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Abstract 

Phalangeal reduction is a common and widespread phenomenon among tortoises that 

has been associated with the adaptation to terrestrial life. While reduced manual digit 

one appears characteristic in almost all Testudo species, it is uncertain why the 

metacarpal I and distal carpal of the same digit are completely missing in some 

individuals of Hermann’s tortoise (Testudo hermanni hermanni). To clarify this issue, 

we investigated the number of manual claws in six populations of Hermann’s tortoise 

(one from the Ebro Delta in the Iberian Peninsula and five from Minorca Island), their 

age, sex, genetic lineage and the substrate type that they inhabit. The number of claws 

was ascertained based on direct counts (n > 1,500 individuals) and by X-rays (n = 32 

individuals), obtaining three different phalangeal formulae: (1-2-2-2-1, D-2-2-2-1, 0-2-



 

 

 

2-2-1). Thus, claw counts through both methodologies (direct count and X-ray), further 

confirm that the observed claws serve as a good proxy to assess the actual number of 

digits. Our results show no loss of phalanges, metacarpal and carpal bones in digit one 

associated with age, sex or substrate, contrary to some previous authors who 

hypothesized a relationship between this loss and sexual dimorphism. Therefore, 

variations in the number of manual digits and the loss of metacarpal I and distal carpal 

in digit one in Hermann’s tortoise are related to population and genetic lineage. More 

detailed comparisons with other Testudo hermanni populations from elsewhere in 

Europe would be required to understand the evolutionary significance concerning the 

intrapopulation variability in the number of digits remaining.  

 

Keywords Testudo hermanni · phalange reduction · Ebro Delta · Minorca Island · 

phalangeal formula  

 

Introduction  

Turtles have successfully diversified into a variety of forms: adapted to aquatic, marine 

and terrestrial habitats, despite the fact that they have been structurally constrained by 

the presence of the shell. Thus, this great ecological diversity correlates with different 

locomotor patterns that are reflected, among others, in different limb anatomies (Delfino 

et al. 2010). Testudinids (Testudinidae or tortoises) are an exclusively terrestrial group 

of turtles with almost worldwide distribution (except Oceania and Antarctica) that 

comprise 18 genera and 65 species (Marmi and Luján, 2012; TTWG, 2017). In 

particular, the high-domed shell and unique limb anatomy are what mainly characterize 

tortoises, which are adapted for terrestrial life (Ernst et al. 2000). Testudinid limbs are 

thick and robust, serving as forelimbs that are rather flat and well bent, whereas 

hindlimbs are short and cylindrical (Ernst and Barbour, 1998). All digits in both manus 

and pes are short, and show short and rounded claws (Zug, 1971).  

Currently, the genus Testudo includes the five extant Western Palaearctic species, and 

according to the more recent molecular phylogenies (Fritz and Bininda-Emonds, 2007; 

Vasilyev et al. 2014) and phylogenetic analysis of morphological traits (Luján et al. 

2016), three subgenera are recognized (Agrionemys, Chersine and Testudo). 

Specifically, Chersine subgenus is represented by a single extant species, the Hermann’s 

tortoise (Testudo hermanni), which is a medium-sized species ranging in average 



 

 

 

carapace length between 13-21 cm (Cheylan, 2001; Bertolero et al. 2011a). Hermann’s 

tortoise populations are distributed throughout most of the European Mediterranean 

region, usually below 500 m a.s.l. Nowadays, two subspecies of Hermann’s tortoise are 

distinguished: T. h. hermanni in Western Europe, which is in strong decline and has very 

restricted distributions; and T. h. boettgeri in Eastern Europe, which seems to be more 

stable and displays rather continuous distribution; however, a recent assessment has 

shown a worse conservation situation (see Fritz et al. 2006a; Bertolero et al. 2011a; 

Nikolić et al. 2018). Moreover, human impact has been reducing the favorable habitats 

for this taxon, especially agricultural practices and urbanization (Cheylan, 1981, 2001; 

Vetter, 2006), human-related forest fires and poaching (Cheylan, 2004; Couturier et al. 

2011; Santos and Cheylan, 2013) and illegal animal trade (Bertolero et al. 2011a).  

Digital reduction (i.e. when species show fewer digits than their related species) is a 

common characteristic that often occurred throughout the evolution of tetrapods (e.g. 

Shapiro et al. 2003; McHorses et al. 2017). Although in Hermann’s tortoise, either five 

or four digits can occur in both forelimbs (Fig. 1 and Fig. 2a-d) and hindlimbs 

(Bertolero, 2010; 2014), in the former the digit that tend to reduce is the first and in the 

latter is the fifth (see Crumly and Sánchez-Villagra, 2004). We defined here the 

condition of a “full digit” when the members of the genus Testudo retains two phalanges 

in manus (being the distal phalanx the claw), which always occurs in the digits two, 

three and four (Fig. 2a). Thereby, a digit one or five is defined as a “reduced digit” when 

this digit lacks the proximal phalanx but still retain the distal one (Fig. 2a). The latter 

occurs in all Testudo spp. with the exception of T. marginata that retains two phalanges 

in digit five and thus has a “full digit” (see Crumly and Sánchez-Villagra, 2004; 

Hitschfeld et al. 2008). Similarly, digit one in at least three of five Testudo species (T. 

graeca, T. hermanni and T. horsfieldii) is reduced, but also it may be: a “lost digit”, 

when the digit is completely missing (i.e. both phalanges are missing: Fig. 2b); a “lost 

digit and metacarpal I” which implies the additional loss of the metacarpal I (Fig. 2c); 

and a “lost digit, metacarpal I and distal carpal” when the distal carpal is also missing 

(Fig. 2d).  

The first studies of the ontogeny of turtle limbs started in the late 18th century, but 

the examinations of the phalangeal formula in testudinids were restricted to anecdotal 

reports or were merely concerning a single species (e.g. Baur, 1888; Boulenger, 1889). 

Auffenberg (1966) was the first author to provide a functional interpretation of the adult 

carpus of several tortoise species. Then, the phalangeal formulae of the pes were 



 

 

 

analyzed in testudinids using a phylogenetic approach, although only four species of 

tortoises were examined by Zug (1971). He concluded that tortoises always have four 

clawed full digits in each manus; however, a reduced or lost digit occurs sometimes. 

Shortly after, detailed manus illustrations of both extant and fossil gopher tortoises 

(genus Gopherus) were provided by Bramble (1982). The first mention of the number of 

digits in Testudo hermanni is found in Highfield (1988), who points out that all 

individuals (both males and females) of T. h. boettgeri that he found in Bulgaria showed 

four full digits in their manus. However, preliminary results published by Eendebak 

(2001) claimed that the number of digits on T. h. boettgeri was strongly determined by 

the maternal genetic characteristics (i.e. offspring of mothers with four digits on their 

manus were four times more likely to have four digits themselves). Although Eendebak 

(2001) announced the publication of the complete study clarifying the later results on a 

genetic basis, this study has not been published so far; therefore, these explanations are 

still missing. There are remarkable results in a study focused on Hermann’s tortoise 

from Corsica (T. h. hermanni) conducted by Vetter (2006), as he found sex differences 

related to the number of digits (44.2% of males and 59.4% of females possessed five 

digits), although the sample size was not provided. Of all the sampled individuals with 

five digits, only 4.2% of males and 12.5% of females showed a claw well developed. 

Moreover, adult individuals with four digits often present the fifth digit also reduced, 

which is clearly recognized because the latter does not possess a claw (distal phalanx). 

However, Vetter (2006) did not provided any hypothesis to explain these differences 

between sexes regarding to variations of digit one or five. In a study of carpal 

morphology and phalangeal formulae, Crumly and Sánchez-Villagra (2004) examined 

in testudinids the ontogenetic stage of the individuals, as well as the phylogenetic 

context. Fritz et al. (2006b) proposed that the phalangeal reduction present in terrestrial 

and semiterrestrial geoemydids (Cuora) and emydids (Terrapene) is related with their 

mode of life, mainly as a consequence of adapting to walk on land (see further Minx, 

1992; Ludwig et al. 2007). In particular, in some highly aquatic geoemydids (e.g. 

Malayemys, Morenia, among other genera), there is no loss of phalanges; they even 

display an additional phalanx in the digit five of the manus and pes, which apparently 

seems more favorable for swimming (Ludwig et al. 2007). Finally, a unique study that 

was focused on carpal morphology and phalangeal reduction both in Testudo hermanni 

and T. horsfieldii (Hitschfeld et al. 2008) found more variation in phalangeal formula 

than Crumly and Sánchez-Villagra (2004). This is easily explained by the higher sample 



 

 

 

(29 individuals) studied by the former in comparison to just three specimens analyzed 

by the latter. Therefore, the loss of digit one (both phalanges), metacarpal I and distal 

carpal, together with the extensive fusion of carpal elements in T. horsfieldii, could be 

linked with its burrowing mode of life (Hitschfeld et al. 2008).  

The main aim of this study is to characterize variation in both the number of digits 

and phalangeal formula in the manus and to test if this variation is related to other 

variables (age, sex, habitat among other), using a large sample of Hermann’s tortoise 

obtained in wild populations. First, we investigated whether the number of visible digits 

corresponds with the phalangeal formula; X-rays were used because digit five is often 

atrophied, and/or digit one may be partially preserved as stated above, both inside the 

manus (see Vetter, 2006). Second, we tested whether the number of digits in the manus 

differs between the sexes, as other authors have claimed (Eendebak, 2001; Vetter, 2006). 

Third, given that digit one may be atrophied, and it is more recognizable in individuals 

larger than 45 mm (approximately from one year of age), we tested whether the number 

of digits differs between age groups (juveniles vs. sub-adults and adults). Finally, we 

tested whether the number of digits in the manus differs between populations, genetic 

lineages, or the types of substrates that Hermann’s tortoises inhabit. 

Therefore, the most important contribution of this paper is that the number of 

individuals is significantly larger than that of previous works (here, 1,669 individuals 

compared to three in Crumly and Sánchez-Villagra, 2004; or 29 in Hitschfeld et al. 

2008), allowing us to carry out reliable statistical analyzes. Secondly, our sample is very 

representative, including wild individuals of various ages, sexes and populations (i.e. 

six). This extraordinary amount of data is very important since the previous works used 

only museum specimens. Therefore, in most cases, it was nearly impossible to assess 

with confidence their subspecies, population, or sometimes even their age and sex.  

Materials and methods 

Hermann's tortoise populations 

This study was conducted on six wild populations of Hermann’s tortoise, one in the 

Iberian Peninsula and five on Minorca Island (Tables 1 and 2). These populations 

inhabit a bioclimatic zone of evergreen oak trees, characterized by long dry summers, 

and wet warm winters (Cheylan, 2001). The mainland Ebro Delta (DE) population is 

situated in the Punta de la Banya Reserve (Delta de l’Ebre Natural Park), a flat sandy 

salt marsh peninsula of 2,514 ha, which is formed by dunes with small slopes fixed by 



 

 

 

psammophile and halophile vegetation (Bertolero, 2002; Bertolero et al. 2007). On 

Minorca Island, Herman’s tortoise occupies most of the island with a patchy 

distribution, mainly concentrated on the coast around the island, except in the most arid 

areas (Bertolero and Pretus, 2012). We studied five populations near the towns of 

Ferreries (one population: NF), es Mercadal (three populations: RSM, DSM and DNM) 

and Alaior (one population: RSA). The exact locations are not specified owing to 

poaching concerns (Table 2). The NF population inhabits a hill formed by a 

consolidated sand dune with holm oak (Quercus ilex) and pine (Pinus halepensis) forest. 

The DNM and DSM populations inhabit dune vegetated systems. The RSM and RSA 

populations are located in calcareous ravines. The proportion of juveniles and sub-adults 

relative to adults varies between the populations and years, but all show high tortoise 

densities (>20 tortoises/ha in Minorca Island and 7 tortoises/ha at the Ebro Delta; 

Bertolero et al. 2018, AB unpublished data). Juveniles included in this study had a 

minimum shell length of 45 mm, to avoid any problems with visual digit counting due 

to the small size of the individual (hatchlings were not included because in some 

individuals, the claw of the first digit is very small, and needs careful inspection, which 

is difficult to see during field work).  

These populations are from two distinct genetic lineages (Zenboudji et al. 2016): 1, 

populations NF and DNM are of continental lineage, which includes populations from 

Spain (Albera), France (Var) and Italy (called Minorca 1); 2, populations DE, RSM and 

DSM are of insular lineage found only on Minorca and the Ebro Delta (called Minorca 

2). The RSA population is an interbreed population of both lineages embedded in the 

area of the genetic group Minorca 2 (Massana et al. unpublished data). In the latter 

population, 1,615 Minorcan tortoises of unknown genetic lineage were released by the 

NGO GOB-Menorca for conservation purposes between 1995 and 2004 (GOB-Menorca 

com. pers.). 

 

Field methods and data collection  

The number of claws of both forelimbs have been recorded since 2000 in the Ebro Delta 

population and from 2003 to 2006 in the Minorca Island populations, within the 

framework of a long-term research program of these populations (Bertolero, 2002; 

Bertolero et al. 2018). Once captured, all tortoises were sexed (only sub-adults and 

adults), age-class classified according to the type of growth rings (juveniles of unknown 

sex, sub-adult and adult; Bertolero et al. 2011b) and marked individually with notches 



 

 

 

on the carapace. Additionally, from a previous study where females from the Ebro Delta 

were X-rayed to assess their reproductive status (Bertolero et al. 2007), radiographs of 

32 individuals were carefully reviewed to assess their phalangeal formula (Table 1) to 

test if the number of claws could be a good proxy of the number of digits. Since the 

number of claws is equivalent to the number of digits (see results section) we use the 

term number of digits throughout the text. The coding of phalangeal formulae follows 

Crumly and Sánchez-Villagra (2004), where, for example, 1-2-2-2-1 indicates that one 

phalanx is present in the digits one and five, whereas two phalanges occur in digits two, 

three and four. The fieldwork conducted complies with Spanish laws. Handling and 

sampling of Herman’s tortoises were authorized by the regional governments of 

Catalonia and the Balearic Island (Generalitat de Catalunya permit SF/058 and Govern 

de les Illes Balears permit CEP 08/2017). 

 

Statistical analysis 

Firstly, to test whether the number of digits that are externally displayed and the 

phalangeal formulae seen on the X-rays (Table 1) are equivalent, a paired Sign rank test 

was calculated with a total of 32 females from both right and left forelimbs (i.e. N = 

64).  

Secondly, to determine whether the number of digits depended on sex, age, 

population, genetic lineage or substrate type, three generalized linear mixed models 

(GLMM) were constructed with the number of the observed digit forelimbs (coded as 0 

for four digits and coded as 1 for five digits) as the dependent variable. To investigate 

the effect of sex and population (model 1), this first model was constructed with sex 

(male vs. female) and population (DE, NF, RSM, DSM, DNM and RSA) as fixed 

factors. To investigate the effect of age and population (model 2), a second model was 

constructed with age-class (juveniles vs. sub-adult + adult) and population as fixed 

factors. These two models were built separately since sex data was not available for 

juveniles, and thus not allowing to include the effect of sex, age and population in a 

single model. Thus, the sample size of model 1 was lower (2,264 forelimbs and 1,132 

individuals) than model 2 (3,338 forelimbs and 1,669 individuals). To investigate the 

effect of substrate types and genetic lineages, a third model (model 3) was conducted 

with the same dataset used in model 2 but with substrate (sand or calcareous and clay) 

and genetic lineage (mixed, Minorca 1 and Minorca 2) as fixed factors  (3,338 forelimbs 

and 1,669 individuals) instead of the population factor. This third model was built since 



 

 

 

population (included in models 1 and 2) and genetic lineage are highly correlated and 

cannot be introduced in the same model. For all models, tortoise identity was included 

as a random factor (to count the right and left forelimbs). Tukey’s HSD test was used for 

post-hoc comparisons. The GLMMs were fitted with the maximum likelihood method, 

using the logit link function and with binomial error distribution. Analyses were carried 

out with the R 3.2.2 software (R Development Core Team, 2015), with BSDA (Arnholt 

and Evans 2017), lme4 (Bates et al. 2015) and multcomp packages (Hothorn et al. 

2008). 

 

RESULTS 

We studied 3,338 forelimbs belonging in 1,669 individuals of six populations (Tables 1 

and 2). 

Does the number of digits displayed externally correspond to the phalangeal 

formulae? 

The number of digits that are externally displayed and the phalangeal formulae seen on 

the X-rays did not significantly differ (S = 0; n = 64, P = 1) and thus the number of 

claws could be a good proxy of the number of digits. In the 32 females studied by X-

rays, we observed that all the individuals with five or four visual digits corresponded 

with what we observed in the radiographies (Tables 1 and 2). Indeed, individuals with 

five visual digits had the digits 2, 3 and 4 full (two phalanges:) and digits 1 and 5 

reduced (one phalanx = claw) and therefore displaying the following phalangeal 

formula (1-2-2-2-1: Fig. 2a). However, individuals with four visual digits had entirely 

lost digit one (both phalanges) but also the metacarpal I and distal carpal (0-2-2-2-1: 

Fig. 2d), with one exception only (right manus of the individual 1235: D-2-2-2-1). In 

this way, no individual with four digits of our sample showed a manus with the 

metacarpal I and distal carpal (M-2-2-2-1: Fig. 2b). We found only one specimen with 

four visual digits but presenting five digits in the X-rays. In this case, digit one was 

in an unnatural anatomical position (entirely blended in dorsal direction inside the 

manus) and therefore it was a pathological individual.  

As stated above, Hitschfeld et al. (2008) further found a fourth phalangeal formula, 

i.e. a “lost digit”, when both phalanges are missing but the metacarpal I and distal carpal 

are present (M-2-2-2-1). The observed frequencies between Hitschfeld et al. (2008) and 

our study are significant (Chi2 = 12.01, df = 2, p = 0.002; classes M-2-2-2-1 and D-2-2-



 

 

 

2-1 pooled), with more cases of phalanges and/or metacarpal I loss in Hitschfeld’s 

sample than in our sample from DE. However, when the three classes of phalangeal 

formulae recovered by Hitschfeld et al. (2008) are pooled (0-2-2-2-1, M-2-2-2-1 and D-

2-2-2-1), both studies showed similar frequencies of individuals without an external 

digit (Chi2 = 0.119, df = 1, p = 0.730).  

 

Does the number of digits depend on sex, age or population? 

Although males tended to have a lower number of digits than females (61,5% of males 

and 65,6% of females had five phalanges), the gender factor was not significant (Table 

3). As expected, the number of digits was not significantly different between juveniles 

and adults (61,3% of juvenile and 63,5% of adults had five phalanges; Table 4). Finally, 

the number of digits significantly differed between populations (Tukey’s HSD tests, 

DNM vs. RSM: p = 0.002; DNM vs. RSA: p = 0.002; Fig. 3, Tables 3 and 4). 

Does the number of digits depend on substrate or genetic lineage? 

The number of digits was not significantly different between substrates (see Table 5). 

However, the number of digits significantly differed between genetic lineages (Table 5, 

Fig. 4 ). The mixed group showed the lowest proportion of individuals with five digits, 

Minorca 1 the lineage with a higher proportion with five digits, and Minorca 2 the one 

with an average proportion between Minorca 1 and the mixed group (Table 5, Fig. 4: 

Tukey’s HSD tests, Minorca 1 vs. Mixed: p<0.001; Minorca 2 vs. Mixed: p = 0.06; 

Minorca 1 vs. Minorca 2: p = 0.002). 

 

Discussion  

According to the evolutionary history of reptiles, the number of digits for a species 

seems to be a strongly stable feature, with the only known exceptions present in the 

lizard genus Hemiergis (Choquenot and Greer, 1989) and in both tortoises of the 

Testudo and Kinixys genera (Crumly and Sánchez-Villagra, 2004; Hitschfeld et al. 

2008). In particular, the number of digits in the lizard H. peronii differs among 

populations of this species (Choquenot and Greer, 1989). However, for tortoises no 

detailed information is available in the literature regarding the population origin of the 

samples used in previous studies (Crumly and Sánchez-Villagra, 2004; Vetter, 2006; 

Hitschfeld et al. 2008). Thus, the present study, which focuses on T. h. hermanni, is the 



 

 

 

first to report intrapopulation variability in the number of visible digits in a reptilian 

species.  

Several authors have reported that T. hermanni can display four or five digits in the 

forelimbs (Highfield, 1988; Eendebak, 2001; Vetter, 2006; Hitschfeld et al. 2008; 

Bertolero, 2014). Nevertheless, so far, the extent of this individual variation among and 

within populations has not been evaluated rigorously or in detail. Our results denote that 

the proportion of individuals with four visible digits varies according to populations and 

genetic lineage only (see below other relevant variables considered such as age, sex or 

type of substrate).  

Digital reduction can be achieved by two ontogenetic processes: complete loss of the 

digit (i.e. loss of all phalanges and related metacarpal and carpal bones); or a severe 

reduction (loss of all phalanges; Shapiro et al. 2007). In any case, both cases externally 

produce the same result in the Hermann’s tortoise: showing four digits in the forelimbs. 

Given that the number of digits counted externally in the forelimbs of T. h. hermanni 

fits well with their real number of digits, the number of observed claws can be used as a 

good proxy of the real number of digits. Overall, our results confirm that 37% (n = 

3,338 examined extremities) of T. h. hermanni individuals have only four digits in their 

forelimbs, but this percentage varies greatly among populations (range: 28.1% - 49.5%). 

Even though our sample size for the phalangeal formulae is much more limited and for 

one population only, this reduction may merely be due to the entire loss of digit one (0-

2-2-2-1: 31.3%, n = 64 extremities), or to the loss of the phalanges and/or the 

metacarpal I (D-2-2-2-1: 1.6%, n = 64 extremities). Apart from the two later variations, 

Hitschfeld et al. (2008) further reported a third case produced by the loss of the 

phalanges (M-2-2-2-1) for this subspecies but retaining the metacarpal I and distal 

carpal; however, it was absent in our population (DE).  

Concerning digit variation, we did not find differences between ages, as expected, 

since digits and claws are fully developed when tortoises hatch. To date, no other works 

analyze age differences in the number of digits in extant and extinct Testudines. 

Similarly, we did not find differences between the sexes in the number of external 

digits, contrary to Vetter (2006) for Corsican tortoises (T. h. h.). Unfortunately, Vetter 

(2006) did not provide sample size or a statistical test; consequently, it is not possible to 

know if his observed frequencies are significantly different. The author also reported 

that only 44.2% of males showed five claws; however, our results denote that the five 

digits were present externally in greater proportion, although non significantly different 



 

 

 

from the females, in all our studied populations (61.5% of males with five digits, all 

populations pooled). Furthermore, Eendebak (2001) indicated that the number of 

external digits has a clearly genetic component, since he observed in their enclosures 

that females with four digits produced 80% of hatchlings that also had four digits. 

Despite omitting to provide information about the sires and no further data were 

published to quantify his observations, our results indicate that a genetic component 

could be operating, since we found that lineage and population factors were the only 

significant ones in our analyses. However, we are not able to clearly disentangle both 

factors because some pair-wise comparisons between the populations of the two pure 

lineages did not show significant differences (e.g. no significant differences between 

populations NF from lineage Minorca 1 and RSM from lineage Minorca 2: Table 4). 

Finally, the population factor does not encompass genetic characteristics only, but 

further ecological, environmental characteristics (e.g. substrate, but this was not relevant 

to explain the number of digits) and genetic drift.  

Interestingly, the population with a high percentage of forelimbs with four external 

digits (49.5% at RSA) was also the population that showed a mixed genetic lineage 

(Massana et al. unpublished data). In contrast, populations of both pure lineages showed 

a lower frequency of four digits (30.2% for lineage Minorca 1 and 39.8% for lineage 

Minorca 2). Thereby, the RSA population does not on average show an intermediate 

percentage of forelimbs with four external digits between the two pure lineages. 

However, it is known that hybridization can produce phenotypic diversity (Grant and 

Grant, 1994), and hybrids can show phenotypes that exceed those of either parental line 

(i.e. transgressive segregation; Rieseberg et al. 2003). Therefore, the RSA high 

percentage of forelimbs with phalanx reduction could be a case of phenotypic diversity 

resulting from the hybridization of the two well differentiated genetic lineages 

(Zenboudji et al. 2016). 

It has been suggested that the reduction in the number of digits in some groups of 

turtles (geoemydids and emydids) is related to the shift from aquatic to terrestrial 

locomotion (Zug, 1971), since the reduction of phalanges has only been observed in 

terrestrial or semi-terrestrial testudinoids (see Minx, 1992; Fritz et al. 2006b; Ludwig et 

al. 2007; Hitschfeld et al. 2008). Nevertheless, Hitschfeld et al. (2008) argued that the 

burrowing activity is not necessarily linked to the loss of digit one, because the other 

species of Testudo can also lose this digit, but they do not show significant digging 

behavior. Despite this, it is known that the digging behavior in Hermann’s tortoise can 



 

 

 

be important in dune environments, as in the Ebro Delta and Minorca populations, 

where tortoises dig cavities and short tunnels to rest, hibernate, or shelter from extreme 

weather conditions (A.B. personal observations). Our results support the Hitschfeld’s 

hypothesis that the loss of digit one is not related to digging behavior since no 

differences between populations inhabiting in different substrates were found (sandy 

soil vs. calcareous and clay soils). According to Hitschfeld et al. (2008), the differences 

in carpal fusion patterns between T. horsfieldii and T. hermanni are actually related with 

their different modes of life. A more rigid hand skeleton could explain why the carpal 

and metacarpal bones fuse more extensively in T. horsfieldii (useful for excavating 

burrows). Conversely, fused bones in T. hermanni occur in the part of the hand that is 

exposed to the greatest mechanical strain during walking; therefore, congruent with 

species without extensive digging behavior. 

Several studies have corroborated that many genes are involved in digit development 

(e.g. Hedgehog, BmP, Fgf and Hox families: Merino et al. 1998; Litingtung et al. 2002; 

Sheth et al. 2012). Within these genes and regulatory factors, the Sonic hedgehog (SHH) 

gene seems to be most critical concerning the determination of the number of digits (see 

Litingtung et al. 2002; te Welscher et al. 2002). Even though the expression of the SHH 

varies between different lizard species, there is no doubt that it is more prolonged 

during ontogeny in lizards with more digits (Shapiro et al. 2003). The differences found 

in this study between both genetic lineages of tortoises and their hybrid population 

(RSA) in relation to individuals with only four digits may indicate gene expression 

differences that regulate digit formation. Only new research focused on the expression 

of genes involved in the development of the digits could clarify the causes of the 

variability observed in T. h. hermanni, which is beyond the scope of the present work. 

Moreover, the evolutionary significance of this intraspecific and intrapopulation 

variability in the number of digits remains an open question that merits further research.   

 

Conclusions  

Our study firstly reports on the intrapopulation variability in the number of visible digits 

in Testudo hermanni hermanni, the first tortoise species that this study has observed. 

Moreover, this work also shows that the number of observed claws can be used as a 

good proxy of the real number of digits. Contrary to previous studies, no digit variation 

could be attributed to sex. Neither age nor the substrate that the Hermann’s tortoises 

inhabit could explain the digit variation. On the contrary, phalangeal reduction varied 



 

 

 

according to the studied populations and genetic lineages. 

Our knowledge of T. h. hermanni individuals in their natural environment prove that 

digging behavior can be significant in the Ebro Delta and Minorca populations, and 

more specifically in dune environments. However, Hermann’s tortoise populations in 

sandy substrates showed a lower percentage, although not statistically significant, of 

individuals with four digits than populations in calcareous or clay soils, therefore 

supporting the hypothesis that the loss of digit one is not related to digging behavior.  

In particular, the RSA population from Minorca was the only one that displayed a 

mixed genetic lineage and the highest percentage of forelimbs with phalanx reduction. 

This phenotypic diversity could be explained through a hybridization process of two 

well-differentiated genetic lineages. Apparently, the differences obtained between both 

genetic lineages of tortoises and their hybrid population (RSA) seems to indicate 

differences in the gene expression that regulates digit formation. However, gene 

expression involved in the development of the digits needs further investigation in order 

to better explain the intraspecific and intrapopulation variability observed in T. h. 

hermanni. 
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Figure captions   

 

Fig. 1 External manus morphology in Testudo hermanni hermanni with four (a, b) or 

five digits (c, d): left adult manus in ventral (a) and dorsal (b) views; adult (c) and 

juvenile (d) left manus in ventral views. The number of the digit is denoted by numerals 

from one to five. 

 

 

 



 

 

 

Fig. 2 Bones of the right manus of Testudo hermanni hermanni (a) including the three 

possible reductions of the digit one and the metacarpal and carpals bones (b, c, d). Digit 

one reduced (a): one phalanx is present. Digit one lost (b): the distal phalanx is missing 

but still retain the metacarpal I and distal carpal. Digit one and metacarpal I lost (c): 

only the distal carpal is present. Digit one, metacarpal I and distal carpal lost (d): no 

related bone of digit one is present (i.e. phalanges, metacarpal I and distal carpal). 

Abbreviations: U ulna, R radius, p pisiform, i intermedium, cl lateral centrale, mc 

medial centrale, distal carpalia (1-5), metacarpalia  (I-V), and the four phalangeal 

formulae (a, 1-2-2-2-1, b, M-2-2-2-1, c, D-2-2-2-1, (d) 0-2-2-2-1). Bones affected by the 

phalangeal, metacarpal and carpal reduction are denoted in dark grey. 

 

 

 

 



 

 

 

Fig. 3 Visible proportions of manus with five digits between the six studied populations 

(N = 3,338 forelimbs belonging to 1,669 individuals; 682 in RSM; 380 in RSA; 432 in 

NF; 836 in DE; 166 in DSM; and 842 in DNM). 

 

 

 



 

 

 

Fig. 4 Visible proportions of manus with five digits between genetic lineages (N = 

3,338 forelimbs belonging to 1,669 individuals; 380 in mixed population; 1,274 in 

Minorca 1; and 1,684 in Minorca 2). 

 

 

 



 

 

 

Table 1 Comparison of the number of visible digits in adult manus individuals of 

Testudo hermanni hermanni and the number of digits in the radiographs. The phalangeal 

formula is a sequence of numbers and/or letters. The formula 1-2-2-2-1 indicates that 

the digit one and five possess only a single phalanx, and digits 2-4 possess two 

phalanges; in D-2-2-2-1, digit one possesses only the distal carpal (the phalanx and 

metacarpal I have been lost); and in 0-2-2-2-1, no related bone of digit one is present 

(i.e. phalanges, metacarpal I and distal carpal). 

 

 
Number of visible digits on 

manus 
Number of digits on 

radiographies Phalangeal formula  

Specimen Right  Left Right  Left  Right Left 
17 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

25 4 4 4 4 0-2-2-2-1 0-2-2-2-1 

26 4 4 4 4 0-2-2-2-1 0-2-2-2-1 

34 4 4 4 4 0-2-2-2-1 0-2-2-2-1 

35 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

36 4 4 4 4 0-2-2-2-1 0-2-2-2-1 

38 4 5 4 5 0-2-2-2-1 1-2-2-2-1 

39 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

51 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

66 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

68 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

91 4 5 4 5 1-2-2-2-1 1-2-2-2-1 

93 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

101 4 5 4 5 0-2-2-2-1 1-2-2-2-1 

116 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

127 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

134 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

135 4 4 4 4 0-2-2-2-1 0-2-2-2-1 

142 4 4 4 4 0-2-2-2-1 0-2-2-2-1 

146 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

158 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

166 4 4 4 4 0-2-2-2-1 0-2-2-2-1 

184 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

187 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

189 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

1202 4 5 4 5 0-2-2-2-1 1-2-2-2-1 

1235 4 5 4 5 D-2-2-2-1 1-2-2-2-1 

3001 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

6006 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

6015 4 4 4 4 0-2-2-2-1 0-2-2-2-1 

7000 5 5 5 5 1-2-2-2-1 1-2-2-2-1 

11071 4 5 4 5 0-2-2-2-1 1-2-2-2-1 

 

 



 

 

 

Table 2 Number of tortoises analyzed by the population, including ecological and 

genetic characteristics of each population.    

 

Population Habitat Substrate Genetic 

group 

Males Females Juveniles Total 

ED Vegetated 

dunes 

with 

scrubs 

Sand Minorca2 266  196  374 836 

RSM Ravine Calcareous 

and clay 

Minorca2 244 350 88 682 

DSM Vegetated 

dunes 

with 

scrubs 

Sand Minorca2 66 50 50 166 

NF Forested 

fossil 

dunes 

Sand Minorca1 214  184 34 432 

DNM Vegetated 

dunes 

with 

scrubs 

Sand Minorca1 272 192 378 842 

RSA Ravine Calcareous 

and clay 

Mixed 134  96 150 380 

 

 



 

 

 

Table 3 Generalized linear mixed model showing the effects of sex and population on 

the number of digits in right and left manus (coded as 0 for four digits 

and as 1 for five digits) in Testudo hermanni hermanni. N = 2,264 

forelimbs belonging to 1,132 individuals, including 1,196 males and 1,068 females. 

Abbreviations: Sex coded as 0 for females and 1 for males; pop 

is short for population. 

 

 

Parameters of the selected model Analysis of 

Deviance 

Independent 

variable 
Estimate ± 

SE 
p-

value 
χ2 df p-

value 

 Intercept 1.34 ± 

0.37 

0.000

2 
   

 Sex -0.62 ± 

0.34 
0.07 3.29 1 0.070 

Pop RSA -0.56 ± 

0.62 
0.36 19.60 5 0.001 

 NF 0.80 ± 

0.52 

0.13    

 DE 0.80  ± 

0.50 
0.11    

 DSM 0.46 ± 

0.80 
0.57    

 DNM 1.96 ± 

0.52 
0.000

2 
   

 

 



 

 

 

Table 4 Generalized linear mixed model showing the effects of age and population on 

the number of digits in right and left manus (coded as 0 for four digits 

and as 1 for five digits) in Testudo hermanni hermanni. N = 3,338 

forelimbs belonging to 1,669 individuals; 1,074 juveniles and 2,264 adults. 

 

 

Parameters of the selected model Analysis of 

Deviance 

Independent 

variable 
Estimate ± 

SE 
p-

value 
χ2 df p-

value 

 Intercept 1.27 ± 

0.31 

< 

0.0001 
   

 Age -0.43 ± 

0.32 
0.18 1.83 1 0.18 

Pop RSA -1.04 ± 

0.52 
0.04 32.3

7 
5 < 

0.0001 

 NF 0.71 ± 

0.49  
0.15    

 DE 0.21 ± 

0.42 
0.60    

 DSM 0.09 ± 

0.68 

0.90    

 DNM 1.66 ± 

0.44 
0.0001    

 

 



 

 

 

Table 5 Generalized linear mixed model showing the effects of substrate and genetic 

lineage on the number of digits in right and left manus (coded as 0 for four 

digits and as 1 for five digits) in Testudo hermanni hermanni. N = 

3,338 forelimbs. 

 

Parameters of the selected model Analysis of 

Deviance 

Independent 

variable 
Estimate ± 

SE 
p-

value 
χ2 df p-

value 

 Intercept 0.06 ± 

0.40 
0.87    

Substra

te 

Sand 0.07 ± 

0.40   

0.86 0.03 1 0.86 

Genetic 

lineage 

Minorca1 2.34 ± 

0.62 
0.0002 16.5

3 
2 0.0003 

 Minorca2 1.16 ± 

0.51   

0.02    


