Lobectomy (anterior T) Ganglioneuroma 30/IC

9 12/Male 3 SP RF (precentral, inf) RF (perilesion) Clusters NA RF (perilesion) Lesionectomy + corticectomy

(perilesion)

Gliosis 35/IA

10 5/Male 3 SP RC (lat, inf) RF (lesion-ant) Clusters Nonlaterlized RF (lesion-ant) Lesionectomy + corticectomy

(lesion-ant) + MST

(hand motor area)

CD 28/IA

11 28/Female 26 SP, 2G RF (operculum) RF (lesion) Clusters Nonlaterlized NA Lesionectomy Heterotopia 24/IA

12 42/Female 20 CP LT (lat, pos-sup) LT (lesion-ant) Clusters NA LT (perilesion) Lesionectomy Cavernous

hemangioma

19/IIIC

13 28/Female 10 Aura, CP LTF (sylvian, sup-inf) LTF (perilesion) Clusters L-hemispheric LTF (perilesion) Lesionectomy + cortical cxcision

(lesion-ant) + MST

(lesion-pos)

Malacoma cyst 19/IA

14 17/Male 8 CP, 2G LTO (lat) LTO (lesion-ant) Scatters LPTO LO (perilesion) Lesionectomy+cortical cxcision CD 16/IA

15 26/Male 12 SP, CP LFC (lat, inf) LF,T (perilesion) Clusters Nonlaterlized LF.T (perilesion) Lesionectomy + corticectomy

(perilesion)

Malacoma cyst 13/IA

16 36/Male 4.5 CP, 2G LT (lat, ant-mid) LT (perilesion) Clusters NA LT (perilesion) Lesionectomy Meningeal

angiomatosis

14/IA

17 22/Female 7 CP RT (lat, ant) Bilateral T Scatters RTF IOZ: RT (perilesion) Lesionectomy + MST (perilesion) Gliosis 52/IIB

18 13/Male 4 CP, 2G RFT (sylvian sup-inf) Bilateral P,RT Clusters Nonlaterlized IOZ: RP (lesion-pos) corticectomy (RP) + MST Malacoma cyst 48/IVB

19 16/Male 5 SP, 2G RF (lat, mid-sup) RF (lesion-pos) Clusters R F IOZ: RF (lesion-pos, inf) Lesionectomy + corticectomy

(lesion-pos) + MST

(hand motor area)

Malacoma cyst 32/IID

20 6/Male 2.5 CP LT (ant) Bilateral P,O Clusters NA IOZ: LT (lesion-P) Lesionectomy + corticectomy

(lesion-pos)

Malacoma cyst 20/IIC

21 16/Male 7 CP LF (precentral, inf) RFT, LF Clusters L-hemispheric IOZ: LF (bas-lat, mid-sup) Lobectomy (ant F) CD 20/IIC

22 7/Female 6 AA, CP, 2G LT (lat, inf) RF, LFT Scatters NA IOZ: LT (lat, mid-sup) Lobectomy (ant T) CD 15/IA

23 15/Male 4 SP, 2G LF (sylvian, sup) LFT, RF Clusters Nonlaterlized IOZ: LF (perilesion) Lesionectomy + corticectomy

(lesion-ant) + MST

(hand motor area)

Gliosis 18/IA

AA: atypical absence; ant: anterior; bas: basal; CD: corticaldysplasia; CP: complex partial seizure; F: frontal; 2G: secondarily generalized seizure; inf: inferior; IOZ, ictal onset zone; L: left; lat: laterial; mid: middle; MST: multiple

subpial transections; NA: not available; O: occipital; P: parietal; pos: posterior; R: right; SP: simple partial seizure; sup: superior; T: temporal.

R
.

 Z
h

a
n

g
 et

 a
l.

 /
 Seizu

re
 2

0
 (2

0
1

1
)

 6
9

2
–

7
0

0
 

6
9

5



categorical variables within the group, Fisher’s exact test was used
for analysis of whether the proportion of those with seizure free/
favorable outcome differed between the concordance and the
discordance groups (i.e. between A1 and A2 or B1 and B2). For all
tests, statistical significance level was set at P < 0.05.

3. Results

We summarized clinical profiles, MRI, MEG (SAM (g2) and ECD),
EEG (scalp, intracranial), surgical procedures, pathology, and
postsurgical outcomes for all 23 patients with lesional NE in
Table 1 and for all 20 patients with nonlesional NE in Table 2. Both
SAM (g2) and ECD results showed high agreements for both
lesional (87%) and nonlesional NE (85%). Although there were some
cases which showed scatters of ECD results, the ECD scatters
findings were still similar to the SAM (g2) results (see Fig. 2).

The routine scalp EEG (interictal and ictal) was valuable for
localizing epileptic discharges in 43.5% of the patients (10/23) with
lesional NE, while MEG findings proved to be crucial for providing
additional information for resection in 39.1% of the patients (9/23)
and for intracranial electrodes implantation in 17.4% of the
patients (4/23) with lesional NE. The routine scalp EEG (interictal
and ictal) was helpful in localization of epileptic discharges in 50%
of the patients (10/20) with nonlesional NE, while MEG supplied
additional critical information for intracranial electrodes implan-
tation in 30% of the patients (6/20) with nonlesional NE (see Table
2: Nos. 5, 8, 11, 17, 18, 20).

The mean follow-up period was 30.2 � 13.1 months (range: 13–
52 months) for lesional NE patients and 23.2 � 8.7 months (range:
12–47 months) for nonlesional NE patients. Favorable operative
outcomes were 91.3% in lesional NE and 75% in nonlesional NE,
whereas seizure freedom rate was 65.2% for lesional NE and 35.0% for
nonlesional NE (see Table 3). There was no statistically significant
difference in favorable operative outcomes between the lesional and
nonlesional NE group (x2 = 2.08, P > 0.05). However, the seizure free
rate showed a statistically significant difference (x2 = 5.24, P < 0.05)
between these two groups of patients. This might indicate that
nonlesional NE is associated with seizure free outcomes much less
often compared with lesional NE.

A 69.6% of the patients (16/23) with lesional NE (see Table 1
Nos. 1–16) had concordance between interictal MEG and MRI
findings, while 65% of the patients (7/23) with nonlesional NE
showed concordance between interictal MEG and iVEEG findings
(see Table 2 Nos. 1–13). Our postsurgical outcomes for the lesional
NE patients were very encouraging. 65.2% of the patients (15/23)
were seizure free and 91.3% of the patients (21/23) (including
seizure free cases) showed favorable outcomes after surgery (see
Table 3). Only one patient (see Table 1 No. 12) did not have a
favorable outcome (Engel class IIIC). This patient only underwent a
lesionectomy operation in order to avoid neurological deficit of
language because the lesion (cavernous hemangioma) was in the
left posterior–superior temporal lobe.

In the lesional NE group with concordant MEG and MRI
findings, 81.3% of the patients (13/16) were seizure free post
surgery (see Fig. 1: a representative patient No. 14 in Table 1), and
93.8% of the patients (15/16) had favorable operative outcomes. In
the lesional NE group without concordant MEG and MRI findings,
only 28.6% of the patients (2/7) were seizure free, and 85.7% of the
patients (6/7) had favorable outcomes. The seizure free rate
showed a statistically significant difference (Fisher’s
P = 0.024 < 0.05) between the subgroups within the lesional NE
group, which indicated better surgical outcomes associated with
the concordance between MEG and MRI findings.

In the nonlesional NE group with concordant MEG and iVEEG
findings, 46.2% of the patients (6/13) were seizure free post surgery
(see Fig. 2: a representative patient No. 5 in Table 2), and 76.9% of

the patients (10/13) had favorable outcomes. In the nonlesional NE
group without concordant MEG and iVEEG findings, 14.3% of the
patients (1/7) were seizure free, and 71.4% of the patients (5/7) had
favorable outcomes. There was no statistically significant differ-
ence in either favorable operative outcomes (Fisher’s
P = 0.62 � 0.05) or the seizure free rate (Fisher’s
P = 0.177 > 0.05) between the subgroups within the nonlesional
NE group.

4. Discussion

This is the first clinical epilepsy research which evaluates
whether interictal MEG concordant with other modalities could be
a reliable predictor for surgical outcomes in both lesional NE and
nonlesional NE. MEG, as one of the most important neurophysio-
logical techniques, has rapidly influenced the management of
epilepsy patients in the past two decades and has been widely used
in presurgical evaluation to delineate epileptogenic zones and
eloquent cortex. In the last few years, several studies suggest that
MEG is more sensitive for some areas of the brain compared with
EEG, such as the superficial frontal lobe.10 Thus, MEG is a valuable
technique to assess presurgical epilepsy for NE patients and
improve postsurgical outcomes. Our findings indicated that
including MEG in the presurgical evaluation increased the
likelihood of successful surgery and reduced seizure reoccur-
rences, which is consistent with other studies.12,47,48

To localize the interictal MEG spikes, there are two popular
methods including conventional ECD and SAM (g2). Previous
studies compared these two methods and found SAM (g2) had
more advantages versus ECD.11,49 The drawbacks of ECD modeling
are that it is highly dependent on good SNR of the data, and that it is
labor intensive and time consuming, as it requires the manual
identification of spikes and considerable skill to minimize human
errors.13,34,50,51 Although SAM (g2) has not yet been extensively
applied to symptomatic epilepsy, the automated SAM (g2) analysis
of spikes appears to offer better detection of irritative zones and
more information of volumetric frequency characteristics than
conventional ECD modeling.52 However, ECD has its strengths
when trying to localize the interictal onset zone since SAM (g2)
yields a stationary distribution of the source strength which could
make it hard to distinguish the interictal onset (irritative) zone and
the subsequent propagation areas. Therefore, we employed both
conventional ECD and this relative new method SAM (g2) to
localize the interictal spikes in our MEG data. Our results showed
strong agreements between SAM (g2) and ECD results. In addition,
67.4% of the patients had concordant SAM (g2) results with other
modalities (MRI or iVEEG). Our findings were consistent with other
studies,34 which suggests that SAM (g2) analysis is valuable to
localize the epileptogenic foci.31,32,35,49,53

At our epilepsy center, we defined nonlesional findings as
normal findings or nonfocal abnormalities, such as diffuse brain
atrophy, nonspecific white matter signal changes and periven-
tricular leukomalacia, because these features are less likely to
provide useful clues regarding the localization of the potential
epileptogenic zone during the presurgical evaluation. We applied
MRI criteria which have also been used in other studies.37,38 The
discordance between MEG and MRI finding may be due to
developmental lesions such as cortical dysplasia or gliosis where
epileptiform discharges extend up to several centimeters away
from the MRI-visible lesion.54 In some cases, the discordance
between MEG findings and the scalp EEG results would eliminate
the patients from surgery. For example, MEG showed evidence for
focal discharges, while the routine scalp EEG had generalized or
bilaterally synchronous discharges. In these patients, the alter-
natives include placement of long-term subdural electrodes with
attendant risks, resection based on structural abnormalities with
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Table 2
Clinical profiles, MEG, EEG (scalp, intracranial), surgical procedures, pathology, and outcomes of nonlesional epilepsy.

No. Age (year)/

gender

Seizure

duration

(year)

Seizure type Interictal MEG EEG (ictal onset zones) Surgical procedures Pathology Outcomes

follow up

(months)/Engel

SAM (g2) ECD Scalp EEG Intracranial EEG

1 21/Female 7 CP RT (lat mid-inf) Clusters RTPO RT (restricted lat mid-inf) Focal corticectomy Gliosis 40/IA

2 7/Male 6.5 AA, CP, 2G LF (lat mid-sup) Scatters Nonlaterlized LF (extensive lat mid-sup) Lobectomy (L F ant) + MST Normal 34/IVB

3 36/Male 24 SP, 2G RF (lat precentral) Clusters RFTC RF (restricted lat, precentral) Focal corticectomy NA 26/IIC

4 20/Male 11 CP RF (precentral sup) Clusters Bilateral FC RF (restricted precentral, sup) Focal corticectomy CD 21/IA

5 16/Male 14 SP LP (lat postcentral) Clusters Nonlaterlized LP (restricted lat, postcentral) Focal corticectomy CD 23/IA

6 21/Male 18 CP LF (lat ant-mid) Scatters Nonlaterlized LF (restricted lat, ant-mid) Focal corticectomy CD 26/IA

7 24/Female 10 CP, 2G RT (lat mid-inf) Scatters R F T RT (extensive lat, ant, mid-inf) Lobectomy (ant T) + MST Gliosis 47/IIIB

8 9/Male 2.5 Aura, SP LF (operculum) Clusters Nonlaterlized LF (extensive operculum) Focal corticectomy + MST Normal 16/IB

9 15/Male 6 CP LF (lat ant-sup) Clusters LF LF (extensive lat, ant-sup) Lobectomy (ant F) Gliosis 16/IA

10 20Male 16 CP LF (lat mid-sup) Scatters Bilateral F LF (restricted lat, mid-sup) Multiple corticectomy (lat mid-sup) CD 25/IIB

11 13/Male 8.5 CP RF (bas-lat ant) Clusters Nonlaterlized RF (extensive lat, ant-sup) Lobectomy (ant F) Gliosis 20/IA

12 25/Female 9 CP LF (lat mid-inf) Clusters Bilateral F,T LF (restricted lat mid-inf) Focal corticectomy (lat mid-inf) CD 16/IIIB

13 36/Male 18 CP, 2G RF (precentralsup-mid) Clusters Bilateral FC RF (extensive precentral sup-mid) lobeectomy (SMA) Gliosis 13/IIA

14 15/Female 10 SP, AA, CP, 2G LFT RF Scatters Nonlaterlized LF, insular lobe (extensive) Multiple corticectomy (LF insular lobe) Normal 25/IVA

15 15/Male 6 SP, 2G LF (bas) Clusters L-hemispheric LF (restricted lat mid-inf) Focal corticectomy (lat mid-inf) Gliosis 20/IIA

16 15/Male 8 CP LT (lat mid-sup) Scatters Nonlaterlized LF (extensive lat ant-inf) Focal corticectomy LF (lat ant-inf) Normal 23/IC

17 17/Male 12 CP, 2G Bilateral F (precentral) Clusters Nonlaterlized RP (extensive poscentral) Multiple corticectomy RP + MST (central) CD 22/IIC

18 12/Female 11 AA, CP, 2G Bilateral F, LT Clusters Nonlaterlized LF (extensive operculum-precentral) Focal corticectomy

(LF operculum) + MST (precentr)

NA 20/IIB

19 24/Female 10 Aura, CP, 2G LT (lat mid-sup) Scatters Bilateral F,T LF (extensive bas-lat, inf) Multiple corticectomy LF (bas-lat, inf) Normal 18/IVA

20 33/Female 16 CP RTPO Clusters Nonlaterlized RT (restricted lat, pos) Focal corticectomy (RT pos) CD 12/IA

AA: atypical absence; ant: anterior; bas: basal; CD: corticaldysplasia; CP: complex partial seizure; F: frontal; 2G: secondarily generalized seizure; inf: inferior; L: left; lat: laterial; mid: middle; MST: multiple subpial transections; NA:

not available; O: occipital; P: parietal; pos: posterior; R: right; SP: simple partial seizure; sup: superior; T: temporal.
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the possibility of subtotal resection of the epileptogenic foci, or
resection with intraoperative ECoG that might be affected by
anesthesia and limited to the relative short operation time frame.

Our study showed that the routine scalp EEG (interictal and
ictal) was helpful for localization of epileptic discharges in 46.5% of
the patients (20/43) with NE, while there were 67.4% of the
patients (29/43) with NE who had concordant MEG findings with
other modalities (MRI or iVEEG). From our results, although the
agreements between MEG findings and other modalities suggested
that the high concordance associated with better surgical out-
comes, it still remains unclear whether interictal MEG also turns
out to be a good predictor of the epileptogenic zone or if there is no
a priori knowledge regarding the IOZ.

Recent studies55,56 have reported that advanced MEG techni-
ques can possibly identify the origin of spike propagation that
appears synchronous on standard clinical EEG. In our future study,
we would systematically analyze the spatiotemporal information
of MEG spikes using the new approach in,55,56 which may provide
more accurate information relating to spike propagation than EEG
and may be clinically useful in the presurgical evaluation.

Our findings strongly suggested the important role of MEG in
presurgical evaluation to the patients with NE. When the interictal
irritative zone based on the MEG was localized around the lesion,
resection of the lesion and irritative zone would bring seizure
freedom to the majority of patients. The use of intraoperative ECoG
was necessary to further investigate the surgical outcome, whereas

Fig. 1. (Table 1: Patient No. 14) A 17-year-old boy presented with 8-years CP and 2G seizures. (A) Interictal spike localization from MEG SAM (g2) and ECD results

demonstrated a frequent high-amplitude spike was found in the left tempo-occipital lobe. The color bar shows the corresponding kurtosis value and color scale. (B) Pre-

surgical MRI revealed a cortical dysplasia in the left tempo-occipital lobe. (C) Post-surgical MRI showed the extent of resection. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Fig. 2. (Table 2: Patient No. 5) A 16 year-old boy presented with 14-years SP. (A) Interictal spike localization from MEG SAM (g2) and ECD demonstrated a frequent high-

amplitude spike was found in the left lateral parietal lobe. The color bar showed the corresponding kurtosis value and color scale. (B) Post-surgical MRI (T2 weighted) showed

the extent of resection. (C) Skull X-ray film was obtained after placement of intracranial electrodes over the left parietal (post-central) lobe and displayed the location of the

ictal onset zone (red) from the results of iEEG recordings. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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the extraoperative iVEEG monitoring seemed to be unnecessary
because it has less impact on the surgical outcomes, especially for
seizure freedom. Several other studies have reported the important
role of MEG in preoperative workup of epilepsy surgery.18,57

Fischer et al.18 applied a novel technique designed to generate an
ellipsoidal volume from the scattering of single MEG source
localizations to represent MEG results in 33 adult patients who
underwent surgery for epilepsy. This volume was compared voxel
wise with the resection volume generated from pre and
postoperative MR images. A high coverage of the MEG results
ellipsoid by the resection volume and a low distance between the
mass centers of both volumes correlated to a favorable outcome.

In our study, of the 16 patients with lesional NE whose MEG
results were concordant with MRI findings (<2 cm), who did not
undergo the placement of intracranial electrodes for iVEEG and
who underwent the surgery with the assistance of ECoG, 81.3% (13/
16) were seizure free post surgery and 93.8% (15/16) had favorable
operative outcomes. The extent of resection included the lesion
and SAM (g2) regions. Although MEG SAM (g2) included both
interictal onset zone and subsequent propagation, our highly
favorable operative outcomes suggested that the subsequent
propagation could possibly be active interictal zones or potential
IOZ post-surgery.

This was very crucial to patients in developing countries such as
China, because the attendant risks of placement of long-term
subdural electrodes and the great expense may delay the surgery
procedure when it is actually needed. On the other hand, the use of
iVEEG was necessary and could be more helpful than ECoG, when
MEG results were discordant with MRI findings.

Although MEG has been reported to be a valuable component of
presurgical evaluation, the on-going debates still exist. Lau et al.58

performed a statistical meta-analysis of the data reported in
English from 1996 to 2006 including a minimum of four patients
with at least 6-month follow-up. They correlated surgical outcome
(seizure freedom) with the concordance between the MEG source
localization and the resection areas and concluded that there was
insufficient evidence in the current literature to support the
relationship between the use of MEG in surgical planning and
seizure-free outcome after epilepsy surgery. Therefore, additional
studies are needed to provide sufficient evidence. However,
Lewine59 reclassified all cases that were listed in Lau’s literature,
and he reached the opposite conclusion. In our study, 20 patients
with nonlesional NE were divided into two sub groups according to
the spatial correlation between SAM (g2) results and volume of
surgical resection. All patients in group B underwent resection
mainly according to extraoperative iEEG findings. There was no
statistically significant difference either in favorable operative

outcomes or in seizure freedom rate between the two sub groups.
Our results support Lau’s opinion that the use of MEG cannot
obviously improve the seizure freedom rate for these NE epilepsy
patients. However, the concordance between MEG and iVEEG
results (group B1) indicated a higher seizure freedom rate
according to our data (46.2% in group B1, 14.3% in group B2),
though the difference was not statistically significant, which might
be due to the limited number of patients. Further investigation is
needed.

In summary, this study suggested that MEG should play a
different role in lesional NE patients and nonlesional NE patients. A
good postsurgical outcome is highly associated with concordant
results from MEG and MRI presurgical findings in lesional NE
patients, and is related with concordant results from MEG and
iVEEG findings in nonlesional NE patients. However, we found that
the value of MEG for the nonlesional NE patients was inferior. MEG
cannot substitute for iVEEG, but may be useful tool to guide the
placement of intracranial electrodes for iVEEG.
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