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Abstract 25 

Nanoparticles, 10-14 nm, consisting of either Fe3O4 or Co0.2Fe2.8O4 stabilized with oleic acid, 26 

were prepared using solution combustion. Their structural and magnetic properties were 27 

examined using X-ray diffractometry, scanning electron microscopy, vibrating sample 28 

magnetometry, and Fourier-transform infrared spectroscopy. The properties of both sets of 29 

materials are similar except the cobalt-doped particles are considerably less magnetic. The in 30 

vitro inhibitory activities of the nanoparticles were assessed against pathogenic bacteria 31 

Shigella dysenteriae, Klebsiella pneumoniae, Acinetobacter baumannii, Streptococcus 32 

pyogenes, and pathogenic fungi and molds Candida albicans, Fusarium oxysporum and 33 

Aspergillus fumigatus. The magnetite nanoparticles were moderately effective against all tested 34 

pathogens, but the activity of the cobalt-doped nanoparticles was significantly lower, possibly 35 

due to an interruption of the Fenton reaction at the bacterial membrane. This work suggests 36 

that potentially doping magnetite with stronger metal oxidants may instead enhance their 37 

antimicrobial effects. 38 

Keywords: Magnetic nanoparticles, cobalt-doped magnetite, antifungal activity, antibiotic.    39 
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1. Introduction 41 

Nanomagnetite, Fe3O4 formulated as a nanoparticle, has been used for a variety of biomedical 42 

applications including for biosensors,1 drug delivery,2-3 hyperthermic therapy,4 magnetic 43 

resonance imaging,5-7 and medical diagnostics and therapy.8-11 It is a promising biomedical 44 

material due to its high degree of chemical stability, magnetic behaviour, and 45 

biocompatibility.12-19 The physical and magnetic properties can be further tuned through 46 

controlled doping with other metals. Cobalt-doping magnetite provides the materials with 47 

increased hardness, higher electrical resistivity and higher electrical permeability at higher 48 

frequencies.20-21 49 

Our previous work with nanomagnetite has focused on using them as antibiotics,22-26 50 

and there are multiple excellent recent reviews on the subject.27-28 Nanomagnetite has been 51 

extensively studied by others for antibiotic applications as core-shell formulations,29-30 as 52 

uncoated nanoparticles,31-32 as nanoparticles either doped or combined with other metals,33-35 53 

or simply as drug delivery vehicles where the antibiotics adsorbed onto the surface.36 We have 54 

previously investigated the antibiotic potential of uncoated magnetite prepared using an 55 

additive-free electrochemical approach.23-26 The surface of these particles incorporated highly 56 

oxidized impurities that both inhibited aggregation and were responsible for the potent 57 

antibacterial activity. However, we wanted to explore the activity of a more traditional 58 

magnetite formulation and help determine whether the activity observed was due to the 59 

presence of Fe-O-O-H groups or due to the activity of the magnetite functionality. Doping with 60 

different metals might affect the behaviour of the materials; for example, Zn-doped 61 

nanomagnetite showed greater activity (defined in terms of inhibition zone diameter) than 62 

Fe3O4 alone.37 This activity was ascribed to the increased specific surface area. However, the 63 

antibiotic activity of cobalt-doped magnetite has not been extensively studied and the little 64 

recent research has largely been restricted to antibacterial behaviour,38-41 although there are 65 
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some notable exceptions: Žalnėravičius and co-workers showed that nanomagnetites with 66 

varying cobalt content and capped with L-lysine were potent agents against E. coli, S. aureus, 67 

and the fungi C. parapsilosis and C. albicans,42 and that activity was highly dependent on 68 

nanoparticle size and cobalt content.43 Smaller particles, and less cobalt content was associated 69 

with more potent activity.  70 

Antifungal function might prove highly attractive for many consumer products to 71 

reduce molds and fungal biofilms.44 We know that our previously generated nanomagnetites 72 

showed very little toxicity towards mammalian cells while being highly toxic to both Gram- 73 

negative and Gram-positive bacteria.23, 25 This selective activity was likely due to the difference 74 

in biofilm formation around the nanoparticles, and it is unclear what the activity would be 75 

against a eukaryotic fungus. 76 

For this study we are studying the activity against Shigella dysenteriae, Klebsiella 77 

pneumoniae, Acinetobacter baumannii, Streptococcus pyogenes, and pathogenic fungi and 78 

molds Candida albicans, Fusarium oxysporum and Aspergillus fumigatus. These are all high-79 

risk pathogens. S. dystenteriae, as implied by the name, releases the Shiga toxins that cause 80 

gastroenteritis and can lead to severe complications including renal failure and haemorrhagic 81 

colitis.45 K. pneumoniae is a common bacterium previously associated with community-82 

acquired pneumonia,46 but whose main feature of interest is as the source of carbapenem 83 

resistant genes that are spreading to other bacteria and contributing to the antibiotic resistance 84 

threat.47  A. baumannii strains resistant to all known antibiotics have been identified and the 85 

pathogen is a leading cause of hospital acquired pneumonia and can readily lead to death in 86 

already compromised patients.48 S. pyogenes, group A Streptococcus, is responsible for many 87 

cases of necrotizing fasciitis and is responsible for 160,000 deaths globally each year often 88 

through rheumatic fever; fortunately it is still largely susceptible to antibiotic treatment.49 C. 89 

albicans is one of the best studied fungal pathogens as it is a near-universally present member 90 
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of a healthy human oral microbiome, but one that can, for immunocompromised individuals, 91 

cause inflammatory oral candidiasis.50 It is also the pathogen largely responsible for 92 

vulvovaginal “yeast infections” and, if it enters the blood stream, it can often lead to fatal 93 

infection. F. oxysporum is mainly of interest as a plant pathogen and is responsible for “banana 94 

wilt” which is threatening the genetically monodisperse Cavendish banana, the variety most 95 

familiar with consumers. There are no effective countermeasures available.51 A. fumigatus is a 96 

ubiquitous and extremely thermotolerant mold that emerged as a leading cause of opportunistic 97 

fungal infection in humans that has been partially tamed through the use of azole antifungals. 98 

Unfortunately, azole-resistant strains have started rapidly spreading around the world in recent 99 

years.52 Together these pathogens threaten human and agricultural health, and many are at the 100 

forefront of the antibiotic resistance phenomenon and new classes of therapeutic interventions 101 

are required.  102 

Here we report our investigations into the synthesis of nanomagnetite and cobalt-doped 103 

nanomagnetite terminated with oleic acid, a common terminating agent,53-54 and their physical, 104 

magnetic, and biological characterization including their activity against these pathogenic 105 

bacteria and fungi. 106 

2. Experimental 107 

2.1.  Materials and General Methods 108 

Oleic acid hydrate, cobalt nitrate hexahydrate, iron (III) nitrate nonahydrate, iron (II) 109 

chloride tetrahydrate, toluene, and sodium hydroxide were purchased from Millipore Sigma 110 

and used as received. For the in vitro analysis the positive controls ampicillin, gentamicin, 111 

terbinafine and canazole were purchased from Millipore Sigma and used as received. Fungal 112 

and bacterial culture media including Roswell Park Memorial Institute 1640 (RPMI 1640) 113 

medium buffered to pH 7.0 with morpholine propane sulfonic acid (MOPS); Mueller-Hinton 114 
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broth (MHB) and Mueller-Hinton agar (MHA), were obtained from HiMedia (Mumbai, India). 115 

Gram-negative bacterial strains Shigella dysenteriae (PTCC 1188), Klebsiella pneumoniae 116 

(PTCC 1290), Acinetobacter baumannii (PTCC 1855); Gram-positive Streptococcus pyogenes 117 

(PTCC 1447); pathogenic yeast Candida albicans (PTCC 5027); and molds Fusarium 118 

oxysporum (PTCC 5115) and Aspergillus fumigatus (PTCC 5009) were obtained from the 119 

Persian Type Culture Collection (Karaj, Iran).  120 

2.2.  Synthesis of the Fe3O4 and Co/Fe3O4 nanoparticles 121 

The oleic acid-capped Fe3O4 and Co-doped Fe3O4 nanoparticles were prepared using 122 

chemical co-precipitation and thermal combustion similar to previously published 123 

approaches.54-55 An aqueous solution was prepared by dissolving iron (II) chloride tetrahydrate 124 

(1.00 g, 7.89 mmol) and iron (III) nitrate nonahydrate (5.30 g, 21.9 mmol) in a 1:2 molar ratio 125 

in 30 ml of distilled water already containing toluene (40 mL) and oleic acid (1.30 g, 4.60 126 

mmol). The mixture was magnetically stirred at 70 °C to initiate the solution combustion56 127 

while 4 mL of 25% aqueous ammonia was added in one batch to the solution to increase the 128 

pH to 10.5. The mixture is allowed to continue stirring while the reaction occurs. WARNING: 129 

Extremely exothermic reaction occurs. The resulting black precipitate was collected by 130 

filtration and extensively washed with deionized water; with the material centrifuged at 10000 131 

rpm and the supernatant decanted between each wash, before being dried at 70 °C for 2 h.   132 

The cobalt-doped iron oxide nanoparticles (Co/Fe3O4) were prepared in a similar 133 

fashion by introducing a controlled amount of cobalt nitrate into the initial solution. In a typical 134 

procedure, 0.43 g of Co(NO3)2·(H2O)6 was added to iron (II) chloride tetrahydrate (0.56 g) and  135 

iron (III) nitrate nonahydrate (5.26 g) in a 1:2 molar ratio in 30 ml of distilled water already 136 

containing toluene and oleic acid as described above. The solution was then treated identically 137 

to the solution above to provide Co0.2Fe2.8O4.  138 

 139 
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2.3.  Characterization of the Fe3O4 and Co0.2Fe2.8O4 nanoparticles 140 

X-ray diffraction (XRD) characterization was conducted on an X’pert Pro MPD (Malvern) X-141 

ray diffractometer equipped with a Cu Kα radiation source. The morphology of the samples 142 

was studied using a scanning electron microscope (SEM) and the EDXS spectra and atomic 143 

quantification were acquired at the same time (KYKY-EM3900M, Beijing China). Vibrating 144 

sample magnetization (VSM) was carried out using an MDKB VSM instrument (Danesh 145 

Pajouh Company, Kashan, Iran). FTIR spectroscopy of the nano-structures was conducted by 146 

first suspending them in a KBr pellet and then using a 460 PLUS Jasco spectrometer scanning 147 

from 400 to 4000 cm-1. All experiments were conducted at ambient temperature (23-25 ºC). 148 

2.4.  In vitro inhibitory activities of nanoparticles 149 

Broth microdilution and time-kill methods were applied to assay antimicrobial susceptibility 150 

according to the Clinical and Laboratory Standards Institute (CLSI) guidelines M07-A9,57 151 

M27-A2,58 M38-A2,59 and M26-A.60 The results were the average of three independent 152 

experiments. For these experiments, the yeast, mold and bacterial suspensions were prepared 153 

in the appropriate broth media (as indicated above) at 0.5-2.5 × 103, 0.4-5 × 104 and 5 × 105 154 

CFU ml-1 respectively.61  155 

2.4.1. MIC testing 156 

Aliquots of the nanoparticle solutions, 20 μL at a concentration of 20,480 μg ml-1 in distilled 157 

water, were added to both the first and second wells in each row of a 96-well microliter plate. 158 

20 μl distilled water was added to wells 2-12, and two-fold serial dilutions were carried out in 159 

them by transferring 20 μl from the previous well (making the total temporarily 40 μl), mixing 160 

thoroughly with the pipette, and adding 20 μl to the next well; for the final well, 20 μl was 161 

withdrawn and discarded after mixing. 80 μl of MHB (for bacteria) or RPMI 1640 (for fungi) 162 

with 100 μl of the prepared microbial suspensions (see above) were then added to all the wells. 163 

This provides, a concentration range of 2048-1 μg ml-1 of each derivative in each row. These 164 
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microliter plates were incubated with shaking at 100 rpm at 37 °C for 24 h. The lowest 165 

concentration of derivatives that resulted in no visible turbidity was considered the MIC value. 166 

Experiments were repeated on two additional separate occasions with fresh preparations of 167 

pathogens. Results from the three experiments were identical. 168 

2.4.2. MBC and MFC testing  169 

Samples of all wells that showed no growth in the MIC test, were cultured in MHA or RPMI 170 

1640 agar, which then were incubated at 37 °C for another 24 h. The MBC and MFC was 171 

identified as the lowest concentration at which no microbial populations were present. 172 

3. Results and Discussions 173 

3.1.  XRD characterization 174 

The nanoparticles were prepared by mixing Fe (II), and Fe (III) with or without Co (II) 175 

in aqueous solution and conducting solution combustion.56 Under these conditions, the cobalt 176 

is oxidized to cobalt (III)62 during the process and these tetrahedral (as opposed to octahedral 177 

Co (II)63) are incorporated into the lattice. The resulting particles were characterized by XRD 178 

(Figure 1). The spectra are consistent with the reported JCPDS spectra for both samples 179 

(JCPDS 003-0863) with Bragg peaks of 30.4o (2 2 0), 35.8o (3 1 1), 43.4o (4 0 0), 53.5o (4 2 2), 180 

57.2o (5 1 1), 63.2o (4 4 0) and 74.2o (5 3 3).  181 
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 182 

Figure 1. XRD spectra of Fe3O4 (A) and Co0.2Fe2.8O4 (B) nanoparticles recorded at 23 °C. 183 

The average crystallite size of the nanostructures was calculated from peak (3 1 1) using 184 

the Sherrer formula.32, 64  185 

Dh,k,l=0.9λ/(βh,k,lcosθ)                                                                                      (3)                                                                                                186 

Where λ is the wavelength (λ = 1.542 Å) (CuKα), β is the product of the full width at half 187 

maximum (FWHM) of the selected peak and π/2 as it approximates a Gaussian distribution. θ is the 188 

diffraction angle of the peak. 189 

The average crystallite sizes for the nanomagenetite and cobalt-doped nanomagnetite 190 

were 14 and 10 nm respectively. The XRD spectra for both samples were similar and could not 191 

be used to confirm the presence of cobalt in the crystal. 192 

3.2. Morphological Analysis 193 

SEM was used to support the sizing of the materials (Figure 2), and showed that the structures 194 

formed (white spheres on a black matrix background) are roughly spherical and under 100 nm, 195 

although the aggregation behaviour under the SEM imaging conditions makes it challenging 196 
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to visualize individual particles. Unlike XRD, the energy dispersive X-ray analysis shows clear 197 

evidence for the presence of both the cobalt and the iron in the samples and can be used to 198 

quantify the relative atomic quantities of the species in the sample using external standards.65 199 

This method provides the experimental formula of Co0.21Fe2.51O4.28 for the batch used for the 200 

biological analyses. This is in reasonable agreement with the theoretical formula. 201 

 202 

Figure 2. A) A representative SEM image, and B) the EDXS spectrum of the Co0.2Fe2.8O4 203 

nanoparticles. 204 

3.3. FTIR Characterization  205 

The FTIR spectra of both samples are provided as Figure 3. 206 
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 207 

Figure 3. FT-IR spectrum of Fe3O4 and Co/ Fe3O4 nanoparticles 208 

The spectra are largely identical as expected: broad peaks at 3600-3400 cm-1 arise from O-H 209 

stretching of adsorbed water molecules. The low wavenumber cluster (500-600 cm-1) are 210 

expected from the metal-oxygen vibrations, and the strong signal at 1390 cm-1 is due to the 211 

stretching vibrations in adsorbed nitrate. Vibrations at 1624 cm-1 correspond to the vibrations 212 

of the C-O of the oleic acid,37 and the lack of a strong band at 1710 cm-1 is consistent with an 213 

oleic acid monolayer.53  214 

3.4. Magnetic Measurements 215 

Vibration sample magnetization was used to understand the magnetic behaviour of the 216 

materials. They are largely similar under all other characterization techniques, but the doping 217 

does have a significant impact on the magnitude of their magnetic behaviour (Figure 4, Table 218 

1). 219 
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 220 

Figure 4.  The magnetization loops of Fe3O4 and Co-doped Fe3O4 nanoparticles, recorded at 221 

23 ºC  222 

Table 1. Effect of Co on magnetic properties of the Fe3O4 NPs 223 

Nanoparticles Ms (emu/gr) Mr (emu/gr) HC (Oe) 

Fe3O4 44.5 0.2 0.0 

Co-doped Fe3O4 19.0 1.9 19.3 

 224 

VSM analysis confirms that the samples are superparamagnetic as expected. The differences 225 

in saturation magnetization (Ms), coercivity (HC), and remnant magnetism (Mr) can be 226 

explained based on F-center exchange coupling (FCE) theory.66-68 Co-doped nanoparticles are 227 

more strongly affected by FCE interactions due to the smaller distance between the Co and the 228 

Fe ions. This traps electrons in the oxygen vacancy, which acts as a coupling center, and as a 229 

result increases the magnetization of the nanoparticles.29, 35, 37 The magnetization is affected as 230 

a consequence of Co concentration within the nano-structure. The small distances between Co 231 
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and iron ions are smaller than between iron atoms, and this can lead to trapping an electron in 232 

oxygen vacancy, which acts as a coupling center. This results in a change in the magnetization 233 

of the nanoparticles as a function of Co content. 234 

3.5. Evaluation of antimicrobial activity 235 

The inhibitory potential of nanoparticles was studied against both Gram-negative and Gram-236 

positive bacterial strains as well as some fungal pathogens. Experiments were carried out in 237 

solution by using serial dilutions of stock solutions of the nanoparticles added to media 238 

inoculated with the pathogen at the appropriate concentration. The results were reported as the 239 

minimum inhibitory concentration (MIC) defined as the concentration at which no further 240 

increase in solution optical density was observed, the minimum bactericidal concentration 241 

(MBC) and the minimum fungicidal concentration (MFC) defined as the concentration at 242 

which cell culture on appropriate petri dishes showed no growth (Tables 2 and 3). 243 

                  Table 2. Antibacterial activity of nanoparticles 244 

 NPs  Antibiotics  

Bacteria Fe3O4 Co0.2Fe2.8O4 Ampicillin Gentamicin 

Shigella 

dysenteriae 

MIC 512 >2048 256 0.031 

MBC 1024 >2048 256 0.063 

Klebsiella 

pneumoniae 

MIC 512 >2048 32 4 

MBC 512 >2048 64 4 

Acinetobacter 

baumannii 

MIC 512 >2048 64 16 

MBC 1024 >2048 128 32 

Streptococcus 

pyogene 

MIC 1024 >2048 4 2 

MBC 2048 >2048 8 2 

                 MIC (μg ml-1), MBC (μg ml-1) 245 

                                    Table 3. Antifungal activity of nanoparticles  246 

 NPs  Antifungals  
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Fungi Fe3O4 Co-Fe3O4 Terbinafine Canazole 

Candida 

albicans 

MIC 2 1024 32 256 

MFC 4 1024 64 512 

Fusarium 

oxysporum 

MIC 128 >2048 32 256 

MFC 256 >2048 64 512 

Aspergillus 

fumigatus 

MIC 2 256 32 32 

MFC 1 256 32 32 

                   MIC (μg ml-1), MFC (μg ml-1 247 

The unmodified magnetite nanoparticles efficiently blocked the growth of all bacterial 248 

and fungal pathogens; however, these oleic acid-capped compounds were not as effective as 249 

our previously reported uncapped, surfactant-free particles which showed MICs of 2.0 μg/ml 250 

against S. aureus and E. coli.25 The Co-doped Fe3O4 nanoparticles showed no antibacterial 251 

activity. This difference in activity could be ascribed to the mechanism of action of these 252 

capped nanomagnetites compared to our previous systems. 253 

The particles bind to the plasma membrane of the pathogens causing additional 254 

membrane disruption and ensuring that the generated reactive oxidative species are already co-255 

localized to the lipids.28 The generally accepted mechanism of action for the antibacterial 256 

activity of capped-magnetite is through the conversion of endogenous hydrogen peroxide into 257 

more reactive oxygen species (ROS, superoxide, hydroxyl radical, proxy radical) that readily 258 

cause cellular damage through non-specific oxidation of the lipid membrane.69-70 This occurs 259 

through the slow oxidation of the magnetite (Fe3O4), which contains a mixture of Fe2+ and Fe3+ 260 

ions, to maghemite (γ-Fe2O3) through the Fenton reaction as the Fe (II) atoms slowly oxidize 261 

to the more stable Fe (III) (Figure 5).71 However, this may become more complicated in the 262 

presence of the cobalt (III). As the electron is released from the iron atom it could be trapped 263 

by the Co (III) to revert it to the highly stable Co (II). This would prevent the formation of the 264 
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highly oxidized species. Further investigations are required to explore and confirm this 265 

mechanism of action. 266 

 267 

Figure 5. Schematic of the mechanism of action of the iron oxide nanoparticles, and a proposed 268 

mode of action for the cobalt-doped nanomagnetite as a possible cause of the lack of 269 

antibacterial activity of the cobalt-doped nanoparticles. 270 

In contrast, the magnetite was observed to be quite a potent antifungal with lower MICs 271 

and MFCs lower than front-line antifungals terbinafine and canazole.72-73 The cobalt-doped 272 

materials show some slight activity. To contextualize these results, the activity is considerably 273 

better than that observed by Seddighi and their larger iron oxide nanoparticles.31 They observed 274 

MFCs of between 500-1000 μg/mL for particles 30-40 nm in diameter (ours are closer to 14 275 

nm). The smaller particles are expected to be more effective as the cytotoxic ROS production 276 

is a function of surface area. Anghel and co-workers used similar oleic acid-coated magnetite 277 

nanoparticles to inhibit fungal growth on textiles, but do not report the size of the particles to 278 

allow for direct comparison.44 Žalnėravičius and co-workers carried out two studies using 279 

cobalt-doped magnetite as antifungal agents. However, they did not compare the efficacy of 280 

the particles against antifungals and report the exclusion diameter rather than an MIC and so it 281 
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is hard to compare the results to the current study.42-43 In their work, smaller particles were 282 

found to be more active, magnetite was found to be more active than cobalt-doped magnetite, 283 

and antimicrobial activity decreased as cobalt content increased. This is consistent with our 284 

current results and is possibly explainable by the decreased production of ROS. Doping the 285 

magnetite with stronger oxidants than Fe (II) might invert this attenuation of activity. 286 

Regardless, this magnetite is considerably less active against bacteria compared to our 287 

previously prepared uncapped magnetite which has not been evaluated against fungi to date; 288 

unsurprisingly, masking the surface of the metal nanoparticle decreases their activity.  289 

6. Conclusion  290 

Nanomagnetite (Fe3O4) and Co-doped nanomagnetite (Co0.2Fe2.8O4) stabilized with oleic acid 291 

were synthesized via co-precipitation with diameters of ~10–14 nm. The two sets of materials 292 

showed similar physical characterization, but the cobalt-doped materials were considerably less 293 

magnetic. They also differed greatly in biological activity: the oleic acid-terminated 294 

nanomagnetite is a potent antibacterial and very potent antifungal. Introducing cobalt greatly 295 

decreases their antibiotic activity. The introduction of stronger metal oxidants than Fe (II) such 296 

as copper, tin, chrome, zinc and magnesium may improve their antimicrobial effects. 297 
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