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The use of non-aqueous solvents in biocatalysis has shown improvements in enzyme 
performance. A new type of non-aqueous solvent has attracted a lot of interests in 
biocatalysis, called the Room Temperature Ionic Liquid (RTIL).  A lot of 
biocatalysis experiments have showed that RTILs can further increase the reaction 
rates and yields when used instead of conventional organic solvents. However, since 
there are many RTIL combinations available, selecting a specific RTIL for use in 
biocatalysis have proven to be quite challenging. A detailed understanding on the 
effects that different RTIL combination imposed on enzymes is therefore important. 
Here, the behavior of enzymes in RTILs was characterized by their effects when 
different RTIL anions were used. A series of molecular-level investigations were 
conducted using molecular dynamics (MD) and stochastic dynamics (SD) 
simulations in order to gain more information on the structural and dynamics 
properties of enzymes in RTILs. Four hydrolases, consisted of α-Chymotrypsin, 
thermolysin, Candida Antarctica Lipase B (CALB) and Candida rugosa Lipase 
(CRL) were studied. These hydrolases were solvated in aqueous and five, 1-butyl-3-
methylimidazolium ([BMIM])-based RTILs with different anions such as 
hexafluorophosphate ([PF6]-), tetrafluoroborate ([BF4]-), chloride ([Cl]-), 
trifluoromethanesulfonate ([TfO]-) and bis-trifluoromethylsulfonylimide ([Tf2N]-). 
The effects of water molecules in the systems were studied at 5%, 10%, 15%, 20% 
and 50% of water, based on the weight/weight percentages of the protein mass (w/w 
protein). All RTIL solvent models produced a liquid ordering at room temperature 
and an average density that was close to experimental data with a percentage error of 
below than 5%.  
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The structural stability of all hydrolases studied showed a dependency towards the 
water content, in which the minimum atomic displacements were observed around 10 
to 20% of water. Around this water percentage region, [TfO]- anion rendered the 
most stable conformation for α-Chymotrypsin, CALB and CRL. The smallest [Cl]- 
anion was found to produce the least stable conformations compared to other RTILs 
studied. In the case of thermolysin, the order of structural stability between the RTIL 
anions at 15% of water was [PF6]- > [TfO]- ~ [Tf2N]- > [Cl]-~ [BF4]- which was 
different from other hydrolases studied. Further investigations revealed that in 
[BMIM][PF6], thermolysin showed better structural stability than in aqueous, even 
when simulated at 90 °C. The effect of changing the RTIL anions towards the 
enzyme flexibility was only clearly visible at higher water content (20% and 50% 
w/w protein), especially for [PF6]-and [Tf2N]- anions. The analysis on local flexibility 
showed that only the surface of the protein was affected. For the lipases, the local 
flexibility was found significantly reduced in certain regions which were highly 
flexible in aqueous solution, particularly for the lid of the CRL. MD simulations 
revealed a structured ordering of RTIL anions around the enzymes while the water 
molecules were found localized at certain region of the protein surface. Hydrophobic 
anions such as [PF6]- covered more areas and were more organized at low water 
content while [Cl]-anion behave otherwise. Meanwhile, a number of water molecules 
were stripped off from the surface of α-Chymotrypsin, CALB and CRL. RTILs with 
[PF6]- and [TfO]- anions retained more water on the surface as compared to [BF4]- 
and [Cl]- anions, consistently for the three hydrolases. [Tf2N]- anion was found 
stripping the most number of water for the case ofα-Chymotrypsin and CALB while 
the least was found for CRL. 
 
 
The solvation thermodynamics of amino acid side chain analogues in water and five 
[BMIM]-based RTILs was investigated using SD simulations. The solvation free 
energy was calculated using Bennett’s Acceptance Ratio method. Results from the 
simulations in water were in agreement with published experimental and simulation 
data. RTILs showed better solvation capabilities when compared with water. Non-
polar analogues produced lower solvation free energy in hydrophobic anions such as 
[PF6]- and [Tf2N]- while the polar ones showed better solvation in hydrophilic anions 
such as [BF4]-, [Cl]- and [TfO]-. The solvation properties in [BMIM][Cl] also 
explained why the enzymes experienced more conformational distortions in this 
RTIL at low water content. Overall, computer simulations were able to explain 
several effects of RTIL anions on the structure and dynamics of enzymes at 
molecular level. The structural stability and flexibility of the enzymes were found 
affected by the water content, more than the types of the RTIL anions studied. MD 
simulation results were correlated with experimental reports. It was found that the 
behavior of anions and water at the protein surface played a major role towards the 
properties of enzymes in RTILs. The results also suggested that the surface 
properties of the biocatalyst and the physicochemical properties of the substrate 
should be taken into consideration when choosing a particular RTIL as the solvent 
system.   
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Penggunaan larutan bukan akues di dalam biokatalisis telah menunjukkan 
peningkatan prestasi enzim. Sejenis larutan bukan akues telah berjaya menarik 
perhatian di dalam bidang biokatalisis, bernama  Cecair Ionik Suhu Bilik (RTIL). 
Terdapat banyak laporan eksperimen yang menunjukkan bahawa RTIL mampu 
menambah lagi kadar reaksi dan hasil apabila digunakan sebagai pelarut bukan akues 
menggantikan organik konvensional. Walaubagaimanapun, terdapat banyak 
kombinasi RTIL yang boleh digunakan, maka untuk memilih RTIL yang spesifik 
untuk biokatalisis adalah agak sukar. Pemahaman yang terperinci tentang kesan yang 
berbeza apabila RTIL yang berbeza digunakan ke atas enzim adalh amat penting. Di 
sini, perilaku enzim di dalam RTIL dicirikan oleh kesan mereka apabila 
menggunakan RTIL anion yang berbeza. Satu siri siasatan di tahap molekul telah 
dijalankan menggunakan simulasi dinamik molekul (MD) dan dinamik stokastik 
(SD) untuk mendapatkan maklumat lanjut mengenai sifat-sifat dinamik dan struktur 
enzim di dalam RTIL. Empat hidrolase, terdiri daripada α-Chymotrypsin, 
thermolysin, Candida antartica Lipase B (CALB) dan Candida rugosa Lipase (CRL) 
telah dikaji. Hidrolase-hidrolase ini telah dilarutkan di dalam akues dan di dalam 
lima RTILs berasaskan kation 1-butil-3-methylimidazolium ([BMIM]) dengan anion 
yang berbeza seperti hexafluorofosfat ([PF6]-), tetrafluoroborat ([BF4]-), klorida ([Cl]-

), trifluorometanaesulfonat ([TfO]-) dan bis-trifluorometilsulfonilimida ([Tf2N]-). 
Kesan molekul air di dalam setiap sistem dikaji pada 5%, 10%, 15%, 20% dan 50% 
air, berdasarkan peratusan berat/berat jisim protein (w/w protein). Kesemua model 
larutan RTIL menghasilkan aturan cecair pada suhu bilik dan kepadatan purata yang 
dekat dengan data eksperimen dengan ralat peratusan kurang daripada 5%. 
Kestabilan struktur semua hidrolase yang dikaji menunjukkan pergantungan kearah 
kandungan air, dan anjakan atom minimum diperhatikan pada kira-kira 10 hingga 
20% air.  
 



© C
OPYRIG

HT U
PM

 
 
 

iv 
 

Di rantau peratusan air ini, anion [TfO]-memberikan bentuk yang paling stabil untuk 
α-Chymotrypsin, CALB dan CRL. Anion yang paling kecil [Cl]- didapati 
menghasilkan bentuk yang paling kurang stabil berbanding dengan RTIL lain yang 
dikaji. Di dalam kes thermolysin, susunan kestabilan struktur antara anion RTIL pada 
15% air adalah [PF6]- > [TfO]- ~ [Tf2N]- > [Cl]- ~ [BF4]- yang mana, berbeza dari 
hidrolases lain yang dikaji. Siasatan lanjut mendedahkan bahawa dalam 
[BMIM][PF6], thermolysin menunjukkan kestabilan struktur yang lebih baik 
daripada di dalam akueus, walaupun simulasi dijalankan pada suhu 90 °C. Kesan 
daripada mengubah anion RTIL terhadap fleksibiliti enzim hanya jelas kelihatan 
pada kandungan air yang tinggi (20% dan 50% w/w protein), terutamanya untuk 
anion [PF6]- dan [Tf2N]-. Analisa ke atas fleksibiliti setempat menunjukkan hanya 
permukaan protein yang terjejas. Bagi lipase, fleksibiliti didapati berkurangan di 
kawasan-kawasan tertentu yang amat fleksibel dalam larutan akues, terutamanya 
bagi bahagian penutup struktur CRL. Simulasi MD turut mendedahkan yang anion 
RTIL mempunyai aturan berstruktur di sekitar enzim manakala molekul air ditemui 
secara setempat di kawasan tertentu pada permukaan protein. Anion hidrofobik 
seperti [PF6]- melindungi lebih banyak kawasan dan lebih teratur pada kandungan air 
yang rendah manakala anion [Cl]- berkelakuan sebaliknya. Sementara itu, beberapa 
molekul air telah dilucutkan dari permukaan α-Chymotrypsin, CALB dan CRL. 
 
 
RTIL dengan anion [PF6]- dan [TfO]- mengekalkan lebih banyak air di permukaan 
berbanding dengan anion [BF4]- dan [Cl]-, secara konsisten untuk tiga hidrolase itu. 
Anion [Tf2N]- pula didapati melucutkan paling banyak air untuk kes α-Chymotrypsin 
dan CALB manakala sebaliknya berlaku untuk CRL. Termodinamik pensolvatan 
bagi analog-analog rantaian sisi asid amino di dalam air dan lima RTIL berasaskan 
[BMIM] telah dikaji dengan menggunakan simulasi SD. Tenaga bebas pensolvatan 
telah dikira menggunakan kaedah Penerimaan Nisbah Bennett. Keputusan dari 
simulasi di dalam air didapati bersetuju dengan data eksperimen dan simulasi yang 
telah diterbitkan. RTIL menunjukkan keupayaan pensolvatan yang lebih baik 
berbanding dengan air. Analog tak berkutub menghasilkan tenaga bebas pensolvatan 
yang lebih rendah di dalam anion hidrofobik seperti [PF6]- dan [Tf2N]-manakala 
analog berkutub menunjukkan pensolvatan yang lebih baik di dalam anion hidrofilik 
seperti [BF4]-, [Cl]-dan [TfO]-. Sifat-sifat pensolvatan di dalam [BMIM][Cl] juga 
menjelaskan mengapa enzim mengalami gangguan struktur yang lebih didalam RTIL 
ini pada kandungan air yang rendah. Secara keseluruhan, simulasi komputer dapat 
menjelaskan berbagai kesan anion RTIL kepada struktur dan dinamik enzim di 
peringkat molekul. Kestabilan struktur dan fleksibiliti enzim didapati dipengaruhi 
oleh kandungan air, lebih daripada jenis anion RTIL yang dikaji. Keputusan simulasi 
MD didapati berkait rapat dengan laporan eksperimen. Juga, didapati bahawa 
kelakuan anion dan air di permukaan protein memainkan peranan utama kearah sifat-
sifat enzim dalam RTIL. Hasil kajian juga menunjukkan bahawa sifat-sifat 
permukaan biomangkin dan sifat-sifat fizikokimia substrat perlu diambil kira apabila 
memilih RTIL tertentu sebagai sistem pelarut. 
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CHAPTER 1 

INTRODUCTION 

 
Biotechnology can be generally defined as the application of living organisms for 
producing useful products. For many years, biotechnology has been applied in 
agricultural, food productions and medicine. A sub-specialty of biotechnology such 
as industrial biotechnology, also known as "white biotechnology" is one of the highly 
progressing fields in biotechnology applications. In an era where production of 
chemicals on industrial scale is in need of sustainable processes, chemical synthesis 
of organic compounds have benefited most from the use of natural catalysts such as 
enzymes. The process where organic compounds were transformed chemically using 
enzymes is called biocatalysis (Anthonsen, 2000). In organic synthesis, enzymes 
have shown a remarkable performance as a biocatalyst. Unlike the traditional 
chemical and metal-catalyzed reactions, biocatalysis is more environmental-friendly 
and is a sustainable process while producing excellent yields (Wohlgemuth, 2010). 
Even though this technology has been vastly applied by academicians and industrial 
companies worldwide, the future of biocatalysis field promises much more. The 
developments in enzyme engineering has allowed synthetic biocatalysts to emerge 
with the potential to be better than the natural ones (Coelho et al., 2013; Narayan and 
Sherman, 2013). Besides enzyme modification such as immobilization, substantial 
efforts have been made to re-engineer the natural biocatalysts. Screening of enzyme 
variants, directed evolutions and rational designs were applied in order to produce 
mutants that can expand their functionality in biocatalysis (Zhang et al., 2003; 
Kazlauskas, 2005; Wahab et al., 2012).  
 
 
On the other hand, advancements in peptide synthesis have encouraged the use of 
peptidomimetics in order to design smaller biocatalysts with similar functions as the 
natural enzymes (Fernandez et al., 1995). One of the crucial parts in a biocatalytic 
reaction is the reaction media. A solvent could affect both the enzymes and 
substrates in a biocatalysis process. Thus, the selection of a solvent would crucially 
depend on its effects toward the enzyme and substrates that are involved in the 
targeted reaction. The use of non-aqueous systems especially organic solvents in 
biocatalysis has shown increased reaction rates and higher conversions or yields 
(Klibanov, 2001). Non-aqueous solvents can be characterized by their physical and 
physicochemical properties such as boiling point, volatility, polarity, hydrophobicity, 
and viscosity to name a few. In the new millennium era, a new class of non-aqueous 
solvents have emerged as an exciting media for biocatalysis, called the Ionic Liquids 
(IL)s. Like the classical molten salts such as sodium chloride, an IL is composed 
entirely of ions (Davis and Fox, 2003). To differentiate ILs from the classical molten 
salts, the ones which are "low melting" or exist in liquid state at a temperature of 
below 100 °C can be called Room Temperature Ionic Liquids (RTIL)s (Welton, 
1999). 
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Enzymatic reactions carried out in the presence of RTILs have been reported to 
produce more yield (increased enzyme activity) as compared to conventional organic 
solvents (Eckstein et al., 2002; Lozano et al., 2003; Maruyama et al., 2004; Noritomi 
et al., 2009). A growing interests in RTILs have seen numerous researches conducted 
in them, involving many types of reactions, enzymes and co-solvents (Sheldon et al., 
2002; Yang and Pan, 2005). In particular, RTILs have shown a remarkable influence 
toward the productivity of hydrolases such as lipases and proteases in the various 
organic reactions. It is widely known that there are many factors affecting the 
performance of enzymes in biocatalysis reactions. One of the major influences is the 
stability of the protein conformation. Structural changes to the protein conformation, 
particularly at the active site, can affect enzyme’s catalytic capability. Selectivity is 
also very important in order to get the better yield for the desired product. The 
flexibility of protein conformation played a major role in determining the selectivity 
of an enzyme that is used in a biocatalytic reaction (Broos, 2002). Controlling the 
enzyme flexibility is therefore an important characteristic of a good solvent. One of 
the major advantages of using organic solvents in biocatalysis is that they stabilize 
the enzyme conformation (Ogino and Ishikawa, 2001). Furthermore, in conventional 
organic solvents, the enzyme flexibility can be controlled by the water concentration 
in the system (Kurkal et al., 2005).  
 
 
What makes organic solvents like RTILs fascinating is that they can be composed of 
cations and anions with different physicochemical properties. For example, 
[BMIM][BF4] consists of a hydrophobic cation in 1-butyl-3-methylimidazolium 
([BMIM]+) and a hydrophilic tetrafluoroborate ([BF4]-) anion. Theoretically, this 
RTIL can provide two distinctive characteristics toward the enzyme and substrates 
involved when used as the reaction media. Therefore, the physicochemical properties 
of RTIL cations and anions can have a huge influence on the solvation properties of 
the solute molecules. In a system which contains an enzyme, water and RTILs, the 
enzyme’s structure and dynamics properties can be affected by the interactions 
between RTILs and water, particularly at the enzyme's surface. These interactions 
however, are extremely difficult to be observed experimentally. From many attempts, 
researchers have been trying to explain the mechanisms of RTILs interactions in 
chemical reactions (Zhao, 2010). Most of the published reports include the effect of 
RTILs on activity and stability of enzymes, but the interactions between RTILs, 
enzymes and water have been sparsely investigated. Only a small part of these 
researches were focusing on the structural and dynamics behavior of enzymes and 
RTILs in such system (Bourissou et al., 2000; Raza et al., 2001; Micaelo et al., 2005; 
Logotheti et al., 2009; Klähn et al., 2011). 
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1.1 Problem Identification 

Due to the complexity of RTILs, some may work well with a certain enzyme but not 
with others. These have been highlighted by several reports in recent years (Kaar et 
al., 2003; Park and Kazlauskas, 2003; Klähn et al., 2011). This phenomenon is 
related to the fact that the cation-anion combination can affect the performance of 
RTILs as the reaction media. Since a vast number of cation-anion combinations of 
RTILs have been introduced and studied in recent years, finding the best RTIL for a 
particular enzyme or a certain reaction is time, and resource-consuming. Many 
experimental works have been carried out to determine the effect of different cation-
anion combinations toward the performance of biocatalysts such as hydrolases 
(Irimescu and Kato, 2004; Paljevac et al., 2006; Lee et al., 2008; Herńandez-
Ferńandez et al., 2009; Zhao, 2010). However, the focus usually tends to go toward 
activity, reaction rate and yield but not onto the enzyme properties. Therefore, to 
relate the findings with structural and dynamics properties of enzymes such as 
stability, flexibility, surface interactions and solvation is a tricky task. To really 
understand how enzymes react with RTILs and how RTILs affect the enzyme 
performance as a whole, it is essential to look into the structural and dynamics 
properties in the presence of these solvents. Understanding of RTILs solvent effect in 
more detail could provide imperative support when the study focuses on the 
interactions between enzymes, water and cation/anion at enzyme’s surface. This will 
ensure that before a particular RTIL is chosen to work with an enzyme, one will have 
an idea what criteria each must have in order to work well.  
 
 
This can be predicted by using computational approach, such as molecular modeling 
and simulations, where the behavior of enzymes during solvation with RTILs can be 
predicted at molecular level. As one of the popular computer simulation methods, 
molecular dynamics (MD) has been proven as an excellent tool to distinguish the 
structural properties of biomolecules in aqueous and organic media (Lousa et al., 
2013). In MD, understanding of enzyme behavior in RTILs can be increased by 
mimicking the interactions between the enzyme and RTIL components in great 
atomic details.  By combining reported experimental findings available and computer 
simulation studies, the relationship between enzyme activity and its molecular 
properties in RTILs can be further explained. It is believed that the effects of using 
different RTIL anions toward hydrolases' properties at molecular level can be 
revealed by the use of computer simulation techniques such as MD. From the 
analyses performed, a certain order can be established between anions, in relation 
toward the structural and dynamics properties of all hydrolases studied. The 
hypothesis is that the order is dependent on the physicochemical properties of the 
five anions and should coincide with experimental evidences. Meanwhile, 
thermodynamics characterizations from the free energy calculations can be used to 
predict the solvation properties of enzymes and substrates in different RTILs. 
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1.2 Objectives 

The main goal is to utilize molecular dynamics technique in order to investigate the 
structural and dynamics properties of different hydrolases such as α-Chymotrypsin, 
thermolysin, Candida antarctica Lipase B and Candida rugosa lipase when solvated 
in BMIM-based RTILs, composed of different anions such as [PF6]-, [BF4]-, [Cl]-, 
[TfO]- and [Tf2N]-. Therefore, these objectives will be pursued: 
 

1. To determine the effect of RTILs toward the structural stability  and 
flexibility of hydrolases 

2. To observe the effect of water concentration on enzyme properties in RTILs  

3. To characterize enzyme:water:RTIL interactions on the protein surface and 
correlate with enzyme's structure and dynamics properties 

4. To estimate the solvation free energy of small molecules in RTILs 

 

The main focus of this project is on the effects when different RTIL anions are used. 
MD simulations was used to predict the behavior of several hydrolases in five 
[BMIM]-based RTILs. The five anions chosen for this project are consisted of four 
fluorine-based anions, commonly reported to increase enzyme activity. They were 
hexafluorophosphate ([PF6]-), tetrafluoroborate ([BF4]-), trifluoromethanesulfonate 
([TfO]-) and bis-trifluoromethylsulfonylimide ([Tf2N]-). Chloride ([Cl]-) anion was 
also selected due to its physical and physicochemical properties for comparison 
purposes. In the next chapter, the literatures related to the project will be discussed. 
The theoretical background and methodologies such as algorithms, parameters and 
analysis tools that were used during the project will be presented in the third chapter. 
In chapter four, the results from the simulations will be presented, correlated with 
experimental evidences and discussed. In order to verify that the models used can 
produce similar properties as determined experimentally, molecular modeling and 
simulations studies on selected RTILs were performed and reported. After 
validations, these models were used to investigate the effects of using different RTIL 
anions toward the structure and dynamics of an α-Chymotrypsin at different 
hydration level. Due to the success of modeling the α-Chymotrypsin's behavior in 
RTILs, a similar approach was applied for thermolysin, which is currently under-
utilized in RTILs. The structural stability and flexibility of both proteases were 
compared. Lipases behavior in RTILs with different anions was compared between 
Candida antarctica Lipase B (CALB) and Candida rugosa Lipase (CRL). Lastly, the 
solvation thermodynamics of neutral amino acid side chain analogues in different 
RTIL anions were predicted and the results were discussed in relation to the 
solvation dynamics of enzymes and substrates in RTILs. In the last chapter, the 
summary of all findings will be provided. The structural stability and dynamics of all 
enzymes were summarized and a general trend on the effects of changing RTIL 
anions was elucidated. This was followed by the general conclusions that obtained by 
this project and recommendations for future works. 
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