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We describe a new genus and species of hadrosaurid dinosaur, Aquilarhinus palimentus, from 

the lower shale member of the Aguja Formation (lower Campanian) of Big Bend National Park, 

southwestern Texas. This species is characterized by several autapomorphies of the facial 

skeleton and mandible, including a crest composed of broadly arched nasals. Notably, the 

symphyseal processes of the dentary are elongated and reflected dorsally, causing the dentaries 

to meet with a w-shaped anterior profile. A hypothesized shovel-shaped ‘bill,’ associated with 

widening of the skull, in A. palimentus might have been used in shoveling out and scooping up 

semiaquatic vegetation. This animal is otherwise superficially similar to kritosaurins like 

Gryposaurus but differs in retention of key plesiomorphic character states in the maxilla and 

jugal. 

Phylogenetic analysis reveals Aquilarhinus to be a non-saurolophid hadrosaurid allied to 

Latirhinus from the late Campanian of Mexico, which bears a similar broadly-arched nasal. The 

recognition of this lineage adds to the diversity of non-saurolophid hadrosaurids and points to the 

existence of a hitherto unknown diversity of ‘duck-billed’ dinosaurs outside of the saurolophine-

lambeosaurine radiation. Cranial crests were ancestral for early hadrosaurids and evolved before 

the saurolophid radiation. Ancestrally, crests were ‘solid,’ and consisted of arched nasals. These 

were retained among kritosaurins and subsequently modified into the diverse crest morphologies 

observed among derived saurolophines. Lambeosaurine ‘hollow-crested’ crest morphology 

departed from the ancestral, ‘solid-crested’ pre-saurolophid condition early following the onset 

of that clade. 

 

Keywords: Dinosauria; Hadrosauridae; phylogeny; evolution; Cretaceous; North America 
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Introduction 

 

Hadrosaurid dinosaurs are among the most diverse components of the North American Late 

Cretaceous terrestrial vertebrate fauna, particularly during the middle to late Campanian 

(Ostrom 1961; Prieto-Márquez 2010a,b; Gates et al. 2012; Freedman 

Fowler & Horner 2015). These animals are unique in possessing a combination of complex dental 

batteries (Erickson et al. 2012), a reconfiguration of their facial skeleton to accommodate 

hypertrophied nasal passages (Wagner 2004; Evans 2006), and a wide variety of solid and 

hollow supracranial crests (Ostrom 1962; Hopson 1975; Evans et al. 2009). Although much is 

known of the later evolution of hadrosaurids during the acme of their diversity in North America 

during the middle-late Campanian (Lull & Wright 1942; Horner et al. 2004; Lund & Gates 

2006), comparatively little is known of the evolution of hadrosaurids during the preceding 

Santonian through early Campanian. This is mainly due to the sparseness of the fossil record 

from that interval, although the rarity of non-saurolophid hadrosaurids from later times also 

limits inference about ancestral character states. 

 The Aguja Formation of western Texas preserves one of the southernmost Campanian 

terrestrial vertebrate faunas in North America. Nearly the entire fauna, however, is known from 

the uppermost part of the formation – the upper shale member of Lehman (1985; reviewed by 

Rowe et al. 1992; Cifelli 1994; Sankey 2001; Lehman & Busbey 2007). Until recently, very little 

was known about the vertebrate fauna found in the lower part of the formation (the lower shale 

member). Wick et al. (2015) and Brink (2016) described a diverse assemblage of small theropod, 

lizard, and mammal teeth (the ‘Lowerverse local fauna’) from a single locality in the lower shale 
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member, and Lehman et al. (2019) describe the fauna and stratigraphy of the lower shale 

member in general, but otherwise the vertebrate fossils of the lower Aguja Formation remain 

undocumented.  

We here describe a new species of hadrosaurid dinosaur from the lower shale member, the 

first of several reports intended to document the larger terrestrial vertebrates from these strata. 

The holotype specimen of this new hadrosaurid (TMM 42452-1) was briefly described 

previously by Wagner (2001; see also Wagner & Lehman 2001) and at that time referred to 

Kritosaurus sp. nov. Subsequent study of the specimen, however, indicates that the new species 

cannot be included within Kritosaurus, and differs sufficiently from other hadrosaurids such that 

it warrants recognition as the holotype of a new genus and species.  

The vertebrate fauna from the lower shale member dates back between 81 and 80 Ma, 

corresponding to the early Campanian (see below). This fauna may be slightly older than that of 

the Wahweap Formation in Utah and lower Two Medicine Formation in Montana (Wick et al. 

2015; Brink 2016, Lehman et al., 2019). Only a few hadrosaurids have been described from 

these strata, such as Gryposaurus latidens (Prieto-Marquez 2012) and Acristavus gagslarsoni 

(Gates et al. 2011), and these are among the oldest known hadrosaurids. The new species from 

the lower shale member is therefore significant in adding to our understanding of the early 

evolution and diversity of the clade. In particular, this animal is uniquely positioned, both 

phylogenetically and temporally, to expand our understanding of the early evolution of 

hadrosaurid supracranial ornamentation. 

 

Institutional abbreviations 
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AMNH: American Museum of Natural History, New York, USA; IGM: Museo de 

Paleontología, Instituto de Geología, Universidad National Autónoma de México, México D.F., 

México; MOR: Museum of the Rockies, Bozeman, Montana, USA; NMMNH: New Mexico 

Museum of Natural History and Science, Albuquerque, New Mexico, USA; ROM, Royal 

Ontario Museum, Toronto, Canada; TMM: Texas Vertebrate Paleontology Collections, The 

University of Texas at Austin, Austin, Texas, USA.  

 

Geological Setting 

 

Terrestrial and paralic strata of the Aguja Formation are widely exposed in and around Big Bend 

National Park in southwestern Texas. These strata are underlain by and intertongue with marine 

deposits of the Pen Formation. The Aguja consists of two eastward-thinning intervals of 

terrestrial strata (the lower and upper shale members) separated by a westward-thinning wedge 

of interposed marine strata - the McKinney Springs tongue of the Pen Formation (Fig. 1). The 

upper shale member is widely exposed throughout Big Bend National Park and surrounding 

areas, but the lower shale member is mostly exposed on private ranches west of the Park; it thins 

and pinches out in the southwestern part of the Park and does not extend into the eastern portion. 

 The lower shale member of the Aguja Formation consists primarily of thick beds of 

lignitic clayshale with several prominent sandstone and coal beds, particularly near the base. In 

the middle of the lower shale member there is a thin zone of interbedded very fine sandstone and 

carbonaceous mudstone with conspicuous iron-manganese concretions. This concretionary 

interval is the only part of the lower shale member that yields significant vertebrate fossils and 

the holotype specimen of the new hadrosaurid here documented was collected from these strata.  
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Lehman (1985) interpreted the lower shale member as having accumulated primarily in a 

coastal swamp or marsh environment. Wagner (2001) provided a detailed taphonomic and facies 

interpretation of the type locality of the new taxon here described. The specimen was recovered 

from within a bed of mudstone having irregular bedding planes covered with abundant large 

carbonized leaf and wood fragments, many of which are riddled with Teredolites borings. The 

bones are partially enclosed in large concretions of iron-manganese oxides. Some of the bones 

were broken prior to burial, but articulation surfaces are intact and the cortical surfaces exhibit 

little cracking, indicating that the bones had been subject to minimal transport or weathering 

prior to burial. Immediately overlying the bone-bearing bed is a thin layer with abundant small 

ostreid bivalve shells, but no other remains are preserved at the site. 

The deposit represents a single burial, with the preserved elements somewhat channelized 

along an approximate east-west axis, and preserves many easily winnowed elements. The left 

manus, parts of at least one pes, and parts of the skull and cervical series were preserved along 

with parts of the pelvis. The manus and part of the skull of the specimen were somewhat 

disarticulated and held in place by concretionary material. Carbonized plant debris, abundant in 

the surrounding sediments, was found intimately intermixed with the skull and manus; these 

elements may have become entangled in vegetation, retarding transport. 

The over-representation of easily transportable elements and the absence of regions of the 

skeleton consisting of elements more difficult to transport (e.g., long bones of the appendicular 

skeleton) suggest that this may be an allochthonous deposit, with the preserved material having 

moved some distance downstream from where the body first was first entrained. It is possible, 

however, that elements from unrepresented skeletal regions were present at the site but concealed 

beneath the overburden and were simply not found. Alternately, it is  possible that the carcass 
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was scavenged prior to burial and that dispersed the skeleton. However, the hydrodynamic 

similarity and apparent channelized distribution of the elements suggest that hydrodynamic 

sorting was a significant factor in the generation of the deposit. 

The bone-bearing horizon lies at the base of gently inclined heterolithic strata . The 

association of small oysters and Teredolites with the site attests to the presence of brackish 

conditions, The rhythmic lithological heterogeneity of the immediately overlying deposits 

supports a paralic, tidally influenced environment. The inclination of the bedding is likely due to 

lateral migration of a small stream. This and the disarticulated, slightly winnowed, and 

apparently current-aligned nature of the specimen support the hypothesis that it was deposited on 

the bed of a shallow tidal creek and subsequently covered by point bar deposits.  

 

 
Systematic paleontology 

 

Dinosauria Owen, 1842 

Ornithischia Seeley, 1887 

Ornithopoda Marsh, 1881 

Iguanodontia Dollo, 1888 

Hadrosauridae Cope, 1870 (sensu Prieto-Márquez, 2010a) 

Aquilarhinus gen. nov. 

 

Type species. Aquilarhinus palimentus sp. nov. 
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Etimology. From the Latin ‘aquila’, meaning ‘eagle’, and the Greek ‘rhinos’, meaning ‘nose’. 

The combination of these two words references the morphology of the rostrum. 

 

Diagnosis. As for the type and only known species. 

 

Aquilarhinus palimentus sp. nov. 

 

Kritosaurus sp. nov. Wagner, 2001; Wagner and Lehman, 2001. 

 

Etimology. The specific name is a combination of the Latin words ‘pala’, shovel, and ‘mentus’, 

chin, in reference to the assumed resemblance of the predentary to a spade or shovel given the 

dorsomedial projection of the symphyseal process of the dentary. 

 

Holotype and only known specimen. TMM 42452-1, represented by a sphenoid fragment, both 

nasals, right maxilla, right jugal, right quadratojugal, partial left and right palatines, partial right 

dentary, partial first ceratobranchial, partial neural arch of atlas, fragments of two cervical centra, 

two cervical ribs, partial sacral rib, left carpal, nearly complete left manus, postacetabular 

process of right ilium, fragment of right ischium, partial astragali, pedal phalanx III-1, and four 

pedal unguals. Most parts of TMM 42452-1 were collected in 1983 by T. Lehman, N. LaFon, 

and K. Davies. In 1999, J. Wagner and T. Lehman continued excavation of the site collecting 

additional elements. The preserved parts of the skull and jaws were disarticulated but closely 

associated. All of these bones were found within four square meters and clearly represent a 

single individual. 
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Diagnosis. Hadrosaurid dinosaur possessing the following autapomorphies: nasals transversely 

broad across skull table; premaxillary shelf of maxilla at anterior apex flat and as broad as 

proximal segment of palatal process; palatine extending nearly horizontally to contact maxilla; 

dorsally reflected symphysial process of dentary. Differs from other hadrosaurids in possessing 

maxilla combining jugal process and ectopterygoid ridge continuous with ventral margin of jugal 

facet. Differs from all other hadrosaurids except Latirhinus uitstlani in nasal enclosing extremely 

broad and subcircular lateral profile of external bony naris. 

 

Occurrence. The type locality is on the western flank of Rattlesnake Mountain, in early 

Campanian strata of the lower shale member of the Aguja Formation, southwestern corner of Big 

Bend National Park, Brewster County, southwestern Texas (USA) (Fig. 1).  

Ages for the terrestrial deposits in the upper and lower shale members are constrained by 

ammonite biostratigraphy for underlying and overlying marine strata,and a few radiometric age 

determinations. The uppermost biostratigraphically significant ammonite found in the Pen 

Formation below the Aguja is Scaphites hippocrepis III (Waggoner 2006), which occurs in a 

zone having an estimated age of c. 81 Ma (Gradstein et al. 2012). Baculites haresi is found in 

paralic strata (the Rattlesnake Mountain and Terlingua Creek sandstone members) in the Aguja 

Formation above the lower shale member (Waggoner 2006). This ammonite is known to range in 

the western United States as high as the Baculites obtusus zone, which includes a tuff with an 

age of 80.97 Ma (Ogg et al. 2012). The uppermost part of the upper shale member includes 

intercalated pyroclastic deposits that yield U/Pb ages ranging from c. 77 Ma (Befus et al. 2008) 

to c. 73 Ma (Breyer et al. 2007). The vertebrate fauna of the upper shale member has been 
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collected almost exclusively from levels below the pyroclastic deposits, and so must have an age 

between 80 and 77 Ma (middle Campanian). The vertebrate fauna from the lower shale member 

is older, between 81 and 80 Ma (early Campanian).  

  

Osteology of Aquilarhinus palimentus 

 

Skull and mandible 

 

In general aspect, the skull as reconstructed was almost certainly tall and would have had a 

steeply-sloping facial profile, as in Gryposaurus (Gates & Sampson 2007; Figure 2). As noted 

below, there is circumstantial evidence to indicate that the skull roof sloped anteroventrally, and 

the external bony naris was exceedingly large. A remarkable departure from the generally narrow 

saurolophine aspect of this species is a general mediolateral expansion of the skull. This is 

evidenced by the broad exposure of the nasal on the skull roof, the shallow angle of inflection of 

the palatine vault, and the mediolateral extent of the symphysial process of the dentary. This 

expansion is here interpreted as dilation of the skull mediolaterally about the midline, resulting in 

greater separation of paired cranial elements. Dilation of the cranium appears to be a 

morphogenetic accommodation to the modification of the anterior dentary (below). 

With reconstructed quadrate and skull lengths of 26 cm and 57 cm, respectively, TMM 

42452-1 is a relatively small individual for a hadrosaurid. For example, compared to other 

hadrosaurids of the same time period, the skull of TMM 42452-1 is estimated to be only 50% the 

length of the holotype skull of Gryposaurus latidens (Horner 1992; Prieto-Márquez 2012), and 

65% of the length of the type skulls of Acristavus gagslarsoni (Gates et al. 2011) and 
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Probrachylophosaurus bergei (Freedman Fowler & Horner 2015). By analogy with Gryposaurus 

spp. (Prieto-Márquez 2010c), it could be assumed that the nasal arch of Aquilarhinus palimentus 

would become more prominent with growth. However, it is also possible that the nasal arch of A. 

palimentus experienced a different allometric growth trajectory than Gryposaurus spp. 

Therefore, we are uncertain at this juncture regarding the degree of maturity of TMM 42452-1 

pending the discovery of additional specimens. 

 

Nasal. Both nasals are nearly completely preserved in TMM 42452-1, missing only the distal 

ends of the supranarial processes and fragments of the posterodorsal and posterolateral margins 

(Figs. 3 and 4). Both elements show evidence of plastic and brittle distortion. The nasals have 

been flattened, warping the dorsal and lateral surfaces into the same plane, and the base of the 

supranarial process of the right nasal has been broken and displaced approximately 20 degrees 

anteromedially (Fig. 4). An irremovable ferruginous concretion coats the surfaces of both nasals. 

The central region of the nasal forms a broad plate. The dorsal portion of the nasal would 

be horizontal in life, while the lateral region formed a significant part of the side of the skull. 

Although distorted in both nasals, the dorsal surface appears to be approximately parallel to the 

dorsal margin of the premaxillary articulation when viewed laterally. Given the angulation of the 

premaxillary articulation with the maxilla, this practically requires that the dorsal margin of the 

skull sloped anteroventrally, at least at the level of the nasals. This is comparable with the 

elevation of the posterior region of the skull in Gryposaurus (Gates and Sampson 2007; Prieto-

Márquez 2010c) and Kritosaurus (Prieto-Márquez 2014), but because of the tenuous nature of 

this conclusion and the extent of plastic deformation in the specimen we have left the relevant 
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character (192 in our list, Supplemental online material 1) coded as uncertain for Aquilarhinus 

palimentus in our character-taxon matrix (Supplemental online material 2). 

  The supranarial process is shallow and extends anteriorly, as well as somewhat dorsally, 

from the body of the nasal, arching broadly over the external bony naris (Fig. 3). In lateral view, 

this arch closely resembles that of Gryposaurus spp. (Gates and Sampson 2007, Prieto-Márquez 

2012) and, particularly, Latirhinus uitstlani (Prieto-Márquez and Serrano-Brañas 2012). In 

Aquilarhinus palimentus, however, the nasal arch extends farther anteriorly and is more broadly 

curved than in Gryposaurus. Three-dimensionally, the nasal arch of A. palimentus appears to be 

mediolaterally thicker, with the supranarial processes together forming a hollow arch at its base, 

rather than the flattened, appressed, plate-like nasals and mediolaterally compressed supranarial 

processes of Gryposaurus (Prieto-Márquez 2010c). This is in accord with the mediolateral 

dilation of the skull noted above. Each supranarial process gradually tapers anteriorly and 

features a gentle scallop in its dorsal profile where the processes divide to embrace the ascending 

process of the premaxilla. No articular facet for the supranarial process of the premaxilla is 

clearly demarcated on either nasal. The left nasal preserves a sigmoid curve in dorsal view that, 

if not due entirely to post-mortem distortion, suggests that the premaxilla flared widely anteriorly 

between the supranarial processes. 

The nasal meets its counterpart over the external bony naris at a thickened, obliquely 

striated medial sutural facet (Fig. 3). The dorsal surface of the nasal arch is smooth, unlike the 

rugose surfaces of some specimens of Gryposaurus notabilis (Prieto-Marquez, 2010c) and 

Naashoibitosaurus ostromi (Prieto-Márquez 2014, fig 21) or Rhinorex (Gates and Scheetz 2015). 

 The great dorsoventral breadth of the narial margin on the nasal indicates an exceedingly 

large external bony narial foramen, as in Latirhinus uitstlani (Prieto-Márquez and Serrano 
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Brañas 2012). The circumnarial fossa is shallow and poorly emarginated, as in 

brachylophosaurins (Horner 1983; Prieto-Márquez 2005; Freedman-Fowler and Horner 2015) 

and Gryposaurus spp. (Gates and Sampson 2007; Prieto-Márquez 2010c). The circumnarial 

fossa clearly intersects the facet for the premaxilla on the lateral face of both nasals, at which 

point the fossa is relatively broad. The fossa must therefore have excavated the lateral process of 

the premaxilla as typically occurs in hadrosaurids (Prieto-Márquez 2010a). Indeed there is a 

converse bulge on the intracranial surface of the left nasal for the circumnarial fossa where it 

crosses the region of the premaxillary facet (Fig. 3B).  

The triangular ventral process of the nasal posteroventrally underlies the external narial 

foramen (Fig 3B). At the anteroventral vertex of this process there is a narrow, shallow facet for 

reception of the lateral process of the premaxilla. Posterior to the ventral process, the 

posteroventral margin of the nasal body thins, presumably for its insertion into the dorsal 

articular slot of the lacrimal (Fig. 4B, C); a thin, arcuate flat surface dorsal to the edge of the 

bone marks the region where the lacrimal contacts the nasal. The posterior margin of the nasal 

body, above the lacrimal articulation, features a trapezoidal surface for articulation with the 

prefrontal (Fig. 4B, C). This surface features a pair of slightly raised ridges that would have been 

parallel to the descending process of the prefrontal. Further dorsally, the posterodorsal end of the 

main body of the nasal meets the frontal. Although both nasals have been somewhat crushed and 

deformed flat, it seems clear that the posterior portion of the skull table was subhorizontal 

(possibly anteroventrally inclined), and the base of the nasal arch presents a marked anterodorsal 

inflection of the skull table, not a gentle dorsal arch rising smoothly from the skull roof. 
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Maxilla. The maxilla is rectangular in lateral view, straight in dorsal view and slightly sigmoidal 

in ventral view (Fig. 5). It is broadly convex laterally and flattened medially in anterior view, 

The alveolar margin is roughly straight. Along the margin  are 40 alveoli surrounded by very thin 

bone. At the anterior end of the bone, the anterior maxillary apex (‘anteroventral process’ of 

others; Fig. 6B) forms a 30-degree angle with the alveolar margin. The dorsolateral surface of 

this apex forms a shelf for supporting the lateral process of the premaxilla (Fig. 5A, B). Unlike 

other hadrosaurids like Brachylophosaurus (e.g., MOR 1071-8-5-99-447N), Naashoibitosaurus 

NMMNH P-16106), Edmontosaurus (e.g., MOR 1609), or Prosaurolophus (e.g., MOR 447-8-7-

1-86), the anterior end of the premaxillary shelf is not concave, nor is it emarginated from the 

lateral wall of the maxilla by a distinct lip; it is nearly flush with the surface of the anterior 

maxilla, but forms an extensive smooth articular surface in lateral view (Fig. 5A). The shelf is 

separated by a subtle round ridge anteroventrally where it laterally contacts the two most 

proximal alveoli.  

Above the maxillary apex, an extremely thin, almost sheet-like, palatal process 

(‘anterodorsal process’ of others) juts anteromedially from the anterodorsal corner of the body of 

the maxilla. Although the pendant portion of the process is missing, given the moderate slope of 

the dorsal margin of the anterior maxilla, it is likely that the palatal process was less angled 

anteroventrally than in Gryposaurus (e.g., MOR 553). The dorsal surface of the palatal process 

encloses a shallow groove that extends posteriorly and blends into a prominent shelf medial to 

the dorsal process of the maxilla, marking the maxillary margin of the osseous choana (choanal 

shelf, Fig. 6A, B).  

Posterodorsal to the premaxillary shelf and posterior to the palatal process there is the 

enlarged round maxillary foramen that is characteristic of hadrosauroids (homologized by 
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Weishampel [1984] with the antorbital fenestra). As in saurolophine hadrosaurids (Prieto-

Márquez 2010a), this foramen opens anterolaterally onto the anterodorsal margin of the maxilla, 

where it is typically partly or completely obscured by the overlying lateral process of the 

premaxilla. This enlarged anterior foramen is the anterior extension of the path for the maxillary 

neurovascular package, a bundle that passes anteriorly (in an anteriodorsal arc in hadrosaurids) 

into the maxilla through a gap between the jugal and palatine processes at the anterior end of the 

ectopterygoid shelf. The enclosing osseous tunnel sends branching channels to form the 

prominent peribuccal series of foramina of most iguanodonts, extending along the lateral surface 

of the maxilla from the first posterior-most foramen just anterior to the juncture of the 

ectopterygoid shelf and the jugal facet to the enlarged anteriormost foramen just discussed 

(Davies 1983). 

The dorsal process rises as an equilateral triangle that is wider than tall. It extends from 

the dorsal margin of the central region of the maxilla. The anterodorsal portion of the dorsal 

process forms a flange bearing a textured lateral surface that is contacted by the lacrimal (Fig. 

5A, B). The articular surface of this lacrimal flange is convex posteroventrally and extends to the 

midline of the dorsal process. Adjacent and ventral to the lacrimal facet, the articular surface for 

the jugal occupies the remainder of the lateral surface of the dorsal process of the maxilla. The 

articular facet for the jugal extends further ventrally and posteriorly beyond the dorsal process on 

the lateral surface of the maxilla, overall mirroring the arrow-shaped contour of the anterior 

process of the jugal. 

The thicker posterior margin of the dorsal process wraps medially around itself and is 

anteriorly inclined, as in non-hadrosaurid hadrosauroids (e.g., Gilmoreosaurus mongoliensis 

AMNH FARB 30653), brachylophosaurins (e.g., Probrachylophosaurus bergei, MOR 2919), 
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and Naashoibitosarus ostromi (NMMNH P-16106). The anterior portion of the anterior process 

of the jugal wraps around this surface toward its contact with the palatine, roofing a small 

foramen between the dorsal process and the palatine process of the maxilla as well as the 

palatine. This 5 mm wide foramen (homologized with the antorbital fenestra by Horner [1992]) 

opens out onto the previously mentioned choanal shelf medial to the dorsal process, where 

smaller foramen passes ventrally from the choanal shelf medial to the dorsal process ventrally to 

the maxillary neurovascular passage. 

 Notably, unlike other hadrosaurids except Eotrachodon orientalis (Prieto-Márquez et al. 

2016a) and as in non-hadroaurid hadrosauroids (e.g., Gilmoreosaurus mongoliensis, Prieto-

Márquez & Norell [2010]) and non-hadrosauroid iguanodontians (e.g., Iguanodon 

bernissartensis, Norman [1980]), there is a jugal process projecting posteriorly and slightly 

laterally from the jugal articular surface. We hypothesize that in other hadrosaurids this process 

became reduced to a tubercle (i.e., the ‘dorsal jugal tubercle’ of Wagner, 2001; Wagner and 

Lehman, 2009). Anteroventral to the jugal process, the ventral border of the articular surface for 

the jugal extends laterally forming a prominence with a flattened surface. This surface (the 

‘ventral jugal tubercle’ of Wagner, 2001; Wagner and Lehman, 2009; Fig. 5A, B) is a 

prominence or facet for articulation with the ventral spur of the anterior process of the jugal. 

Below this facet, the roughly textured anterior end of the ectopterygoid ridge roofs the medial 

margin of the coronoid fossa (Fig. 5A, B). As in all hadrosaurids, except Eotrachodon (Prieto-

Márquez et al. 2016a), the ectopterygoid shelf is fully continuous with the ventral margin of the 

jugal articular surface. The line of peribuccal maxillary foramena passes in a shallow arc, 

concave dorsally, from the enlarged anteriormost foramen to a point immediately anterior to the 

coronoid fossa where the enlarged, posterior-most foramen represents the first anteroventral 
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branch of the maxillary neurovascular package after it enters the maxilla proper, as in other 

hadrosaurids. Two more significant foramina penetrate the lateral maxilla anterior to this, and 

two much smaller foramina continue the row anteriorly to the enlarged anteriormost foramen. 

This row is only slightly dorsally arched, not curved around the jugal articulation as in most 

saurolophids, and is, like the ectopterygoid shelf, set much higher on the wall of the maxilla than 

in non-hadrosaurid hadrosaurs. 

 Posterior to the choanal shelf and medial to the dorsal process, a low palatine ridge rises 

from the medial margin of the maxilla (Fig. 6A, B). The articular face for the palatine is directed 

dorsally but has been abraded such that its limit can be only barely discerned. Continuing 

posteriorly along the dorsal outline of the palatine ridge, and barely produced above the 

ectopterygoid shelf, is the base of the abraded pterygoid process. 

The posterior portion of the maxillary body is occupied by a broad and ventrolaterally 

inclined ectopterygoid shelf (Fig. 5C, D). Unlike non-hadrosaurid hadrosauroids (Prieto-

Márquez 2010a) and the non-saurolophid hadrosaurid Eotrachodon (Prieto-Márquez et al. 

2016b), but as in other hadrosaurids, the ectopterygoid shelf of Aquilarhinus accounts for over 

35% of the length of the maxilla. The ectopterygoid ridge, the lateral margin of the ectopterygoid 

shelf, forms a thick lip overhanging the coronoid fossa. However, unlike other hadrosaurids but 

as in Eotrachodon, the ectopterygoid ridge of Aquilarhinus is steeply inclined posteroventrally, 

forming an angle of 18 degrees with the tooth row in lateral view. 

The medial surface of the maxilla bears an arcuate row (concave ventrally) of 40 alveolar 

foramina passing along the dorsal margin of the maxillary body, the “special” foramina of 

Edmund (1957) through which buddings of the dental lamina likely passed into the alveolar files 

to form teeth. Below this row of foramina extends the relatively smooth dental parapet (Norman 
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1980). Its ventral margin exhibits a shallow groove orientated parallel to the ventral margin of 

the maxilla, the “vascular groove” observed by Lambe (1920) in Edmontosaurus. 

 

Jugal. The jugal of Aquilarhinus palimentus is a triradiate, boomerang-shaped plate, with a 

nearly straight ventral margin extending between the anterior process and the posteroventral 

flange (Fig. 7). In dorsal view, the bone is straight but with an abrupt inflection at the midpoint 

of the orbit where the jugal curves medially to join the maxilla to form the anterior limit of the 

coronoid fossa. 

The anterior process is relatively shallow and forms an elongate, arrow-shaped flange in 

lateral view. The apex of the anterior process is missing its distal tip but it was probably 

relatively long, as the preserved segment is already over half the length of the main body of the 

anterior process. As in non-brachylophosaurin saurolophines (Prieto-Márquez 2010a), the ventral 

spur of the anterior process is well offset posteriorly relative to the level of the summit of dorsal 

(lacrimal) margin of the process. The ventral spur is triangular and wider than it is deep. Most of 

the roughly textured medial surface of the anterior jugal articulates with the maxilla, 

posterolaterally embracing the jugal process (‘dorsal jugal tubercle’) and spreading anteriorly 

and ventrally from that point. The maxillary articular facet on the medial jugal is bounded 

posteriorly by a subvertical, sharp and prominent ridge, and the triangular surface articulation for 

the maxilla anterior to this ridge is further divided into a dorsal and ventral portion by a 

horizontal ridge (Fig. 7C, D). Dorsal to the posterior ridge the edge of the jugal forms a joint  

with the palatine. This elongate facet is slightly offset medially relative to the maxillary facet, 

and extends obliquely (anterodorsally) as in Eotrachodon orientalis (Prieto-Márquez et al. 
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2016a) and Lophorhothon atopus (Langston 1960). The dorsal margin of the anterior process of 

the jugal meets the ventral margin of the (unpreserved) lacrimal. 

The postorbital process projects nearly perpendicularly from the long axis of the jugal, 

between the lacrimal margin of the anterior process and the quadratojugal flange, separating the 

U-shaped margins for the orbit and infratemporal fenestra (Fig. 7A, B). The process is V-shaped 

in cross-section, its longitudinal axis is twisted somewhat medially along its lower half and the 

process rises more dorsally in the distal half. The open side of the ‘V’ is orientated anteriorly and 

somewhat medially, with a longer lateral flange. The medial flange is incomplete, but it is clear 

that both together formed a gently expanding groove which was deepest two-thirds of the way up 

the process for the reception of the jugal process of the postorbital. Near the end of the process, 

both flanges and the groove between them sweep posteriorly to form a rounded tip. 

The infratemporal margin is slightly narrower than the orbital border and the 

infratemporal bar is 1.5 times deeper than the orbital constriction. A tongue-shaped 

posteroventral flange extends from beneath the infratemporal margin. The ventral expansion of 

the posteroventral flange is rather limited, being only 1.3 times deeper than the infratemporal 

bar. The quadratojugal flange appears to be expanded posteriorly, with posteriorly-divergent 

anterodorsal and posteroventral margins, as in Eotrachodon orientalis (Prieto-Márquez et al. 

2016a) and brachylophosaurin hadrosaurids (Horner 1983; Prieto-Márquez 2005; Freedman 

Fowler & Horner 2015). The bone is thicker along the dorsal (infratemporal) margin, and thins 

posteriorly and ventrally. On the medial surface of the flange, partially obscured by matrix, there 

is an extremely shallow subtrapezoidal facet for the lap joint with the anterior portion of the 

quadratojugal. The posteroventrally concave posterior margin of the jugal between the 

posteroventral and quadratojugal flanges forms a relatively broad arc. 
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Quadratojugal. The quadratojugal is a relatively small subtriangular lamina that thickens 

posteriorly (Fig. 7E–H). The anteroventral, or free, margin is concave anteroventrally, curving 

gently from the quadratojugal facet of the quadrate to the quadratojugal process of the jugal. The 

anterodorsal edge is straight and orientated anteroventrally, but angles abruptly ventrally a short 

distance above the anteroventral border to form a squared off anterior terminus. This border is 

extremely thin, particularly dorsally. The posterior margin of the quadratojugal is thin and 

rounded, and curves somewhat medially around a dorsoventral axis through the quadrate facet. 

The ventral apex is not preserved. 

The medial side of the quadratojugal is slightly concave due to the medial curvature of 

the posterior margin. Along the posterior margin of the bone there is a raised surface for 

articulation with the quadrate. This surface is divided into two oval concavities by a gap. This 

gap may occupy a position homologous to the quadratojugal portion of the paraquadratic 

foramen in non-hadrosaurid iguanodontians (Norman 1980; Head 1998). The medial surface of 

the quadratojugal is ornamented by fine striations that converge on the central depression. 

The lateral surface of the quadratojugal is covered by acute and pronounced striations, 

which converge on a point just anterior to the center of the posterior margin of the element. 

Anteriorly, the lateral surface of the quadratojugal is dominated by a broad, shallow facet for the 

jugal. This facet has very subtle, rounded posterior and posteroventral margins. The ventral 

margin of the jugal facet is produced laterally as a small lip that embraces the jugal ventrally and 

almost laterally. The structure of this lip is such that the jugal is free to move, in nearly any 

direction except ventrally relative to the quadratojugal 
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Palatine. Although incomplete, both palatines of TMM 42452-1 were recovered. The palatine 

consists of two major regions: a medially directed shaft and a plate that lies against the palatine 

ridge of the maxilla (Fig. 8). The plate of the palatine is mostly missing, owing to its delicate 

lamellar nature. The preserved proximal remnant of the plate is V-shaped in cross-section. The 

medial portion is orientated vertically and articulates with the dorsomedial edge of the palatine 

process of the maxilla, whereas the lateral part is orientated ventrolaterally and wraps around the 

lateral edge of the palatine process of the maxilla. The lateral portion of the plate is thickened 

toward the junction with its counterpart. At that junction, the plate forms a medial ridge on its 

exposed surface. It is against this ridge that the palatine process of the pterygoid articulates. 

 The medial process of the palatine sweeps anteromedially from the maxilla as a thin pillar 

with an airfoil-shaped cross-section. Although most illustrations of the hadrosaurid palate show 

the palatine being steeply inclined dorsally (e.g., Heaton 1972, fig. 5), in TMM 42452-1 the 

palatine extends nearly directly medially with only a slight dorsal inclination (Fig. 8). The 

posterior edge of the process, with the ridge for articulation with the pterygoid, twists dorsally as 

the leading and trailing edges diverge medially and the shaft itself thins. The resulting medial 

end, for articulation with the vomer, pterygoid, and the other palatine, is a thin edge directed 

nearly horizontally, rather than subvertically as in other hadrosaurids. 

 Anteromedially, the edge of the medial process of the palatine thickens over a short 

distance laterally, then diverges into two ridges separated by a shallow fossa. The ventralmost of 

these ridges proceeds ventrally along the midline of the shaft, expanding to form the shoe-shaped 

anterior end of the articulation with the palatine process of the maxilla. The dorsal of these ridges 

forms the leading edge of the medial process. The lateral edge of the bone is expanded as an 
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airfoil-shaped vertically striated articular facet for the jugal and possibly part of the dorsal 

process of the maxilla.  

 

 

Sphenoid. The braincase of TMM 42452-1 is solely represented by the sphenoid (Fig. 9). 

It consists of the central body of the element, missing the rostrum and all but the bases of 

both basipterygoid processes . Much of the surficial bone has been weathered, with the 

outer lamellae of cortical bone exfoliated. The anteroventral surface is preserved, framed 

by the bases of the basipterygoid processes. This surface exhibits a well-developed 

median ridge along the posterior half, presumed to be homologous with the ventromedian 

process of the basisphenoid noted by Gates and Sampson (2007). The angle between the 

basipterygoid processes cannot be measured. 

The posterodorsal basioccipital articulation is chevron-shaped, with the peak 

directed anterodorsally. Each 'arm' of the chevron is deeply striated, with the striae 

extending anterodorsomedially to meet at a sagittal groove. These 'arms' would have 

articulated posteriorly with the basal tubera. The alar process typical of hadrosaurids is 

not preserved. The distal termini of the 'arms' form the bases of two stout, dorsally arched 

pillars extending anteriorly. A deep fossa lies between theses pillars as in other 

hadrosaurids, and the fractured bases of the basipterygoid processes projected 

anteroventrolaterally from them. 

A shallow flange occupies the centre of the preserved right lateral surface, 

extending dorsoanteromedially before angling abruptly anteriorly. Between this flange 

and the body of the bone passes the vidian canal for the anterior portions of the internal 
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carotid artery and the vidian branch of cranial nerve VII. The medial margin of the left 

vidian canal is also preserved, and the two canals converge anterodorsally but do not 

meet in the preserved portion of the bone. These would have remained separate as in 

many reptiles, passing via paired foramina anterorodorsally through the dorsum sella into 

the sella turcica (neither of which is preserved). It is unclear if the vidian canals were 

partly or completely roofed over by bone, or if they remained open posterodorsally for 

their entire length. 

 

Dentary. The right dentary of TMM 42452-1 preserves much of the mandibular ramus, 

including the symphysial region to the middle of the ramus and a fragment of its posterior extent, 

as well as a portion of the coronoid process (Fig. 10). Overall, the dentary of this specimen is 

typically hadrosaurian, but with a dramatically different symphysial architecture.  

The preserved mandibular ramus includes at least 18 tooth positions. With two to three 

positions missing from the anterior end of the tooth row and a small number of alveoli 

represented on unattached fragments, there must have been at least two dozen or more tooth 

positions. The mandibular ramus is subelliptical in cross section and mediolaterally compressed. 

On the medial face of the mandibular ramus there is a shallow Meckelian groove underlying the 

dental battery. Anteriorly, the ventral margin of the dentary is deflected ventrally forming a 19-

degree angle with the long axis of the tooth row. The edentulous portion of the dorsal margin of 

the dentary is short relative to other hadrosaurids. Specifically, the proximal edentulous slope of 

the dentary is only as long as the combined width of four or five teeth. 

The symphysial process is airfoil shaped in cross-section, with the surface of greatest 

curvature orientated ventrally. This process is unique in Aquilarhinus palimentus in being 
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dorsally recurved (Fig. 10B), in addition to the anteromedial orientation shared with other 

hadrosaurids (Prieto-Márquez 2010a) (Fig. 10J). The symphyseal process of TMM 42452-1 is 

angled anteromedially and dorsally such that its ventral surface is inclined 55 degrees relative to 

the lateral wall of the mandibular ramus when viewed anteriorly (Fig. 10B). The dorsal 

orientation is exaggerated by slight crushing but by not more than five degrees at most. The 

symphysial groove is orientated in line with the process, such that the grooves they met an 

obtuse angle medially in anterior view. The two mandibles in articulation would form a W-shape 

in anterior view. This is distinct from the situation in all other hadrosaurids, in which the 

symphysial process is angled slightly medioventrally, and the symphyses meet almost 

horizontally in articulated specimens, forming a U-shaped anterior end of the mandible (Lull and 

Wright 1942). A row of four small foramina is set in a shallow arc around the anterior edge of 

the base of the symphysial process (Fig. 9B). These foramina are all orientated toward the 

articulation with the predentary.  

As in other iguanodontians (Norman 1980), the inner wall of the alveolar chamber is 

formed by the dentary parapet, a thin lamellum of bone which is absent in TMM 42452-1, 

exposing the tooth battery in medial view. Along the ventromedial edge of the chamber, where 

the lateroventral wall of the chamber and the dentary parapet join, is a row of small foramina that 

is concave dorsally in medial view as it follows the ventral profile of the alveolar chamber. This 

region is badly abraded in the specimen, making it impossible to determine the morphology of 

these foramina, but they are likely the ‘special foramina’ of Edmund (1957). 

A fragment of the coronoid process is present, missing the bulk of the shaft but 

preserving part of the apex. The dorsal region of the coronoid process appears to be broadly 

rounded and expanded in the sagittal plane of the mandible, more so anteriorly than posteriorly 
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as in saurolophid hadrosaurids (Prieto-Márquez 2010a). Posteriorly, it bears a slot-like 

articulation for the ascending process of the surangular. This slot-like articulation gradually 

closes towards the apex of the coronoid process. 

 

Hyoid apparatus. A first ceratobranchial, probably the left, is preserved with TMM 42452-1 

(Fig. 10D, E). The preserved portion consists of a laterally compressed shaft with a moderately 

expanded head. The shaft is slightly convex dorsally, and almost imperceptibly convex medially 

about a dorsoventral axis. It is oval in cross-section and laterally compressed posteriorly, and 

anteriorly becomes more D-shaped (convex laterally) before it expands into the head, which 

forms a rounded rectangle in cross-section. At mid-length of the shaft, a lateral swelling 

exhibiting a rugose texture may represent a muscle attachment surface. The anterior head is 

incompletely preserved ventrally but shows a modest expansion. Although descriptions of 

hadrosaur hyoids are rare (e.g., Ostrom 1961; Head 1998; Gates et al. 2007), this bone appear to 

be particularly reduced in Aquilarhinus. 

 

Dentition. Most details of the enamelled side of maxillary teeth are obscured by the intact walls 

of the maxillary alveolar chamber (Fig. 6E). Overall, the teeth are largest beneath the anterior 

end of the coronoid fossa and become smaller posteriorly and more so anteriorly. The occlusal 

surface is angled at approximately 30-40 degrees from the apparent parasagittal section of the 

bone. Each maxillary alveolus harbours a single functional tooth, unlike in saurolophines where 

it is typical for at least some positions to bear at least two functional teeth. In some positions the 

worn root of the preceding tooth is still present lateral to its functional successor, but the crown 

has been lost to abrasion and there is still only one functional tooth. The crowns of the teeth are 
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enameled only on the labial side, as in all hadrosaurid maxillary teeth (Horner et al. 2004). Each 

enamelled face bears a strong median ridge; on the teeth of the posterior quarter of the maxilla, 

the ridge is set increasingly distally. Marginal denticles are hardly discernible: they appear to be 

greatly reduced, if not absent on all maxillary (and dentary) teeth. 

 The dentary teeth are poorly preserved (Fig. 10G). Although no more than two teeth may 

be seen in any particular tooth file, there is enough space in most alveolar grooves for at least 

three fully formed teeth (as in saurolophids). Damage to the occlusal margin of the toothrow is 

extensive. However, at least one tooth file has two functional teeth exposed on the occlusal plane 

(again as in saurolophids), and the thickest portion of the dentary (where the most functional 

teeth per file would be expected) was not recovered. The crowns of the teeth are only enameled 

on the lingual side, as in other hadrosaurids. The enameled face of the crown is roughly 

diamond-shaped, with a prominent median ridge. The poor preservation of these crowns 

prevented assessing the presence and shape of marginal denticles. The length to width ratio of 

the most complete crown is 2.4. Crown-root angles could not be measured, but appear to be 

relatively low, in the range commonly given for saurolophine hadrosaurids (Sternberg 1936; 

Horner 1992; Weishampel et al. 1993). Each tooth is slightly overlapped by the tapering dorsal 

halves of the successional crowns in the neighbouring rows. The size distribution of the 

preserved teeth suggest that the largest examples were in the unrecovered central section of the 

dentary.  

 

Axial skeleton 
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Cervical vertebrae. The atlas is solely known from the nearly complete left side of the neural 

arch of TMM 42452-1. It consists of a stout base topped by a prominent, plate-like spine 

inflected dorsomedially about the longitudinal axis of the vertebral series. A prominent 

dorsomedial inflection is present above the base of the neural arch. Slightly below this inflection, 

along the anterior margin of the arch, is a thickened area supporting a subcircular 

anteromedially-facing articular facet, presumably for reception of the occipital condyle. Above 

this facet the anterior margin of the neural spine is embayed by a deep semicircular cleft. On the 

medial side of the neural arch is the axial postzygapophysis. The zygapophysial facet is 

shallowly concave and oval, except where it is flattened against the edge of the bone. 

Fragments of two cervical centra are preserved with TMM 42452-1. These are typically 

hadrosaurian in being opisthocoelous with a thick ventral keel. The cranial ends of the centra are 

elevated relative to the posterior ends. The neural arches appear to be fused to their respective 

centra.  

At least one cervical rib is nearly completely preserved in the holotype. It shows a 

capitular head that extends medioventrally from the ventral edge of the shaft. The tubercular 

head extends medially from the dorsal edge of the shaft, which forms a somewhat thick elongate 

plate. The latter is divided by a low rounded ridge. The medial face of the shaft is medially 

convex around an anteroposterior axis between the capitular process and the base of the 

tubercular facet.  

 

Sacral vertebrae. A single left sacral ‘rib’ is all that is left of the Aquilarhinus sacrum. It 

consists of an expanded base originally rounded in lateral profile, with a dorsal airfoil-shaped 

facet for articulation with the neural arch. This base tapers gently into the stout shaft that 
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expands distally forming a plate, most of which is missing. This plate, along with the shaft itself, 

was orientated posterodorsally, resulting in a twisted shaft.  

 

Appendicular skeleton 

 

Manus. The recovered carpal of TMM 42452-1 (Fig. 11) is similar in shape to the ‘large 

tetrahedral’ carpal observed in other hadrosaurids (e.g., Horner 1979; Davies 1983; Prieto-

Márquez 2007). Its surface is irregularly pitted, mostly along the edges and at the corners, 

suggesting that the element may not have completely ossified. The bone is triangular in 

longitudinal cross-section. One surface of the carpal is dominated by a large, oval facet that 

appears to be an articular surface. This surface itself is warped in three dimensions; careful 

testing shows that it fits with some precision over the head of metacarpal II, but this is at odds 

with the interpreted position of other such tetrahederal carpals (Prieto-Márquez 2007).  

 The metacarpus is very narrow and digit I is missing as in all other hadrosauirds (Horner 

et al. 2004). Metacarpals II through IV are narrow, curved slightly abaxially, and somewhat 

trapezoidal in cross-section. They are arrayed in a U-shape in collective cross-section as in other 

hadrosaurids (Dilkes 1993) and very large-bodied terrestrial tetrapods (Bakker 1986), with their 

shafts slightly imbricated (long-axis directed anteromedially) due to axial twisting. Along with 

phalanx II-1, the distal ends of metatarsals III and IV form the axis of the hyperextendable joint 

between the metacarpus and digits. 

 Proximally, the metacarpal heads converge, all with slightly mediolaterally pinched 

surfaces except for the relatively broad head of metacarpal III. Passing ventrally, metacarpals II 
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and V diverge from the central axis of the manus near the wrist. In contrast, metacarpals III and 

IV diverge much less, and do so farther from the wrist.  

The manual phalanges of TMM 42452-1 (Fig. 11) represent only the first two ranks, apart 

from the third phalanx of digit V. Absence of the distalmost phalanges suggests a distal-proximal 

disarticulation sequence, and perhaps decomposition in the presence of water. The 

metacarpal/phalangeal joints of the inner three central digits in this specimen, and indeed of all 

hadrosaurids (Brett-Surman & Wagner 2007), suggests loss of ginglymous morphology and 

evolution toward plane joints. The first rank of unguals on digits II-IV are distinctly offset such 

that they curve anteromedially during extension. These may have been bound by ligaments like 

the metacarpus, rather than splaying proximally. 

The second rank of phalanges on digits II-IV is ‘wedge shaped,’ axially foreshortened, 

more so medially, with strongly saddle-shaped proximal and distal articular surfaces (concave 

and convex, respectively). In digits II and III the lateral condyle is the larger. This morphology 

also brings the rotational plane more anteromedially. A distinctly expanded ventral lip of the 

proximal articular surface of the second rank of phalanges forms a small flexor tubercle. 

The result of the slight plantar displacement of the joint axes is that the manus supinates, 

pivoting slightly on the ground as the forelimb retracts. As in Gryposaurus ‘incurvianus’ (= G. 

notabilis, Parks 1920; Prieto-Marquez 2010c), the wrist rotated during forward progression, as 

might be expected for a quadrupedal animal that holds its elbows slightly offset from the sagittal 

plane to clear its gut (e.g. Fujiwara & Hutchinson 2012; contra Bakker 1986; Paul & 

Christiansen 2000). 

Phalanx IV-2 is block-like, but the inner (medial) condyle of phalanx IV-2 is more 

rounded than the smaller, more linear lateral condyle. This suggests that the distal portion of 
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digit IV was slightly divergent posterolaterally, a situation evident in other hadrosaurids (Parks 

1920; 1922; Rozhdestvensky 1957; Prieto-Márquez 2007). 

 Digit V is similar to that of other iguanodontians (Norman 2004), shorter than the other 

digits, divergent, and probably prehensile. The fit of the bones suggests that metatarsal V may 

have been closely applied to metatarsal IV, but it also may have been mobile at the wrist. Three 

phalanges are preserved, but the third has a smooth distal articular surface suggesting that a 

fourth was present. 

 

Ilium. This pelvic element is represented by a right postacetabular process (TMM 42452-1, Fig. 

12A, B). The process is a thick suboval bony plate (TMM 42452-1, Fig. 12A, B). The process 

gently tapers posteroventrally. The dorsal margin is straight and heavily eroded, with fragments 

missing anteriorly. The posterior extent of the ventral margin is slightly offset laterally from the 

dorsal border, producing a gentle twist about the longitudinal axis of the bone. The medial face 

of the postacetabular process shows no attachments for sacral ribs, as is common in hadrosaurids 

(Dilkes 1983). There is a prominent ridge which begins at the posterodorsal margin of the distal 

end of the process and is obliquely directed anteroventrally. This ridge forms the dorsal border of 

a roughly textured facet orientated medially and slightly ventrally.  

 

Ischium. A fragmentary ischium preserved with the holotype, TMM 42452-1 (Fig. 12C, D), 

includes part of the iliac process and the proximal segment of the shaft. The dorsal articular 

region of the iliac process is eroded away and much of its surface, particularly on the medial 

side, is heavily abraded. Distally, the ischiadic shaft twists medially along its longitudinal axis. 
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Astragalus. This element is incompletely represented by both astragali of TMM 42452-1. The 

right astragalus consists of an abraded fragment of the tibial articular surface. The left element 

includes most of the main body, missing the anterior and posterior ascending processes and the 

calcaneal articular surface (Fig. 13A, B). As in all hadrosaurids (Brett-Surman & Wagner 2007), 

the astragalus is saddle-shaped and mediolaterally expanded. The bone is slightly constricted 

anteroposteriorly at mid-length of the slightly concave tibial articular surface. Laterally, the 

astragalus becomes both anteroposteriorly thicker and dorsoventrally deeper, acquiring a convex 

dorsal surface. This convexity would be bounded anteriorly and posteriorly by the missing 

ascending processes and receive the concave intermalleolal ventral surface of the tibia. 

 

Pes. Unlike the manus, the pes of Aquilarhinus palimentus is poorly known, being solely 

represented by a phalanx III-1 (Fig. 13C, D) and four unguals (Fig. 13E, F) from the holotype. 

Phalanx III-1 does not differ from that of other hadrosaurids (Zheng et al. 2011). It is 

subrectangular in dorsal and plantar views, dorsoventrally compressed, and slightly expanded 

mediolaterally at its proximal and distal ends. The proximal end is substantially deeper than the 

distal extremity, so that in lateral and medial profile the dorsal surface of the phalanx gently 

slopes distally. 

Likewise, pedal unguals are also typically hadrosaurid in morphology (Zheng et al. 2011) 

in being spade-shaped hoof-like elements as seen in plantar and dorsal (Fig. 13F) views. In 

lateral and medial views, the ungual phalanx is wedge-shaped. The proximal articular surface is 

ellipsoidal and mediolaterally expanded. 
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Hadrosauridae incerta sedis material from Rattlesnake Mountain 

 

Additional hadrosaurid elements were recovered at Rattlesnake Mountain from the same 

stratigraphic interval as the holotype of Aquilarhinus palimentus, some bones within a short 

distance of the collection site of the holotype (TMM 42452-3 and -4). Although this material 

might pertain to A. palimentus, none of these isolated bones exhibit diagnostic features that 

would allow for certain attribution. For this reason, we describe this material separately and 

refrain from referring it to A. palimentus. 

 

Braincase wall.TMM 45947-489 (Fig. 14M-P) consists of parts of the skull roof 

(described below) united with the laterosphenoids, presphenoids, and orbitosphenoids. 

Sutures between bones are obscure, although on the left side the neurocranium appears to 

have separated from the adjacent skull roof elements near the sutures. The anterior end of 

the specimen is broken through the large circular foramen for the olfactory nerves, part of 

which is formed by a raised ridge on the ventral surface of the frontals (see below), and 

which separates the olfactory region from the large, spherical cerebral cavity.  

 Although the sutures cannot be discerned clearly, the buttress ventral to the 

postorbital articulation can be identified, as can the abraded postorbital articular surface. 

These structures typically mark the anterior extent of the laterosphenoid and the anterior 

border of the temporal cavity. Anterior to this is the orbital cavity, the medial wall of 

which (i.e., the lateral surface of the braincase) is formed by the presphenoid and 

orbitosphenoid (TMM 45947-489, Fig. 14M-P). The sutural relationships between these 

two elements are again inscrutable, but by comparison to other hadrosaurid braincases 
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(e.g., AMNH 5350, Prieto-Márquez, 2010c) it is likely that the preserved portion is 

mostly orbitosphenoid. There is every possibility that one or more small processes of the 

laterosphenoid could extend anterior to the buttress, but no evidence. The anteroventral 

portion of the braincase wall is not preserved. 

 Two neurovascular features are evident on the lateral braincase surface. The 

opening for the oculomotor (III) nerve lies just ventral to the level of the postorbital 

articulation on the lateral surface of the of the braincase, and just anterior to the 

postorbital buttress. The foramen is round and exits anterodorsolaterally from the 

braincase. The posterodorsal margin of the foramen for the trochlear (IV) nerve is 

preserved along the damaged anteroventral margin of the braincase ventral and anterior to 

the foramen for nerve III. The floor of the endocranial cavity is broken away, and no 

other openings for cranial nerves are preserved.  

 

Parietal. This element is poorly preserved, with the preserved portion forming the incomplete 

and abraded posterior region of partial braincase TMM 45947-48 (Fig. 14M-P). It articulates 

anteriorly with the frontals, but the sutures with those elements are not discernible. An extensive 

anterolateral process curves laterally forming the anteromedial margin and a small portion of the  

laterodorsal wall of the supratemporal fossa. Posteriorly, the process merges with its counterpart 

and the parietal becomes abruptly constricted mediolaterally to form the sagittal crest. The lcrest 

displays a flattened dorsal surface but does not appear to ascend significantly dorsal to the skull 

roof in its anterior portion. The posterior extent of the preserved portion of the parietal is heavily 

abraded, making it impossible to determine if the posterior sagittal crest was elevated as 

observed in lambeosaurines. The surfaces of the supratemporal fossae extend 
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posteroventrolaterally from the anterolateral processes and lateroventrally from the sagittal crest. 

The margins of the supratemporal fenestrae are not preserved. 

 

Frontal. In TMM 45947-48 (Fig. 14M–P), the frontal is missing the anterior and lateral margins. 

The midline frontal suture is barely discernible, but the anterior portion appears to be angled to 

the right of the sagittal plane. As shown in TMM 45947-490.1 (Fig. 14G–L), the dorsal surface is 

flat as far anteriorly as the roof over the olfactory tract, indicating that the frontal likely did not 

contribute to a nasal arch, if present. As noted above, on the ventral (internal surface) the anterior 

end of the cerebral fossa is separated from the olfactory recess by an arcuate rounded ridge that 

rises laterally to form distinct sutural contacts for the presphenoid and orbitosphenoid. Although 

the anterior end is broken in both available frontals, raised lineations on the surface of the bones 

suggest that the break occurred near its contact with the prefrontal and nasal, and if so the frontal 

was embayed anteriorly along that contact.  

 

Postorbital. TMM 45947-490.2 is a central body of a right postorbital (Fig. 14C–F). It preserves 

the sutural surface for the frontal and parietal along its medial margin, and the rim of the orbit on 

its lateral edge. The bone is, however, missing its anterior end, as well as the processes for 

articulation with the jugal and squamosal. The rim of the orbit is swollen dorsoventrally and 

covered with fine reticulate corrugations. On the ventral surface, a deep socket for articulation 

with the lateral buttress of the laterosphenoid lies immediately anterior to the anterior border of 

the supratemporal fenestra. 
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Scapula. TMM 45947-492 is the proximal end of a left scapula (Fig. 15A, B). The coracoid and 

glenoid articular facets are mediolaterally compressed and their lateral margins meet at an angle 

of 150 degrees. The acromion process is horizontal, as is typical of saurolophine hadrosaurids 

(Brett-Surman and Wagner 2007) and is distally continuous with a relatively narrow deltoid 

ridge having a poorly defined ventral margin. The preserved portion of the proximal constriction 

is relatively narrow, being 60% of the distance between the apex of the glenoid and the dorsal 

margin of the acromion process. 

 

Humerus. TMM 42452-3 is right humerus represented by several fragments (Fig. 15C). The 

element appears to be relatively slender, with a poorly expanded deltopectoral crest; the 

maximum anteroposterior breadth of the deltopectoral crest is 1.66 times the minimum diameter 

of the shaft. This ratio places the expansion of the deltopectoral crest at the lower end of the 

spectrum of ratios in hadrosaurids (Prieto-Márquez 2010a). The minimum diameter of shaft was 

calculated from the section of the fragmented distal third of the humerus, corresponding to the 

distal extent and probably minimum diameter of the humeral shaft (Fig. 15C). The deltopectoral 

crest accounts for 49% of the length of the humerus and in this ratio, the element falls within the 

range of non-lambeosaurine hadrosaurids (Prieto-Márquez 2010a). The articular head is a robust 

and prominent structure forming the proximolateral corner of the humerus (Fig. 15D). The distal 

end is slightly less expanded than the proximal end and displays an ulnar condyle that is 

substantially larger than the radial one. 

 

Pubis. TMM 45947-493 is the proximal region of left pubis (Fig. 16A). The iliac process is 

tetrahedral in overall shape and relatively short, with eroded lateral and dorsal surfaces. Its 
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posterior surface is smooth and continuous with the acetabular margin. Ventral to the iliac 

process and the acetabular margin, there is a robust and long rod-like postpubic process that 

projects posteroventrally. The distal segment of this process is missing. A short eroded ischiadic 

process extends parallel to and laterally offset from the proximal region of the postpubic process. 

The prepubic process is nearly entirely missing, with only the proximal-most extent of its 

proximal constriction remaining.  

 

Ilium. TMM 42309-13 is a left central iliac plate (Fig. 15A, C). The central plate is fairly 

complete, preserving part of the pubic- and the entire ischiadic process, along with most of the 

supraacetabular crest. At the anterior corner of the iliac plate, the pubic process is missing its 

anteroventral apex, but it appears to have been triangular as in all hadrosaurids. Posterior to this 

process, the acetabular margin is wide and shallow, with a the posterodorsal margin much longer 

than the anterodorsal. The ischiadic process displays a blunt ventral surface; above this surface, 

there is a prominent oblique ridge of a relatively large example of the ischiadic tuberosity typical 

of hadrosaurs (Brett-Surman and Wagner, 2007). 

 The lateral margin of the supraacetabular crest is abraded but otherwise complete and 

extends along nearly the entire length of the iliac plate as preserved. In the complete ilium, the 

breadth of the supraacetabular crest would account for at least 75 to 80% of the length of the iliac 

plate. Comparatively wide supraacetabular crests are found in kritosaurin saurolophines (Prieto-

Márquez 2014) and among non-hadrosaurid hadrosauroids like Tanius sinensis (Wiman 1929), 

Lophorothon atopus (Langston 1960), or Tethyshadros insularis (Dalla Vecchia 2009). In lateral 

view, the crest is V-shaped and asymmetrical, with a profile that is strongly skewed posteriorly. 

The apex of the supraacetabular crest extends ventrally to a level slightly less than half the depth 
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of the iliac plate. In this regard, the crest of Aquilarhinus palimentus is less expanded than that of 

most hadrosaurids (Prieto-Márquez 2010a). As is typical of saurolophid hadrosaurids (Prieto-

Márquez 2011), this apex lies anterodorsally relative to the posteroventral corner of the lateral 

ridge of the ischiadic tuberosity.  

 

Femur. Fragments of a left femur are preserved (TMM 45947-491, Fig. 16A-D) but most of the 

shaft is missing. The head is hemispherical and separated from the greater trochanter by a 

marked proximal constriction. Anterior and posterior surfaces of the greater trochanter are 

broken, but the base of the lesser trochanter indicates that is was offset laterally. The distal 

articulation exhibits a prominent anterior intercondylar groove separating the lateral and medial 

condyles. The lateral condyle is particularly narrow mediolaterally, with a well-developed fossa 

on its lateral surface. Overall, the femur is indistinguishable from those of other hadrosaurids. 

 

Tibia. Fragments of two left tibiae were collected (TMM 42452-4, Fig. 16E, F). The distal end is 

only moderately expanded. The astragalar articular surface is not markedly inset compared to the 

calcaneal surface, and as a result the external and internal malleoli extend to nearly the same 

level distally. As with the femur, the tibiae are not significantly different from those of other 

hadrosaurids. 

 

Phylogenetic relationships of Aquilarhinus palimentus 

 

The phylogenetic position of the new species was inferred using parsimony. In addition to 

Aquilarhinus, the taxonomic sample included 63 hadrosauroid taxa (14 outgroup species outside 
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of Hadrosauridae, three non-saurolophid hadrosaurids, 24 saurolophines, and 22 

lambeosaurines). The data set consisted of 279 equally weighted morphological characters (195 

cranial and 84 postcranial; see Supplemental online material 1 and 2). Multistate characters 

containing states that are not mutually exclusive and follow a natural morphocline were ordered. 

This criterion allows for ‘crediting’ shared intermediate states. The optimal tree(s) search was 

conducted in TNT version 1.1 (Goloboff et al. 2008). A heuristic search of 10,000 replicates 

using random addition sequences was performed, followed by branch swapping by tree-

bisection-reconnection holding ten trees per replicate. Bremer support (Bremer 1988) was 

assessed by computing decay indices (Donoghue et al. 1992) using TNT. Bootstrap proportions 

(Felsenstein 1985) were also calculated using TNT, setting the analysis for 5,000 replicates using 

heuristic searches, in which each search was conducted using 25 random addition sequences with 

branch-swapping by subtree pruning and regrafting. Ancestral states of crest-related characters 

(absence/presence of crest, character 179; crest shape, character 182; see Supplemental online 

material 1) were reconstructed using parsimony and maximum likelihood in Mesquite version 

3.51 (Maddison & Maddison 2018). 

The analysis resulted in 12 most parsimonious trees (MPTs) of 1,056 steps each (C.I. = 

0.43, R.I. = 0.78); the best score was found in 3,687 of the 10,000 replicates. In all trees 

Aquilarhinus palimentus appeared at the base of Hadrosauridae, forming a clade with Latirhinus 

uistslani that is sister to Saurolophidae (Fig. 16). The Aquilarhinus-Latirhinus clade is 

unambiguously supported by the possession of an extremely broad and subcircular posterior 

margin of the external bony naris.  

No unambiguous hadrosaurid synapomorphies are observed in the type of Aquilarhinus 

palimentus. However, the clade consisting of the Aquilarhinus-Latirhinus lineage, saurolophids, 
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their most recent common ancestor and all of their descendants is supported by the following 

unambiguous synapomorphies: angle of deflection of the anterior ventral margin of the dentary 

between 17 and 25 degrees; maxilla with complete union of the ectopterygoid ridge and the 

ventral margin of the facet for the jugal; large anterior maxillary foramen opening on the 

anterolateral body of the maxilla; and elevation of the dorsal profile of the skull to form a cranial 

crest. The Aquilarhinus-Latirhinus clade demonstrably lacks the following unambiguous 

saurolophid synapomorphies: more than one functional maxillary tooth per position; dentary 

tooth crowns with a height/width ratio between 2.8 and 3.3; absence of jugal process, having 

been reduced to a tubercle; ventral spur of the anterior process of the jugal being as deep as or 

slightly deeper as it is wide proximally; and subvertically orientated palatine facet of the anterior 

process of the jugal. 

The incerta sedis material is mostly indeterminate. The ilium is clearly hadrosaurid, as 

shown by many characters: lateral profile of the dorsal margin of the ilium distinctly depressed 

over the supraacetabular process and dorsally bowed over the proximal region of the 

preacetabular process; the lateral margin of the iliac peduncle progressively disappears ventrally 

into the lateral surface of the region adjacent to the acetabular margin; and deep iliac central 

plate that is at least 80% as tall as it is anteroposteriorly wide. The coracoid is demonstrably not 

saurolophid due to its concave anteromedial margin. 

 

 

Discussion 
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Comparison with pre-mid Campanian hadrosaurids. The fossil record of pre-Campanian and 

early Campanian hadrosaurids is scarce compared to that of the late Campanian and 

Maastrichtian (Horner et al. 2004; Godefroit et al. 2012; 2013). The saurolophine tribe 

Brachylophosaurini include some of the oldest known hadrosaurids (Freedman Fowler & Horner 

2015). The oldest species include Acristavus gagslarsoni (from the Wahweap Formation of Utah 

and Two Medicine Formation of Montana, with an estimated age of 81.4–79 Ma; Gates et al. 

2011) and Probrachylophosaurus bergei (from the Judith River Formation of Montana, with an 

age of 79.8–79.5 Ma; Freedman Fowler & Horner 2015). Brachylophosaurins share with 

Aquilarhinus palimentus the lightly built jugal with elongate apex of the anterior process and a 

narrow fan-shaped quadratojugal flange. However, the jugal of A. palimentus differs from that of 

brachylophosaurins in possessing a less expanded posteroventral flange, an elongate and oblique 

articular facet for the palatine, and spur of the anterior process posteriorly offset relative to the 

apex of the lacrimal margin. As in all other saurolophids, the brachylophosaurin maxilla lacks a 

produced jugal process and displays a low, rounded jugal tubercle instead, although it shares 

with A. palimentus a posteriorly inclined ectopterygoid shelf (Prieto-Márquez 2005, fig. 4C; 

Freedman Fowler & Horner 2015, fig. 5). 

Lucas et al. (2006) described a partial juvenile saurolophine skeleton from the Mancos 

Shale of northwestern Colorado, from within the Baculites maclearni zone dated to 80.35 Ma. 

Gates et al. (2011) subsequently referred it to Brachylophosaurini based on the morphology of its 

jugal. Certainly, the jugal of the Mancos Shale hadrosaur is lightly built and displays a sharp 

apex of the anterior process as in both Aquilarhinus palimentus and brachylophosaurins. 

Regardless, photographs of the specimen (Lucas et al. 2006, fig. 2A) show up to two functional 

teeth in the maxillary dental battery, which is sufficient to distinguish this small specimen 
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(approximately two thirds of the size of TMM 42452-1) from A. palimentus. Maxillae with two 

functional teeth in the occlusal plane are widespread, not only in brachylophosaurins, but among 

hadrosaurids in general. 

 
Outside North America, several hadrosaurids have been recorded from lower Campanian-

Santonian strata of central and eastern Asia. These include Aralosaurus tuberiferus (upper 

Santonian-lower Campanian strata of the Bostobynskaya Formation of southwestern Kazakhstan; 

Kordikova et al. 2001; Averianov 2007), Jaxartosaurus aralensis (Santonian Syuksyuk 

Formation, Kazakhstan; Averianov & Nessov 1995), and Tsintaosaurus spinorhinus (lower 

Campanian strata of the Jingangkou Formation in eastern China; Young 1958; Prieto-Márquez & 

Wagner 2013). However, these are lambeosaurines, and are all morphologically quite distinct 

from Aquilarhinus palimentus in showing (to a greater or lesser extent) evidence of dorsal 

migration of the facial skeleton concomitant with the existence of hollow supracranial 

ornamentation (Godefroit et al. 2004; Wagner, 2004; Prieto-Márquez & Wagner 2013; Wagner 

& Prieto-Márquez in prep.). 

There are a small number of known species of non-saurolophid hadrosaurids. 

Eotrachodon orientalis, from uppermost Santonian strata of the Mooreville Chalk in Alabama, is 

not only one of the oldest known hadrosaurids but also one of a handful of non-saurolophid 

species (Prieto-Márquez et al. 2016b). E. orientalis differs from A. palimentus in possessing a 

maxilla with shorter ectopterygoid shelf (less than 35% of the maxillary length) and incomplete 

union of the ventral spur of the jugal facet and the ectopterygoid ridge (Prieto-Márquez et al. 

2016a, fig. 6). In addition, the anterior apex and premaxillary shelf of the maxilla of E. orientalis 

is angled much more steeply (45 degrees relative to the tooth row) than in A. palimentus (30-

degree angle), with a proportionately deeper anterior half and shallow posterior third of the 
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maxilla. The base of the dorsal process of E. orientalis lies posterior to the mid-length of the 

maxilla, whereas in A. palimentus it is centred around the mid-length of the bone. In the context 

of Hadrosauridae, however, both taxa are remarkable in showing a jugal process of the maxilla. 

The jugal of E. orientalis is similarly lightly built, but the anterior process is substantially shorter 

and relatively deeper (Prieto-Márquez et al. 2016a, fig. 10) than in A. palimentus. The nasal of E. 

orientalis is not reflected into a crest. Most significantly, unlike A. palimentus the symphysial 

process of the dentary of E. orientalis is medially shorter and lacks the dorsal curvature present 

in the former ((Prieto-Márquez et al. 2016a, fig. 18). 

 Hadrosaurus foulkii from Campanian strata of the Woodbury Formation in Haddonfield, 

New Jersey (Leidy 1858; Prieto-Márquez et al. 2006) is younger than Aquilarhinus palimentus, 

but is likewise a non-saurolophid hadrosaurid. All that is known of the skull of H. foulkii are 

various teeth and a handful of maxillary fragments (Prieto-Márquez et al. 2006), and only the 

dentition shows informative overlapping characters with A. palimentus. The height/width 

proportion of dentary tooth crowns is similar in both hadrosaurids, 2.65 in H. foulkii (Prieto-

Márquez et al. 2006) and 2.4 in A. palimentus. Also in both species, both maxillary and dentary 

teeth show a single median carina (Prieto-Márquez et al. 2006). Despite the paucity of directly-

comparable morphology, phylogenetic analysis demonstrates that the two species are distinct 

(i.e., they are not sister species).   

 A fragmentary specimen from the upper Campanian Cerro del Pueblo Formation in 

northern Mexico formed the basis of the holotype of the non-saurolophid hadrosaurid Latirhinus 

uitstlani (Prieto-Márquez & Serrano Brañas 2012). Unfortunately, the only comparable cranial 

element between the two hypodigms is the nasal. Both nasals of both species exhibit an 

extremely broad, arcuate posterior margin of the osseous narial foramen that separates both 
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species from the rest of hadrosaurids. Indeed, the curvatures are a surprisingly close match (Fig. 

17). However, the nasal of L. uitstlani differs from that of A. palimentus in displaying a 

significantly dorsoventrally deeper supranarial process (Fig. 17A-C). The greater depth of the 

supranarial process of L. uitstlani becomes even more significant when taking into account that 

the entire dorsal margin including the internarial articular facet is missing (Fig. 17A). In contrast, 

the corresponding segment of the shallower supranarial process of A. palimentus is entirely 

preserved (Fig. 17B). There is no evidence that the supranarial process becomes thicker with size 

in other hadrosaurids, so we doubt that this difference is due to ontogeny. 

  

Comparison with Gryposaurus and other saurolophines with arched nasals. The presence of 

a gentle arch on the dorsal surface of the nasals of Aquilarhinus palimentus is reminiscent of the 

nasal crest in species of the saurolophine Gryposaurus. Gryposaurus ranges from the early 

Campanian (Horner 1992; Prieto-Márquez 2012) to possibly the late Maastrichtian (Lehman et 

al. 2016) and are distributed from southern Canada to southwestern Texas (Bertozzo et al. 2017). 

Notably, G. latidens, from lower Campanian strata of the Two Medicine Formation of Montana 

(Horner 1992), represents one of the oldest known hadrosaurids with an estimated age of 80 Ma 

(Horner et al. 2001). A nasal arch is also present in Rhinorex condrupus, a sister taxon to 

Gryposaurus spp. from the Neslen Formation of eastern Utah, in late Campanian strata dated to 

75–74.5 Ma (Gates & Sheetz 2014). Despite sharing an arcuate dorsal profile of the nasal, A. 

palimentus is clearly different from R. condrupus and Gryposaurus spp. The external bony naris 

(at least the dorsal extent) of Gryposaurus spp. and R. condrupus is significantly narrower 

anteroposteriorly (e.g., Prieto-Márquez 2010c, fig. 5; Gates & Scheetz 2014, fig. 3) than that of 

A. palimentus (Fig. 4). The maxilla of Gryposaurus shows a jugal tubercle instead of a jugal 
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process (e.g., G. latidens MOR 478-5-24-8-7) and its premaxillary shelf is steeply inclined at 

least 40 degrees relative to the tooth row (e.g., G. notabilis ROM 873) compared to the less 

inclined shelf of A. palimentus (30 degrees). Finally, the anterior process of the jugal of 

Gryposaurus (e.g., G. notabilis CMN 2278) and R. condrupus (Gates & Scheetz 2014, fig. 3) is 

substantially deeper with a relatively short anterior apex, compared to the shallow process and 

long apex of A. palimentus (Fig. 9A). 

 Naashoibitosaurus ostromi is a kritosaurin saurolophine (Prieto-Márquez 2014) 

originally described by Lucas & Hunt (1993) on the basis of a skull and fragmentary 

postcranium. The nasals display a low but acute arch. Unlike Aquilarhinus palimentus, however, 

the nasal crest of N. ostromi lies farther posterodorsally relative to the posterior margin of the 

external bony naris. Most notably, the posterodorsal margin of the external bony naris is very 

narrow in N. ostromi, less than half the width of the broad subcircular margin enclosed by the 

nasal of A. palimentus. In addition, a deep circumnarial fossa excavates the lateral surface of the 

nasal surrounding the external bony naris of N. ostromi, whereas the fossa is distinctly shallower 

in A. palimentus. As in other hadrosaurids, but unlike A. palimentus, the maxilla of N. ostromi 

shows a dorsal jugal tubercle rather than a jugal process and the occlusal plane displays a 

maximum of two functional teeth. The dorsal surface of the premaxillary shelf is concave and 

substantially narrower, about half the width of that in A. palimentus. Similarly, the palatal 

process of N. ostromi is much shallower, about half the depth seen in A. palimentus. 

  

Trophic specialisations in Aquilarhinus palimentus. Although the premaxillae of A. 

palimentus were not recovered, there is no indication that the bizarre mandibular symphysial 

configuration in this species was related to the circumnarial structure, nor is it likely to be related 
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to any part of the vocal, thermoregulatory, defensive, or other physiological behavioural systems 

functionally linked to the rostrum. It is here considered more likely that the autapomorphic 

dentary symphysis is linked to restructuring of the rostrum for a unique feeding strategy. The 

projection and curvature of the symphysial processes of the dentary, nearly horizontal palatines, 

and wide nasals all suggest that this animal was broad snouted, if not simply broad-headed, also 

suggesting trophic adaptation. The dentaries and their symphysial processes would have met in a 

W-shaped section anteriorly. Assuming the predentary retained its ancestral relationships to the 

features of the anterior dentary, it would have been shaped like two trowels laid side to side. The 

raised symphysis might have led to a raised ridge that passed between the concave predentary 

fossae along the midline, much like the strengthening ridge leading from the handle onto the 

blade of a spade or shovel. The anterior extension of the symphysial processes, and the general 

proportions of the dentaries, suggests that the predentary may have been relatively long.  

The hypothesized shovel-shaped ‘bill’ and widening of the skull in Aquilarhinus 

palimentus may have been adapted to shoveling out and scooping up vegetation. The central 

reinforcing ridge developed from the dentary symphysis would produce two strong arches in 

cross-section to resist the strain of pushing through sediment or vegetation. The dentary was 

straightened relative to ancestral hadrosaurids, likely in order to bring the predentary into 

alignment with the axis of the mandibles, reducing bending stress along the length of the bone 

and keeping material from falling out of the predentary. The widening of the mandible, and 

corresponding widening of the cranium, produced a wider ‘scoop.’  

 The adaptations of this animal, as interpreted here, bring to mind those of gomphotherid 

proboscideans, sirenians, hippopotami, the South American pyrotheres, and especially 

desmostylians. These groups are or were relatively large bodied herbivorous mammals, many 
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either semi- aquatic or closely related to aquatic forms. Moreover, these taxa share narial 

specialisations, as also occur in hadrosaurids. These analogies suggest that Aquilarhinus 

palimentus may have been a paralic, possibly semiaquatic species specialized for digging in 

loose wet sediment. This habitus is consistent with the facies interpretation of the strata in which 

the type specimen was found.  

 Trophic specialization does not seem exceptionally common among hadrosaurids; some 

non-hadrosaurids (e.g. Protohadros byrdi), and the lambeosaurine Angulomastacator daviesi 

(Wagner & Lehman, 2009) have strongly ventrally deflected rostra, but a direct connection to 

feeding habits has not been proposed. Bakker (1986) and others have proposed trophic 

specializations based on the diameter of the premaxillary ‘beak.’ While this is understandable, 

we feel that until the morphogenetic relationship between the beak and the circumnarial fossa 

can be explored in detail (Wagner, 2004; Wagner & Prieto-Márquez in prep.), it is wisest to 

consider this tentative. The conformation of the dentary symphysis in Aquilarhinus palimentus is 

so far the most likely candidate for a clear trophic specialization among hadrosaurids. 

 

Implications for the evolution of the hadrosaurid crest. Ancestral state reconstructions 

(Supplemental online materials 3–6) for the presence of an osseous cranial crest (in its most 

simple form, an elevation of the skull roof above the subhorizontal ancestral cranial profile) 

indicates that the most recent common ancestor of the clade including Saurolophidae and the 

Aquilarhinus-Latirhinus lineage probably sported a crest (Fig. 19A and 20). The presence of a 

cranial crest was also likely ancestral for saurolophids as a whole, including both lambeosaurines 

and saurolophines. Therefore, the ‘solid crests’ of saurolophines and the ‘hollow crests’ of 

lambeosaurines are most likely homologous (Hopson 1975; Wagner 2004; Wagner & Prieto-
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Márquez in prep.). It would then be less appropriate to say that the crest has evolved several 

times among saurolophids, and more reasonable to suggest that it is the conformation of the 

crest, not the presence or absence of a crest, which has been most labile among hadrosaurids.  

 Both parsimony (Fig. 19B) and maximum likelihood (Fig. 21) optimization methods 

support the hypothesis that the arched nasals of Aquilarhinus palimentus did not evolve 

independently from those of derived hadrosaurids such as Gryposaurus and other kritosaurins 

that are deeply nested within Saurolophinae but are in fact homologous. This may indicate (as 

implied by Hopson 1975) that the arched nasal crest is the ancestral conformation of the crest, 

and all other hadrosaurid crests are ultimately derived from the arched nasal crest. 

 The lack of sufficient cranial material in Hadrosaurus foulkii (Prieto-Márquez et al. 

2006) prevents ascertaining whether crests were ancestral for Hadrosauridae (Fig. 19A and 20). 

The unadorned skull of another non-saurolophid hadrosaurid, Eotrachodon orientalis (Prieto-

Márquez et al. 2016a) suggests tentatively that the earliest hadrosaurids lacked supracranial 

crests. On the other hand, osseous crests must have been lost at least twice within Saurolophinae 

(Acristavus gagslarsoni and Edmontosaurini) and might have been lost in E. orientalis as well. 

So far there is only evidence that enclosure of the nasal passages to form a ‘hollow’ crest 

occurred once, in lambeosaurines. However, this must have happened quite early in their 

evolution, as previously indicated by Prieto-Márquez & Wagner (2013). 

 

Conclusions 

 

Aquilarhinus palimentus represents a new genus and species of hadrosaurid from the 

early Campanian of southwestern Texas. This taxon is characterized by several 
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autapomorphies of the facial skeleton, the most remarkable of which consists of a dentary 

symphysis that is reflected dorsally as well as anteromedially projected. The latter 

condition, along with evidence of a relatively broad skull, suggest that this hadrosaurid 

may have fed by shovelling material, possibly soft water plants.  

 This new species is one of the oldest hadrosaurids and one of the few non-

saurolophid hadrosaurids known to date, forming a clade of ‘broad-nosed’ forms with 

Latirhinus uitstlani that branched off before the major clades Saurolophinae (‘solid-

crested’ and unadorned taxa) and Lambeosaurinae (‘hollow-crested’ taxa). This adds to 

the diversity of pre-saurolophid taxa known to date, previously restricted to Hadrosaurus 

foulkii and Eotrachodon orientalis, and suggests the existence of a previously unrealized 

diversity of hadrosaurid lineages that evolved prior to the main radiation of the clade. 

 Supracranial crests were possibly present ancestrally in non-saurolophid 

hadrosaurids, as well as in the common ancestor of Saurolophidae, Saurolophinae and 

Lambeosaurinae. We find evidence in support of nasal arches as the ancestral crest 

morphology, from which other derived types of supracranial ornaments evolved within 

saurolophid hadrosaurids.  
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Figure captions 

 

Figure 1. Geographic and straigraphic location of the type and referred material of Aquilarhinus 

palimentus. Abbreviations: cl, clay; si, silt; ss, sandstone; cg, conglomerate. 

 

Figure 2. Reconstruction of the skull and mandible of Aquilarhinus palimentus. Areas colored in 

brown indicate bones belonging to the holotype specimen TMM 42452-1. 

 

Figure 3. Left nasal of the holotype specimen (TMM 42452-1) of Aquilarhinus palimentus. A, 

lateral view; B, interpretive line drawing of the lateral view; C, medial view; D, interpretive line 

drawing of the medial view. Dark grey indicates reconstruction, cross-hatching indicates broken 

surfaces, open circles represent concretionary matrix. 

 

Figure 4. Right nasal of the holotype specimen (TMM 42452-1) of Aquilarhinus palimentus. A, 

lateral view; B, interpretive line drawing of the lateral view; C, medial view; D, interpretive line 
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drawing of the medial view. Dark grey indicates reconstruction, cross-hatching indicates broken 

surfaces, open circles represent concretionary matrix. 

 

Figure 5. Right maxilla of the holotype specimen (TMM 42452-1) of Aquilarhinus palimentus. 

A, lateral view; B, interpretative line drawing of the lateral view; C, dorsal view; D, 

interpretative line drawing of the dorsal view. 

 

Figure 6. Right maxilla of the holotype specimen (TMM 42452-1) of Aquilarhinus palimentus. 

A, medial view; B, interpretative line drawing of the medial view; C, medioventral view, 

exposing the occlusal plane of the dental battery; D, lateral view showing the area of the tooth 

row enhanced in E; E, detail view of the maxillary dentition in labial view. 

 

Figure 7. Facial elements of the holotype specimen (TMM 42452-1) of Aquilarhinus palimentus. 

A, right jugal in lateral view; B, interpretative line drawing of A; C, right jugal in medial view; 

D, interpretative line drawing of C; E, F, lateral and medial views, respectively, of the right 

quadratojugal; G, F, interpretative line drawings of E and F, respectively. 

 

Figure 8. Right palatine of the holotype specimen (TMM 42452-1) of Aquilarhinus palimentus 

in A, anterior view; B, dorsal view; C, medial view; and D, ventral view; E, articulated right 

palatine, maxilla and jugal in anterodorsolateral view; F, articulated right palatine, maxilla and 

jugal in posterodorsolateral view. 
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Figure 9. Partial sphenoid of the holotype specimen (TMM 42452-1) of Aquilarhinus 

palimentus. A, anterior view; B, posterior view; C, posteroventral view; D, lateral view; E, 

ventral view.  

 

Figure 10. Mandibular elements of the holotype specimen (TMM 42452-1) of Aquilarhinus 

palimentus. A, right dentary in lateral view; B, right dentary in anterior view; C, interpretative 

line drawing of A, grey indicates reconstrutions; D, E, first ceratobranchial in lateral and dorsal 

views, respectively; F, right dentary in medial view; G, detail of the dental battery of the right 

dentary in lingual view; H, interpretative line drawing of F; I, interpretative line drawing of the 

right dentary in dorsal view; J, right dentary in dorsal view; K, fragment of right coronoid 

process in medial view. 

 

Figure 11. Forelimb elements of the holotype specimen (TMM 42452-1) of Aquilarhinus 

palimentus. Left manus in dorsal, A, and palmar, B, views, respectively. 

 

Figure 12. Pelvic elements of the holotype specimen (TMM 42452-1) of Aquilarhinus 

palimentus. A and B, postacetabular process of right ilium in dorsal and lateral views, 

respectively; C and D, partial right ischium in lateral and medial views, respectively. 

 

Figure 13. Hindlimb elements of the holotype specimen (TMM 42452-1) of Aquilarhinus 

palimentus. A and B, left astragalus in dorsal and posterior views, respectively; C and D, right 

pedal phalanx III-1 in lateral and ventral views, respectively; E and F, pedal ungual III in lateral 

and dorsal, views.  
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Figure 14. Hadrosaurid facial and neurocranial elements from Rattlesnake Mountain. A, C and 

E, partial left postorbital (TMM 45947-490.2) in dorsal, lateral and ventral views, respectively. 

B, D and F, interpretative line drawings of A, C and E, respectively; G, I and K, partial left 

frontal (TMM 45947-490.1) in medial, ventral and dorsal views, respectively; H, J and L, 

interpretative line drawings of G, I and K, respectively; M, O, partial neurocraneum (TMM 

45947-489) in dorsal and right lateral views, respectively; N, P, interpretative line drawings of M 

and O. 

 

Figure 15. Pectoral and forelimb hadrosaurid elements from Rattlesnake Mountain. A, B, 

proximal region of left scapula (TMM 45947-492) in proximal and lateral views, respectively; 

C–E, partial left humerus (TMM 42452-3) in posterior, proximal and distal views, respectively. 

 

Figure 16. Hadrosaurid pelvic and hindlimb elements from Rattlesnake Mountain. A, partial left 

pubis (TMM 45947-493) in lateral view; B, central plate of left ilium (TMM 42309-13) in lateral 

view; C–F, left femur (TMM 45947-491) in proximal, posterior, medial and distal views, 

respectively; G and H, distal end of right tibia (TMM 42452-4) in posterior and distal views, 

respectively.  

 

Figure 17. Comparison of the nasals of Aquilarhinus palimentus and Latirhinus uitstlani. A, 

partial right nasal of L. uitstlani (IGM 6583) in medial view; B, right nasal of A. palimentus 

(TMM 42452-1) in medial view; C, superimposition of the right nasals of L. uitstlani and A. 

palimentus in medial view, showing the dorsoventrally broader supranarial process of L. 
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uitstlani; note that while the dorsal margin of the supranarial process is complete and the 

internarial facet is preserved in A. palimentus, it is missing in L. uitstlani, implying a 

substantially wider supranarial process in the Mexican species. 

 

Figure 18. Strict consensus tree showing the phylogenetic position of Aquilarhinus palimentus 

within hadrosaurid dinosaurs. 

 

Figure 19. Parsimony optimization of two characters describing different conditions of the 

osseous cranial crest in hadrosaurid dinosaurs, mapped on the strict consensus tree resulting from 

the parsimony phylogenetic analysis. A, optimization of the presence/absence of osseous cranial 

crest; B, optimization of the morphology of the osseous cranial crest. 

 

Figure 20. Maximum likelihood optimization of the absence/presence of osseous cranial crest 

mapped onto one of the 12 most parsimonious trees resulting from the phylogenetic analysis. 

Taxon font colors indicate the following: red, osseous crest present; blue, osseous crest absent; 

grey, presence or absence of osseous crest unknown. 

 

Figure 21. Maximum likelihood optimization of osseous cranial crest shape mapped onto one of 

the 12 most parsimonious trees resulting from the phylogenetic analysis. Colors indicate the 

following: grey, presence or absence of osseous crest unknown; black, crest absent; dark blue, 

arcuate protuberance, dorsal to the orbits in adults; light blue, paddle-like posteriorly directed 

solid crest; green, rod-like posterodorsally directed solid crest; excavated anteriorly facing 

protuberance, anterodorsal to the orbit; orange, nasal fold rising dorsally or posterodorsally, 
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laterally excavated, resting over the frontal; red, cockscomb formed by the nasal and a solid 

plate-like extension of the premaxilla; violet, long and tubular crest, extending posteriorly 

beyond the occiput and gently arched. 

 












































