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ABSTRACT 

Learning causes changes in brain activity and neural connections. Statistical learning is an 

implicit learning process that involves extracting regularities from the environment and finding 

patterns in stimuli based on their transitional probabilities. The following study describes an 

attempt to elucidate temporal changes in hemodynamic activity for three category-specific brain 

areas using functional magnetic resonance imaging (fMRI). Blood oxygen-level dependent 

signal (BOLD) responses were collected while subjects viewed faces, scenes, and objects with 

high and low transitional probabilities in an fMRI scanner. We expected brain activity to show a 

temporal shift in timing of activation when comparing BOLD signal responses before and after 

visual statistical learning. Instead, a general, yet insignificant, trend in the magnitude of 

activation was found. Although these findings suggest category-specific brain areas may undergo 

magnitude changes in activation for item-specific stimuli in response to visual statistical 

learning, further confirmatory analyses and comparisons to behavioral data are needed.  
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INTRODUCTION 

 We are constantly bombarded with an enormous number of stimuli from our 

environment. Despite the ongoing arrival of new sights and sounds, one way we are able to avoid 

becoming overwhelmed is by finding regularities in those stimuli and forming patterns that help 

us to make sense of the world. Some of this pattern association is done through intentional and 

explicit methods requiring mental effort, such as learning where each key is located on the 

keyboard. Other methods operate below our awareness and happen automatically, such as 

statistical learning. Statistical learning is a primarily implicit process that allows us to find 

patterns of regularities in the environment based on their chances of occurring together, or their 

transitional probabilities (Kirkham, Slemmer, & Johnson, 2002). This type of learning was first 

demonstrated in a study in which infants were able to distinguish “words” from “non-words” 

after only two minutes of listening to pseudospeech (Saffran, Aslin, & Newport, 1997). Infants 

showed differences in listening times depending on the transitional probability of the syllables 

that comprised the “words” from the “non-words”. These infants were demonstrating recognition 

of a pattern and providing an example of learning taking place without conscious effort. 

A defining feature of statistical learning is its implicit nature, which makes it an 

intriguing, yet elusive, process to study. In the earlier years of statistical learning research, most 

experiments were behaviorally based and did not include measures of brain activity (Fiser & 

Aslin, 2002). Since statistical learning is an implicit process, it can be difficult to measure its 

presence through explicit memory tests and reaction times (Turk-Browne, Scholl, Chun, & 

Johnson, 2008), although implicit association of the stimuli can sometimes form explicit 

knowledge of the patterns (Batterink, Reber, Neville, & Paller, 2015). More recent research has 

focused on elucidating the neural basis of this learning process through neuroimaging. Several 
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studies have shown differences in brain activation before and after statistical learning in areas 

such as the superior temporal gyrus, the inferior frontal gyrus, and several locations in the medial 

temporal lobe (Karusa et al., 2013; McNealy, Mazziotta, & Dapretto, 2006; Schapiro, Kustner, & 

Turk-Browne, 2012). Additionally, Alba, Katahira, and Okanoya (2008) examined auditory 

event-related potentials (ERP) and found differences in the N100 and N400 peaks based on 

subjects’ level of auditory statistical learning (Abla, Katahira, & Okanoya, 2008). However, to 

our knowledge, there has been no research conducted on the time shifts in blood oxygen-level 

dependent (BOLD) signals during the course of a statistical learning task. Finding differences in 

the timing of these signals could suggest a mechanism for how the brain represents this type of 

learning in different areas of the brain and provide a method for determining whether an 

individual is making pattern associations in the stimuli. 

 One challenge in investigating these time shifts, as with many fMRI studies, is the time 

delay between stimulus onset and the resulting BOLD activation peak (Buxton, Wong, & Frank, 

1998). BOLD signals are a measure of the amount of deoxygenated hemoglobin present in the 

blood and can thus be used as a proxy for the amount of oxygen currently located in different 

areas of the brain. When an area of the brain is activated, this leads to the uptake of oxygen by 

neurons in that area and necessitates the oxygen that was used to be replenished. The amount of 

oxygen replenished by blood flow is more than the original baseline amount, and this overshoot 

is the underlying mechanism behind the observed peak in the BOLD response (Huettel, Song, & 

McCarthy, 2004, pg. 224-225). However, unlike the fast changes of electrical activity recorded 

by electroencephalography (EEG), changes in oxygen levels occur more slowly with peaks 

taking 4-5 seconds to fully form and return to baseline taking up to 12 seconds or more (Buxton, 

Wong, & Frank, 1998).  
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This time delay can make studying temporal differences in activation difficult. If a region 

of interest (ROI) is activated by stimuli that are only seconds apart, many of the BOLD signal 

peaks would overlap with each other and make monitoring timing of activation for a single item 

presentation very difficult. In order to separate the temporal patterns of BOLD activity during 

analysis, category-specific brain areas were used that have been shown in previous research to 

demonstrate a preference for certain categories of visual stimuli. The three areas we examined 

were the fusiform face area (FFA), the parahippocampal place area (PPA), and the lateral 

occipital complex (LOC), which show preferential activity for faces, scenes, and objects, 

respectively (Kanwisher, McDermott, & Chun, 1997; Epstein & Kanwisher, 1998; Grill-Spector, 

Kourtzi, & Kanwisher, 2001, respectively). By observing category-specific activation from 

separate areas in the brain in response to their preferred categories, we were able to parse apart 

individual activations and isolate BOLD signal peaks despite the stimuli being presented closely 

together in time. By creating timelines of these peaks, we were able to observe if there were any 

changes in the timing of activation due to statistical learning.  

The purpose of this study is to investigate these temporal shifts in category-specific brain 

activation when comparing BOLD signal timing before and after visual statistical learning 

(VSL). We hypothesized that there would be temporal differences in BOLD responses for 

category-specific brain areas in response to implicitly learned patterns (Figure 1). The 

experimental design was similar to a VSL study of implicit anticipation when viewing pairs of 

faces and scenes conducted by Turk-Browne and colleagues (2010). We expanded this paradigm 

to include faces, scenes, and objects and view items as triplets instead of pairs. We predicted that 

after VSL has taken place there would be time shifts in the BOLD signal as the implicit 

awareness of the stimuli patterns would allow for anticipatory activation. Thus, we hypothesized 
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that the third item in the triplets would start to be detectable during the presentation of the second 

item, and the second item would be detectable during the presentation of the first item but to a 

lesser extent since only one item preceded it instead of two. 

 

 

Figure 1. Hypothesis for temporal shifts in activation. As the pattern of items in the high 

transitional probability triplets are learned, we predicted that BOLD signals would shift earlier in 

time.  

 

METHODS 

Participants. Twenty subjects with normal or corrected-to-normal vision participated in 

the study for monetary compensation. One subject was removed due to excessive movement and 

two were removed for problems with falling asleep in the scanner. Thus, seventeen subjects (12 

females; mean age = 23.23 sd = 3.19; 14 right-handed, 2 left handed, 1 ambidextrous) were used 

in the analysis. Although the standard for most fMRI studies is to limit participation to only 

right-handed subjects to reduce lateralization variability, we did not believe this was necessary 

since our task did not involve language or words and all brain areas used are present on both the 

left and right hemispheres. Subjects viewed a series of images while in an fMRI scanner, 

responded to each image via a cover task, and completed subsequent surprise memory tests.  

Stimuli and Task Design. Stimuli comprised faces, scenes, and objects that were 

presented one at a time with an inter-stimulus interval of one second. Each trial began with a 

scrambled image that descrambled over the course of one second to reveal the original item 
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(Figure 2). Descrambling of items was incorporated in hopes of increasing anticipation and focus 

for each item presentation. The images were recognizable at approximately 600 ms of 

descrambling, so the expectation was that subjects would be able to recognize what the image 

would be earlier in the descrambling process as they implicitly learned patterns in the stimuli. 

The item remained on screen for two seconds after it was fully descrambled. During the entire 

task, a white dot was shown in the center of the screen to discourage eye movements and aid 

fixation. Between items, only the white dot appeared on screen. Subjects were encouraged to 

focus on the white dot and to not move their eyes anywhere else as much as possible.  

Figure 2. Task presentation of an object-scene-face triplet. Each triplet presentation lasted 12 

seconds. Participants completed a cover task of category determination. Using a three-button 

signaling device, participants were instructed to press a button corresponding to the category of 

the item being presented as quickly as possible without making errors. Participants responded to 

faces with their index finger, scenes with their middle finger, and objects with their ring finger.  
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Unbeknownst to subjects, stimuli were presented as part of triplets with different 

probabilities of occurring together. Triplets were divided into “strong” and “weak” triplets. In 

strong triplets, items had 100% transitional probability (e.g. a barrel, a blonde girl’s face, and a 

living room appeared in the same triplet every time). Weak triplets had unique patterns for every 

presentation (e.g. a clock was presented with a certain male face and a store-front building only 

one time). Each triplet contained one of each image category. The triplets were balanced so that 

all six possible permutations of category orders were used equally for both strong and weak 

triplets (Figure 3).   

The main task comprised six runs that were divided into two sets of three runs. Each set 

contained its own set of stimulus items. The first set consisted of Runs 1, 2 and 3, and the second 

set consisted of Runs 4, 5, and 6. There were 36 unique stimuli in total for each set (12 faces, 12 

scenes, and 12 objects). Every item was viewed an equal number of times to prevent familiarity 

bias from seeing one item more often than others. Each run consisted of three presentations of 

every strong and weak triplet combo (for a total of 108 items per run), and thus subjects were 

exposed to each of the strong triplets nine times per set. The neural signatures of statistical 

learning can be observed within just a few exposures to the temporal probabilities of the stimuli 

(Turk-Browne, Scholl, Chun, & Johnson, 2008), so we expected there to be clear, observable 

differences in brain activation after nine exposures.  

Counterbalancing. The experiment design was coded and counterbalanced using the 

programming language MATLAB and the Psychtoolbox extension. The order of the stimulus 

sets was counterbalanced such that odd numbered subjects received Set A stimuli first and even 

numbered subjects received Set B first. Every participant observed the same sets of stimuli, but 

individual items within the sets were randomly assigned to triplets. For example, every 
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participant saw a picture of a barrel nine times, but that barrel could have been in a strong triplet 

for one subject and in a weak triplet for another.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Each run contained the same number of strong and weak triplets and the same number 

of each order (i.e. FSO). Triplets were randomized as much as was allowed through our 

counterbalancing conditions. This process was used to create one sequence of the 12 possible 

triplets (six strong and six weak). Three of these sequences were combined to form one run. The 

runs were then checked against the counterbalancing conditions again. 

 

Item presentation was counterbalanced in six separate ways to reduce as many category 

and presentation order confounds as possible. Triplets were pseudo-randomly ordered to create 

each run (Figure 3). Each triplet contained one face, one scene, and one object. All possible 

combinations for presentations of faces (F), scenes (S), and objects (O) were removed if any of 

the following conditions were not met: 

1. Repetitions of category between triplets (i.e. FSO OSF) 

2. Three or more strong/weak triplets appeared in a row 

3. Repetitions of triplet back-to-back (FSO FSO) 

4. Image was shown more than once within nine item presentations 

FSO 

FOS 
SFO 

SOF 

OSF 

OFS 

Strong 

FSO 

FOS 
SFO 

SOF 

OSF 

OFS 

Weak 

FSO FOS OFS OSF SFO SOF OSF SOF OFS FSO SFO FOS Pseudo- 

randomization 
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5. Two items in weak triplets appeared back-to-back more than once* 

6. Two items in weak triplets appeared as the first and third items more than once* 

*Since weak items appear in different unique weak triplets every time, these conditions were 

included to ensure that no implicit association occurred from weak items appearing in the same 

triplet more than once. 

 

Although statistical learning requires attending to the task, it does not require a conscious 

effort in order to implicitly recognize patterns in the stimuli (Turk-Browne, Jungé, & Scholl, 

2005). To encourage implicit learning of the patterns, an unrelated cover task was included to 

keep the subjects’ focus on the stimuli while trying to prevent conscious awareness of the 

underlying transitional probabilities. Subjects were given an orthogonal cover task of category 

determination and instructed to press the button that corresponded to the category that was on 

screen as quickly as possible while avoiding errors. Instructing subjects to respond quickly was 

done with the intention to increase anticipation to the stimuli and respond earlier and during the 

descrambling process. They were given a three-button box in their right hand and told to respond 

to faces with their index finger, scenes with their middle finger, and objects with their ring 

finger. A practice task was given before going into the scanner to ensure full understanding of 

the instructions and to become proficient with pressing the correct button in response to each 

category of item.  

Localizer. After six runs of the main task, a functional localizer task was administered to 

help identify regions of interest (ROI) for the FFA, PPA, and LOC. The localizer consisted of 

blocks of items that contained one of four categories: faces, scenes, objects, or scrambled 

objects. A series of the same category of images was presented one at a time for one second per 

image. Images would appear one after the other to elicit a BOLD response specific to that 

category of item. This process was repeated for each category of item. This task provided raw 
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BOLD signal responses by each brain area that would later be used to show which areas express 

preferential activity to one type of item (face, scene, or object).  

Memory Tests. Immediately following the scanner tasks, subjects were asked if they 

noticed anything about the stimuli they had just seen or if they noticed any patterns in the way 

the items were presented. Responses were recorded, and the subjects were informed that some 

items followed each other every time, while some did not follow each other at all. A surprise 

memory test was then administered for both sets of stimuli. The two-part memory test was 

similar to other self-paced familiarity tests used in previous studies of statistical learning. The 

first part asked participants to rate each triplet on a sliding familiarity score from “Very 

unfamiliar” to “Very familiar” (Figure 4a). Subjects were instructed to base their rating on how 

familiar the sequence of items was and not the familiarity of the individual images. The second 

part of the test displayed two triplets on screen, and participants were instructed to choose the 

triplet that seemed more familiar to them using the same criteria as before (Figure 4b). 

Unbeknownst to the participants, each pair of triplets contained one strong and one weak triplet. 

 

 

 

 

 

 

Figure 4a. First memory test. Participants rated each triplet based on how familiar the sequence 

of items was to them using a sliding scale. Responses were recorded as 0 (very unfamiliar) to 

100 (very familiar) based on dot placement. The middle area was grayed out in order to force 

participants to respond with at least a slight preference towards one of the two descriptions. 

Very familiar Very unfamiliar 
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Figure 4b. Second memory test. Participants were shown two triplets and asked to choose the 

triplet sequence that looked more familiar. Unbeknownst to them, there was always one strong 

and one weak triplet shown on screen. 

 

Data acquisition/scanning parameters. Functional and anatomical data were collected 

using a Siemens Skyra 3T scanner with a 32-channel head coil. T1 and T2 anatomical images 

were obtained for each subject, and functional data was acquired with moderately high resolution 

(voxel size: 2.5 x 2.5 x 2.5 mm). Whole-brain functional acquisition was collected with 

TR=1000ms, TE=30ms, field of view = 210mm, multiband factor of 3 slices, 51 slices per 

volume, and 60⁰ flip angle. Each run lasted 444 seconds, which equated to 444 brain volumes 

acquired per run. The first four volumes were collected during initial fixation and settling of 

baseline BOLD signal and were discarded prior to analysis.  

Preprocessing. Preprocessing of data was completed using the Statistical Parametric 

Mapping 8 (SPM8) program (Penny, Friston, Ashburner, Stefan, & Nichols, 2006). Each 

functional run was corrected for any motion in the scanner. Each anatomical T1 image was 

aligned to the Montreal Neurological Institute (MNI) template to allow for accurate location 

comparisons within and between subjects. The subjects’ functional data were then aligned to 



VISUAL STATISTICAL LEARNING                                                                                        14 

 

their own respective anatomical data. Finally, functional data were smoothed using a Gaussian 

smoothing kernel with a full width at half maximum value of 6mm to increase signal-to-noise 

ratio (Tabelow, Piëch, Polzehl, & Voss, 2009) and still allow for comparison across subjects 

(Chen & Calhoun, 2018). 

ROI determination. To isolate each ROI, the localizer task was analyzed with a general 

linear model analysis to determine which brain areas showed the strongest preferential activity to 

one category or another (i.e. which voxels activated most strongly to faces compared to scenes). 

A contrast of activity was found for each category to isolate preferential activity. The face 

contrast was formed by subtracting all of the scene activation from all of the face activation. The 

scene contrast was formed by subtracting all of the face activation from the scene activation. The 

object contrast was formed by subtracting all of the activation due to scrambled objects from the 

object activation. Scrambled objects have been used in previous research as a contrast to 

distinguish LOC from other areas that are not as object specific (Grill-Spector, Kourtzi, & 

Kanwisher, 2001).  

ROIs were manually located for each subject by using these contrasts and the Neurosynth 

coactivation maps for reference of general locations of the FFA, PPA, and LOC used in past 

research (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). The cluster of activity that 

most closely matched the ROIs on Neurosynth was selected, and then a central voxel of 

activation was chosen using SPM8 and finding the local maximum activation to find the voxel 

that had the highest activation in the cluster. The left and right regions for all three areas were 

approximated for each subject, totaling six areas for each subject (Figure 5).  
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Figure 5. Approximate locations of the left-side ROIs for one subject from three different views 

(top – sagittal, middle – coronal, bottom – axial).  

 

Sphere extraction. To approximate the general area for a specific ROI, a sphere of 

activation for each ROI was obtained. Using the ROI coordinates, voxels for analysis were 

acquired by taking a sphere of activation (radius = 6 mm) around the central voxel of activation 

for each ROI location. BOLD signals for each voxel for the left and right side of each area were 

averaged together for each item category. Since the sphere of activation for an ROI does not 

perfectly encompass the actual voxels activated, there were often some voxels that were included 

in the sphere average that did not show any activation. This was especially the case when the 

ROI was located close to the skull or the ear canal. To see if this inclusion of non-activation 

 

R                    L R                    L R                    L 
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voxels affected the analysis, a secondary analysis was run using a large sphere of activation 

(radius = 10 mm). The 50 voxels from each ROI that showed the highest preferential activation 

in the larger spheres were found and then averaged and analyzed separately. By taking the voxels 

with the highest activation, this ensured that no voxels were part of the skull or ear canal. 

RESULTS 

Implicit/Explicit Awareness. When asked about recognizing a pattern in the stimulus 

presentation, two participants had a general sense that there was some pattern present but could 

not fully explain it. Only one participant had full explicit knowledge of the pattern, so BOLD 

signal ANOVAs and familiarity score analyses were run with and without their data to observe if 

they had an effect on the implicit VSL data. 

Memory Test 1. Familiarity scores for strong and weak triplets were averaged for each 

subject across the two sets. Average familiarity score was 56.6% for strong triplets and 48.2% 

for weak triplets. Overall, when combining sets, there was no difference between familiarity 

scores for strong and weak triplets (t = 1.778, df = 16, p = 0.094).  

Memory Test 2. The number of times that each subject correctly picked the strong triplet 

was recorded and averaged. Subjects correctly chose the strong triplet 55.3% of the time, which 

was not significant when compared to chance (t = 1.594, df = 16, p = 0.130). 

Timelines. The aim of this study was to find shifts in the time course of activation in 

response to implicitly learned patterns. To compare how BOLD signal timing changed over the 

course of learning, timelines (Figure 6) were created by averaging the activation of each brain 

area during the presentation of triplets when their preferred item was third in the triplet (i.e. 

averaging the FFA activation during the OSF and SOF triplets). The average BOLD response 

peaks after approximately 4-5 seconds post-stimulus and mostly returns to baseline around 12  
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Figure 6. Timelines of activation before and after VSL. Stimuli were presented at 0, 4 and 8 

seconds. Peak activation of BOLD responses can be seen at about 4 seconds after each item 

presentation. Pre-VSL is Run 1 and Post-VSL is Run 3. The graphs show only the data for the 

triplets that have the preferred item of activation in the third position for each brain area (i.e. 

only the SOF and OSF triplets used for FFA). Graphs are shown for each brain area: (a) FFA, (b) 

PPA, (c) LOC, and (d) average of all areas.  

 

 

a 

d c 

b 
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seconds post-stimulus (Buxton, Wong, & Frank, 1998). Thus, timelines were 20 seconds long 

with item presentation at 0, 4, and 8 seconds to allow for full BOLD response to each item. Pre-

VSL was defined as the activation averaged in Run 1, which included the first, second, and third 

exposure to each triplet. Post-VSL was defined as the activation averaged in Run 3, which 

included the seventh, eighth, and ninth exposures. Timelines for pre-VSL and post-VSL were 

shown for both strong and weak triplets. Activations were averaged over subject, stimulus set, 

and exposures during each run. Timelines for the highest 50 voxel analysis and the two analyses 

without the outlier showed slightly different patterns but were not significantly different.  

BOLD Signals. BOLD signals were averaged for each of the three brain areas for each 

subject and compared in a 2x2x2 repeated measures ANOVA using runs (Run 1 vs. Run 3),  

strength (strong vs. weak), and item position (first item vs. last item in triplet) as the factors. 

Averages for each BOLD signal peak were found by averaging across three functional brain 

acquisitions: directly before the peak, the peak itself, and directly after the peak. Thus, time 

points 5, 6, and 7 were used for Time 1 and time points 13, 14, and 15 were used for Time 3. 

Time 1 refers to the first item in the triplet, and Time 3 refers to the last item in the triplet. 

Separate tests were run for BOLD signal activations for the smaller sphere (Table 1a and 1b) and 

for the 50 most highly activated voxels in the larger sphere (Table 2a and 2b). The same two 

tests were repeated after excluding the outlier subject (Table 3a, 3b, 4a, 4b). The main effect of 

time was present in every analysis, which shows that each brain area responded more strongly to 

the preferred item than to a non-preferred item. The Run x Time interaction was only significant 

in the analyses run without the outlier (Table 3b and 4b). Separate follow-up 2x2x2 repeated 

measures ANOVA analyses for the FFA, PPA, and LOC were run individually to observe the 

Run x Time interaction for each brain area (Table 5).  
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Table 1a. Descriptive statistics of voxel activations in the small spheres. 

 

 

 

 

 

Table 1b. ANOVA results of voxel activations. Only the main effect of time was significant, 

which shows that each brain area activated more strongly to its preferred category. 
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Table 2a. Descriptive statistics of the 50 most highly activated voxels in the larger spheres. 

 

 

 

 

 

Table 2b. ANOVA results of the 50 most highly activated voxels. Only the main effect of time 

was significant, which shows that each brain area activated more strongly to its preferred 

category. 
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Table 3a. Descriptive statistics of small sphere activations with outlier removed. 

 

 

 

 

 

 

Table 3b. ANOVA results for sphere activations with outlier removed. The main effect of time 

is significant again. The Run x Time interaction was significant such that the first item had lower 

activation in Run 1 and higher activation in Run 3, and the third item had higher activation in 

Run 1 and lower activation in Run 3.  
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Table 4a. Descriptive statistics of the 50 most highly activated voxels in the larger spheres while 

excluding outlier. 

 

Table 4b. ANOVA results of the 50 most highly activated voxels in the larger sphere while 

excluding outlier. Similar results were seen as compared to the analysis in Table 3b. 
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Table 5. Results for the Run x Time interactions from the 2x2x2 repeated measures ANOVAs 

for each individual brain area, with and without outlier. None of the interactions were significant.  

 

Run x Time Interactions 

ANOVA SS df MS F p 

FFA – All subj. 0.030 16 0.030 4.414 0.052 

FFA – No outlier 0.029 15 0.029 3.980 0.065 

PPA – All subj. 0.023 16 0.023 1.662 0.216 

PPA – No outlier 0.030 15 0.030 2.222 0.157 

LOC – All sub. 0.007 16 0.007 0.191 0.668 

LOC – No outlier 0.023 15 0.023 0.759 0.397 

 

DISCUSSION 

This study overall suggests that VSL could possibly extend to category-specific areas in 

the brain such as the FFA, PPA, and LOC, but the differences in brain activity from VSL are 

more likely due to magnitude changes than temporal shifts. The current study provides no 

evidence of temporal shifts in activation due to VSL. Although there appears to be a trend in 

both the functional and behavioral data to suggest VSL has taken place, there was not a 

significant difference in subject behavioral responses on the memory tests. Other fMRI studies 

have also found neural differences during learning paradigms that do not always culminate in 

observable behavioral differences on subsequent explicit memory or performance tests (Turk-

Browne, Scholl, Chun, & Johnson, 2008; McNealy, Mazziotta, & Dapretto, 2006; Landau, 

Schumacher, Garavan, Druzgal, & D’ Esposito, 2004). Consequently, we could be observing 

visual statistical learning differences in brain activity that are not strong enough to cause changes 

in behavioral responses.  

Interestingly, by removing the outlier subject that had conscious awareness of the 

transitional probability patterns, the Run x Time interaction became more significant in both the 

small sphere and highly activated voxel analyses (p = 0.049 and p = 0.047, respectively, 

compared to p = 0.089 with outlier retained), such that BOLD signals were higher for the first 



VISUAL STATISTICAL LEARNING                                                                                        24 

 

item in the triplet during Run 3 and higher for the third item in the triplet in Run 1. Since 

removing the behavioral outlier had such a large impact on the overall interaction, this result 

could possibly suggest that the outlier had different brain activations due to the outlier’s 

conscious awareness of the patterns.  

One possible explanation for these magnitude difference results is that instead of 

observing differences in the timing of activation, we are seeing a pre-activation, per se, of the 

expected item. For example, perhaps the FFA shows increased activation to the non-preferred 

first item (object) in an OSF triplet as it begins to anticipate the presentation of an upcoming face 

in the third position of the triplet. This pre-activation could also possibly explain the lowered 

activation seen in response to the face in the triplet during Run 3 after VSL has taken place.  

Additionally, although these magnitude changes were only observed with the explicit 

memory outlier removed, there are factors that could be masking this effect. One assumption we 

made during task design and analysis was that all three ROIs would experience the same 

statistical learning effects. By looking at the patterns of activity in Figure 6, it is clear that each 

area experienced VSL in different ways. For example, the FFA and PPA have some similarity in 

their timeline trends, but the LOC post-VSL activity for strong triplets is drastically different. 

Part of this discrepancy could be due to the ambiguity of the LOC ROI location. When selecting 

the center voxels of activation for each ROI, the LOC for each subject had a large amount of 

variability, while the FFA and PPA locations were fairly consistent.  

Consequently, these timelines suggest that the three areas should be analyzed separately, 

as the pattern does not seem generalizable to all three. Individual ANOVA analyses of the three 

brain areas provided some evidence for these differences in VSL for each area. The Run x Time 

interaction for the FFA was very close to significant, but the Run x Time interactions of the PPA 



VISUAL STATISTICAL LEARNING                                                                                        25 

 

and LOC were not (Table 5). Future research could focus more specifically on the FFA, as these 

results suggest that the FFA could be experiencing the largest effects of VSL. 

 Another assumption we made was that the third item in the triplets would experience the 

largest difference due to VSL since it was preceded by two items instead of one. Our timeline 

analyses were limited to activation of each brain area when its preferred category of item was in 

the third position of triplets. Future analyses could determine if there are timing or magnitude 

changes present for each category-specific area when its preferred item is in the second position 

of the triplet.  

Another possible effect that could have contributed to the results of the study is 

individual differences in brain activation during statistical learning. For example, an event-

related potential ERP study by Abla et al. (2008) suggests that there are individual differences in 

the ability to use statistical learning, positing that participants can possibly be grouped into 

“high”, “middle”, and “low” degrees of statistical learning based on their behavioral data, which 

can then be used to find differences in the neural signatures. However, we did not have a large 

enough sample size or significant behavioral data in order to separate subjects into various levels 

of statistical learning ability. These degrees of statistical learning could possibly explain the one 

subject that had explicit knowledge of the patterns; perhaps the patterns were solidified enough 

through VSL that the associations became strong enough for their explicit awareness.  

 Further statistical analyses could be completed on this data set to see if changes in the 

time course of activation are present in other areas of the brain, although we believe that other 

brain areas would show magnitude changes as well, instead of differences in timing. Possible 

follow up analyses could include areas that have been shown in previous research to exhibit 

changes in activation during statistical learning, such as the hippocampus and striatum. 
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Exploratory whole brain analysis could also be conducted to more broadly search for areas that 

are sensitive to VSL. Overall, the trends seen in the magnitude differences for the averaged 

areas, and specifically the FFA, suggest that further research is warranted.  
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