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Making Sense of Crowd-Generated Content in
Domain-Specific Settings

Agus Sulistya

Abstract

The rapid advances of the Web have changed the ways information is distributed

and exchanged among individuals and organizations. Various content from differ-

ent domains are generated daily and contributed by users’ daily activities, such as

posting messages in a microblog platform, or collaborating in a question and an-

swer site. To deal with such tremendous volume of user generated content, there

is a need for approaches that are able to handle the mass amount of available data

and to extract knowledge hidden in the user generated content. This dissertation

attempts to make sense of the generated content to help in three concrete tasks.

In the first work performed as part of the dissertation, a machine learning ap-

proach was proposed to predict a customer’s feedback behavior based on her first

feedback tweet. First, a few categories of customers were observed based on their

feedback frequency and the sentiment of the feedback. Three main categories were

identified: spiteful, one-off, and kind. By using the Twitter API, user profile and

content features were extracted. Next, a model was built to predict the category of a

customer given his or her first feedback. The experiment results show that the pre-

diction model performs better than a baseline approach in terms of precision, recall,

and F-measure.

In the second work, a method was proposed to predict readers’ emotion dis-

tribution affected by a news article. The approach analyzed affective annotations

provided by readers of news articles taken from a non-English online news site. A

new corpus was created from the annotated articles. A domain-specific emotion lex-

icon was constructed along with word embedding features. Finally, a multi-target

regression model was built from a set of features extracted from online news arti-



cles. By combining lexicon and word embedding features, the regression model is

able to predict the emotion distribution with RMSE scores between 0.067 to 0.232.

For the final work of this dissertation, an approach was proposed to improve

the effectiveness of knowledge extraction tasks by performing cross-platform anal-

ysis. This approach is based on transfer representation learning and word embed-

ding to leverage information extracted from a source platform which contains rich

domain-related content to solve tasks in another platform (considered as target plat-

form) with less domain-related content. We first build a word embedding model as

a representation learned from the source platform, and use the model to improve

the performance of knowledge extraction tasks in the target platform. We exper-

iment with Software Engineering Stack Exchange and Stack Overflow as source

platforms, and two different target platforms, i.e., Twitter and YouTube. Our exper-

iments show that our approach improves performance of existing work for the tasks

of finding software-related tweets and filtering informative YouTube comments.
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Chapter 1

Introduction

1.1 Motivation

With a fast growth of the Internet and widespread rise of various online platforms

nowadays, it is easy for people and organizations to generate and share content [32].

This enables other people or organizations to benefit from the shared content. There

are many successful cases where people collaborate and combine their knowledge,

creativity, opinions, etc., to help one another and accomplish various tasks. For

example, social media such as Twitter provides a convenient way for customers to

provide their feedback to companies. These feedback tweets enable companies to

improve their products or services. Another example is Stack Overflow, a popular

question and answer site, that allows anybody facing a programming issue to post

a question on the forum. This platform allows knowledge sharing permitting other

users on the forum to post their responses as answers to the posted questions.

Engaging actively with such tremendous volume of user generated content has

now become a daily challenge for both organizations and individuals. There is a

need for automated approaches that can help one to better manage the mass amount

of available data and to extract knowledge hidden in the user generated content [69].

Making sense of this generated content is not a trivial task. There exist several

approaches, which make use of user-generated content for various applications such
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as in [66, 63, 92, 78, 51, 44]. However, due to tremendous amount and diversity

of user generated content and the possible applications that can benefit from them,

there are many research opportunities that are still left unexplored and problems

that are still open. This dissertation aims to help both organizations and individuals

making sense of data from various settings to better perform certain concrete tasks.

While this data can be easily collected, there is a need to digest and get insight from

the collected data. In this dissertation, an approach based on 5W+1H (Who, What,

Why, Where, When and How) is used to characterize different case studies that are

relevant to making sense of crowd generated content. Specifically, the use cases

explored should answer each of dimension in 5W+1H framework as follows:

Table 1.1: 5W+1H framework on mining crowd generated content
Dimension Description
Who Individuals or organizations that get benefit of the research.
What Research ideas
Why Objective of the research.
Where Domains/Platforms used
When When to process the content
How Approaches used .

Based on the framework, we explored three different use cases related to mak-

ing sense of crowd generated content, that cover different aspects/dimensions of

5W+1H framework as described in table 1.2.

1.2 Contribution Summary

In this dissertation, we proposed three machine-learning-based approaches to make

sense of user generated content from various online sources to help in concrete

tasks. In the first work, a machine learning approach was proposed to predict cus-

tomer complaint behavior on Twitter based on his or her first tweet. In the second

work, an approach was proposed to infer spread of readers’ emotion towards cer-

tain news. In the final work, an approach was proposed which can help individuals

2



Table 1.2: Use cases based on 5w+1H framework
Dimension Case 1 Case 2 Case 3
Who Organization Organization Individuals
What Profiling customers

based on social me-
dia content

Inferring users at-
tribute based on tex-
tual content

Finding relevant
content to a specific
domain

Why The company can
benefit from the
model to improve
customer service
strategies to deal
with different cate-
gories of customers

The organization
(i.e., publishers)
will have insight
on expected public
response to a partic-
ular textual content
(i.e., news article)

Considering the
huge volume of data
generated today,
much of such data
is irrelevant to the
target domain or
task

Where Short text (mi-
croblog/Twitter)

Long text (online
news article)

Short text (Twitter,
Youtube comment)
and long text (Stack
Exchange posts)

When Immediate (after the
user posts the con-
tent)

Batch processing Batch processing

How Extract data from
Twitter to identify
different types of
customer feedback
behavior using a
machine learning
approach

analyze text and
build lexicon to
estimate readers
reaction affected by
the textual content
(i.e., online news
article)

Leverage data ex-
tracted from a plat-
form that contains
rich domain-related
content (source plat-
form) to solve tasks
in another platform
with less domain-
related content (tar-
get platform)

to find domain-specific content. We particularly focus on the software engineering

domain. We give a brief summary of each of the completed works below.

Predicting Customer Complaint Behavior on Twitter

In this work, a method was proposed to predict customer categories (i.e., kind,

one-off, and spiteful) given a customer’s profile and first feedback tweet. The ap-

proach extracts a set of profile features and content features and uses these to build

a prediction model using a classification algorithm. To demonstrate the accuracy

of the approach, experiments were conducted to evaluate the approach using real

3



dataset of labeled tweets mentioning an official account of a large telecommuni-

cation company in Indonesia. The effectiveness of the approach was measured by

using common evaluation metrics in data mining research (i.e., precision, recall, and

F-measure), and was compared to a weighted random picker baseline. The results

showed that three variants of the approach that use different underlying classifica-

tion algorithms can substantially outperform the baseline.

Inferring Spread of Readers’ Emotion affected by Online News

In this work, an approach was proposed to use emotion lexicon and word em-

bedding in order to predict readers’ emotion scores distribution towards an online

news article. A new corpus was built containing around 1.5k Indonesian news arti-

cles taken from a popular online news site, namely detik.com, along with affective

annotations provided by readers of those articles. After conducting experiments,

the results show that, by using combined features of domain-specific emotion lex-

icon together with word embeddings vectors, the proposed approach was able to

predict the distribution of readers’ emotion scores with a Root Mean Squared Error

(RMSE) score ranging from 0.067 to 0.232.

Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis

A challenge in mining crowd data is to find content relevant to a specific target

domain or task. Solving this challenge is important considering the huge volume

of data generated today. Much of such data is irrelevant to the target domain or

task. Needing end users working on a particular domain or performing a particu-

lar task to read or browse through such sheer amount of content is likely to result

in information overload. Therefore, we propose to design an approach to leverage

data extracted from a platform that contains rich domain-related content (source

platform) to solve tasks in another platform with less domain-related content (target

platform). In this work, we focus on one specific domain, namely software engineer-

ing. Software developers have benefited from various sources of knowledge such as

forums, question-and-answer sites, and social media platforms to help them in vari-

4



ous tasks. However, these information channels contain a diverse set of information

covering a wide range of topics beyond software engineering. Extracting software-

related knowledge from different platforms is non trivial. In this work, an approach

was proposed that utilizes content from a rich software-development-specific plat-

form based on transfer representation learning, to help automated knowledge ex-

traction tasks in other less software-development-specific platforms. Two platforms

are studied (i.e., Software Engineering Stack Exchange and Stack Overflow), as

the rich domain-related platforms. Word embedding models are built based on the

dataset collected from the two platforms. These models are used to solve ranking

and classification problems in two different target platforms. Experiments were con-

ducted in two different use cases: finding tweets relevant to software development

on Twitter [82], and classifying informative comments for software engineering

video tutorials on YouTube [70]. The results show the effectiveness of the proposed

cross-platform analysis approach which achieves performance improvements of up

to 28% and 10.3% for the first and second use case respectively.

1.3 Structure of this Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 is a literature

review which examines related research to the use cases discussed in this disserta-

tion. Chapter 3 describes a study which investigates an approach to predict customer

complaint behavior on Twitter. Chapter 4 studies a method for inferring the spread

of readers’ emotion distribution towards online news article. Chapter 5 present an

approach to help software developers to identify software-engineering-relevant in-

formation. Finally, Chapter 6 summarizes the contributions of this dissertation and

presents some future direction.
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Chapter 2

Literature Review

In this chapter, we discuss the work in literature related to this dissertation. In the

first part, we briefly describe studies related to making sense of crowd generated

content. In the second part, we describe studies related to various domain-specific

tasks.

2.1 Making Sense of Crowd Generated Content

Due to vast amount of user generated content generated daily, there is a need for

automated approaches that can help both organization and individuals to make use

of the generated content [69]. Many organizations have explored different data

sources to mine user generated content for different purposes. For example, social

media can help an organization to better understand their customers through social

monitoring [14], develop systems to prioritize relevant posts [3], or examining brand

awareness [60]. Other source of data such as email conversation also has been

explored in [63].

Crowd generated content can also benefit individuals. As an example, knowl-

edge seekers rely on many sources of knowledge to help them stay up-to-date on

the latest technologiess [85], and to accomplish their development tasks. Online

resources such as web search engines, public documentation, user forums are ex-
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amples of crowd generated content that are useful for knowledge seekers [54]. Au-

tomated solutions can be designed to help these individuals benefit from the afore-

mentioned user generated content.

2.2 Domain-Specific Tasks

In this section, we describe work related to three domain-specific tasks described in

this dissertation: predicting user’s attributes based on social media data, inferring

user’s emotion towards textual content, and finding informative content related to

software engineering domain.

2.2.1 Social Monitoring and User Attribute Prediction

It is important for companies to continuously monitor voices of their customers in

social media, which is often referred to as social monitoring. A number of works

have designed social monitoring systems. For example, Bhatia et al. developed a

system that automatically monitors social network platforms, analyzes data from

the platforms, and triggers events that lead to corrective actions [14]. Ajmera et

al. analyzed posts and messages in social network platforms based on its to an

enterprise [3]. They built a system that mines conversations on social platforms

to identify and prioritize those relevant posts and messages. The system devel-

oped in their work aims to empower an agent in an enterprise to monitor, track

and respond to customer communication. Einwiller et al. examined the complain-

ing behavior and complaint management on Social Media, focusing primarily on

how companies manage the complaints [33]. Millard et al. conducted a study that

investigates what customers are actually engaging with on social media (Twitter,

Facebook and forums) with respect to brands. They found that customers engage

with brands not only to complain but also to complement [60]. Chen et al. in-

troduced a brand-specific intelligent filters on Twitter which is called CrowdE us-

ing a common crowd-enabled process [28]. They also evaluated the system, and
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found that CrowdE’s intelligent filters improved task performance and were gener-

ally preferred by users in comparison to keyword-based filters. Chapter 3 of this

dissertation highlights another framework that has been implemented and currently

used by a large telecommunication company using customized commercial tools.

This proposed framework extends the company’s social listening framework with a

capability to predict customer categories.

User attribute prediction have been studied in the past. For example, Pennac-

chiotti et al. presented an approach to infer the values of a Twitter user’s hidden

attributes by analyzing observable information such as the user behavior, network

structure and the linguistic content of the user’s Twitter feed [66]. They also found

that content features taken from linguistic content of user messages are in general

highly valuable across different tasks: political affiliation detection, ethnicity iden-

tification and detecting affinity for a particular business. Another work by On et

al. studied interactions in an email network [63]. They investigate user engaging-

ness and user responsiveness as two interaction behaviors on how users email one

another. They developed four types of models to quantify this two behavior. They

found that engagingness and responsiveness behavior features are useful in the task

of predicting the email reply order. The work presented in Chapter 3 in this disserta-

tion differs from previously mentioned works since we use different sets of features

taken from user profile and feedback content, extracted from Twitter. We also fo-

cus on a different problem, namely the prediction of customer category based on

feedback tweets. For this type of customer feedback, typically we would see more

negative feedback rather than positive, which raised an imbalanced dataset problem.

2.2.2 Inferring Users’ Reaction to Textual Content

Predicting users’ emotions towards particular textual content has been studied in the

past. Most existing works focus on building emotion lexicons or devising prediction

algorithms. In this section, we briefly summarize research efforts conducted on
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these two fronts.

SemEval-2007 [92] is considered the first research effort in predicting readers’

emotions by analyzing news article headlines. It used news headlines as its data

source. They found that the task of emotion annotation is not trivial, since there are

words that act only as an indirect reference to emotions depending on the context.

Lin et al. [52] proposed the use of a regression model to estimate readers’ emo-

tion towards news article in Chinese. They use Chinese character bi-gram, Chinese

words, and news metadata as features, and use Support Vector Regression (SVR)

as the regression model. They found that the regression method is more effective

at identifying the most popular emotion. Lei et al. [51] proposed an approach that

performs document selection, Part-Of-Speech (POS) tagging, and a social emotion

lexicon generation system to build a social emotion detection system for online

news. Based on experiment conducted, the system performs better with the words

and POS combination as features. Hsieh et al. [44] proposed a document modeling

method that utilizes embedding of emotion keywords to perform readers’ emotion

classification. They used two Chinese corpora to build word embeddings, and find

a set of keywords for each emotion category using log likelihood ratio (LLR). They

found that their approach can achieve best macro average accuracy as compared

to several baselines. Different with related work described above, in the work de-

scribed in Chapter 4 of this dissertation, we focus on inferring spread of readers’

emotion distribution. We also explored various sets of features by combining word

vectors and emotion lexicon generated from different parts of news articles (head-

lines, contents and both).

Several methods have been proposed to build emotion lexicon, either man-

ually or automatically. A popular resource for emotion lexicon is WordNetAf-

fect [93], which contains manually assigned affective labels (anger, joy, etc.) to

WordNet synsets (i.e., set of synonyms). AffectNet, which is a part of the Sen-

ticNet project [19], contains around 10,000 words taken from ConceptNet and

aligned with WordNetAffect. AffectNet maps common sense knowledge to af-
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fective knowledge (i.e.,WordNetAffect affective labels). Another popular resource

is NRC-EmoLex [61], which consists of 10,000 lemmas (i.e., a base word form

that is indexed in the lexicon) annotated with an intensity label for each emo-

tion. These data are manually labeled by multiple annotators. Another approach

for building lexicons is through automated means. Staiano and Guerini presented

DepecheMood [88], an emotion lexicon that is built by harvesting crowd-sourced

affective annotation from a social news network. Rao et al. [78] proposed an algo-

rithm and pruning strategies to automatically build a word-level emotion dictionary,

in which each word is associated with a distribution of social emotions. They also

proposed to use topic modeling for constructing a topic-level emotion dictionary,

in which each topic is associated with a distribution of social emotions. A work

by Bandhakavi et al. [10] compared General Purpose Emotion Lexicons (GPELs)

and Domain-Specific Emotion Lexicons (DSELs) for emotion detection from text.

They confirmed the superiority of DSELs for emotion detection. In the domain of

non-English lexicon, Abdaoui et al. [1] built a French lexicon by performing semi-

automatic translation and synonym expansion for words in NRC-EmoLex. Nguyen

et al. [62] proposed an approach to mine public opinions from Vietnamese text using

a domain-specific sentiment dictionary that was built incrementally. In the work de-

scribed in Chapter 4 of this dissertation, we extend Staiano and Guerini work [88].

Specifically, we automatically build emotion lexicon using affective-annotated news

articles in an under-resourced language (Indonesian) from a popular online news

platform.

2.2.3 Finding Software-Relevant Content for Software Develop-

ers

In the past few years, there has been a substantial amount of work which has an-

alyzed tools or channels used by software developers. Storey et al. found that

software developers use many communication tools and channels in their software
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development work [90, 91]. In the following paragraphs, we discuss work related

to identification of relevant content in social media channels (Twitter and YouTube)

for software developers, as these are the domains we have considered in the work

described in Chapter 5.

Several studies have investigated software related content on Twitter. For ex-

ample, Bougie et al. did an exploratory study on understanding how Twitter is

used in software engineering [17]. Tian et al. found that Twitter is used by soft-

ware developers for coordination of efforts, sharing of knowledge, etc. [95, 94].

Sharma et al. have explored the categories of software engineering related tweets

and events on Twitter [83]. Methods to identify software-relevant tweets and infor-

mative links have been proposed by Prasetyo et al. [75] and Sharma et al. [82, 84].

Guzman et al. analyzed tweets on Twitter which talked about software applications

and companies, and demonstrated that machine learning techniques have the ca-

pacity to identify valuable information for companies and developers of software

applications [37, 38]. They also proposed a technique to mine tweets for software

requirements and evolution [39]. There has been other work also on mining Twitter

feeds for gathering user requirements such as by Williams et al. [101] Mezouar et al.

found that tweets generated by users can help in early detection of bugs in software

systems, and can help developers know about a bug which may be affecting a large

user base [34]. Our work presented in Chapter 5 extends previous work by Sharma

et al. [82] to rank software-relevant tweets. Different from their approach, we use

word embedding to capture relations between software-related terms. In addition,

we sample selected Stack Overflow titles, use them as seed sentences, and calculate

similarity scores between the samples and the tweets.

Software development videos on YouTube in recent years have been studied as

a repository from which software-related knowledge can be extracted. MacLeod

et al. studied the developer’s usage of videos (on YouTube) to document software

knowledge [56, 55]. They found that the main motivating factors for sharing videos

by developers are building an online identity, to give back to the community, to
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promote themselvess, etc. Poché et al. proposed an approach to identify informative

user comments on coding video tutorials on YouTube [70]. We extend the work by

Poché et al. by leveraging word embedding learned from Stack Exchange and Stack

Overflow, as described in Chapter 5.
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Chapter 3

Predicting Customer Feedback

Behavior on Twitter

3.1 Introduction

The use of social media in the customer relationship context has gained popular-

ity nowadays. A report by VB Insight 1 reveals that modern consumers complain

about brands 879 million times a year on Facebook, Twitter, and other social media

portals. About 10% of those consumers make a complaint on social media every

day. With this extensive use of social media by customers, opportunities arise for

companies to engage with their customers and be aware of the issues that they face.

For example, a customer can complain on social media after experiencing a failure

of service; this complaint notifies the company and prompts it to take necessary

actions to prevent further damage to the company’s reputation and customer base.

Therefore, it is important for the company to continuously monitor the voices of

their customers, which refer to as an activity called social listening and monitoring.

It would be interesting to be able to predict different types of customer feedback

behavior. Such prediction can help a company to formulate a suitable strategy to

manage and improve customer satisfaction and retention. For example, some users

1http://venturebeat.com/2014/12/12/social-media-we-complain-879-million
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may complain many times to a company’s Twitter account if the users are not given

sufficient attention in a short period of time, others may complain only once, and

yet others may express their thanks after a good service has been rendered by a

company. From the company’s side, multiple complaints are considered as some-

thing that should be avoided, since it can affect the company’s reputation. Having

an ability to predict this type of customer would allow the company to take pre-

ventive action before the user spreads negative opinion about the company in social

media. A company may also want to provide good reasons for the third category of

customers to publicize good service and improve the company’s reputation.

In this study, we try to address the aforementioned prediction problem by em-

ploying a two-stage machine learning algorithms. In the first stage, our approach

clusters social media users into several categories based on their feedback frequency

and sentiment polarity. We identify three categories of users: spiteful (i.e., the user

complains many times in social media), one-off (i.e., the user only provides negative

feedback once), and kind (i.e., the user provides positive feedback). In the second

stage, our approach builds a prediction model that can assign a user into one of the

three categories based on his/her first feedback. We experiment with different su-

pervised machine learning algorithms (i.e., Naive Bayes, Logistic Regression, and

Random Forest), to build an automated prediction model.

As a case study, we use internal data from a state-owned telecommunication

company in Indonesia to evaluate the effectiveness of our proposed approach. The

company named Telkom extensively uses social media such as Facebook and Twit-

ter, to interact with its customers. To facilitate social listening, the company has set

up a dedicated unit to actively monitor customer feedback. Our work extends the

current social listening platform that the company has by adding some predictive ca-

pabilities. Under 10-fold cross validation, our experiments show that our proposed

approach can predict customer feedback behavior categories with a weighted preci-

sion, recall, and F-measure of up to 0.797 (Random Forest), 0.881 (Naive Bayes),

and 0.800 (Random Forest) respectively. Our approach outperforms a baseline that
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randomly assign categories to customers based on the distribution of customer feed-

back behavior categories in the training data.

Extracting knowledge from microblogs has been one of the active research ar-

eas. We believe that this study would be important towards the development of

techniques that make use of social media data to improve product and service qual-

ity. Specifically, our contributions are as follows:

1. We propose a new problem of predicting different types of customer feedback

behavior on Twitter.

2. We use a clustering algorithm to identify different types of customer feedback

behavior.

3. We propose a set of features, i.e. content features and profile features, that

can be used to predict customer feedback behavior by leveraging a supervised

machine learning algorithm to build a prediction model.

4. We have evaluated our proposed approaches on a dataset containing 11,809

tweets. Our proposed approaches can achieve reasonable precision, recall and

F-measure which are higher than those of a baseline approach.

The structure of the remainder of this chapter is as follows. In Section 3.2 we

describe social listening activities in a company used as our case study and data

analysis techniques that we leverage for this work. We describe how we cluster

customers to create several categories in Section 3.3. In Section 3.4, we explain

our approach which extracts features from customer Twitter accounts and their cor-

responding tweets and uses them to build a prediction model to predict customer

categories based on their first feedback tweet. We describe our experiments which

evaluate the prediction accuracy of our approach in Section 3.5. We finally conclude

and mention future work in Section 3.6.
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3.2 Background

3.2.1 Social Listening at Telkom

In this chapter, we experiment with a dataset collected and annotated by a state-

owned telecommunication service provider in Indonesia, namely Telkom2. The

company serves tens of millions of customers throughout Indonesia, offering a wide

range of products including broadband internet connections, cable TV, and land line

telephone connections.

Telkom has set up a system that actively monitors what customers say on social

media, and handles each issue raised by forwarding the problem to a back-room

unit. To monitor customer voices, the company uses tools provided by Brand243

and BrandFibres4. The first tool is used to crawl any content containing keywords

related to the company’s product from different platforms, including Facebook,

Twitter, blog posts, and news media. These crawled records are then filtered by

removing irrelevant posts. The filtering process requires manual work performed

by several social media analysts. The analysts use a second tool called BrandFibres

dashboard. Using this tool, they evaluate each post, and then assign a sentiment

score to each post. They give scores ranging from “+5” (very positive feedback)

to “-5” (very negative feedback). The analysts also assign a post into one of the 8

different categories shown in Table 3.1. Note that a tweet can be assigned to more

than one category, and an analyst will assign a sentiment score for every category

that applies to a tweet.

Figure 3.1 shows an example of a customer complaint on Twitter. In the figure,

the tweet mentions a company’s account (@telkomcare). The tweet also mentions

other users (@detikcom and @telkompromo). The first one is an online news media

account and the latter is the company’s other account that focuses on disseminating

the company’s promotional events and deals.

2http://www.telkom.co.id/en/tentang-telkom
3http://www.brand24.com/
4http://www.brandfibres.org/
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Figure 3.1: A sample of a tweet posted by a customer to Telkom’s customer care
channel (in Indonesian). The English translation of the tweet is ”When will our
home is installed with Indihome? It’s been 3 months since we requested it”.

This study analyzes data consisting of tweets collected and annotated by Telkom

for a 3 month period from June-August 2015. In total, there are 12,634 posts. We

consider only the posts that have been collected from Twitter, which results in about

11,809 posts (or tweets) constituting about 93.4% of the total posts.These tweets are

those that mention the official company’s customer care account on Twitter, namely

@telkomcare. For the tweets in our dataset, we extract distinct twitter users who

posted them, resulting in 6,031 distinct users. We use this set of users as the input

to our clustering and prediction tasks described in the next two sections. The data

provided by Telkom did not include the profiles of these 6,031 Twitter users. To get

these profiles, we call the standard Twitter API using Tweepy5 Python module.

3.2.2 Handling Imbalanced data

The imbalanced data problem typically refers to a classification problem where the

classes are not represented equally. For customer feedback, typically we would see

more negative feedback rather than positive. One way to deal with imbalanced data

is by using sampling methods, which modifiy the distribution of the original training

samples to obtain a relatively balanced data. There are two types of sampling meth-

ods: oversampling and undersampling [45]. Oversampling is conducted by adding

more samples to the minority class, while undersampling is done by creating a sub-

set of the majority class. One popular oversampling algorithm to handle imbalanced

data is SMOTE (Synthetic Minority Over-sampling Technique) [22]. This oversam-

5http://www.tweepy.org/
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Table 3.1: Customer Feedback Categories
Category Description
Quality Evaluation (QUE) Tweets related to general quality of a

product or service (for example, slow or
unstable internet connection).

Offer Evaluation (OFE) Tweets providing feedback to a product
offering (such as an ongoing promotion of
a certain product)

Activity Disturbance (ACD) Tweets reporting specific disturbance in
a user’s activity while using a product
(for example, trouble when browsing or
downloading).

Invoice Related (INV) Tweets reporting issues related to product
or service invoicing (such as reports of in-
correct billing).

Customer Service Quality (CSE) Tweets reporting issues related to qual-
ity of customer service (such as quality
of customer service agents, and how the
company handles current problems expe-
rienced by the customer)

Actions (ACT) Tweets related to actions taken by the cus-
tomer (such as comparing product pro-
vided by the company with other com-
petitors).

Social Media (SMI) Tweets related to social media interac-
tions between company and customers.

Others (CIS) Tweets about other issues related to the
company and subsidiaries.

pling algorithm creates synthetic samples from the minority class instead of creating

copies. SMOTE works by finding the k nearest neighbors of each sample in the mi-

nority class. Next, artificial samples are then generated along the line of some or all

of the k nearest neighbors, depending on the amount of oversampling required.

3.3 Clustering Customers

In the first stage of our work, we cluster customers in our dataset (i.e., the 6,031

users described in Section 3.2.1) into several categories based on their feedback

frequency and the sentiment polarity of these feedback. Figure 3.2 shows our overall

18



Figure 3.2: Our approach for clustering customers

approach to cluster customers.

We represent each customer as a set of metrics: NumOfFeedback, NumOfPos-

Feedback and NumOfNegFeedback. These metrics are listed and defined in Ta-

ble 3.2. Next, based on this representation, we cluster the users together. To cluster

the users, we use Expectation-Maximization (E-M) algorithm. E-M algorithm as-

signs a probability distribution to each instance which indicates the probability of

it belonging to each of the clusters. A previous study conducted by Meilă and

Heckerman [57] has found that the E-M algorithm often performs better than other

clustering methods such as k-means and model-based hierarchical agglomerative

clustering.

We use the implementations of E-M Algorithm in Weka [40]. We do not initiate

the number of cluster and let the E-M algorithm decide the best number of clusters.

All parameters are set to Weka default setting.

Table 3.2: Metrics used for clustering users
Features Description
NumOfFeedback Number of feedback tweets generated by

a user
NumOfPosFeedback Number of feedback tweets that are of

positive sentiment polarity.
NumOfNegFeedback Number of feedback tweets that are of

negative sentiment polarity.

Table 3.3 shows the results of the E-M clustering algorithm. We verify the

result by manually investigating the properties of each cluster. Based on this manual

investigation, we conclude general properties for each group as shown in the fourth

column of the table.

Note that there are similarities among these clusters. Cluster 4 represents the
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Table 3.3: Clusters of users based on their tweets mentioning the company
Cluster Count Percentage Observed Properties

0 1235 20.48 % post one or two times, with at
least one positive feedback

1 152 2.52 % post more than 2 tweets, with
more than two possitive feed-
back

2 481 7.98 % post at least 4 tweets, with
majority of negative feedback

3 82 1.36 % post at least 9 tweets, with
majority of negative feedback

4 2837 47.04 % post only one tweet with neg-
ative feedback

5 1244 20.63 % post 2 or 3 times with major-
ity of negative feedback

majority of customers who only provide one negative feedback instance, without

posting further tweets. Clusters 2, 3 and 5 correspond to customers who post more

than one tweet with negative sentiment. These customers are typically the group

of customers that may damage a company’s reputation if they are not managed

well. The other two groups (clusters 0 and 1) are groups of customers that post

at least one positive feedback instance such as thanking the company for its good

service. These customers can improve the company’s reputation. Based on this

observation, we decide to group the clusters further into three groups based on how

the customers complain or behave. These new groups are shown in Table 3.4. We

will use these three groups as class labels for the second stage of our approach that

predicts customer feedback behavior.

Table 3.4: Three main categories of customers
Class Cluster Percentage
Kind 0,1 23.0%
One-Off 4 47.0%
Spiteful 2,3,5 30.0%
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3.4 Predicting Customer Categories

In the second stage, our approach builds a prediction model that can assign a cus-

tomer into one of the three categories based on their first feedback tweet. With our

prediction model, a company would be able to know the category of a customer

early and take necessary actions. Our approach first extracts a number of features

that characterize a customer and his/her first feedback tweet. Features of customers

belonging to the three categories are then used to train a prediction model that can

differentiate each category. The following subsections explain features used and our

approach to build the prediction model.

3.4.1 Feature Engineering

We use two types of features: profile features (i.e., features that we extract from a

customer’s Twitter profile) and content features (i.e., features that we extract from a

customer’s first feedback tweet).

Profile Features

Twitter provides several pieces of information about its users which include the

user’s number of followers, number of followees, etc. We consider five profile

features to infer customer categories. These five features are described in detail

below.

• TweetCount This feature is the number of tweets or re-tweets generated by a

user. This metric represents a user’s level of activity on Twitter.

• FollowerCount This feature is the number of followers that a user has. If

A follows B on Twitter, all of B’s tweets would be propagated to A. This

feature is a basic measure of a user’s popularity on Twitter.

• FolloweeCount This feature is the number of people a user follows. It rep-

resents the user’s level of interest in others and correlates to the number of
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tweets that the user would receive daily.

• FavCount Twitter users may express their liking of a tweet by marking the

tweet as a favorite. This feature is the number of the tweets that a particular

user has favorited. A higher value of this metric indicates that this user often

gives positive feedback to others and may indicate his/her level of agreeable-

ness.

• ListCount A Twitter user can create lists of other Twitter users whom he/she

follow. Each of these lists typically contains related Twitter users who belong

to a particular topic or interest (e.g., a list of friends, co-workers, celebrities,

athletes, etc.). This feature is the number of lists that a user creates. We use

this feature to capture another aspect of a user’s level of activity on Twitter.

Content Features

Content features characterize a tweet based on its content. In our case, we use

sentiment polarity scores assigned to each tweet to represent content features. The

tweets in the dataset that we use have been annotated by Telkom’s social media

analyst. The analysts gave sentiment polarity scores for each tweet. They also

categorized the tweet into eight different customer feedback categories. We use a

total of eight customer feedback categories as content features. Each of content

feature corresponds to one of the eight possible categories of tweets as listed in

Table 3.1. The value of each of these eight features is the sentiment polarity score

that is assigned manually by Telkom’s social media analysts. Figure 3.3 shows

sample of tweets with its corresponding values of content features.

Figure 3.3: Sample tweets with its corresponding content features
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3.4.2 Methodology

In general, our methodology contains two phases: a model building phase and a

prediction phase, as shown in Figure 3.4. In the model building phase, our goal is

to build a prediction model based on a training set of customers along with their

profiles, first feedback tweets and category labels. In the prediction phase, this

model is used to predict the category of a new customer based on his/her profile and

first feedback tweet.

Figure 3.4: Our approach for predicting customer categories

In the model building phase, we first extract profile and content features from

customers in the training data. Next, for the profile features (i.e., TweetCount, Fol-

lowerCount, FolloweeCount, FavCount, ListCount), since the variation of the fea-

ture values is high, we normalize them to have values between 0 and 1. However,

we do not normalize the content features, since we want to preserve the actual senti-

ment polarity scores and the variation of these scores is not high. After the features

are extracted, we apply SMOTE (described in Section 3.2.2) to handle imbalanced
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data. Finally, we use a classification algorithm to build a prediction model.

We explore three classification algorithms, namely Logistic Regression, Naive

Bayes and Random Forest. These algorithms are widely used in data mining re-

search such as in [6, 21, 98].

In the prediction phase, we extract values of profile and content features for a

new customer whose category is to be inferred. These feature values are extracted

from the new customer’s Twitter profile and his/her first feedback tweet. Next, we

apply the prediction model that we have learned in the model building phase on the

new customer’s feature values. This model will output a prediction, which is one of

the three categories listed in Table 3.4.

3.5 Experiments and Results

3.5.1 Dataset and Experiment Setting

There are 6,031 distinct Twitter users in our Telkom dataset. However, we could not

collect profile features for a number of them. This is the case since not all Twitter

accounts are public. Among the 6,031 users, we are able to get 5,813 user profiles.

This represents 96.39% of distinct users in our dataset. For each of these users, we

identify his/her tweet that will be used as input to the prediction task. We consider

the earliest feedback tweet that is posted during the observation period (i.e., June-

August 2015) as such tweet.

We use the implementations of Logistic Regression, Naive Bayes and Random

Forest in Weka [40]. We apply SMOTE filter for all of the three variants. All pa-

rameters are set into Weka default settings. We also perform 10-fold cross validation

to investigate the effectiveness of our approach.

As a baseline, we use an approach which we refer to as WeightedRandomPicker.

This baseline picks one of the three categories randomly based on the percentage

of customers of each category in our dataset. For example, given a new customer,
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WeightedRandomPicker predicts that the customer belongs to Class 1 (Kind) with a

probability of 0.23, Class 2 (One-Off) with a probability of 0.47 or Class 3 (Spiteful)

with a probability of 0.30.

3.5.2 Evaluation Metrics

As yardsticks to measure the effectiveness of our approach and the baseline, we use

precision, recall, and F-measure. These metrics are common metrics that have been

widely used in many past studies such as [77, 46, 31, 103, 96].

These metrics are calculated based on four possible outcomes of a Twitter user

in an evaluation set: True Positive (TP), True Negative (TN), False Positive (FP)

and False Negative (FN). For example, in case of predicting a spiteful customer,

TP is when a spiteful customer is correctly predicted as such; FP is when a non

spiteful customer is wrongly predicted as a spiteful customer; FN is when a spiteful

customer is wrongly predicted as a non spiteful customer; TN is when a non-spiteful

customer is correctly predicted as non-spiteful customer.

Since we deal with multi-class classification, we also calculate weighted pre-

cision, weighted recall and weighted F-measure. We use the following formula to

calculate weighted F-measure (similarly for weighted precision and recall):

WeightedFM =

∑
c(FM(x)× x)

n
(3.1)

In the above equation, c is total number of classes (in our case: 3), FM(x) is

the F-measure score for class x, x is total number of data instances that belong to a

particular class, and n is the total number of instances in the dataset.

3.5.3 Research Questions and Results

RQ1: How well does our approach perform in predicting different categories

of customers?
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Table 3.5: Effectiveness of various variants of our approach which uses different
underlying classification algorithms to predict customer categories. C1: Kind cus-
tomers, C2: One-Off customers, C3: Spiteful customers.

Algorithm Metrics C1(Kind) C2(One-Off) C3(Spiteful) Weighted
Logistic Regression precision 0.969 0.732 0.574 0.738
Logistic Regression recall 0.769 0.971 0.372 0.744
Logistic Regression F-measure 0.858 0.835 0.451 0.724
Random Forest precision 0.973 0.754 0.697 0.787
Random Forest recall 0.819 0.926 0.667 0.824
Random Forest F-measure 0.890 0.832 0.682 0.800
Naive Bayes precision 0.881 0.733 0.525 0.704
Naive Bayes recall 0.767 0.925 0.897 0.881
Naive Bayes F-measure 0.820 0.818 0.663 0.772
Baseline precision 0.452 0.474 0.296 0.415
Baseline recall 0.212 0.474 0.366 0.382
Baseline F-measure 0.288 0.472 0.322 0.385

Approach: In this research question, we investigate three variants of our ap-

proach which uses three supervised classification algorithms (Logistic Regression,

Naive Bayes and Random-forest), and compare its performance (measured in terms

of precision, recall, and F-measure) with that of the WeightedRandomPicker base-

line.

Results: Table 4.4 shows the results of our experiments. From the table, we can

see that the three variants of our approach consistently outperform the Weighte-

dRandomPicker baseline. Among the three classes, determining spiteful customers

(C3) is the hardest problem. In this case, Logistic Regression performs the worst

when compared to the other two supervised algorithms. But still, it outperforms the

baseline by 13% in terms of weighted F-measure. Meanwhile, determining kind

customers (C1) is the easiest task, and all three variants of our approach outperform

the baseline by more than 53% in terms of F-measure.

RQ2: How effective is the oversampling strategy to improve classification ac-

curacy?

Approach: We apply SMOTE to handle the imbalanced class problem. In this

research question, we compare results obtained by our approach when SMOTE is

used and when it is not used.
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Results: Table 4.5 shows results that our approach achieves when SMOTE is

turned off and on. We can note that by applying SMOTE the effectiveness of our

approach (measured in terms of weighted F-measure) can be improved by 33-44%.

This result gives evidence that handling imbalanced data by using minority-class

oversampling improves the accuracy of the constructed prediction model.

Table 3.6: Weighted F-Measure of our approach with and without SMOTE
Algorithm No SMOTE With SMOTE Improvement
Logistic Regression 0.542 0.724 33.58 %
Random Forest 0.591 0.800 35.33 %
Naive Bayes 0.534 0.772 44.49 %

3.5.4 Results

Our experiments show that among the three variants of supervised classification

algorithm, Random Forest performs the best with F-Measure of 0.890, 0.832 and

0.682 for predicting kind, one-off, and spiteful customers respectively. This find-

ing is consistent with a previous study by Caruana et.al.[21] which observed that

random forest tended to perform well across different settings. Even for the variant

that uses the most basic machine learning approach among the three (i.e., Naive

Bayes), the prediction performance is 30% better than that of WeightedRandom-

Picker. These results highlight a promising potential of applying machine learning

techniques to identify different categories of customers based on their first feedback

tweets.

Our prediction model relies on sentiment polarity of customer feedback. To

ensure the correctness of sentiment polarity of user’s tweet, we decided to use la-

beled/annotated data that Telkom provides and none of the authors are involved in

the labeling/annotation process.

A limitation of our study is the sample used in the case study. We have evalu-

ated the effectiveness of our approach to infer customer categories from tweets that

mention one company in Indonesia. In the future, we plan to address this limitation
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by considering a larger set of tweets collected over a longer period of time. We also

plan to experiment with other companies situated in different countries.

3.6 Chapter Conclusion

In this chapter, we propose a method to predict customer categories (i.e., kind, one-

off, and spiteful) given a customer’s profile and first feedback tweet. Our approach

extracts a set of profile features and content features and uses these to build a pre-

diction model using a classification algorithm. To demonstrate the accuracy of our

approach, we evaluate our approach using a real dataset of labeled tweets mention-

ing an official account of a large telecommunication company in Indonesia. We

evaluate our approach by using common evaluation metrics in data mining research

(i.e., precision, recall, and F-measure), and compare its performance with that of a

weighted random picker baseline. Our experiment results show that three variants

of our approach that use different underlying classification algorithms can substan-

tially outperform the baseline. Our approach can benefit companies to improve

their customer service strategies to deal with different categories of customers. For

the company in our case study, our approach extends the current capability of their

social media listening system by adding a prediction functionality.

In the future, we plan to evaluate our proposed approach on more datasets. To

improve the accuracy of our approach further, we plan to extract more features to

better characterize different categories of users. We also plan to investigate more

advanced classification algorithms.
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Chapter 4

Inferring Spread of Readers’

Emotion affected by online news

4.1 Introduction

Nowadays, online news platforms are popular due to their up-to-date content, and

have become important sources of information. The platforms provide a convenient

way for publishers to share latest news that can quickly reach online readers. The

platforms also allow readers to interact by providing comments and votes, and by

sharing news articles on social media.

Publishers, writers, and many others can potentially benefit from news readers’

responses. The responses can be used to measure degree of user engagement. More

comments or feedbacks given by readers indicate higher popularity of a news arti-

cle. The responses can also be used as a clue for placing advertisement. Moreover,

readers’ responses can help publishers, writers, individuals, and organizations to

learn how a certain issue is viewed by the public in general. Such insight can poten-

tially be used by decision makers to make more informed decisions (e.g., on policy

and business strategy). Given the value of readers’ responses, it would be beneficial

to be able to predict early how the public are likely to respond to a particular issue

described in a news article.
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A news article should be objective as it is intended only to report facts. This

means that readers’ opinions to a news article are not contained in the article itself.

To give an impression of objectivity, the writers often avoid using overly positive or

negative vocabulary, or resort to other means to express their opinion, such as em-

bedding statements in a more complex discourse or argument structure, and quoting

other persons who said what they feel [9]. Separate responses to the news, when

available, contain readers’ opinions and emotions toward the content of the news.

Predicting readers’ emotion for a particular article is an emerging research area.

Most studies on predicting readers’ emotion translate the task into a classification

problem, either by considering it as a multi-class classification (assign an article

into one of the emotion categories) [92, 51, 44, 53] or a multi-label classification

(assign to each articles a set of emotion categories) [112] problem. In this study,

we formulate the problem as a multi-target regression with the goal of predicting

readers’ emotion distribution. By knowing the predicted emotion distribution, we

can get a deeper insight on likely readers’ responses, e.g., estimated proportion of

readers who are happy with a piece of news.

We explore lexicon-based and word-vector-based features, and input them to a

regression model to predict emotion distribution. As a case study, we use a popular

Indonesian online news site, namely detik.com. Our work complements existing

works on readers’ emotion analysis and prediction. Specifically, our contributions

are as follows:

1. We create a new corpus consisting of Indonesian news articles for predicting

readers’ emotion distribution affected by news articles.

2. We compare the effectiveness of using different parts of news articles (head-

lines only, contents only, and both headlines and contents) to predict the

spread of readers’ emotion.

3. We compare the effectiveness of domain-specific emotion lexicon and word
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embedding with general purpose lexicon and word embedding for the prob-

lem of predicting emotion distribution of a news article readers.

The structure of the remainder of this chapter is as follows. In Section 4.2, we

describe the methodology of our proposed approach which consists of 5 main steps:

corpus creation, word vector construction, emotion lexicon formation, feature ex-

traction, and regression model learning. We describe our experiments and evaluate

the effectiveness of our proposed approach in Section 4.3. Threats to validity are

discussed in Section 4.4. We finally summarize the findings and mention future

work in Section 5.7.

4.2 Methodology

The overall framework of our approach is depicted in Figure 4.1. In the Construct

Corpus step, we collect a set of online news’ links that are mentioned on Twitter,

and crawl the corresponding news headlines and contents to build our news arti-

cle corpus. By analyzing the corpus, we build an emotion lexicon and train word

vectors in the Build Emotion Lexicon and Build Word Vector step, respectively. We

extract features based on the emotion lexicon and word vectors in Extract Features

step. In the Build Regression Model step, we use different combinations of extracted

features to build regression models that predict reader’s emotion distribution. We

elaborate the above-mentioned steps in the following subsections.

Figure 4.1: Our approach’s overall framework to predict readers’ emotion distribu-
tion
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4.2.1 Problem Definition

In this study, we aim to predict readers emotion distribution affected by reading a

news article. Given a corpus of documents D, with their emotion scores E, where Ei

is the emotion score vector for a news article Di, we want to predict emotion scores

E ′ for a set of new articles D′. An example of a document-emotion score vector of

a particular article is: 〈 happy:0.4; amused:0.0; inspired:0.0; dont care:0.6; sad:0.0;

afraid:0.0; angry:0.0 〉.

4.2.2 Step 1: Construct Corpus

Many news organizations have recognized the potential of social media and have

used social media marketing to attract online audiences; for example, by using Twit-

ter to promote certain articles that might interest their readers. Therefore, we are

interested in an online news platform that actively tweets news article headlines,

and also provides emotion scoring and commenting features for the readers.

We identify an online news platform in Indonesia, namely detik.com. According

to Alexa web ranking1, it is ranked as the most popular online news and the fourth

most popular website in Indonesia. The news platform provides features that allow

users to give an emotion score to a particular article, as shown in Figure 4.2. There

are eight different emotion categories, which can be translated in English as: Happy,

Amused, Inspired, Don’t Care, Annoyed, Sad, Afraid and Angry. The emotion score

for each category will be shown in the same page as the article that the scores

correspond to.

Figure 4.2: a sample of emotion scores of an article published in online news

The online news platform (detik.com) also has a Twitter account: detikcom. It
1http://www.alexa.com/topsites/countries/ID
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has a large number of followers (13.7 millions as of April 2017) and ranked number

3 in Indonesia in terms of number of followers2. This makes detik.com a good

source of data for analyzing the sentiment distribution of news articles’ readers.

We initially collect news articles that were mentioned in detik.com’s Twitter

account from November 2016 - February 2017. We use the Python Tweepy3 module

to get its Twitter timeline. We find that there are many duplicate tweets that refer

to the same news article. Online media tend to repost the same content in order

to get more traffic, hit multiple time zones, and reach new followers. We remove

duplicate tweets by keeping the earliest tweet and removing newer ones. After

removing duplicate tweets, we have 36,587 distinct tweets.

We then process the tweets, get their contents, numbers of retweets, and favorite

counts. To get the corresponding articles from the online news platform, we extract

URLs from the tweets. We build a custom webpage scraper and download the ar-

ticles pointed to by the URLs. For each article, we get its headline, content and

emotion scores.

We remove news articles that have no emotion scores; after this step, we have

11,704 news articles. However, some of these articles may only receive very few

emotion votes. We further remove articles that are likely to receive few emotion

votes. We use number of comments as a proxy to the number of votes4. We believe

that the number of comments should be less than the number of votes, since it is

more difficult and time consuming to write a comment, as compared to providing a

vote. Therefore, we further filter our dataset to exclude articles that have less than

10 comments. At the end of this step, we have 1,575 articles remaining as our final

dataset. Since we want to predict emotion distribution of unseen documents, we

order the dataset based on the article’s date, and use 80% from the ordered data as

our training corpus. This corpus is used for building an emotion lexicon and word

2https://www.socialbakers.com/statistics/twitter/profiles/
indonesia/

3http://www.tweepy.org/
4The website does not provide the number of votes but only the proportion of votes for the various

emotions.
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vector features. The remaining 20% of the ordered set is used as our testing corpus.

This corpus is used to evaluate the performance of emotion distribution prediction

approaches.

Table 4.1: Average emotion scores from our detik.com dataset
Sentiment Mean Score
Happy 0.41
Amused 0.05
Inspired 0.05
Don’t care 0.18
Annoyed 0.04
Sad 0.09
Afraid 0.02
Angry 0.18

Table 4.1 reports the average proportion of votes for each emotion for articles

in our detik.com dataset. Note that the ”happy” emotion has a higher score (i.e.,

most articles receive higher proportion of ”happy” votes than other votes) than other

emotions. Possible explanations for this observation are due to characteristics of

commenters, or our dataset selection process. The predominance of the ”happy”

emotion has also been found in other datasets used in a related work by Staiano and

Guerini [88].

4.2.3 Step 2: Build Word Vector

Word embedding is a technique to represent words in a form of continuous value

vectors. These vectors encode meanings of words. One of the most popular word

embedding technique is word2vec. word2vec uses a shallow neural network to re-

construct contexts of words. Two architectures can be used to generate the vectors:

continuous bag-of-words (CBOW) or continuous skip-gram (SG) [58]. For CBOW,

a neural network is trained to predict a word based on its surrounding words. In this

architecture, the continuous value vector for a word is the vector that is input to the

last layer in the network after we input its surrounding words to the network. For

SG, a neural network is trained to predict surrounding words based on the current
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word. In this architecture, the continuous value vector for a word is the vector that

is output by the first layer in the network.

Continuous value vectors that are generated by word2vec contain semantic

meanings of words. Words that appear in similar contexts tend to have similar

vector representations. The vectors also have an interesting arithmetic feature. For

example, the resultant vector of the following arithmetic operation (vector of brother

- vector of man + vector of woman) is pretty similar to the vector of sister. This is

related to analogical reasoning where brother is to sister as man is to woman, which

is encoded in the vector representation learned by word2vec.

Building on top of the success of word embedding, we learn a custom word

embedding from our training corpus. In practice, SG tends to be more effective than

CBOW when larger datasets are available [49]. However, due to relatively small size

of our training corpus, we use a CBOW model to build word vectors. To create word

vectors, we first split news articles in the corpus into sentences. Indonesian texts

use the same sentence end symbols as those used in English texts (sentences can

end with ”?”, ”!”, or ”.”). We use NLTK’s punkt tokenizer5 for sentence splitting.

Given the generated sentences, we train word2vec model using Python’s gensim

module [79]. We compute 300-dimensional word embedding with CBOW model

on our training corpus, without removing stop words. We have 76,752 word vectors

generated from our training set.

4.2.4 Step 3: Build Emotion Lexicon

An Emotion lexicon is a dictionary that associates words with emotion categories,

such as anger, fear, surprise, sadness, etc. It is typically constructed via crowdsourc-

ing. In the crowdsourcing process, a group of people is asked to label a set of words

by associating each word with one or more basic emotions. Labels from the group

of people are then aggregated for each word by summing up votes for each basic

5http://www.nltk.org/
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emotion. The resultant sums are then normalized across basic emotions, which rep-

resent emotion distribution for the corresponding word. The resultant collection of

words along with their corresponding emotion distribution is the constructed emo-

tion lexicon.

Another approach to create an emotion lexicon is to use a crowd-sourced affec-

tive annotation from a social news network, such as the one used in Staiano and

Guerini work [88]. Typically, an automated tool such as a web crawler is used to

get news articles and related emotion scores tagged by readers. By splitting a news

article into words, emotion scores for each word in the article are calculated.

To create an emotion lexicon, we first construct a document-by-emotion ma-

trix containing the eight emotion scores for each document. We follow a previous

work to create a word-by-emotion matrix [88]. We also create a word-by-document

matrix containing normalized word frequency across documents. We multiply the

document-by-emotion matrix and the word-by-document matrix to produce a word-

by-emotion matrix. In the end, we have 22,346 words and their corresponding eight

emotion scores that we refer to as our generated Emolex (Emotion Lexicon). An

excerpt of the matrix is shown in Table 4.2.

Table 4.2: Sample taken from word-by-emotion matrix generated by analyzing our
detik.com training corpus

Word Happy Amused Inspired Don’t Care Annoyed Sad Afraid Angry
Walikota (Mayor) 0.488 0.032 0.087 0.209 0.010 0.028 0.006 0.142
Membunuh (Kill) 0.246 0.038 0.091 0.055 0.017 0.152 0.047 0.354
Pahlawan (Hero) 0.442 0.050 0.051 0.058 0.040 0.080 0.016 0.264

4.2.5 Step 4: Extract Features

A news article contains headline and content. We explore different combinations of

news article parts to extract features from, i.e., use only headlines, contents or both.

We follow an emotion lexicon construction process (described in Section 4.2.4) and

word vectors training process (described in Section 4.2.3).
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Lexicon Features

We build around 22,000 lexicons tagged with emotion scores as described in Sec-

tion 4.2.4. We transform each news article in our corpus into a document-by-

emotion feature vector by following these steps:

1. We split the considered portion of a news article into words, and then remove

the stop words.

2. For each word, we retrieve its emotion score vector from our word-by-

emotion matrix.

3. We calculate the emotion vector for the news article by averaging emotion

vectors of the words in the news article.

In the end, we have a document-by-emotion matrix of the following dimen-

sion: total number of articles in the corpus (1,575) × emotion scores (8). Each

document-emotion vector in the matrix represents emotion lexicon features for the

corresponding news article.

Word Vector Features

Our set of trained word vectors model includes around 76,000 vectors of 300 di-

mensions. We generate a vector for each news article. To do this, we use a vector-

averaging approach, which consists of the following steps:

1. We split the considered portion of a news article into words, and then remove

the stop words.

2. For each word, we retrieve its word vector from our trained word2vec model.

3. We generate a vector for the news article by averaging word vectors that cor-

responds to the words in the news article.

As a result, we have a vector for each news article in the corpus. Since we have

1,575 news articles, we get a 1,575 × 300 matrix.
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4.2.6 Step 5: Build Regression Model

We formulate our problem as a multi-target regression task. Multi-target regression

is a family of regression techniques where there are multiple output variables. In

multi-target regression task, a set of training example E is given, where each exam-

ple is in the form of (x, y). x = {x1, x2, x3, ..., xA} is a vector of A attributes and

y = {y1, y2, y3, ..., yT} is a vector of T target values. Multi-target regression learns

a model that, given x, predicts all T target values in y simultaneously. Multi target

regression is generally solved by transforming it to multiple single-target regression

or adapting the regression algorithm to directly deal with multiple outputs.

Given features extracted from our training corpus, we build a multi-target re-

gression model to predict spread of readers’ emotions. We explore different sets of

features, i.e. emotion lexicon features (with 8 independent variables), word vector

features (with 300 variables), and combination of both.

4.3 Experiments and Results

In this section, we first describe our experiment setting, baselines used and evalua-

tion metrics. Then, we present our research questions and results of our experiments

which answer the questions.

4.3.1 Experiment Setting and Evaluation

Experiment Setting

Our dataset consists of 1,575 articles. We use 80% of this data as training corpus,

and the remaining as testing corpus. Before we build the word vector model as

described in Section 4.2.3, we preprocess the corpus using Python NLTK and the

Scikit module. We remove punctuations and non-word characters, and convert the

remaining characters into lowercase.
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We use the Scikit-Learn6 module to build a multi-target regression model. The

module supports multi-target regression by transforming it into multiple single-

target regression tasks. The single-target regression algorithm is determined by

choosing a base regressor. For choosing a good base regressor, we experimented

with different regressors such as Linear Model, Random Forest Regressor, Sup-

port Vector Regressor, and Gradient Boosted Regressor. We found that Gradient

Boosted regressor achieves the best overall performance compared to other regres-

sors. Therefore, we use this regressor in our experiments.

All experiments were done on an Intel Core i7 CPU, 8 GB RAM notebook

running Windows 10 64 bit.

Baseline

We compare our model with two general purpose models that can be used for emo-

tion prediction:

1. We use Sentic-API [20] as a general purpose emotion lexicon. Sentic-API

supports Indonesian language. It contains denotative (i.e., semantics) and

connotative information (sentics) associated with 50,000 common sense con-

cepts. A word-emotion lexicon that associates words with four dimensions

of sentics (pleasantness, attention, sensitivity, and aptitude) is also provided.

For each news article, we take the sentics values for each word and compute

the average value for each sentics dimension. The generated four average val-

ues (i.e., each corresponding to a particular sentics dimension) are the news

sentics. These average values are converted to a feature vector that is input

to a multi-target regression model. An excerpt of the word-sentics matrix is

shown in Table 4.3.

2. We use a freely available word vector model trained using FastText [15] as the

general purpose word vector. This model is trained on a Wikipedia dataset,

6http://scikit-learn.org
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Table 4.3: An excerpt of Sentic-API’s word-sentics matrix
Word Aptitude Attention Pleasantness Sensitivity
Gembira (Happy) 0.193 0.156 0.504 -0.176
Sedih (Sad) -0.051 0.266 -0.826 -0.461
Walikota (Mayor) 0.000 0.152 0.079 -0.061

and it is available for 294 languages including Indonesian. The pre-trained

model has word vectors with dimension of 300, and was obtained using the

skip-gram model described in Bojanowski et al.’s paper [15]. For each news

article, the word vector associated with each word is collected and averaged.

The averaged word vector is considered as the news representation and input

to a multi-target regression model.

Evaluation

To measure the effectiveness of our approach and the baselines, we use RMSE (Root

Mean Squared Error). RMSE is a widely used evaluation metric when estimating

continuous values. It is the square root of the average of squared differences be-

tween prediction and actual observation. The metric is defined below:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

where N is the number of documents, yi is the ground truth of emotion score, and

ŷi is the predicted emotion score.

4.3.2 Research Questions and Results

RQ1: How effective is the use of different portions of news article (headlines

only, contents only, headlines+contents) in predicting emotion scores?

Approach: In this research question, we investigate the effectiveness of using three

different portions of news articles: news headlines only, news contents only and

combination of news headlines and contents. For each of them, we trained separate
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word2vec models using gensim. We also create different word-by-emotion matrices.

Based on the extracted features, we build regression models and calculate RMSE

for each emotion category.

Results: Table 4.4 shows the results of our experiments. We can see that generally,

using headline combined with contents performs at least as good as using headline

or content only. This finding suggests that both headlines and contents contain

useful information that can be combined together to create a better model.

Table 4.4: RMSE scores of the emotion lexicon (EM) and word vectors (WV)
when considering different portions of news articles: Headlines (H), Contents (C),
and Headlines+Contents (H+C)

Features Happy Amused Inspired Don’t Care Annoyed Sad Afraid Angry Average
H WV 0.299 0.105 0.105 0.230 0.068 0.149 0.039 0.259 0.157
C WV 0.284 0.107 0.113 0.235 0.063 0.148 0.058 0.243 0.156
H+C WV 0.278 0.098 0.120 0.213 0.060 0.145 0.077 0.252 0.155
H EM 0.308 0.071 0.118 0.242 0.071 0.143 0.051 0.239 0.155
C EM 0.299 0.079 0.111 0.257 0.046 0.142 0.056 0.252 0.155
H+C EM 0.277 0.103 0.095 0.203 0.056 0.131 0.034 0.216 0.151

RQ2: How effective are the generated emotion lexicon (EM) and word vectors

(WV) as compared to the general purpose baselines?

Approach: In this research question, we compare the effectiveness of using an

emotion lexicon and word vector generated by our approach against the general

purpose baselines (see Section 4.3.1) to predict emotion scores distribution. Our

previous experiment shows that using the news headline combined with news con-

tent generally produces a better result. Therefore, we use this combination for this

experiment.

Results: Table 4.5 shows the results of our experiments. Our generated emotion

lexicon features achieve better performance for predicting scores in all emotion cat-

egories, when compared to using Sentics. Similarly, our generated word vectors

achieves a better performance, as compared to using a general pre-trained word

vector from Wikipedia using FastText. Comparing average RMSE over all emo-

tions, EM outperforms Sentics by 14.7 %, while WV outperforms FastText by 84.9
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%. These results show the usefulness of building a domain specific emotion lexicon

and training domain specific word vectors.

Table 4.5: RMSE scores of our generated emotion lexicon (EM) and word vectors
(WV) as compared to a general purpose lexicon (Sentics) and word vectors trained
on Wikipedia (FastText) on predicting emotion distribution scores

Features Happy Amused Inspired Don’t Care Annoyed Sad Afraid Angry Average
EM 0.277 0.103 0.095 0.203 0.056 0.131 0.034 0.216 0.151
Sentics 0.328 0.105 0.114 0.297 0.059 0.154 0.083 0.272 0.177
WV 0.278 0.098 0.120 0.213 0.060 0.145 0.077 0.252 0.155
FastText 0.373 1.695 1.314 0.494 1.385 1.127 1.293 0.54 1.028

RQ3: Can combining emotion lexicon and word embedding vectors improve

the performance of the prediction model?

Approach: To answer this question, we combine the emotion lexicon and word

vector features (EM+WV), and compare it with using the emotion lexicon features

alone (EM) and word vector features alone (WV). Similar to RQ2, we extract fea-

tures from both headlines and contents of news articles.

Results: Table 4.6 shows the results of our experiments. By combining emotion lex-

icon features and word embedding vector features (EM+WV), the average RMSE

score is reduced from 0.151 to 0.130 (13.91%) as compared to EM, and from 0.155

to 0.130 (16.13%) as compared to WV. Therefore, by combining emotion lexicon

and word vector features, we can improve performance of the regression model.

Table 4.6: RMSE scores of the combination of the emotion lexicon and word
vector features (EM+WV) compared to when each set of features is used alone (EM
or WV)

Features Happy Amused Inspired Don’t Care Annoyed Sad Afraid Angry Average
EM 0.277 0.103 0.095 0.203 0.056 0.131 0.034 0.216 0.151
WV 0.278 0.098 0.120 0.213 0.060 0.145 0.077 0.252 0.155
EM+WV 0.232 0.090 0.102 0.158 0.067 0.129 0.067 0.193 0.130
Sentics+WV 0.304 0.132 0.133 0.207 0.090 0.166 0.083 0.256 0.171
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4.4 Threats to Validity

There are a number of threats that may affect the validity of our findings. In this

section, we discuss threats to internal validity, external validity, and construct valid-

ity.

Internal Validity. Threats to internal validity relate to experimenter bias and errors

in our implementation. We have checked our implementation, but there could still

be errors that we do not notice.

External Validity. Threats to external validity relate to the generalizability of our

findings. We have evaluated the effectiveness of our approach to infer readers’

emotion scores in a corpus of 1,575 online news articles. In the future, we plan to

reduce this threat further by considering a larger set of articles from various online

news platforms.

Construct Validity. Threats to construct validity relate to the suitability of our

evaluation metric. In this work, we use RMSE as the evaluation metric. RMSE is a

standard metric and it has been used as evaluation metric in past studies such as in

Lin and Chen [52]. Thus, we believe that threats to construct validity are minimal.

4.5 Chapter Conclusion

In this chapter, we have presented an approach that uses an emotion lexicon and

word embeddings in order to predict readers’ emotion scores distribution towards

an online news article. We build a new corpus containing around 1.5k Indonesian

news articles taken from detik.com along with affective annotations provided by

readers of those articles. Our experiments show that, by using combined features

of a domain-specific emotion lexicon together with word embedding vectors, we

are able to predict the distribution of readers’ emotion scores with a Root Mean

Squared Error (RMSE) score ranging from 0.067 to 0.232. Our approach is generic

and can be easily replicated to other online news platforms that allow readers to
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provide affective annotations. Our approach can benefit publishers by giving them

early insight on expected public response to a particular article, before they actually

publish it.

In the future, we plan to evaluate our proposed approach on another corpus. To

improve the accuracy of our approach further, we plan to experiment with more

features to better characterize different reader emotions. One possibility is by im-

proving accuracy of the emotion lexicon using bag-of-concepts [80] instead of bag-

of-words.
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Chapter 5

Helping Developers Sift Wheat from

Chaff via Cross-Platform Analysis

5.1 Introduction

Software developers rely on many sources of knowledge to help them stay up-

to-date on the latest technologies and to accomplish their development tasks. A

study conducted by Maalej et al. [54] showed that 70% of developers use online

resources (web search engines, public documentation, forums) as channels to ac-

cess knowledge. Among those channels, some are more popular and contain richer

content relevant to software engineering compared to others. For example, Xin et

al. [102] observed how developers commonly make use of a web search engine such

as Google to find online resources to improve their productivity. They found that

63% of the searches on the Internet ended with a visit to Stack Overflow, a popular

question and answer (Q&A) site. Another popular channel are microblogging plat-

forms (e.g., Twitter): a large number of software developers use Twitter frequently

to support their professional activities, e.g., to share and obtain the latest technical

news [85].

Aside from their activity to seek knowledge in various platforms, many soft-

ware developers also share their experiences or knowledge through forums and so-
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cial media. A study by MacLeod et al. [56] found that video is a useful medium

for communicating knowledge between developers, and that developers build their

reputation by sharing videos through social channels (e.g., YouTube). On YouTube,

developers as content creators will also benefit from comments given by their view-

ers. Such comments are valuable for content creators since the comments reflect

users experience with the video.

However, extracting software-related knowledge from different platforms re-

quires varying levels of effort. For example, on Stack Overflow, almost all of the

content is related to software development. The content is also maintained to be of

high quality by the collective community effort and the siteFLs moderators. But it is

more challenging to extract software-development-related information from Twit-

ter, since Twitter is a social media channel which contains a wide range of content.

In order to help software developers to handle these challenges, there is a need for

an approach that helps developers filter relevant content from various platforms.

Our work is motivated by the following use cases:

Use Case 1: We consider a developer who wants to acquire new knowledge based

on software-relevant tweets. Singer et al. [85] found that developers face challenges

while using Twitter, which relate to having to deal with a huge amount of irrelevant

tweets produced on Twitter, as well as the challenge of maintaining a relevant net-

work. It is impossible to follow all relevant Twitter users since tweeting behaviour

constantly changes and new Twitter users enter the service. We can collect tweets

generated from tens of thousands of users regularly (which can amount to millions

of tweets per day), but the problem is in the identification of relevant tweets in

this large collection of tweets. Furthermore, even Twitter users who are considered

experts in the software development community may at various times post tweets

that are not software-relevant. Indeed, a manual investigation of 1,000 randomly

selected tweets (done by an author and an independent annotator) from a collection

of more than 6 millions tweets found that only 16.7% of the tweets are software re-
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lated. As the developer has limited time to inspect new tweets, a content aggregator

for Twitter data related to software development is essential. This will address the

problem of following the right people and the large amount of irrelevant content.

To create such an aggregator, there is a need for a solution that finds relevant tweets

among the tweets that are released in a given time period. More generally, automatic

identification of software-relevant tweets will also enable downstream applications

such as creation of a specialized Twitter feed for the developer community. It can

also be used to aid downstream analytics task related to tweets such as mining of

user requirements [101], early detection of software issues [34], or topic / trend

detection [83].

Use Case 2: We consider a software developer who acts as a content creator and

publishes a coding tutorial on YouTube. Through these tutorials, viewers can visu-

ally follow the instructions provided in the videos. Additionally, viewers can leave

a comment that expresses their experience with the video. From the content cre-

ator point of view, as stated in the work by Poché et al. [70], digesting information

taken from the comments will help content creators to be more engaged with their

audience and improve their future videos. The identification of software-relevant

comments will be useful, in particular given that Poché et al. [70] report that only

a small percentage (30%) of comments in the videos they analyzed are content-

related. Automatic filtering of relevant comments (referred to as content concerns

comments or informative comments by Poché et al.) will enable creators to study

feedback provided by viewers more efficiently, and similar to tweets, such filtering

can be used to improve downstream analytics tasks, such as detection of common

topics among relevant comments.

In both platforms mentioned above (Twitter and YouTube comments), sentences

are typically short, contain a lot of noise, and may contain non-standard words. In

order to address these challenges, we propose SIEVE, an approach to help auto-

mated tasks in a non software-development-specific platform. Our approach uti-
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lizes content from a rich software-development-specific platform based on transfer

representation learning, to help automated knowledge extraction tasks in other less

software-development-specific platforms. We consider two platforms, Software En-

gineering Stack Exchange and Stack Overflow, as the rich domain-related platforms.

We build word embedding based on the dataset collected from these platforms. We

then leverage the word embedding models to solve information retrieval and clas-

sification problems in two different target platforms. We experiment with two dif-

ferent use cases: finding tweets relevant to software development on Twitter [82],

and classifying informative comments for software engineering video tutorials on

YouTube [70]. We conducted experiments based on the existing datasets (as de-

scribed in Table 5.2) provided by Sharma et al. [82] for Twitter, and Poché et al. [70]

for YouTube comments. Our experiments show the effectiveness of our proposed

cross-platform analysis approach which achieves performance improvements of up

to 28% and 10.3% for the first and second use case respectively. Our contributions

can be summarized as follows:

1. We propose an approach based on transfer representation learning and word

embedding to solve information retrieval problems on how to use data from

domain-specific platforms to help tasks in other platforms.

2. We conduct experiments to show the effectiveness of the proposed approach

for two different tasks and platforms (i.e., Twitter and YouTube), and use

baselines described in existing work.

3. We compare the performance of various word embedding algorithms with

regards to our use cases.

The next sections in this chapter are structured as follows. In Section 5.2, we

describe background related to knowledge channels for software developers, and

background on representation learning and word embedding. In Section 5.3, we de-

scribe our approach on learning a knowledge representation from source platforms.
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We present our first use case on finding software-related tweets in Section 5.4. Next,

we present the second use case on classifying informative comments on YouTube

in Section 5.5. In Section 5.7, we discuss findings that are relevant to our approach.

Threats to validity are discussed in Section 5.6. Finally, we conclude and mention

future work in Section 5.8.

5.2 Background

In this section, we first discuss the knowledge sources used by developers which

we have considered in our current work. Next, we discuss background on transfer

representation learning and word embedding.

5.2.1 Knowledge Sources for Software Developers

Storey et al. found that software developers use many communication tools and

channels in their software development work [90, 91]. In this work, we focus

on learning word embedding from software-development-specific channels such

as Software Engineering Stack Exchange and Stack Overflow (which are popular

software discussion forums), and use the learned embedding to improve the per-

formance of information retrieval and classification tasks related to the extraction

of software-development-related knowledge from open domain channels such as

Twitter (a microblogging site) and YouTube (video sharing). In the subsequent

paragraphs we give background on these channels.

Software Engineering Stack Exchange: Stack Exchange1 is a network of question

and answer (Q&A) websites, where each website focuses on a specific topic. On

any of the websites each of which is related to a particular domain, its users can

ask questions related to that domain and other users can provide answers to these

questions. The motivation for users to answer questions comes from the points that

1https://stackexchange.com/
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they can gain when other users in the same community upvote or accept their an-

swers. These points help them to build a reputation in the domain (and the related

community), which the Stack Exchange website is focused on. The Stack Exchange

community has been the focus of many studies e.g. [12, 74]. In this work as we are

interested in improving the performance of information retrieval and classification

tasks related to software engineering, we focused on Stack Exchange communities

related to software engineering and programming, which are Software Engineer-

ing Stack Exchange2 and Stack Overflow3 respectively. The difference between

these two sites is that Stack Overflow is focused only on specific programming tasks

and problems, whereas Software Engineering Stack Exchange allows more gen-

eral questions related to software development and engineering such as discussions

about various libraries, methodologies etc. The latter has about 50,655 questions

and 260,361 users. The intuition behind using Software Engineering Stack Ex-

change is that models trained on the general nature of content may achieve different

performance on the task of filtering information from open domain websites such

as Twitter and YouTube.

Stack Overflow: Stack Overflow3 is a programming question and answer website

founded in 2008 with a focus on software development. It is an online forum where

anybody facing a programming issue can post a question describing the problem

they face. The questions posted are public on the forum, so any other user on the

forum can post their solutions as answers to the posted questions. The original asker

can then mark an answer as accepted if it solved the problem. Other users can also

upvote an answer if they think it is the right method to solve the programming chal-

lenge being addressed. Thus Stack Overflow helps developers in getting answers to

their problems with the help of the crowd. It is one of the most used websites by

software developers in the world having more than 9,000,000 registered users, more

2https://softwareengineering.stackexchange.com/
3https://stackoverflow.com/
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than 16,000,000 questions and an Alexa Rank of 704. As Stack Overflow contains

rich software development and software engineering content, it has been immensely

popular among software engineering researchers in recent years, where it has been

used to discover topics and trends [11], generate API call rules [7], explore knowl-

edge networks [108], build information filtering models [82].

Figure 5.1 shows a sample question-and-answer thread from Stack Overflow.

Each thread generally contains five types of information: title, tags, body, answers,

and comments. The title of a thread is a summary of the question asked. The

tags represent the metadata related to the question being asked and are entered by

the person who asked the question. Whenever somebody asks a question on Stack

Overflow, they receive a recommendation to attach at least three tags to the question.

The body part of the thread contains the description of the question. Whenever a

question is answered, the answer appears in the answers section of the thread. Other

developers can also ask further clarifying questions or comment on the question or

answers posted up to that point.

Twitter and Software Engineering: Twitter is currently one of the most popular

microblogging sites in the world. On Twitter, a user can post short messages (a.k.a.

tweets) broadcasted to all other Twitter users who are following the user. Twitter

allows a user to follow another user, which means the latter subscribes to all the

tweets of the user he/she is following. Users also have an option of reposting the

tweets posted by others – an activity known as retweeting. Twitter also allows users

to mark favorite tweets, which conveys their interest in the content of a tweet.

By virtue of its simple design and easy-to-use functionality, Twitter has become

a powerful medium for information sharing and dissemination. It started as a so-

cial networking medium but has nowadays become one of the important sources

of information for people to keep up-to-date with the latest news and information

about their domains of interest, to share and promote knowledge, and to keep in

4https://en.wikipedia.org/wiki/Stack Overflow
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Figure 5.1: A sample question-answer-thread on Stack Overflow with tags (Thread
ID 626759)

touch with their family and friends [48]. Twitter influences many communities in-

cluding the software engineering community as highlighted by many prior stud-

ies [85, 17, 99, 94]. Various techniques have been proposed recently to mine soft-

ware engineering relevant information from Twitter [82, 84, 101, 39].

52



YouTube and Software Engineering: YouTube is a website where anybody can share

videos [29]. It has over 1 billion users and generates billions of views daily [110].

YouTube has also evolved into a knowledge sharing resource, where people can

share informational videos, follow other users and comment on videos. Thus it

provides people with resources to share information, learn new knowledge, as well

as get and provide feedback.

Software developers also use YouTube for sharing information as well as learn-

ing [56, 71]. MacLeod et al. found that developers share videos detailing informa-

tion they wished they had found earlier [56]. The videos mainly relate to sharing

knowledge about development experiences, implementation approaches, design pat-

tern application, etc. Other work focuses on extracting relevant information for de-

velopers from YouTube, which is a challenging task given the large size of videos.

Tools to help developers find relevant content from software engineering videos

have been proposed [72, 106]. Poché et al. analyzed user comments related to

software engineering videos posted on YouTube [70] and proposed a technique for

finding relevant comments.

5.2.2 Word Embedding and Transfer Representation Learning

In machine learning, many methods perform well under the common assumption

that the training and test data are drawn from the same feature space and the same

distribution. In many contexts, this assumption may not hold. For example, we at-

tempt to solve a classification problem in a domain that does not have enough train-

ing data, but we have sufficient data in other related domains. In this case, knowl-

edge transfer or transfer learning would be useful to solve the classification prob-

lem [65]. In the context of representation learning, transfer representation learning

is where rich representations are learned in a source platform with the aim of trans-

ferring them to different target platforms [4]. Representation learning also can be

described as learning representations of data that make it easier to extract useful
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information when building classifiers or other predictors [13]. In the field of Natu-

ral Language Processing (NLP) applications, distributed word representations, i.e.,

word embedding, are one of the products of representation learning.

Word embedding represent words in a low dimensional continuous space, to

convey semantic and syntactic information [58, 67]. One of the most popular word

embedding techniques is Word2Vec, which uses a shallow neural network to recon-

struct contexts of words. Mikolov et al. [58, 59] proposed two methods to learn

word embedding: Continuous Bag-of-Word (CBOW) and Skip-gram. They have

been widely adopted due to their effectiveness and efficiency. For CBOW, a neural

network is trained to predict a word based on its surrounding words. In CBOW, the

continuous value vector for a word is the vector that is input to the last layer in the

network after we input its surrounding words to the network. For Skip-gram, a neu-

ral network is trained to predict surrounding words based on the current word. In

this architecture, the continuous value vector for a word is the vector that is output

by the first layer in the network. It has been shown that the embedding vectors pro-

duced by these models preserve the syntactic and semantic relations between words

under simple linear operations.

A recent study by Semwal et al. provided some practical guidelines for applying

transfer learning to NLP applications [81]. They highlighted that the content of the

embedding layer of a neural network learned from one dataset can potentially be

used for another dataset. They also suggested to pick a source domain with a large

vocabulary size that contains content with similar semantics to the target task. Their

findings motivate us in investigating the effectiveness of word embedding learned

from platforms that contain a large collection of software engineering content (e.g.,

Stack Overflow and Stack Exchange) to help software engineering related tasks

in other platforms with much less software engineering content (e.g., Twitter and

YouTube).
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5.3 Approach

In this section, we first describe an overview of SIEVE, our approach to help auto-

mate tasks in a non software-development-specific platform. Afterwards, we pro-

vide more detailed discussion regarding stages in the proposed approach.

5.3.1 An Overview of SIEVE

Our work is related to transfer representation-learning, where rich representations

are learned from a software-development-specific platform, and leveraged in a dif-

ferent target platform. To represent knowledge in the source platform, we build a

word embedding model that represents each word as a low-dimensional vector such

that words that are similar in meaning are associated with similar vectors.

Our approach consists of two stages: representation learning from a source plat-

form, and model building for a target platform. In the first stage, we learn a word

embedding representation from a software-development-specific platform. In the

second stage, we leverage the word embedding model built from the platform to

resolve tasks in the target platform. Figure 5.2 shows the overall architecture of our

proposed framework.

Figure 5.2: Overall approach

5.3.2 Stages of the Proposed Approach

Stage 1: Representation Learning from Source Platform
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While most research done on Q&A sites is based on Stack Overflow data

(e.g. [82, 111]), we believe that relevant domains of Stack Exchange are also a

good source for software engineering related terms. In this work, we focus on

one domain: Software Engineering Stack Exchange (Stack Exchange-SE). Stack

Exchange-SE is an excellent source as it is a “question and answer site for pro-

fessionals, academics, and students working within the systems development life

cycle” and contains posts related to “software development methods and practices”,

“requirements, architecture, and design”, “quality assurance and testing”, and “con-

figuration, build, and release management” [87]. We use text data extracted from

the two sites (i.e., Stack Overflow and Stack Exchange-SE), and build two models:

SIEVE SO which is based on Stack Overflow and SIEVE SE which is based on

Stack Exchange-SE data.

The StackExchange-SE dataset is publicly available on the Stack Exchange data

dump site.5 We use the following two files: Posts.7z and Comments.7z. Posts.7z

contains the title and body of posts (i.e., questions and answers) that appear on Stack

Exchange. Comments.7z contains comments that users give to the questions and

answers on Stack Exchange. Our Stack Exchange dataset contains a total of 149,478

posts, 409,740 comments, and 46,246 titles generated in a time period spanning

from September 2010 to August 2017. We combined all of the posts, comments and

titles for learning word embedding from this dataset. We do not perform filtering

of posts in the Stack Exchange-SE and Stack Overflow datasets (e.g., for answers

or questions with negative votes), since we assume that most of the posts will be

software related, regardless of their quality.

We used the Stack Overflow data dump provided by previous work by Sharma

et al. [82]. The data was also taken from the data dump site.5 They extracted the

questions and answers from the Posts.7z file, and user’s comments from Com-

ments.7z. These files contain content posted on Stack Overflow from September

2008 to September 2014. There are a total of 7,990,787 titles, 21,736,594 posts

5http://archive.org/download/stackexchange
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(questions and answers), and 32,506,636 comments. Since there are too many posts

and comments to efficiently process the data, to reduce the time it takes to learn a

model, they randomly selected 8 million posts and comments from the data dump.

We use this randomly selected data and combine all of the posts, comments and

titles.

Before we build the word embedding model, we performed the following text

preprocessing for both datasets:

1. Parse the posts into sentences, since we want to train word embedding at

sentence-level. We use NLTK punkt tokenizer6 for sentence splitting.

2. Remove all HTML tags since they do not contain useful information for word

embedding.

3. Remove all special characters (e.g., symbols, punctuations, etc.) and words

that contain only numbers.

4. Change all words to their lower case.

We do not use stemming in the preprocessing steps as many past stud-

ies [70, 8, 101] have shown that it does not boost performance. We chose the

Skip-gram Word2Vec model proposed by Mikolov et al. [58]. We trained the word

embedding models by using the Word2Vec Skip-gram model implemented in Gen-

sim7. We use the following hyper-parameter settings: context window size of 5,

vector dimension of 300, negative samples of 5, and minimum word frequency of 0.

Context window size determines the number of surrounding words to be included

as the context of a target word. For example, a window size of 5 takes five words

before and after a target word as its context for training. For our dataset, since the

sentences are typically short, we chose a window size of 5. The vector dimension is

the size of the learned word vector. Training a higher dimension word vector is more

6http://www.nltk.org
7https://pypi.org/project/gensim/
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computationally costly and produces a larger word embedding matrix. According to

the experiment conducted by Pennington et al. [67], the best accuracy was achieved

with 300 dimensions. In their experiments, performance did not improve dramati-

cally if the number of dimensions is increased further. Negative samples parameter

refers to the number of randomly chosen negative words during training process.

We use the default value of negative samples in Gensim (negative sample = 5).

Minimum word frequency is set to 0, which means that the model will preserve all

words in the dataset.

The output of the model is a dictionary of words, each of which is associated

with a vector representation. Table 5.1 includes statistics on the generated word

embedding learned from the datasets.

Table 5.1: Statistics of datasets and word embedding extracted from Stack Over-
flow (SIEVE SO) and StackExchange-SE (SIEVE SE). Vocabulary size refers to
the number of unique terms in the Word2Vec model.

StackExchange-SE Stack Overflow
Number of Posts 149,478 21,736,594
Number of Comments 409,740 32,506,636
Number of Titles 46,246 7,990,787
Number of Sentences (sampled ) 3,152,950 8,000,000
Vocabulary size in Word2Vec 233,098 275,103

Stage 2: Model Building for Target Platform

Our goal is to leverage knowledge extracted from software-development-

specific platforms and apply it to open-domain platforms. In order to examine the

learned word embedding representation in stage 1, we utilize the word embedding

in two different use cases. In the first use case, we aim to resolve the task of find-

ing tweets related to software engineering. In the second use case, we leverage the

word embedding to classify user comments on YouTube coding tutorial videos. We

discuss each of the use cases further in the next sections.
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5.4 Finding Relevant Tweets Using Word Embedding

In this section, we show how our approach can be used for the task of finding tweets

related to software engineering. Researchers have found that developers use Twitter

to support their professional activities by sharing and discovering various informa-

tion from microblogs, e.g., new features of a library, new methodologies to develop

a software system, opinions about a new technology or tools, etc. [82] However,

due to various topics posted on Twitter, it becomes a challenge to find interest-

ing software-related information on Twitter. To overcome this problem, Sharma

et al. [82] proposed a language-model based approach and used the model to rank

tweets based on their relevance to software engineering. We will use the proposed

model as a baseline, along with other baselines. We aim to answer the following

research question:

RQ1. How effective is our approach at the task of finding software related

tweets?

5.4.1 Approach

Figure 5.3 shows our proposed approach for the task of finding software

development-related tweets, by utilizing word embedding trained from a source

platform. In general, we formulate the task of finding software-related tweets as

a ranking problem, i.e., ranking the tweets in the order of their similarity scores

with selected sentences from the source platforms. We follow these steps:

Step 1: Instance Selection

In our approach, selecting instances (i.e., sentences) from the source platform is

an important task, since we will use these selected sentences to rank the tweets

based on a similarity measure. Sentences extracted from the source platform

(StackExchange-SE/Stack Overflow) are considered as software-related. However,

some of the sentences may have different characteristics from Twitter. Therefore,
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Figure 5.3: Our approach for finding software-related tweets

we use the following heuristic methods to select suitable sentences from a source

platform:

1. We select sentences that have a length of no more than 140 characters which

corresponds to a tweet’s maximum length.

2. Among these selected sentences, we randomly sample sentences. By default,

we sample 1000 sentences. We believe that this sampled set should be enough

to represent sentences that contain software-related terms.

Step 2: Preprocess Tweets

We use the Twitter dataset provided by Sharma et al. [82]. We also use the same

preprocessing steps as the prior work, i.e., we remove punctuation marks and URLs,

and convert all words into lowercase.

Step 3: Calculate Similarity

To measure similarity between tweets and selected sentences taken from the

source platforms, we need to use the same representation for both texts. Because

sentences (or tweets) have different lengths, we transform each sentence into fixed-

length vector to represent them. To build the vector representation, we leverage the

word embedding learned from the source platform. The model consists of word

vectors that have 300 dimensions as mentioned in Section 5.3. We follow these
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steps:

1. For each sentence or tweet in the dataset, we tokenize it into words.

2. For each word, we look up its weight from the word embedding model. If a

word does not exist in the model, we can either ignore that word, use a vector

whose values are all 0 to represent it, or use the average of the embedding

from words having the lowest frequency in the model. By default, we ignore

the word that does not exist in the model. The result is a 300 dimensions

vector of real values taken from the word embedding model.

3. We represent the sentence into a fixed-length vector. There are different ways

to obtain text representation from word embedding. The most common meth-

ods use the maximum, minimum, or average of the embedding of all words

(or just the important words) in a sentence [86]. In this case, we take the av-

erage of the word embedding of all words within the text, following Kenter et

al. [47] At the end, we have a word vector of real values with 300 dimensions

for each tweet or sentence.

Figures 5.4 and 5.5 illustrate the above mentioned steps. In Figure 5.4, N sen-

tences are sampled from Stack Exchange. Each word of the sentence is then con-

verted into a vector of values using the word embedding model. For example, the

word ’sqlite’ will be converted to a vector 〈-0.04910894,...,0.07086225〉. The vec-

tors of words belonging to the same sentences are then averaged. At the end, there

are N vectors representing the N sentences from the source platform.

In Figure 5.5, two sample tweets are first preprocessed into two vectors of words.

Each word is then converted into a vector of values using the word embedding

learned from the domain-rich platform (i.e., Stack Exchange). Next, the vectors

of words belonging to the same tweet are then averaged and the resultant vector is

used to represent the tweet. The second tweet is an example where there are no

corresponding word vectors in the word embedding model. Thus, the average score

for this tweet is zero.
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Figure 5.4: Illustration of sampling process from Stack Exchange, followed by cre-
ating sentence vectors

Figure 5.5: Illustration of preprocessing, tokenizing and creating tweet vectors.

For each tweet, we calculate similarities between the vector representation of

the tweet with each of the N vector representations of the sample sentences. Con-

sidering a sample size of N, for each tweet, there will be N similarity scores. We

then calculate the average of the N similarity scores. Next, we rank the tweets

based on their average similarity scores. The higher the score, the more likely the

corresponding tweet is software-related.

To calculate similarity between two word vectors, we use cosine similarity. Co-
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sine similarity is a measure of similarity between two vectors (in this case, vectors

of text representation) that measures the cosine of the angle between them. Given a

tweet T and a selected sentence S, that are represented by two word vectors wvtweet

and wvso, we define their semantic similarity as the cosine similarity between their

word vectors:

similarity(T, S) =
wvTtweet.wvso
||wvtweet||||wvso||

Figure 5.6: Illustration of calculating similarity score.

Figure 5.6 shows an example on how the similarity score is calculated. For

each tweet vector, we calculate a similarity score between the tweet and each of

the sentence vectors. The final score would be the average similarity score. In this

example, the similarity score for the first tweet is 0.7892, while for the second tweet

it is zero. We repeat this step for all tweets available in the dataset.

5.4.2 Dataset and Baselines

Dataset. For the Twitter dataset, we use the same dataset created by Sharma et

al. [82]. The dataset consists of around 6.2 million tweets downloaded through the

Twitter REST API. To collect tweets, they first obtained a set of microbloggers that

are likely to generate software-related content. They started with a collection of 100

seed microbloggers who are well-known software developers. Next, they analyzed
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the follow links of these software developers to identify other Twitter accounts that

follow or are followed by at least 5 seed microbloggers. After they had identified the

target microbloggers, they downloaded tweets that were generated by these individ-

uals. The tweets collected were assumed to be mostly software related, since they

were collected from potential software developers. However, based on our observa-

tion from a random sample of 1000 tweets, we found that only 16.7% are software

related, while a majority of them (83.3%) are not software related. Statistics of the

tweets dataset are listed in Table 5.2.

Table 5.2: Statistics of the Twitter dataset
Number of Tweets (Raw data) 6,294,015
Software related (based on sample of 1000) 16.7 %

Baselines. We used several baselines to show the effectiveness of our approach.

First, we compared our proposed approach against NIRMAL [82], since we used

the same dataset as their work. Next, since our models are trained on software-

development-specific platforms, we compared the models with a within-platform

model trained from the target platform (Twitter). To show the effectiveness of the

Word2Vec-based models that we use, we compared the models with a model that

uses Term Frequency − Inverse Document Frequency (td-idf) vectors generated

from a source platform. The tf-idf technique has been widely used in other software-

engineering-related information retrieval tasks, e.g. [30, 64]. We briefly describe the

baselines as follows:

1. NIRMAL by Sharma et al. We used this approach as the main baseline. This

approach builds an N-gram language model by using SRILM [89], a language

modeling toolkit. NIRMAL learns a language model from Stack Overflow

data. NIRMAL then uses the learned model to compute the perplexity score

of each tweet. The lower the perplexity score, the more likely the tweet is

software related. NIRMAL then ranks the tweets in ascending order of their

perplexity scores and returns a ranked list. NIRMAL differs from SIEVE
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in several aspects. First, SIEVE uses word embedding to capture relations

between software-related terms. In addition, SIEVE samples selected Stack

Overflow titles, uses them as seed sentences, and calculates similarity scores

between the samples and the tweets. SIEVE then outputs a ranked list of

tweets in ascending order of their similarity scores.

2. Word2Vec trained on Twitter. We consider this approach as a within-

platform baseline, since we leverage knowledge extracted from Twitter itself

as the target platform. We considered two datasets: (1) all tweets, (2) all

software engineering (SE) relevant tweets. For the second dataset, we used

1,151 tweets that are labeled by an author and an independent annotator. The

dataset as SE-related in our dataset. For each of these two datasets, we trained

word embedding models using the approach (i.e., Word2Vec) and parameters

described in Section 5.3.

3. Term Frequency− Inverse Document Frequency (tf-idf ). In this approach,

instead of using vectors generated by word embedding, we used td-idf vec-

tors generated from a source platform. We built two variants of tf-idf vectors:

one from Stack Overflow posts, and one from Stack Exchange posts. Term

frequency (tf) is the number of times a word occurs in a given sentence, ac-

companied with a measure of the term scarcity across all the sentences, known

as inverse document frequency (idf). Before constructing the vectors, we per-

formed stemming using Porter Stemmer [73] and removed English stopwords.

To remove stopwords, we used stopwords listed in the Python NLTK library8.

5.4.3 Experiments and Results

Experiments Setting. We conducted experiments to answer RQ1 and evaluated

the effectiveness of our approach as compared to the baselines. After follow-

ing the steps in our proposed approach, we ranked the tweets based on similarity
8https://www.nltk.org/
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scores between the tweets and selected instances taken from a source platform.

We investigated various word embedding models trained from Stack Overflow,

StackExchange-SE and Twitter, and one non-word embedding model (tf-idf).

The task of finding relevant tweets helps developers who wants to learn new

knowledge based on software-relevant tweets [84]. As it is impossible for devel-

opers to follow everyone who may generate useful content, it is useful to create a

content aggregator of tweets [2]. Such content aggregator will follow a large number

of Twitter users who may potentially generate software engineering relevant tweets

and capture all their tweets. Nirmal [82] and the solution that we built here help rank

tweets for such content aggregators. As developers have limited time for learning,

it is important that the top-K results listed in such aggregator are software related.

Thus, to measure the effectiveness of Nirmal [82], Nirmals authors have proposed

the use of accuracy@K, which is defined as the proportion of tweets in the top-K

positions that are software-related. Here, we use the same evaluation metric. This

metric has also been used in several other software analytics works such as API rec-

ommendation [105], duplicate bug report detection [42], and concept location [76].

We used accuracy@K, which is defined as the proportion of tweets in the top-K

positions that are software-related. We manually evaluated the top-K tweets ranked

by their similarity scores. We asked two labelers who have master’s degrees in Com-

puter Science to manually label the tweets, either as “relevant” or “not relevant”

to software engineering. For our final ground truth, we labeled a particular tweet

as “relevant” only if both labelers agreed that the tweet is software-development-

related. We used Cohen’s Kappa to measure inter-rater reliability for the labeling

task. We obtained a Kappa value of 0.78 for labeling SIEVE SE and a Kappa value

of 0.68 for labeling SIEVE SO – following Landis and Koch’s interpretation [50],

these values indicate substantial agreement.

Results. The results of our experiments are shown in Table 5.3 and Figure 5.7.

Overall, the word embedding model trained on Stack Exchange performed best
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in terms of all accuracy@K measures. Word embedding models trained on plat-

forms that contain rich software-development-related knowledge (Stack Exchange

and Stack Overflow) performed better as compared to the baselines.

Table 5.3: Accuracy@K results of different approaches in our experiments (best
results are in bold).

Approach acc@10 acc@50 acc@100 acc@150 acc@200
Nirmal 0.900 0.820 0.720 0.707 0.695
TF-IDF (Stack Overflow) 1.000 0.540 0.730 0.693 0.575
TF-IDF (Stack Exchange) 1.000 0.560 0.400 0.347 0.310
Word2Vec (Twitter-All) 0.400 0.220 0.260 0.260 0.235
Word2Vec (Twitter-SWrelated) 0.900 0.580 0.540 0.547 0.530
SIEVE SO 0.900 0.880 0.870 0.847 0.800
SIEVE SE 1.000 1.000 0.990 0.980 0.975

Figure 5.7: Comparison of Accuracy@K achieved by different approaches

Based on our experiments, the performance of the Word2Vec model trained

on all tweets was lower than the other Word2Vec models. When we use the

Word2Vec model trained on the software-related tweets, the accuracy was improved

as compared to the one trained on all tweets (accuracy@10 of Word2Vec trained on

all tweets is 0.400, while accuracy@10 of Word2Vec trained on software-related

tweets is 0.900). However, the performance achieved was still lower than that of

the Word2Vec model trained on the Stack Exchange-SE corpus. The low scores

achieved by the word embedding models trained on all Twitter data can be attributed
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to the fact that the content of typical tweets is mostly unrelated to software devel-

opment.

While the tf-idf-based approach performed well when ranking the top-10 most

relevant tweets, the performance degrades significantly when ranking top 50, and

fluctuates when ranking the top 100, 150 and 200 tweets. Figure 5.8 shows a box-

plot diagram, describing the word count of the top 200 tweets returned by various

approaches. We found that, in the top-200 tweets ranked by the tf-idf approach,

the tweets mostly contain the word stem ”use”, such as ”What is the use of c”,

”Java MySQL Insert Record using Jquery”, ”@shayman I used to work there”. On

the other hand, the top 200 tweets returned by SIEVE SE contain more diverse

vocabulary and tend to be lengthy, such as ”I still very much admire all the work put

into TinyMCE Building a RTE is one of the most gruesome things you can do in a

browser,” ”@Youdaman yes angular is very minimal in the amount of code and glue

you need to do specially if you use a RESTful service”. This finding highlights the

benefit of leveraging word embedding models to learn feature representation from

a rich software-related platform.

The results show that SIEVE SE improves all accuracy@K scores of up to 28%

as compared to Nirmal. To measure whether this improvement is significant, we

conducted a Wilcoxon signed-rank test [100]. Our null hypothesis is there is no

difference in the mean accuracy@K (for K = 1 to 200) of SIEVE SE and Nirmal.

Wilcoxon signed-rank test results show that the p-value is less than 0.00001 which

shows that we can reject the null hypothesis. This demonstrates that the improve-

ment that SIEVE SE achieves over Nirmal is statistically significant.
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Figure 5.8: A box plot diagram representing word count of tweets returned by vari-
ous approaches

5.5 Finding Informative Comments on YouTube Us-

ing Word Embedding

The objective of this task is to analyze user comments for YouTube coding tutorial

videos. Important users’ questions and concerns can then be automatically classified

in order to help content creators to better understand the needs and concerns of their

viewers, as described in work by Poché et al. [70] They categorized the comments

into two general categories: informative vs. non-informative (which corresponds to

other miscellaneous comments). We aim to answer the following research question:

RQ2. How effective is our approach at the use case of finding informative

comments on YouTube?

5.5.1 Approach

Figure 5.9 shows our proposed approach for the use case of finding informative

comments on YouTube, by utilizing word embedding models trained on the source

platforms (StackExchange-SE and Stack Overflow). We formulate this task as a
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binary classification problem, where a comment can be either informative or non-

informative with regards to the video content. In order to build a classifier for this

use case, we need to represent the YouTube comments into a feature representation.

We leverage the word embedding learned from a source platform. The model con-

sists of word vectors that have 300 dimensions as mentioned in Section 5.3. We

build vectors to represent the comments, by following these steps:

Figure 5.9: Approach for finding relevant comments on YouTube

1. For each comment, we tokenize it into words, remove words that contain only

numbers, and change all words into lowercase.

2. Next, for each word in the comment, we look up its vector value taken from

the word embedding model. We ignore a word if it does not exist in the word

embedding model. We take the average of the word embedding of all words

within the text, following Kenter et al. [47]. At the end, we have a word vector

of real values with 300 dimensions for each comment.

Figure 5.10 serves as an example that illustrates the above-mentioned steps.

Each word of the comment is then converted into a vector of values using the word

embedding. The vectors of words belonging to the same comment are then aver-

aged. As a result, the comment is represented as a vector with 300 dimensions. We

repeat this step for all comments available. We then use the comment vectors as

a set of features to be used by the classifier to distinguish informative from non-

informative comments.

70



Figure 5.10: An illustration of preprocessing and creating comment vectors for clas-
sifying YouTube comments.

5.5.2 Dataset and Baselines

Dataset. We used the dataset provided by Poché et al. [70]9 The dataset consists

of 6,000 YouTube comments sampled from 12 different coding tutorial videos. The

data was collected on Sep 6, 2016. They collected a total of 41,773 comments from

all videos. They used YouTube Data API310 to retrieve the comments. This API

extracts comments and their metadata, including the author’s name, the number of

likes, and the number of replies. Finally, Poché et al. sampled 500 comments and

labeled them as content concerns (informative) and miscellaneous (uninformative).

Based on their manual classification process, they found around 30% of the com-

ments to be informative, meaning that the majority of comments are basically not

related to the content.

Baselines. Since we used the same dataset and experiment setting as Poché et al.’s

work, we used their approach as the first baseline. To show the effectiveness of our

models that are trained on software-development-specific platforms, we compared

the models with a within-platform model trained from YouTube comments, and an-

other cross-platform pretrained model that was learned from more general content.

9http://seel.cse.lsu.edu/data/icpc17.zip
10https://developers.google.com/youtube/v3/

71



We briefly describe the baselines as follows:

1. Normalized Term-Frequency (as proposed by Poché et al. [70]). In order

to automatically identify content-relevant comments, Poché et al. investi-

gate the performance of two classification algorithms: Naive Bayes (NB) and

Support Vector Machines (SVM). They performed text preprocessing on the

dataset, by stemming and removing stopwords. They also remove words that

appear in one comment only since they are highly unlikely to carry any gen-

eralizable information. As feature representation, they use normalized term

frequency (tf) of words in their documents. They found that their SVM classi-

fier performs better than Naive Bayes. They also experimented with different

combinations of data preprocessing such as stemming and removing stop-

words, and found that the best result was achieved without stemming and

stop-word removal.

2. Word2Vec trained from YouTube Comments. We consider this baseline as

a within-platform baseline, since we leverage knowledge extracted from the

target platform itself (i.e., YouTube comments). We built word embedding

based on two datasets: (1) Use all YouTube comments available in Poché et

al.’s dataset (2) Use only comments in Poché et al.’s dataset that are labeled

as informative. There are 1,826 comments in the second dataset. We then

trained skip-gram word embedding models using the set of parameters that

we described in Section 5.3 on these datasets. We use these models to pre-

dict informative comments following the process that we have described in

Section 5.3.

3. Pretrained Word2Vec on GoogleNews. We used a pretrained word em-

bedding model on GoogleNews11 which is an alternative cross-platform pre-

trained model as another baseline. The model contains 300-dimensional vec-

tors for 3 million words and phrases, which was trained on part of the Google
11https://code.google.com/archive/p/word2vec/
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News dataset (about 100 billion words).

5.5.3 Experiments and Results

Experiments Settings. We conducted experiments to answer RQ2 and evaluated

the effectiveness of our approach as compared to the baselines. We used Support

Vector Machines (SVM) as the classification algorithm, since this algorithm per-

forms better in Poché et al.’s work [70]. To enable a fair comparison, we used the

same implementation of SVM (inside Weka12) for classification. For the kernel

function, in Poché et al.’s work, the best results were obtained using the universal

kernel. Therefore, we also used the universal kernel in our experiment. To validate

the result, we used 10-fold cross validation. With this technique, the dataset was

first partitioned randomly into 10 partitions of equal size. Afterwards, one of the

partitions was selected as validation set while the remaining partitions are used for

training. The process was repeated 10 times with a different partition being selected

as validation set, ensuring that the entire dataset was used for both training and

validation, and each entry in the dataset was used for validation exactly once.

To measure the effectiveness of our approach, we used the same metrics as

Poché et al.’s study (i.e., Precision, Recall and F-measure). F-measure is the har-

monic mean of precision and recall, and it is used as a summary measure to evaluate

if an increase in precision (recall) outweighs a reduction in recall (precision). These

metrics are calculated based on four possible outcomes of each comment in an eval-

uation set: True Positive (TP), True Negative (TN), False Positive (FP) and False

Negative (FN). TP corresponds to the case when a comment is correctly classified

as an informative comment; FP corresponds to the case when a non-informative

comment is wrongly classified as an informative comment; FN is when a comment

is wrongly classified as a non-informative comment; TN is when a non-informative

comment is correctly classfied as such. The formulas to compute precision, recall,

12https://www.cs.waikato.ac.nz/ml/weka/
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and F-measure are shown below:

Precision =
#TP

#TP +#FP

Recall =
#TP

#TP +#FN

FMeasure = 2× Precision×Recall

Precision+Recall

Results. The results of our approach as compared to the baselines are shown in

Table 5.4 and Figure 5.11. The results showed that the best performance (in terms

of precision, recall, and F-measure) was achieved by using the word embedding

model trained on StackExchange-SE data.

Table 5.4: Performance of different approaches for classifying informative com-
ments.

Approach Precision Recall F-Measure
NTF (Poché et al.) 0.790 0.750 0.770
Word2Vec (YouTube Comments - All) 0.829 0.833 0.830
Word2Vec (YouTube Comments - Relevant) 0.785 0.792 0.782
Word2Vec (GoogleNews) 0.859 0.861 0.859
SIEVE SO 0.868 0.870 0.869
SIEVE SE 0.872 0.874 0.873

The results of our approach as compared to the baselines are shown in Table 5.4

and Figure 5.11. The results showed that the best performance (in terms of pre-

cision, recall, and F-measure) was achieved by using the word embedding model

trained on StackExchange-SE data.

The results also showed that by using word embedding as feature representation,

the performance of the classifiers can be improved by up to 10.3% in terms of F-

measure, as compared to the normalized-tf based approach proposed by Poché et

al. Among the five word embedding models used in our experiment, models trained

on StackExchange-SE and StackOverflow performed best with F-measure scores of

0.874 and 0.869 respectively. This finding justifies the importance of choosing a

source platform that is more relevant to a target task. Even though the corpus’ size

is less as compared to GoogleNews data, Stack Exchange and Stack Overflow data
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contains more software-development-specific content than GoogleNews, and this

explains the improved performance.

In the original work by Poché et al. [70], they classified user comments into two

groups: content concerns (informative) and miscellaneous. Comments that fall un-

der the content concerns category include questions or concerns about certain parts

of the video content that need further explanation, comments that point out errors

within the video, comments that request for certain future content, comments that

provide suggestions to improve the quality of the tutorial, and comments that sug-

gest a change in the media settings. Therefore, a praise comments such as Very well

explained, many thanks! is identified as a miscellaneous comment, while a comment

that points out errors within the video (e.g., At 27:10 theres a small mistake. The

first parameter is the starting index, the second parameter is the number of chars)

is categorized as a content concern or informative comment. Based on our observa-

tion, most of the informative comments contain software-related terms. Therefore,

the use of word embedding trained on a dataset obtained from a software-specific

domain can help.

Figure 5.11: Comparison of Precision, Recall and F-measure achieved by different
approaches
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5.6 Threats to Validity

We present the potential threats to the validity of our findings. The threats include

threats to internal, external, and construct validity.

Threats to internal validity. These threats are related to potential errors that may

have occurred when performing the experiments and labeling. Internal threats might

stem from the tools we used in our analysis. We used Gensim13, a popular Python

module for machine learning to build word embedding that has also been used in

many previous studies related to word embedding. For machine learning and classi-

fication tools, we used Weka14 which has been extensively used in the literature and

has been shown to generate robust results for various applications. Potential errors

might also occur when labelling our dataset. To label tweets as software related

or not, we asked two labelers with experience in programming, and with degrees

in Computer Science. We believe the labelers have enough expertise to judge if a

tweet is software-related or not.

Threats to external validity. These threats refers to the generalizability of our re-

sults. To mitigate these threats, we have considered two source domains (Software

Engineering Stack Exchange and Stack Overflow), two target domains (Twitter and

YouTube), two tasks (relevant tweet identification and informative comment classi-

fication), and two settings (ranking and classification).

Threats to construct validity. These threats are related to the suitability of the

evaluation metrics that we use for analyzing the result. We use the same evaluation

metrics used to evaluate previous studies [82, 70] to enable fair comparisons (i.e.,

Accuracy@k, Precision, Recall and F-measure). Therefore, we believe that the

threat to construct validity is minimal.

13https://pypi.org/project/gensim/
14https://www.cs.waikato.ac.nz/ml/weka
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5.7 Discussion

As shown in previous sections, our approach can improve performance on finding

relevant content in less-software-related platforms. However, there are some other

observations worth further investigation. In this section, we will discuss these ad-

ditional observations: (1) determining sample size in the task of finding relevant

tweets (2) comparing different methods to learn word embedding, and (3) learning

word embedding in other software-related domains.

5.7.1 Determining Sample Size from Source Platform

For the first use case, we sample a number of sentences (i.e., Software Engineering

Stack Exchange post titles) to rank tweets based on a similarity measure. By default,

we sample 1,000 sentences. In this section, we experiment with different sample

sizes (500, 1,000, 1,500, and 2,000) and investigate their impact on the effectiveness

of SIEVE. Since Section 5.4 shows that SIEVE SE performs better than SIEVE SO,

in this experiment, we use word embedding trained on the Stack Exchange dataset.

The results of our experiment are shown in Table 5.5. From the table, we can

observe that results achieved using a sample size of 1,000 are better than those

achieved using a sample size of 500. This is true for Accuracy@50, Accuracy@100,

Accuracy@150, and Accuracy@200. This shows that it is not advisable to reduce

the sample size to be below 1,000. Moreover, from the table, we can observe that

results achieved using a sample size of 1,000 are comparable with those achieved

using a sample size of 1,500 or 2,000. Thus, for efficiency reason, we pick the

sample size 1,000 as the default setting.

Table 5.5: Accuracy@K results for different sample sizes
sample size acc@10 acc@50 acc@100 acc@150 acc@200
500 0.900 0.800 0.830 0.813 0.780
1000 0.900 0.980 0.970 0.940 0.925
1500 0.900 0.940 0.930 0.933 0.915
2000 0.900 0.940 0.960 0.947 0.925
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5.7.2 Comparing Different Methods to Learn Word Embedding

Skip-gram [58] is a popular but not the only method to learn word embedding. There

are other methods such as CBOW [58], GloVe [67] and FastText [16]. CBOW and

Skip-gram were proposed by Mikolov et al. [58]; CBOW learns word embedding by

trying to predict a word from its context, while Skip-gram learns word embedding

by trying to predict the surrounding words (aka. context) from a word. GloVe,

proposed by Pennington et al. [67], is a method for learning word embedding that

leverages global count information aggregated from the entire corpus as word-word

occurrence matrix. FastText, proposed by Bojanowski et al. [16], is an approach

built based on the Skip-gram model, where each word is represented as a bag of

character n-gram [16].

Mikolov et al. have shown that the effectiveness of the word embedding learned

via CBOW and Skip-gram differ for different tasks [58]. Also, Pennington et al. [67]

and Bojanowski et al. [16] have shown the power of GloVe and FastText over

CBOW and Skip-gram. In the previous sections, we have explored the power of the

Skip-gram method for two use cases, i.e., finding software-related tweets for de-

veloper learning (Section 5.4) and identifying informative comments for improving

software development video tutorials (Section 5.5). Here, we want to investigate

whether the performance of word embedding learned via the four methods (CBOW,

Skip-gram, GloVe and FastText) differ for the two use cases. If they differ, we want

to know the best one for each of the use cases.

To evaluate the effectiveness of the four methods for the first use case, we fol-

lowed the setting described in Section 5.4 and repeated the experiment four times

using different methods to learn word embedding. The results of our experiments

for the first use case are shown in Table 5.6. From the table, we can observe that all

methods perform equally well for acc@10. For acc@50, Skip-gram performed the

best but its result is only marginally better than those of the other methods (differ-

ences of 0.02-0.04). For acc@100, Skip-gram, CBOW, and FastText achieved the
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best performance. For acc@150, Skip-gram performed the best but again its result is

only marginally better than those of the other methods (differences of 0.007-0.047).

For acc@200, Skip-gram performed the best too, but the differences are again minor

(differences of 0.005-0.040).

Table 5.6: Accuracy@K results of different word embedding learning methods for
the task of finding software-relevant tweets.

Models acc@10 acc@50 acc@100 acc@150 acc@200
GloVe 1.000 0.960 0.920 0.933 0.935
FastText 1.000 0.980 0.990 0.973 0.970
CBOW 1.000 0.980 0.990 0.973 0.970
Skip-gram 1.000 1.000 0.990 0.980 0.975

Table 5.7: Performance of different word embedding learning methods for classi-
fying YouTube comments.

Models Precision Recall F-Measure
GloVe 0.858 0.861 0.858
FastText 0.868 0.869 0.868
CBOW 0.860 0.862 0.828
Skip-gram 0.872 0.874 0.873

To evaluate the effectiveness of the four methods for the second use case, we

followed the setting described in Section 5.5 and repeated the experiment four times

using different methods to learn word embedding. The results of our experiments

for the second use case are shown in Table 5.7. From the table, we can observe that

the F-measures achieved by the four methods are similar (0.828-0.873) with the best

results achieved by Skip-gram.

From the above results, we would like to recommend the use of the Skip-gram

method for cross-domain tasks where data from source platforms which contain

rich domain-related content (e.g., Stack Overflow and Software Engineering Stack

Exchange), are used to solve tasks in other platforms with less domain-related con-

tent (e.g., Twitter and YouTube). However, the performance differences between

Skip-gram and the other methods are not that large and other considerations (e.g.,

runtime efficiency, etc.) may need to be considered to determine one’s choice of the
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method to be used. CBOW for example has been shown to be more efficient than

Skip-gram [58].

5.7.3 Learning Word Embedding in another Software-Related

Domain

We have shown that using Stack Overflow and Software Engineering Stack Ex-

change as source platforms achieved promising results in the use cases described in

Section 5.4 and Section 5.5. Here, we want to investigate whether we can use an-

other software-related platform as source platform. We chose HackerNews, a social

news website that focuses on technology news. We used the HackerNews dataset

provided by Aniche et al. [5] The dataset consist of 530,446 posts.

First, we learn a Word2Vec model using the Skip-gram method from the dataset,

following the settings described in Section 5.3. The results of our experiments for

the task of finding software-relevant tweets are shown in Table 5.8. Overall, the

accuracy@K results obtained from the HackerNews dataset are comparable to the

results obtained from the Stack Exchange dataset, and better than those obtained

from the Stack Overflow dataset.

Table 5.8: Accuracy@K results of different source platforms for the task of finding
software-relevant tweets.

Platform acc@10 acc@50 acc@100 acc@150 acc@200
HackerNews 0.900 0.980 0.970 0.980 0.980
Stack Exchange 1.000 1.000 0.990 0.980 0.975
Stack Overflow 0.900 0.880 0.870 0.847 0.800

Table 5.9: Performance of different source platforms for classifying YouTube com-
ments as Informative/not Informative

Platform Precision Recall F-Measure
HackerNews 0.860 0.862 0.860
Stack Exchange 0.872 0.874 0.873
Stack Overflow 0.868 0.870 0.869

To evaluate the effectiveness of the HackerNews dataset for the second use case,
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we followed the settings described in Section 5.5. The results of our experiment

for classifying YouTube comments are shown in Table 9. We can observe from the

table that the F-measures achieved by all source platforms are comparable (0.860 -

0.873) with the best results achieved by Stack Exchange. These findings show that

Stack Overflow and Stack Exchange platforms provide sufficiently rich datasets that

are as effective as a dataset that is obtained from HackerNews.

5.8 Chapter Conclusion

We proposed an approach to exploit knowledge from rich software-development-

specific platforms, to automate knowledge seeking tasks in other less software-

development-specific platforms. We first built word embedding from text ex-

tracted from Stack Overflow and Software Engineering Stack Exchange, to repre-

sent software-development-related knowledge sources. We then leveraged the word

embedding to solve tasks in two different target platforms. In the first use case, we

leveraged the word embedding and sampled sentences from source platforms, to

find software-related tweets. In the second use case, we used the word embedding

to classify informative comments on YouTube video tutorials. Based on our experi-

ments conducted in both use cases, our approach improves performance of existing

state-of-the-art work for software-development-specific knowledge extraction tasks

in the target platforms.

In the future, we intend to perform additional experiments to evaluate the ef-

fectiveness of the approach for additional tasks. We plan to expand the work to

other platforms and knowledge sources, such as Wikipedia articles, software devel-

opment blogs, README files on GitHub, and software documentation. We also

plan to apply SIEVE at a finer-grained categories (i.e., mobile, big data etc.).
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Chapter 6

Conclusion and Future Work

6.1 Summary

In this dissertation, we demonstrate the usefulness of machine learning-based ap-

proaches in order to uncover insight derived from crowd generated content in vari-

ous settings. Specifically, this dissertation covers the following use cases: predict-

ing customers’ complaint patterns on Twitter, inferring spread of readers’ emotion

on online news articles, finding software-related tweets and identifying informative

comments on YouTube. Based on approaches proposed in the use cases explored in

this dissertation, we summarize our findings on developing machine-learning based

solution on making sense of crowd-generated content, as follows:

1. The approaches mostly depend on the what, why and where aspects (the tasks,

the objective of the tasks, and the domains/platforms used), rather than the

who (individuals/organization that get benefit of the data), and when (imme-

diate or batch processing) aspects.

2. Domain-specific data are beneficial for all cases, either within-platform anal-

ysis (for the first and the second use cases) or cross-platform analysis

(for the third use case). Therefore, whenever possible, collecting domain-

specific/task-specific data should be accomplished before developing ma-
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chine learning based approach.

A summary of contributions from completed works is described below:

Predicting Customer Complaint Behavior on Twitter

This study would be important towards the development of techniques that make

use of social media data to improve product and service quality. This work proposes

a new problem of predicting different types of customer feedback behavior on Twit-

ter. Different types of customer feedback behavior were identified by using a clus-

tering algorithm. A set of features was proposed, i.e. content features and profile

features, that can be used to predict customer feedback behavior by leveraging a su-

pervised machine learning algorithm to build a prediction model. The approach also

has been evaluated on a dataset containing 11,809 tweets. The result shows that the

proposed approaches can achieve reasonable precision, recall and F-measure which

are higher than those of a baseline approach.

Inferring Spread of Readers Emotion

In this work, lexicon-based and word-vector-based features are used to build

a regression model which aim to predict readers’ emotion distribution. A case

study has been conducted, by using a popular Indonesian on-line news site, namely

detik.com. A new corpus consisting of Indonesian news articles was created for

predicting readers’ emotion distribution affected by news articles. Experiments

were conducted to compare the effectiveness of using different parts of news ar-

ticles (headlines only, content only, and both headlines and content) to predict the

spread of readers’ emotion. The effectiveness of a domain-specific emotion lexicon

and word embedding with general purpose lexicon and word embedding were also

compared for the problem of predicting emotion distribution of a news article read-

ers. By knowing the predicted emotion distribution, the publishers can get a deeper

insight on likely readers’ responses, e.g., estimated proportion of readers who are

happy with a piece of news.

Finding Software-relevant Content for Software Developers

83



This work proposed SIEVE, an approach to leverage knowledge extracted from

rich software-development-specific platforms, to automate knowledge seeking tasks

in other less software-development-specific platforms. We first built word embed-

ding from text extracted from software-development-related platforms (i.e., Stack

Overflow and Software Engineering Stack Exchange). We then leveraged the word

embedding to solve tasks in two different use cases. In the first use case, we apply

our approach on the task of finding software related tweets. The approach was able

to improve performance by up to 28% in terms of accuracy@K, compared to state

of the art approach. For the second use case, the task was to identify informative

comments on YouTube coding tutorial videos. In this task, SIEVE can improve the

performance of an existing baseline of up to 10.3% in terms of F-measure.

6.2 Future Directions

Combining internal data and crowd-generated data

We have demonstrated an approach that makes use of external data (i.e, cus-

tomer’s tweets) to profile customers based on their tweeting behavior. However,

companies often also use internal data to better understand their customers. Such

data are maintained in the company’s customer relationship management systems.

In order to get the whole picture of the customers, it is necessary to combine all pos-

sible data related to the customers in order to better manage them. Further research

can be conducted to combine internal and external data to profile the customers. An-

other study can be conducted on predicting the customer complaint behavior based

on these combined data, such as predicting customer complaint behavior based their

past interaction through any kind of social media platforms (i.e, Twitter, Facebook,

user forums), or through a company’s internal system (email, company’s website,

or call center).

Enhancing Word Embedding for Domain-Specific Setting
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We have shown that word embedding is useful as a knowledge representation

in the task of inferring customers’ reaction based on a specific article, or finding

software-specific information on various platforms. We also experimented with

several learning methods to create word embedding (i,.e., Word2Vec, GloVe, and

FastText). Based on the use cases studied in Chapter 4 and Chapter 5, we found

that word embedding learned from domain-specific content generally performs bet-

ter as compared to pre-trained word embedding that are learned from Google News,

Wikipedia, etc. Several methods have been proposed to improve the quality of the

pre-trained word embedding models, so that it will be applicable for other domain-

specific tasks. One way to improve the word embedding model is to apply a post-

processing step which is called retrofitting, proposed by Faruqui et al [35]. This

method refines existing pretrained word vectors using relational information from

semantic lexicons by encouraging linked words to have similar vector representa-

tions. Another work by Howard and Ruder [43] proposed ULMFiT (Universal Lan-

guage Model Fine-tuning), which explores the benefits of using a pre-trained model

on text classification. In the proposed method, a pre-trained word embedding is

fine-tuned with task-specific data to make the model parameters adapt to the target

task. Recently, Peters et al. proposed ELMo (Embeddings from Language Mod-

els ) [68], an improved representation of word embedding. Unlike traditional word

embedding methods, ELMo is dynamic, meaning that ELMo embeddings change

depending on the context even when the word is the same. Further studies can be

conducted on whether these methods are able to improve the performance achieved

in various tasks that are discussed in this dissertation.
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