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Abstract 

Agricultural practices, tools and technologies have taken a new paradigm. Precision agriculture is 

essential to ensure that site-specific crop management is implemented, which includes soil nutrient 

remedies per crop requirement. Though fertilization is key in boosting productivity, there is need 

for analysis of the potentials and limitations of soil as a basis of recommending the correct type, 

quantities and application time of fertilizers to counter uncertainty in fertilizer use. The complexity 

of finding the optimal fertilization range greatly contributes to major inefficiencies like 

productivity losses, resource wastage and increased environmental pollution caused by farmers’ 

use of intuition, trial and error, guesswork and estimation. With these, farmers cannot accurately 

predict what impact their decisions will have on the resulting crop yields and the environment. 

Some solutions implemented for soil fertility management such as use of mobile laboratories or 

imported equipment have had their share of challenges such cost of implementation, ease of use 

and adaptation to the local environment. Other available solutions including taking soil to 

laboratories for testing is tedious, time consuming and inconsistent. This study proposed 

development of an ANN model that predicts NPK nutrient levels and recommends the best 

fertilizer remedy and application time based on the weather forecast. This involved use of IoT, 

machine learning techniques and a weather API through RAD methodology and experimental 

research design. Historical data of temperature, PH and NPK from KALRO Library was used to 

train and validate the model.  The developed model achieved an RMSE 0.5 with 75% of data used 

for training and 25% used for testing. This is in effort to encourage precise fertilizer production 

for particular areas of need. 

 

Keywords:  NPK, PH, Temperature, Sensors, Machine learning  
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Chapter 1:  Introduction 

1.1 Background of Study 

Nations prioritize agriculture as a sector for climate action as it faces challenges such as adaptation 

to climate change, emissions, reduction and achieving food security IFIA (2009). Apart from 

providing access to resources, many nations endeavour to assist in adaptation of proven best 

practices to sustain and improve production. As Kenya’s food security mainstream, source of 

sustainability and economic growth, agriculture contributes to 26% of the GDP and 27% of the 

GDP indirectly through linkages to manufacturing, distribution and other service related sectors 

FAO (2018).  

Some of Kenya’s major cereals include maize, wheat, rice and sorghum among others. Sorghum 

is a drought tolerant crop that survives in arid and semi-arid areas which makes up almost 83% of 

Kenya. It has great impact in improving food security in Kenya despite its low production. It meets 

other needs from industries such as breweries, and fodder production. Its major health benefits 

include diabetes control, dietary options for celiac diseases, source of energy boost as well as 

improving digestive health Dietz, Foeken, Soeters & Klaver (2014).  

Majorly, farmers’ choice of crop, planting and fertilizing decisions are made based on mere 

reference, such as history of use or advice from friends, fellow farmers or extension officers when 

no consideration is made in regards to specific farm fertility analysis . The use of upgraded tools 

and precision farming techniques have influenced the yields in the recent years Burness 

Communications (2010). This dynamism calls for farmers to adapt to the changes in the sector; 

taking into consideration suitability of soil to sustain crop, weather changes, precautions in disease 

and fertilizer management among other aspects Karanja & Mariara (2007).  

Agricultural productivity is affected by many factors among them soil fertility. Different factors 

influence soil fertility such as environmental, human or biotic, which affect the nutrient levels and 

influence crop health sustainability. Soil PH, soil temperature, microbial activity and moisture 

content influence nutrient release from fertilizers (Engeljord et al., 1997). Precise measures of the 

aforementioned elements therefore guide the amount of fertilizer to supplement and time of 
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application to ensure maximum consumption. Weather plays a key role in deciding when to apply 

as rain or sunshine affects the nutrient flow in the soil.  

These nutrients include macro and micro nutrients. The macronutrients include Nitrogen, 

Phosphorus and Potassium (NPK) while the micronutrients include Calcium, Magnesium, 

Manganese and Iron amongst others which constitute major fertilizers. NPK is a complex fertilizer 

that incorporates the named macro and micronutrients with different ratios of the nutrients. Soil 

fertility analysis is a basis of recommending correct type and quantities of fertilizers considering 

the complex fertilizers have different nutrient ratios that may be little or too much for the crops. 

KALRO’s Gadam Sorghum manual document guides that ‘Apply 2 bags per hectare or one bag 

per acre of NPK (20:20:20) during planting and when necessary to top dress with one bag (50kg) 

of CAN per acre.’ It is important for the farmer to identify their ‘necessary time’ as this may vary 

and apply the correct ratio of fertilizer as it is important to ensure efficient soil nutrient 

management Bazzola, Smale & Falco (2016). 

Various solutions have been proposed and implemented to help the farmer understand their farm 

needs. Some include use of agricultural laboratories tests, mobile laboratories tests, and smart 

systems other than home remedies. Each have their challenges making it difficult for the farmer to 

use. This research involves development of a model that checks NPK levels based on the 

temperature, and PH levels and recommend fertilizer to a farmer and best time to apply to avoid 

fertilizer burn, leaching, wash off, denitrification and volatilization which are caused by extreme 

weather conditions; specifically, sunshine and rainfall. 

1.2 Problem Statement 

Many farmers have a problem choosing the right fertilizer to apply to their fields KARI (2006). 

Farmers’ fixated mind-sets, guesswork, trial and error and use of intuition are a bottleneck as most 

trust the fertilizer they think is right according to previous use or copied techniques. This can be 

caused by either lack of information on available solutions or lack of interest in the existing 

solutions. One’s intuition and experiences vary, not all have the same judgment and this leads to 

inconsistency in decision-making in regards to fertilization.  

The farmers’ methods have been quite unstructured and unreliable. Sometimes application 

schedules are affected by errors committed by omitting other aspects of knowledge which if 
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integrated would improve farmers’ decision-making. Research laboratories where soil analysis can 

be done are not easily accessible for every farmer. Mobile laboratories were introduced to solve 

the inaccessibility issues though farmers still do not take the time to take up their soils for testing 

terming it as a waste of time hence their failure. Some imported equipment or techniques have 

proven unfit for the local problems Kamoni, P. (2019, January 25). Personal Interview.  

Chimoita highlights that regardless of the abundant benefits of improved sorghum varieties and 

technologies, Kenya’s production largely remained constrained by poor technology transfer, 

diseases and rainfall variability. The vulnerability in the arid and semi-arid areas in Kenya are 

because of recurring natural and emerging socio-economic challenges. The socio-economic 

challenges Kenyan farmers face include limited access to appropriate technologies, information as 

well as weak institutional support services. Lack of access to information on latest technologies 

escalates the challenge of strained produce further Chimoita (2017). 

There is need for site-specific real time soil testing to replace the tedious, time wasting offsite soil 

testing practices. Most farmers may not go into this but instead take up other homemade solutions 

like use of litmus paper or bare observation where precision is questionable.  

1.3 Objectives 

1.3.1 General Objective 

This research aimed at developing an NPK detection and fertilizer recommendation model for 

sorghum farming. 

1.3.2  Specific Objectives 

i. To evaluate challenges experienced by farmers in determining soil fertility levels for crop 

fertilizer use 

ii. To review existing NPK testing and analysis tools and fertilizer recommendation models 

per crop requirement 

iii. To design a model for NPK analysis and fertilizer recommendation for precision farming 

iv. To develop the analysis and recommendation model 

v. To validate the proposed model. 
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1.4 Research Questions 

i. What challenges do farmers face in determining best fertilizer for maximum yield? 

ii. What are the current techniques used in soil fertility analysis? What are the major 

classifications of crop fertilizers produced and how to meet crop requirements? 

iii. How have the existing models, frameworks and architectures been used in soil testing and 

fertilizer recommendation? 

iv. How will the proposed model be developed? 

1.5 Justification 

Precision agriculture has become an attractive topic globally with soil nutrients as one of the most 

important factors in estimating its development. Detection of nutrient contents more efficiently is 

one of the key issues as it informs well-structured schedules of boosting nutrient levels Liu et al. 

(2016).  

Most fertilizers used in Kenya contained N and P with the assumption that Kenyan soil has an 

adequate supply of other essential nutrients. Earlier, the dependence on N and P was attributed to 

the fact that most fertilizers were donor sourced and we had little or no opportunity to suggest 

inclusion of other essential nutrients or speak out about effects of wrong dosages i.e.; Excessive 

application of N increases vulnerability of crops to diseases and pests and deterioration while in 

storage. 

Various solutions such as use of research laboratories and further mobile laboratories have not 

been very efficient in assisting farmers effectively manage their soil fertility. Reasons such as lack 

of information and distance from their location to research laboratories are major hindrances to 

taking advantage of the advancements. Agriculture research centres have provided fertilizer 

conversion tables to guide on how different crops need to be fertilized though they are not site 

specific. Some imported solutions introduced have their major setback of not fitting local needs 

(Landon, 1984).  

It is therefore prudent to develop a solution that facilitates real-time and accurate measure by the 

farmer and have a recommendation sent meeting what specifically is their need Kamoni, P. (2019, 

January 25). Personal Interview. Sorghum is categorized as the second most important cereal 

despite the low adoption and production rates, thus the need to address the yield gap by proposing 
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solutions that can address the food security issues by coming up with sustainable solutions. Apart 

from having the right resources; tools, techniques, hybrid seeds, the farmers need to be advised on 

proper use of resources for optimal production as wrong use equally leads to production loses 

FAOSTAT (2015).  

By providing the information on ways to determine deficiencies and remedies, the research tends 

towards reducing improper use of fertilizers. Improper use affects crop quality and causes wastage. 

Policy makers and agriculture stakeholders stand to benefit from the research because it provides 

information on production of fertilizers not generally, but as per crop and soil requirements 

depending on farmers’ location Kamoni, P. (2019, January 25). Personal Interview. 

1.6 Scope  

As opposed to matching soil nutrient level to a crop that can grow on it, the research specifically 

focuses on sorghum and how monitoring of soil nutrient levels can give optimum sorghum growth 

requirements. The macronutrients studied are Nitrogen, Phosphorus and Potassium. These are 

entities considered at the pre-cultivation and growth stages of the crop. The model made use of 

IoT devices and machine learning tools to determine soil nutrient levels. 

1.7 Limitations 

Overcoming time constraint limitation, the research scope is limited to one crop; Sorghum. The 

data studied is accessible by the researcher and this can contribute to reasonable degree of success 

of the research.  
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Chapter 2:  Literature Review 

2.1 Introduction 

The chapter discusses the importance of agriculture, challenges faced by farmers in maintaining 

soil fertility and solutions implemented on soil data mapping and look at how through machine 

learning and IoT techniques, integration can be applied to provide a package solution. A review of 

significant research and publications by accredited scholars helped understand the concept of 

precision agriculture and investigate the research problem. 

2.2 Importance of Agriculture in the Society 

Agriculture is Africa’s growth engine. It accounts for almost a quarter of the continent’s GDP and 

employs around two thirds of its labour force that largely constitutes small farm holders who 

practice subsistence or cash crop farming. This reflects Kenya’s 26% contribution to agriculture 

while 27% as a result of indirect contribution of agriculture through processing industries such as 

breweries, food plants and manufacturing and other dependent industries. The fact that a majority 

of the population depend on agriculture a major source of live stream further emphasizes its 

importance. According to AGRA (2017), 70% of the population of Africa is involved in 

agriculture. Deloitte highlights that agriculture is the most prominent, important and dominant 

industry. As of 2015, the industry accounts for over 25% of the country’s GDP, 20% of 

employment, 75% of the labour force, and over 50% of revenue from exports. 

On the contrary, there is a mismatch between productivity levels of farmers in developing countries 

and size of agriculture labour forces as the agricultural sector is not performing as well as it should 

hence the strain in food production. There is little or no expectation that arable land will grow as 

much as population does thus the need to improve land productivity. Optimization of the 

production depends on techniques that minimize unwanted impacts such as acidification and 

efficient use of fertilizers FAO (2009).  

As much as a bulk of the agriculture practice is informal an inefficient, the information technology 

sector recognizes the untapped potential in the sector by use of ICT to formalize the industry. 

Through knowledge discovery from data and dissemination to farmers, farmers learn how to 

embrace better farming practices and tap their potential to increase productivity. Sustainability is 

key in all these endeavours thus the need to put in place accessible, affordable and user-friendly 
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tools. A way to ensure increased production is eliminating barriers that hinder the realization of 

improved productivity. It can be by eliminating the trouble farmers have to go through to have 

consistent soil tests, weather forecasts data amongst other data access that would inform their 

decision-making.  

2.3 Precision Agriculture 

Precision agriculture is a specialized methodology aimed at optimization of yields using modern 

technologies such as sensor technologies, GPS services, and big data optimization in a sustainable 

way to achieve both quality, quantity and financial gain. These allow a more precise understanding 

of a situation at grass root levels allowing better decisions to actualize maximum efficiency and 

reduced wastage of resources. These technologies used facilitate gathering and analysis of data to 

present the information in a way to initiate appropriate response.  Use of sensors in agriculture 

makes it possible to implement the smart farming Ali (2013). 

In order to optimize the growth environment of crop, various parameters such as the concentration 

of soil nutrients, consumption of water, and air temperature are measured Liu et al. (2016). As 

illustrated in figure 2.1, Food and Agricultural Organization of the UN predicts increase of global 

population to 8 billion people by 2025 and 9.6 billion people by 2050 FAO (2009).  

 

Figure 2.1: Population Growth Trend (Adapted from FAO (2009)) 

Food production must match the predicted growth by boosting production by 70% by 2050. There 

are several barriers to accomplishment of this imperative, which include limited availability of 
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arable land demonstrated in figure 2.2, climate change, and go slow in productivity growth (FAO, 

2009). 

 

Figure 2.2: Arable Land Statistics (Adapted from: FAO (2009)) 

FAO recommends that all farming sectors get equipped with innovative tools and techniques for 

decision support systems backed up by real time data. Precision agriculture therefore takes centre 

stage in the quest to address challenges experienced in production optimization by ensuring precise 

solutions are provided to the specific problems experienced (FAO, 2018). This solution therefore 

leverages on Internet of Things (IoT) and weather API to allow an integrated multidimensional 

approach of farming activities for deeper understanding of considered how farming ecosystems 

work Cook et al. (2017). 

2.3.1 Suitable indicators for Precision Agriculture 

Soil sustainability has been changing based on the economic circumstances and technological 

advancements though land use has been on a large scale influenced by historical developments. 

Soil survey incorporating soil fertility experts is the only basis for optimal land use predictions. 

Vink (1963). 

The right indicators are vital to achieving precision agriculture, to be able to assess the effects of 

use and management of soil health. Soil health as the ecological equilibrium and soil functionality 

and its capacity to maintain an ecosystem well balanced with high biodiversity. To understand and 

use soil health as a tool of sustainability, soil’s physical, chemical and biological properties are 

considered. Good indicators are attributes with rapid response to natural actions and the indicators 
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selection is according to soil use and management, soil characteristics and environmental 

circumstances Elke et al. (2013). 

Some of the considered chemical indicators included soil organic carbon, Nitrogen, phosphorus, 

Potassium, organic matter and PH. Physical indicators of soil health include texture, density, 

porosity and aggregate stability. Soil microbial activity and soil respiration have been used as bio 

indicators of soil health. Besides the constant monitoring and evaluation of the physical, chemical 

and biological processes, it is important to note that soil microorganism play a vital role in nutrient 

cycling and have complex interactions with plants. For these reasons, strategies that contribute to 

improved equilibrium of soil microorganism are able to result to a greater productivity and higher 

sustainability. This research supports this move by ensuring application of necessary mineral 

fertilizer to avoid wastage and interference with microorganisms’ ecosystem. The proposed 

indicators include Temperature, PH, Nitrogen, Phosphorus and Potassium.  

2.4 Challenges experienced by farmers  

Some of the farmers’ challenges in sorghum farming include information barriers, inadequacy of 

extension services, use of unstructured and unreliable traditional farming techniques, 

environmental constraints, institutional bottlenecks, policy impediments as well as lack of access 

to seeds in good time (Omoro, 2013). This therefore raises the question as to whether precision 

agriculture is irrelevant in developing countries.  

 A common explanation for minimum adaptation of precision agriculture is on cost benefit 

analysis. (Cook et. al., 2007) classify errors that occur into type I and type II errors. Type I errors 

occur when a farmer fails to act in potentially beneficial way i.e. failing to change a farming 

practice. Type II errors come about with farmers doing harmful or least beneficial things i.e. 

cultivating in a way that causes nutrient depletion, soil erosion and the likes.  Common errors by 

farmers are type II errors, which cause short-term gain and long-term problems. As much as 

farmers wish to avoid the errors, they persistently fall victim, as they are unaware or uncertain that 

such errors would occur. They get into destructive and detrimental actions because of economic 

constraints. Use of DAP instead of NPK is a good example of type II Error where they insist on 

what they are used to; DAP but in the long run it causes a drop in PH Levels, a long-term effect 

(Cook et. al., 2007).  
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Solutions such as laboratory soil testing are viable but expensive and time wasting. A good 

representation of the farm would require greater sampling density to get a standardized measure. 

This takes both time and money and limits number of economically justified number of samples 

(Adamchuk, 2007). 

The research wishes to help solve issues such as information barriers, inadequacy of extension 

services, and environmental constraint issues by providing service at the comfort of a farmer’s 

home. With the proposed solution, a farmer would be able to minimize errors in decision making 

and uncertainty; evaluate their soil, be informed of the needs and apply remedies accordingly as 

the value of information is in the improved decision made. 

2.5 Sorghum Fertility Management 

Adoption of proper and effective crop management practices are essential for higher yields. These 

strategies include appropriate cropping system, optimum planting time, precise fertilization and 

irrigation, integration of weed and pest management among others. This research focusses on 

optimizing soil nutrient levels and proper fertilization to improve the yields. This is by achieving 

the right soil status based on the deficiencies, and prescription of the correct fertilizer. Figure 2.3 

demonstrates sorghum developmental stages which need optimum nutrients for proper growth. 

 

Figure 2.3: Sorghum Development Stages (Adapted from (Agropedia, 2011)) 
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2.5.1 Soil requirements for Sorghum  

Sorghum requires deep well drained fertile soils to enhance root growth and expansion for better 

uptake of moisture Hudo (2016). It is more tolerant to alkaline salts. Jean (2008) mentions that 

soils with a clay percentage between 10-30% are optimal for sorghum production. Fertile, well-

drained loam soils realize high yields with high organic matter though Sorghum can grow in light 

sandy soils. PH directly influences Sorghum’s production as it affects plant growth and 

development and affects nutrients solubility and availability. Prasad & Staggenborg mention that 

it generally grows in neutral pH to moderately alkaline. PH level below 5.7 and above 8.3 hampers, 

the development therefore recommends liming for levels below 5.7 to avoid aluminium toxicity. 

Similarly, in high pH soil or free lime, acidification takes place using acidifying fertilizers though 

causes deficiency of iron, and thus lowers the yields (Prasad & Staggenborg, 2010). 

Presence of salts limits sorghum production though it is more tolerant to salinity compared to 

wheat and rice. Accumulation of excess salts i.e. in low rainfall regions decreases plant growth 

and development especially salts like Ca and Mg in form of chlorides and sulphates. Soil 

amendments is recommended to remove excess salts, as it is sensitive to salts in the germination 

and early vegetative growth. This amendment can be through leaching or chemical adjustments to 

adjust the acidity and enhance the nutrient levels to improve productivity in difficult soils (Prasad 

& Staggenborg, 2010). 

Overtime, land evaluation assesses land’s potential to support crop life. The evaluation 

incorporates analysis and interpretation of climatic characteristics, vegetation cover, soil health, 

terrain, social and economic factors and other factors like cropland use requirements. Soil samples 

testing in laboratories for physical and chemical compositions determine soil qualities. With this 

analysis, one is able to predict the crop suitable for the type of soil Senagi et al., (2017). 

Food Organization Authority (FAO) of the UN categorizes suitability of the crop as highly 

suitable, moderately suitable, marginally suitable or unsuitable for a piece of land, which would 

ideally boost yields and support skill development for sustainable land use and soil management 

FAO (1976). This approach entails determining the type of crop to plant based on the soil 

suitability. This can differ in achieving the goals of improved yields by empowering a certain crop 

farmer become a better farmer with the crop of his choice. If a farmer grows sorghum, soil testing 
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done against the sorghum requirements determines its nutrient needs and identify the remedy to 

its nutrient deficiency. With this, the right fertilizer can be determined and applied in correct ratios. 

Sampling and testing of soil provides soil inventory of soil nutrients and other soil characteristics 

that influence its fertility such as pH and organic matter. Testing for plant available nutrients such 

as Nitrogen, Phosphorus and Potassium help determine nutrient needs, deficiencies and monitor 

management practices. Sampling depth and sampling timing are vital components of a well-

designed sampling plan, which needs to be consistent and objective over time (Marssim, 2000). If 

soil tested is not representative enough i.e. for fertilization, fertilizer may be too much or little in 

2.5.2 Effect of Soil Temperature and PH on NPK 

 The nutrients required for sorghum production include Nitrogen, Phosphorus, and Potassium, as 

macronutrients and Sulphur, Magnesium, Zinc and Calcium as micronutrients. Farmers are 

encouraged to apply NPK fertilizer, which has at least six combinations of the named nutrients. 

NPK fertilizers with ratios (N=20-24, P=9-11.5, k=4.5-7 including Sulphur Magnesium and Zinc 

give best combination ratio for production of sorghum. 

Soil pH affects nutrient availability by changing the form of the nutrient in the soil.  Adjusting soil 

pH to a recommended value can increase the availability of important nutrients. Soil pH of 6.5 is 

optimum for nutrient availability. Extreme pH values decrease the availability of most nutrients.  

Low pH reduces the availability of the macro and secondary nutrients, while high pH reduces the 

availability of micronutrients (except molybdenum), decreases bacterial activity hence nitrification 

of organic matter (Landon, 1984).  

Figures 2.4 and 2.5 illustrate the correlation between PH and common soil elements including 

NPK being studied. Figure 2.5 further demonstrates how the specific elements react at different 

PH levels 
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Figure 2.4: PH vs Soil Nutrients (Adapted from (PDA, 2019)) 

 

Figure 2.5: PH vs Soil Nutrients (Adapted from (Landon, 1984)) 

2.5.2.1 Nitrogen (N) 

Nitrogen is the nutrient most often limiting in sorghum production. Sorghum utilizes it rapidly 

after the plants reach the five-leaf stage. Applications should therefore be timed so that N is in 

place for the rapid growth phase. At boot stage it takes up, 65-70% of N. (McClure, 2019).  
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Nitrogen is relatively mobile in the soil and Nitrate-Nitrogen (NO3-N) is the form most available 

to grain sorghum moves with water and can be readily brought to contact with crop roots for 

absorption. Nitrification- conversion from ammonium to NO3-N in the soil is most likely to occur 

when fields are arable. Waterlogging causes denitrification- conversion of nitrate to nitrogen gas 

and lost from the soil by volatilization. Ammonium-based fertilizers are more susceptible to 

volatilization losses when applied to the soil surface if no rain or irrigation occurs. Three key 

factors reduce the effectiveness of the surface applied N. This leads to volatilization losses, 

particularly when acting together. These are moist or wet soil, PH greater than 7 and increased 

temperature. Applying N prior to a predicted rain or scheduled irrigation is particularly 

advantageous. Volatilization occurs in waterlogged soil. Soil with low PH< 5.5 apply compound 

fertilizer. PH above this acidifying fertilizer like Diamonnium Phosphate and other sulphate 

fertilizers are used  

 Uptake of N increases with increase in soil temperature. There is reduced N availability in cold 

soils (Scarsbrook, 1965). Fertilization on cold soil therefore boosts the availability of the nutrient. 

Nitrogen boosting fertilizer application is best when soil is moist as it dissolves easily and moves 

down with water to the roots.  

The root and stubble residues of sorghum leave excess amount of sugar in the soil causing vigorous 

multiplication of soil microorganisms. This microbial activity locks up the available Nitrogen for 

some time hence inducing N deficiency in the succeeding crop (Landon, 1984). 

Nitrogen deficiency Occurs in soils with low organic matter, heavily leached soils, sandy soils or 

heavily cropped soils. Its deficiency causes pale green leaves (young) and pale yellow older leaves. 

Land fallowing recommended building organic N, land rotation with legumes. 

2.5.2.2 Phosphorus (P) 

Phosphorus is an immobile nutrient in the soil and are generally safe from leaching. Low and very 

low phosphorus levels, as indicated from soil tests, will likely show a response to applied 

phosphorus unless yield potential is restricted by insufficient moisture. Organic matter boosts 

water retention and this can be worm compost or garden compost. Mulching and removing of 

weeds also ensures moisture lasts. Yield response to phosphorous application tends to be erratic 
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on medium testing soils and is unlikely on soils testing high and very high for phosphorus 

(McClure, 2019). 

More fertilizer P is required at low soil temperature to ensure sufficient P uptake (Singh &Jones, 

1977). When soil PH is greater than 8, some micronutrients and phosphorus become unavailable 

to the plants, biological activity reduces and soil becomes saline (Landon, 1991). 

Phosphorus deficiency occurs in soils low in organic matter, long cropping times, and highly 

weathered soil, Iron rich soils, which makes Phosphorus less available or alkaline soils that makes 

Phosphorus insoluble and unavailable. Symptoms include stunted growth and purple pigmentation 

on leaves, sheath and stems.  

2.5.2.3 Potassium (K) 

Potassium is an immobile nutrient in the soil and are generally safe from leaching. Soils testing in 

a medium or higher range for potassium (K) generally do not show a yield response to added 

potassium fertilizer (McClure, 2019). 

Sorghum’s ideal PH range is 6.0 -7.5 with 6.5 considered optimum. Outside the range, nutrient 

efficiency deteriorates and liming is effective to raise the PH. Aluminium concentration increases 

with decrease in soil PH thus becoming toxic to the crop. Phosphates combine with toxic 

aluminium effectively reducing the concentrations in the soil. 

Potassium deficiency occurs in soils with low organic matter or heavily cropped soils, soils formed 

from parent soils deficient of K, and soils textured lightly. Sorghum is highly sensitive to lack of 

Potassium. Some of the deficiency symptoms include Inter-venial and marginal necrosis, which 

occur in older leaves.   

2.5.3 General Fertilizer Recommendations 

Fertilizer use is vital in boosting food production and slowing down the environmental degradation 

rate.  In the effort to overcoming food production challenges, efficient management of soil fertility 

must be highly considered alongside use of fertilizers and improved nutrient management 

strategies to achieve this efficiency. For soil depletion is a known effect of African agriculture, 

improved organic techniques of nutrient supply will undoubtedly affect the future soil health and 

productivity. Janssen (1993) mentioned that relying on recycling of nutrients however efficient 
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would not cause restoration of the depleted soils. More nutrient mining and increased use of 

marginal land causes more inevitable consequences of low use of fertilizers than those anticipated 

from increased use of fertilizers (Evanson & Pingali, 2007).  

In light of these considerations, there has been calls for increased fertilizer consumption compared 

to the developing countries where the use increased more rapidly. There are various reasons that 

influence a farmer’s adoption and intensity of fertilizer use. These influence their decision to buy 

as well as the application rates. Some of the key influences include size of farm, access to credit, 

cooperative memberships and contact with extension workers, information access, and availability 

of inputs as well as distance to markets. It is important for a farmer to understand what their farm 

needs to align their remedies. 

Fertilizers applied to boost these nutrients; both macro and micro depend on the soil PH levels. 

Acidic soils use alkaline fertilizers to raise the PH levels while alkaline soils use acidic fertilizers 

to lower the PH to recommended levels. 

Fertilizers can either be compound or single nutrient fertilizers. Compound fertilizers like NPK 

take long to be absorbed in the soil; mostly used with acidic soils while fertilizers like DAP are 

absorbed first; crops respond first to them but in the end, they affect the soil as they lower the PH. 

Farmers may prefer DAP but should be aware of long-term effects. Leaching solves over 

fertilization problems because of rain but this is a waste of resources by a farmer Kamoni, P. (2019, 

January 25). Personal Interview. Sorghum fertilizers available include both basal and folia 

fertilizers; DAP, CAN, NPK as basal and Optimizer and Lavender as folia. (Green life, 2018).  

A general guide for dry and high rainfall area is; in dry areas, fertilizer ratios of 40N:40P:35K kg 

per ha is used to fertilizer during the time of planting and additional 40kg/ha may be added 30 days 

after. In high rainfall regions, 60N:50:40K / ha is used when sowing and additional 60-70N 30 

days after planting. The following guideline counters specific nutrient deficiency (Green life, 

2018).  

Figure 2.6 gives different PH level classifications while 2.7 gives a guideline on how different 

nutrient types are classified to facilitate analysis of potentials and limitations of soils as a basis or 

recommending fertilizer types and amounts (KALRO, 2019) 
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Figure 2.6: Soil PH Ratings (Adapted from (KALRO, 2019)) 

 

Figure 2.7: Soil Fertility Classification (Adapted from (KALRO, 2019)) 

2.6 Related Works 

ICT-enabled learning and knowledge exchange facilitates precision farming by giving farmers 

expert knowledge in the agricultural sector, conduct research, provide information on weather, 

fertilizers and advise on better farming practices. Various scientific groups have tried to detect the 

concentration of nutrition elements in soil based on basic electro-chemical methods. (Sudduth et. 
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al, 2003) have detected some major elements of soil nutrients by measuring the changes in the 

conductivity of soil samples. (Adamchuk et al., 2007) directly measured soil chemical properties 

by using ion-selective electrodes. (Liu et al., 2016) developed a miniaturized nutrient detection 

system, which was quite different in size and design compared to the previous ones.  

Some of the solutions used include: 

2.6.1 Land Suitability GIS- AgriMaps 

The agrinett project; by the University of West Indies aims at incorporating ICT into agriculture 

in Trinidad and Tobago. In alignment with United Nations SDGs, Agrinnet has developed mobile 

and web applications that provide users with features regarding an area based on GPS coordinates. 

It shares information in regards to physical features, roads and has a soil capability map to provide 

information on soil evaluation and recommender feature to guide a farmer how suitable their land 

is for a given crop. The applications and tools help farmers translate informed decisions into better 

field practices in quest to protect their agriculture landscapes (Agrinett, 2018).  

The application incorporates detailed large-scale data and imagery and provides a bigger regional 

coverage of the landscape to aid watershed and conservation groups in developing protection plans 

and guide on land use initiatives (Agrinett, 2018).  The application uses soil capability map to 

provide information on soil series and other observable characteristics as well as display proximity 

of water sources, access roads land physical features. From a planning edge, farmers benefit by 

being able to determine which crops best fit various farmlands across the country. A survey of land 

capability upon assessment along major land and geographic features is the basis of the application 

(Agrinett, 2018). 

Although it may capture that an area contains a type of soil that supports a certain of crop, a 

consideration may be that the information is only a function of the map scale. This implies that 

soil delineation may occur where different areas on the map may have different soils not identified 

thus misguide a farmer’s decision. The maps give general soil survey data of dominant types and 

a distribution that occurs in a relative large area as such best used to make general comparisons of 

soil capabilities on a wide scale. They are therefore not reliable to make on farm decisions due to 

lack of detail that captures the variations of the farm. In addition to the limitation, maps indicate 

abrupt changes on the soil map while in reality, the soils transition from one type to another 
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continuously. Data based on approximations interfere with the precision. Nature controls the real 

variability of soils not the maps and therefore it is necessary for a farmer time-to-time, check on 

their soil status to determine type and predict use, behaviour and remedies as uniform decisions 

fail to recognize actual variations and introduce error in decision-making. 

Figure 2.8 illustrates how the agrinett application makes recommendations for choice of crop to 

be planted. 

 

Figure 2.8: AgriMaps Application Module (Adapted from (Agrinett, 2018)) 

2.6.2 on-the Go Vehicle-Based Soil Sensors 

Sensors able to measure variable soil properties on the go have been developed and can be used in 

conjunction with Global Positioning Systems (GPS).  The soil properties collected generate base 

fields’ maps used to advise farmers on land use and management. The number of measurement 

points vary depending on speed of travel, spacing between passes and sampling frequency. This 
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gives a denser sampling compared to manual grid mapping and reduces the soil mapping costs 

(Adamchuk, 2002). This may be expensive for farmers, the need to acquire and maintain the tools 

ensemble. Some farms’ terrain does not make it feasible to use. This is also not suitable with crops 

growing unless much spacing done in between crop rows to allow the lad vehicle to pass. 

Figure 2.9 below is a sample of an on-the go machine. 

 

Figure 2.9: on -the-go machine (Adapted from (Adamchuk, 2002)) 

2.6.3 Agricultural Land Suitability Evaluator (ALSE) 

ALSE was an intelligent system used to assess land suitability for different crops in the tropical 

and subtropical locations.  Presented by (Elsheikh et al., 2013), the system used GIS capabilities 

in the digital map of a location using the FAO-SYS model. The system can suit the local 

environment, conditions for soil evaluation and supported expert knowledge. The system was able 

to detect crop specific conditions and systematically give spatial and temporary data with 

maximized potential. This facilitated complex decision-making in short times considering 

sustainability of the crop. Datasets used in the experiments were collected from West Malaysia 

and Terengganu and some of the attributes considered include rainfall, soil nutrient availability, 

rooting conditions, topology nutrient retention and soil workability. Figure 2.10 and 2.11 

demonstrate how ALSE is structured. Fertilizer recommendation was not done at the point of 

analysis. 
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Figure 2.10: ALSE System Structure (Adapted from (ALSE, 2013)) 

 

 

Figure 2.11: ALSE Flowchart (Adapted from (ALSE, 2013)) 
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2.6.4 Involuntary Nutrients Dispense System (INDS) for Soil Deficiency using IOT 

The aim of the project was to reduce fertilizer usage and work of the farmer by checking the PH 

and ensuring the right amount of NPK dispensed to the crops. Figure 2.12 illustrates how the PH 

sensor remotely monitors the nutrients and sends data to Raspberry Pi then displayed on LCD. 

Based on the values obtained, the farmers are able to visualize the data and switch on relay valves 

to connected nutrient tanks (See figure 2.13). Nutrient deficiency analysis depends on the PH value 

and the corresponding relay switched on as approved by farmer on a mobile application. Data 

obtained from the sensor is stored on the cloud (Brindha et al., 2017). 

 

Figure 2.12: INDS Block Diagram (Adapted from (Brindha et al., 2017)) 

 

Figure 2.13: INDS Experimental Values (Adapted from (Brindha et al., 2017)) 

The project heavily depended on efficient irrigation. This will not work in areas where automatic 

irrigation and nutrient dispensation is not set. Many farmers practicing informal agriculture have 

not set up such systems. 
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2.6.5 IOT Based Smart Agriculture and Soil Nutrient Detection System 

The project provides an overview of soil monitoring system using sensors. Figure 2.14 

demonstrates the working of the prototype where the information from the sensors is sent to an 

AD converter then to the cloud through Raspberry Pi. The information forms a basis to select 

suitable crops to grow given the soil parameter readings. The NPK sensor works by measuring the 

amount of NPK based on colour changes and the colour change sensed by colour sensor sends an 

electrical signal to a microcontroller (Chavan et al., 2018). 

 

Figure 2.14: Soil Nutrient Detection System Block Diagram (Adapted from (Chavan et al., 

2018)) 

From the above literature, it is worth noting that different implementations support techniques used 

in determining land suitability and nutrient detection for improved production. Building on this, 

this research encourages a crop farmer better their produce instead of changing crops per soil 

suitability. Once the nutrient levels are determined, the model recommends the boost based on the 

predicted weather patterns as supported by the weather API. 

2.7 Technologies used in Developing Solutions 

2.7.1 Nutrient Sensing Approaches 

Smart farming has picked up with use of sensors placed on land to provide information needed on 

land effectiveness. The Internet Architecture Board defines Internet of Things as networking of 
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smart objects that intelligently communicate in the presence of internet protocol, not directly 

operated by human being but exist as components in the environment. Also called a summation of 

services, data, networks and sensors (Bilal, 2017). 

Wireless sensors have the capability to revolutionize soil ecology by facilitating soil measurements 

previously deemed impossible at temporal and spatial granularities. Figure 2.15 shows a 

demonstration of IoT enabled information collection from a farm. Terzis reiterates that wireless 

sensor networks promise low-cost and low impact rich data collection that is a better alternative to 

manual data logging or taking soil to the labs for testing. Sensors collect data from the environment 

and convert to useful data. (Terzis et al., 2009). Wireless sensor network platform preferred 

because of reduced size membrane durability, robustness, less output impedance and quick 

response, increased sensitivity and increased platform flexibility (Mayer, 2012)  

  

Figure 2.15: Demonstration of Smart Farming (Adapted from (Mizou Organic Project, 2019)) 

An extensive review of the sensors used to measure soil properties has it that the sensors are either 

optical or electrochemical. Optical sensing uses reflectance spectroscopy to detect energy level 

absorbed/reflected by soil particles and nutrient ions. Electrochemical sensors use ion-selective 

electrodes that generate a voltage or current output in response to the activity of ions selected 

(Sudduth et al., 2009).  
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2.7.1.1 A Miniaturized On-Chip Colorimeter for Detecting NPK Elements 

Based on MEMS technology and Beer-Lambert’s Law, Liu created a novel chip- level colorimeter 

to detect the NPK elements. MEMS technology ensured a less voluminous chip as compared to 

other colorimeters with an advantage of low costs, fewer testing samples and high level of 

precision. Figure 2.16 below depicts the major subsystems of the components, which include the 

sensors, the circuitry, and the display or transmission module Liu et al. (2016). 

 

Figure 2.16: NPK Colorimeter Components (Adapted from (Liu et. al, 2016)) 

2.7.1.2 Measurement of NPK using NPK Micro sensor 

Figure 2.17 is a picture of a micro sensor by Progis and SEA partners (2012). It is integrated into 

farm equipment, automatically to produce NPK values and automatically produce NPK maps. 

They use Ion Selective Field Effect Transistors (ISFET). It requires samples in small volumes with 

NPK ions targeted. The micro sensor assists in spatial data collection, precision irrigation and 

supplying data to farmers. This sensor has not been made available for use by the developers and 

it is worth noting that other developers such as Teralytic launched the first wireless NPK sensor in 

February 2019 with limited number of the soil probes released (Teralytic, 2019). 

 

Figure 2.17: NPK Micro Sensor (Adapted from (Mayer, 2012)) 
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2.7.1.3 Measurement of NPK from PH Value 

The objective of the research by Khakal, Deshpande & Varpe (2016) was to develop a 

“Measurement of NPK from PH value”. This is by use of a PH Sensor. The system has a measure 

capable of detecting the level of temperature, Element contents in soil (N, P, K), Humidity and 

Soil moisture. This was built based on the correlation between PH and the NPK availability in the 

soil. Figure 2.18 below is a picture of the micro-sensor used. Building on their research, this study 

implements this approach to detect the NPK levels, as NPK sensors were not available for use. An 

NPK sensor made available by an organization in Austria was going for 4960 Euros, which is very 

expensive to acquire for prototyping, not considering the implementation costs.  

 

Figure 2.18: NPK Microsensor-phec 04 (Adapted from (Khakal et al., 2016)) 

2.7.1.4 Remote Sensing and GIS Integration- Assessment of Land suitability  

AbedelRahman, Natarajan & Hegde carried out scientific analysis in 2016 identifying the main 

limiting factors for agricultural production and help decision makers to develop crop management 

strategies that improve land productivity. A GIS based approach used to match crop suitability in 

Chamarajanagar district Karnataka, India and soil suitability and capability maps developed to 

illustrate the degree of suitability and do spatial representation of the soil. Data used in the study 

was Remote sensing satellite (IRS P-6) LISS III and LISS IV sensor data with slope degree derived 

from Shuttle Radar Topography Mission (STRM and Topographic maps. Digital image processing 

techniques, ENVI 5.0 and GIS 10.1 for RS and GIS integration as well as land evaluation 
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classification according to FAO standards implemented to assess the suitability (AbedelRahman, 

Natarajan & Hegde, 2016). 

 

Figure 2.19: Remote sensing and GIS Flow chart (Adapted from (AbedelRahman et al., 2013)) 

 

Figure 2.20: Land Suitability Order- Chamarajanagar district (Adapted from (AbedelRahman et 

al., 2013)) 

2.7.2 Machine Learning Models 

Various machine-learning models for prediction or classification are built using different 

algorithms. Some of these include: 

2.7.2.1 Artificial Neural Networks (ANN) 

Artificial Neural networks have been used to create models for soil suitability checks and 

recommendations. Anitha and Acharjya (2017) came up with a model aimed at predicting crops 
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that could grow in an area. This was by coming up with a hybridizing of rough set on fuzzy 

approximation space and ANN. They used datasets containing 2193 objects and attributes totalling 

to 15 collected from Vellore district between 2007 and 2014. The soil attributes used were 26 

including soil pH, soil organic matter, and availability of phosphorus, potassium, water, nitrate, 

calcium, copper, magnesium, zinc, iron, manganese and moisture. 55 % of the data used for 

training while 45% used to test. The experiments developed in R achieved an accuracy of 93.2% 

with a Mean Square Error of 0.2436 (Anitha & Acharjya, 2017). 

The algorithm has self-learning capabilities that enables it give better results as more data is input. 

An adaptive system restructures given information flowing through the network during the 

learning stage. It goes through a learning phase where it recognizes patterns in data and it contrasts 

its actual output with the desired output. It is taught what to look for and what the output should 

be in this supervised phase, using the information flowing in its structure (Dey, Bhoumik & Dey, 

2016). 

There are three interconnected layers in ANN. The first layer is the input while the second and 

third, output. ANN is made up of nodes that receive a series of entries to produce an output. Weight 

interconnects the nodes and the weight is adjusted until it achieves a desired output of the training 

dataset. Below is an illustration of Neural Networks. 

 

Figure 2.21: Structure of ANN (Adapted from (Brinda & Pushparani, 2016)) 
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2.7.2.2 Support Vector Machine (SVM) 

Fereydoon created an SVM- Two class model used to analyse wheat production in Iran. 22 soil 

profile representatives with each profile having 10 features were broken down in the following 

groups:  climatic, topographic and soil related features. Design and testing of the model on 

MATLAB 8.2 while implementation on non-linear class boundaries. 80% data was for training 

while 20% for testing. All randomly, selected. Upon evaluation, they had a RMSE of 3.72 AND 

R2   of 0.84 (Fereydoon et al., 2014).  

SVM is a supervised machine learning method. It has two classifications, linear where classifiers 

are separated using hyper plane and nonlinear SVM, which does not use hyper planes. The dataset 

informs SVM of classes the algorithm can classify new data. It maximizes on margin maximization 

that is the distance between the various classes included in the classification. SVM is considered 

accurate and most suitable for stock market predictions and forecasting by financial institutions as 

it offers best classification performance (Manoja, & Rajalakshmi, 2014).  

SVM algorithm finds an optimal separating hyper plane based n Kernel Function. It is designed to 

create a model based on the available training dataset. 

 

Figure 2.22: Support Vector Machine (Adapted from (Mundada & Gohokar, 2013)) 

2.7.2.3 Parallel Random Forest 

Parallel Rand Forest is an ensemble machine-learning algorithm. Learning a dataset is through a 

divide and conquer approach. Its optimization based on a hybrid approach combining data-parallel 
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and task parallel optimization. In a research by Spark M Lib, PRF shows superiority of the 

algorithms over in terms of classification accuracy, performance and scalability (Chen et al., 2018) 

Senagi, Jouandeau and Kamoni, justified use of an optimized algorithm for prediction of land 

suitability for crop production in 2017. They used soil properties and had experiments using Linear 

Discriminant Analysis, Linear Regression, Parallel Random Forests, Gaussian Naïve Bayesian, 

KNN and Support Vector Machines. Upon evaluating experiments across 10 cross fold validation, 

parallel random forest had better accuracy of 0.96 and 1.7 seconds of execution. The goal of the 

research was to save time and improve on land evaluation accuracy levels. With these, they would 

be able to predict land suitability for cop production without use of soil experts (Senagi et al., 

2017). 

2.7.3 Expert Systems  

Agriculture has evolved into a complex business that requires knowledge accumulation and 

integration from diverse resources. For competitive purposes, a farmer depends on different 

specialists to assist in decision-making but unfortunately, they are not always available when 

needed. In effort to alleviate the problem, expert systems act as powerful tools with information, 

great potential in agriculture information integration (Prasad, 2008). 

An expert system is limited to a specific domain of expertise, able to reason with uncertain data 

and can explain trail of reason. The need for the expert system is necessary to do diagnostic tests 

on soil, as the human expertise is scarce. General classification of soil needs to be specific i.e. 

establishing precise recommendation to measured deficiency. Skilled practitioners rely on 

knowledge and intuition. For expert systems take advantage of experimental knowledge with 

intuitive reasoning, they combine the specialized knowledge and aid the farmer make best 

decisions for their crops. An example of an expert system developed to support agriculture 

management is Weiping Jin Expert system that adopted measures in managing crops such as 

irrigation, fertilization and spraying, built on fuzzy phenomena, as there was a lot of fuzzy crop 

states analysis (Prasad et. al., 2006). Expert systems 
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2.8 Conceptual Framework 

Figure 2.24 below illustrates how the prototype works. Data from the sensor is fed into the model. 

The model recommends the fertilizer suitable for use. An incorporated weather API gives a 

weather prediction, which guides whether to fertilize, or not. KALRO Library is the source of 

historical data used for model training. 

 

Figure 2.23: Conceptual Framework 
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Chapter 3:  Research Methodology 

3.1 Introduction 

Methodology is the analysis of approaches or principles of methods applied in carrying out a study 

(Kumar, 2005). It is the process of systematically solving problems or considered as the science 

of doing research. This research was guided by objectives proposed to be met and was greatly 

informed by the nature of the problem under study. 

3.2 Research Design 

It is the structure research follows in terms of collection, measurement and analysis of data in effort 

to get answers to research questions. Wanjugu further reiterates that the research design should 

bring out the relevance of the research with the economy in procedure (Wanjugu, 2015). This study 

implemented an experimental design approach involving identifying research objectives and 

building an ANN model to prove the concept. Iterations made were to the interest of the best 

performing model. 

3.3 Model Development 

The model development took the following steps. 

i. Data Collection 

ii. Data Pre-processing 

iii. Model Training  

iv. Model Testing and Validation 

3.3.1 Data Collection 

Soil data and fertility analysis rules from KALRO Libraries were the main source of data. These 

came in form of soil records from the laboratories and nutrient management guides from 

agricultural publications. Fertilizer recommendation rules in figure 2.7, NPK fertilizer ratios per 

deficiency by Landon (1984) and dataset of 1233 entries with soil PH, Temperature and NPK 

values were collected for the study. Consultation and further discussion with the soil experts 

facilitated understanding of the data and soil analysis rules currently used.  

Use of scientifically verified internet resources were vital to gather relevant information to the 

research area from researchers, seasoned industry players in the field as well as reviews and 
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documentations by organizations such as KALRO, CYYMIT or FAO. Other sources like 

documentation of similar projects done on the same also contributed immensely in information 

collection. This aided identification of gaps the research could fill.  

3.3.2 Data Pre-processing 

The data obtained was extracted from the documentations i.e. organization logs and stored in a 

simple excel documents. Data cleaning helped identify the data needed and get rid of noisy and 

irrelevant information especially captured variables not considered in this project. Complete data 

saved for training, testing and model validation. This process was key in producing valid and 

reliable models. 

3.3.3 Model Training  

Training involves feeding inputs to the model for processing and training on the input data and 

expected output. The machine-learning algorithm used is Artificial Neural Networks. The data sets 

were split into 75% training data and 25% testing data in order to determine the possibility of 

determining precise fertilizer doses. The inputs soil temperature, PH and NPK values were used 

with an expected output of NPK soil levels for fertilizer recommendation. 

3.3.3.1 Evaluation metric (RMSE) 

This is a measure of how well the model performed. RMSE measures the difference between 

predicted values against the values observed in the real environment. It is also the standard 

deviation of residuals otherwise referred to as prediction errors. RMSE is a measure of how spread 

out these residuals are telling one how concentrated the data is around the line of best fit 

3.3.4 Model Testing and Validation 

Different experiments done determined the best combinations of the Temperature, PH and NPK 

inputs. ANN was used in the experiments and this was settled for as the sole algorithm considering 

the nature of inputs and expected output. ANN was best fit for its ability to learn and model 

nonlinear and complex relations, which in this place would be the complex relationship of different 

soil nutrients with PH considering different temperature levels. It is also working best with 

capturing associations or capturing regularities, which in this case comes in the relationship 

between nutrient availability and PH levels in soil. These are also affected by temperature. It 

captures many kinds of relationships, which PH, NPK and temperature have. 
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3.4 System Development Methodology 

Rapid Application Development (RAD) 

To develop a flexible and iterative model, there was need for a methodology that would facilitate 

that (flexibility) as the model is set up in a dynamic environment prone to change thanks to 

technology advancements. The model was able to accommodate change and be inclusive enough 

to assure cooperation between the users.  

To factor in the time constraint, RAD is preferred as it holds more emphasis on development.  The 

planning is in the first phase of the project and the remaining stages of development done 

iteratively. RAD combines CASE tools, techniques and strict delivery time for quality finished 

systems in less build-up time. It takes maximum advantage of powerful development software that 

has evolved recently (Martin, 1990). 

As RAD takes advantage of automated tools to restructure process of development. Its iterative 

nature allows adjustments in reaction to knowledge gained as the project progresses. With its 

flexibility to changes, in a tight period it facilitates project development comfortably to meet the 

objectives of the project.  

The following activities took place iteratively following the methodology demonstrated in figure 

3.1  to satisfy the efficiency of working with it.  

 

Figure 3.1: RAD vs Traditional Models (Adapted from (Karthiksangi, 2014)) 
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Planning 

Identification of area of research and problem to tackle. With these, the study objectives were set 

and research questions derived to provide a guidance on work to do. 

Analysis 

This laid emphasis on investigation of the problem identified and its requirements. To meet the 

study objectives, literature by scholars in the area of study was critiqued making the problem 

identified and objectives set more precise. Guide by KALRO soil scientists was critical in 

understanding the research problem and identify feasible solutions that fit local problems. This 

was by understanding how and why previous solutions failed and how to differently approach the 

issue considering nutrient management concepts, implementation feasibility and cost, and ease of 

use. 

Design and Development 

A conceptual solution that would fulfil the requirements and deign diagrams that depict the system 

behaviour and interactions were designed using software modelling tools. The building was then 

implemented using specialized hardware and software. These includes the IoT devices, database 

system, weather API, Messaging platform and machine learning tools.  

Testing 

This was done to ascertain if the proposed model performed its functions as intended under the 

condition specified. The testing verified if the model met the users functional and non-functional 

requirements in terms of Accuracy of recommendation, timeliness ease of use among others.  

3.5 Ethical Considerations 

The researcher did seek consent to do the research and ensured that information shared was solely 

used for the research purposes maintaining confidentiality. Credit was given to works of other 

authors and researchers in the area of research avoiding plagiarism. 
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Chapter 4:  System Design and Architecture 

4.1 Introduction 

The chapter explores system design and architecture of the model using UML diagrams. The 

diagrams illustrate interactions and interconnection of the system components. 

4.2 Requirement Analysis 

Requirement analysis reviewed user expectations for the model ensuring it takes care of all 

stakeholders needs. In line with the set objectives, the section below discusses the functional and 

non-functional requirements of the model developed in the project. 

4.2.1 Functional Requirements 

The functional requirements specify what the system should do to support tasks, activities or goals 

through function, behaviour input and output. The functional requirements of the model include: 

i. The system should allow the administrator to register a farmer 

ii. The system should be able to retrieve environmental soil parameters (temperature and PH)  

iii. The system should accurately classify the nutrient remedy using an ANN model and use 

forecasted weather to recommend whether to fertilize or not. 

iv. The system should send the recommendation message to the farmer based on the results of 

the classification and anticipated weather 

4.2.2 Non-Functional Requirements 

These requirements describe general attributes of a system. They are qualities the system must 

have. Failure of these non-functional requirements causes detrimental results. The non-functional 

requirements include: 

i. Availability; Describes the degree of dependability of the system at all times. The system 

should be available at all times. 

ii. Reliability: Describes the extent to which the system consistently performs its functions 

without fail. 

iii. Accuracy: The remedy recommendation and weather prediction should meet certain 

accuracy threshold, done with minimal error rate. With accuracy comes objective decision 

making in regards to efficient fertilizer use. 
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iv. Usability: Describes the ease of learning and operating the system functions. 

v. Maintainability: Describes the ease of finding faults and errors in the system and fixing 

them to meet the user requirements. 

vi. Response time: System should have a maximum response time from the time the 

recommendation is made to the time the message is sent out to the farmer 

4.3 System Architecture 

The system architecture addresses how various system components interact to achieve the system 

functionality. System architecture gives an understanding of how the system design, structure and 

user requirements must be supported by the system. Figure 4.1 below illustrates the subsystems 

and interconnections between them in the fertilizer recommendation model. The components in 

the proposed system architecture include users, IoT tools (temperature, PH Sensors and Arduino), 

weather API, database or server and the machine-learning model. 

The IOT Nodes (temperature, PH Sensors) are placed in the farm to retrieve soil parameters that 

are sent to the database, which feeds the machine-learning model. The machine-learning 

component comprises of the pre-processor and an ANN classifier. Pre-processing takes place and 

the data fed to the classifier, which provides a classification of the type and quantity of fertilizer 

to use. Based on the fertilizer recommended and forecast data from the weather API, the model 

recommends whether to fertilize or not. This information is sent to the farmer 
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Figure 4.1: System Architecture 

4.4 System Behavioral Modeling 

This is an effective method of modelling the system and user requirements. A Use case diagram 

shows sets of actors, their use cases and relationship associated with them.  

4.4.1 Use Case Narration 

A textual representation of the proposed system events encountered when the actors interact 

Use Case:  

Registration of farm- farmer details  

Primary Actor:  

Soil Expert 

Precondition: 
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i. Farmer must have sorghum farm 

ii. Farmer must have a phone which can receive notification 

Post Condition: 

i. Farmer and farm details must be successfully uploaded to the system database 

ii. Uploaded details of farmers (contacts and location) must be confirmed to be accurate 

Main Success Scenarios 

Table 4.1 : Registration of farm- farmer details 

Actor Intention System Responsibility 

1. Soil Expert initiates farmer registration – 

Name, ID Number, Location, contacts 

2. System stores farmer details for future 

communication 

 3. System confirms user registration to the 

System Administrator and farmer 

4. User exits the system  

 

Use Case:  

Retrieve Soil Parameters (Temperature and PH) 

Primary Actor: 

Farmer, IOT Device 

Precondition 

i. User must have the soil sensors 

ii. Farm and farmer details must be correctly registered 

iii. The sensors should be correctly placed in the farm 

Post Condition 
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Real time data on soil parameters successfully retrieved 

Table 4.2: Use Case: Retrieve Soil Parameters (Temperature and PH) 

Actor Intention System Responsibility 

1.Farmer initiates prediction and 

recommendation by setting up soil 

sensors in the farm 

2. System retrieves soil environmental parameters 

(temperature  and PH) 

 3. System sends parameters to the database 

4. Farmer views real-time parameters 

from the farm 

5. System uses soil parameters and historical data to 

identify deficiency and recommend fertilizer 

 6. System uses the  fertilizer recommendation and 

weather API input to give the application guide  

 7. System generates feedback to be sent out to farmer; 

name of fertilizer to apply and when. 

8. Farmer receives the fertilizer 

application guide. 

 

Extensions or Alternative Flows: 

At any time, the system fails to retrieve soil parameters, the farmer must be informed to check the 

setting up process in the soil  

Use Case: 

Send feedback to registered farmer 

Primary Actor:  

Farmer 

Precondition: 
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i. Successful recommendation of the remedy and application guide by the system 

Post Condition: 

i. System to give a recommendation on the best fertilizer and time of application 

ii. System to send out application guide to the farmer 

Table 4.3: Send feedback to registered farmer 

Actor Intention System Responsibility 

1. Soil Expert registers farmer information in 

the system 

2. Soil Expert registers farmer information in 

the system 

 3. System sends notification to farmer 

3. Farmer views application guide  

Extensions or Alternative Flows: 

Soil Expert checks and/or restart system in case the notification is not sent out. 

Use Case:  

Log real-time soil sensor data, Implement ML classification algorithm, predict NPK 

deficiency, and generate fertilizer remedy. 

Primary Actor:  

i. System 

Precondition: 

i. The soil parameters (temperature, and PH) were successfully logged and stored on the 

database 

Post Condition: 

i. Successful nutrient deficiency detection and fertilizer recommendation  
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Main Success Scenario 

i. The soil sensors retrieve soil parameters (temperature and PH) and the information 

is transmitted to the database 

ii. Based on the available information i.e. soil parameters, historical information on 

nutrient availability; the system uses ANN to predict the deficiency and recommend 

the best fertilizer 

iii. Accuracy tested using the test data after prediction 

iv. System generates a fertilizer to remedy deficiency depending on the information 

available in the internet server and that collected by the sensors. 

 

Use Case: 

Generation of fertilizer application guide based on fertilizer recommended by the model and 

forecast weather data from weather API 

Primary Actor:  

i. Model 

ii. Weather API 

Precondition: 

i. The fertilizer remedy is accurately identified based on the deficiency detected 

Post Condition: 

i. Successful fertilizer application guide based on the weather predicted 

Main Success Scenario 

i. The fertilizer remedy is identified based on the deficiency detected. 

ii. Weather forecast data is available from the weather API 
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iii. Based on the fertilizer recommendation and forecast weather the application guide is 

given 

iv. The system sends the application guide to the farmer 

 

v. System generates a fertilizer to remedy deficiency depending on the information 

available in the database and that collected by the sensors. 

4.4.2 Use Case Diagram 

Figure 4.2 illustrates the proposed system’s use case diagram. The actors include the system 

administrator, the farmer and the system with the proposed use cases. 
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Figure 4.2: Use Case Diagram 

4.4.3 Sequence Diagram 

This is an interaction diagram that diagram depicts time ordering of messages between different 

system objects. The sensors are set up in identified farms. The farmer’s details are registered in 

the system. Historical information on nutrient availability is stored. The soil parameters are 

collected using sensors and sent to the internet server. The collected parameters together with the 

historical data in the system are pre-processed and used in the prediction of nutrient availability 

and fertilizer recommendation based on forecast weather. The results are shared with the farmer 

in form of an application guide. The proposed system’s sequence diagram is illustrated in figure 

4.3 below. 
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Figure 4.3: Sequence Diagram 

4.5 Process Modelling 

4.5.1 Context Diagram 

The context diagram in figure 4.4 demonstrates the interaction of the model with the immediate 

external entities and how messages are exchanged. The main entities include farmer, Soil Expert, 

sensors and the model. The diagram defines the system boundaries. 

 

Figure 4.4: Context Diagram 
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4.5.2 Level 1 Data Flow Diagram 

The diagram in figure 4.5 gives a breakdown of the aforementioned context diagram. It shows the 

second level processes of the model. Addition of data stores and data flows between the system 

processes help elaborate the main entities processes and their interaction in the system. Process 

one entails registration of the farmer (location and contact details) used when sending the fertilizer 

application recommendation. The NPK and temperature historical information the NPK levels 

together with the collected PH and temperature parameters are used in the prediction and 

recommendation process. The weather API gives information about the weather that guides on the 

application process to ensure optimum absorption; minimized wastage, which may be caused by 

either fertilizer burn or wash off. The fourth process entails keying in PH and Temperature 

parameters from the sensors into the database. The collected parameters are fed to the neural 

network model to perform predictions.  The results are used to recommend the best fertilizer 

needed and the application guidance is given with information from the weather API. 

 

Figure 4.5: Level 1 Data Flow Diagram 
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4.6 Partial Domain Model 

The figure 4.6 below illustrates a domain model with conceptual classes of the proposed system. 

It comprises of conceptual classes, their attributes and associations between them. The classes 

include sensors, soil parameters, ANN Model, fertilizer recommendation farmer and weather API. 

The classes interact from farmer registration, sensors retrieving soil parameters, data processing 

by the ANN model, fertilizer recommendation and fertilizer application recommendation which is 

finally sent to the farmer via SMS. 

 

Figure 4.6: Partial Domain Model 
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Chapter 5:  System Implementation and Testing 

5.1 Introduction  

This chapter delves into the actual implementation of the system. The PH and Temperature sensors 

were deployed in the soil to capture the PH and temperature levels. The Sensors were connected 

to the Arduino and parameters’ readings sent to the database then fed to the model. Artificial 

Neural Network algorithm was used with the parameters collected to provide prediction of nutrient 

levels in the soil. Based on these results, the suitable remedy; fertilizer is recommended. Weather 

forecast from the weather API comes in to guide on whether to fertilize or not based on the forecast 

weather. This fertilizer application recommendation is sent to the farmer as an SMS.  

5.2 Components of the Prediction Model  

5.2.1 IoT System Components 

These include the PH and Temperature sensors and the Arduino. The IoT components used 

include. 

Analog PH Meter – The sensor in figure 5.1 retrieves the PH readings from the soil. It has a module 

power of 5.00V, measuring range of between 0 and 14, measuring temperature between 00 and 

600with an accuracy of ± 0.1pH (25 ℃). Its response time is ≤ 1min. 

 

Figure 5.1: PH Electrode (Adapted from Robotshop, 2019)) 
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DHT 11- Sensor in figure 5.2 that retrieves temperature readings made capable by a thermistor (an 

NTC temperature sensor). Has a basic chip able to do analog –digital conversions and send out 

digital signal to the Arduino. 

 

Figure 5.2: DHT 11Sensor (Adapted from (Adafruit (2019)) 

Arduino picture in figure 5.3 is able to read inputs from the PH Meter and temperature sensor. 

 

Figure 5.3: Arduino (Adapted from (Arduino (2019)) 

5.2.2 ANN Model 

The model was developed using Artificial Neural networks. Inputs to the model included the 

temperature and PH collected by the sensors deployed in the soil. The algorithm has three layers 

discussed below. 

Input Layer  
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Provides outside world information to the network. No computation is done in this layer, only 

passes information to the hidden layer. The inputs in this study are temperature and PH readings 

from the database. 

Hidden Layer  

They are referred to as hidden layers as they have no connection to the outside world. 

Computations are performed here and desirable output transferred to the output nodes. 

Output Layer  

Responsible for some computations as well. Receives data from hidden layer, have computations 

done then transfer information to the outside environment. 

5.2.3 Server Side Application 

Node Red was used to wire together the sensors, weather API and SMS platform as part of Internet 

of things. Data from the sensor through the Arduino is uploaded to the localhost.  

5.3 Implementation of the Prediction Model 

The section discusses actual implementation of the system using the aforementioned components. 

5.3.1 Data capture by the PH and Temperature Sensors 

The sensors collect data of temperature and PH, which influence availability of NPK nutrients. 

The Arduino is connected to the analog PH sensor to get PH values and DHT sensor to capture the 

temperature readings. The figure 5.4 below illustrates the set up and connection of the IoT 

components to the laptop. Figure 5.5 shows how the readings relayed to the Arduino are displayed 

on COM3. NodeRed was used to wire the sensors and API together on one platform and figure 5.6 

illustrates how the nodes interface to facilitate communication from the sensor to Arduino, through 

NodeRed to the database as well as from the weather API to the ANN Model. 
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Figure 5.4: Sensor Setup 

 

Figure 5.5: Arduino connection code and display on COM3 
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Figure 5.6: NodeRed Implementation (Sensor, Localhost connection) 

5.3.2 Storage of the sensor read parameters; PH and Temperature 

The data from the Arduino through NodeRed is sent to the database for storage as illustrated in 

figure 5.7. 

 

Figure 5.7: Parameters values storage 



 

 

53 

 

5.3.3 Database-Model Connection 

The model gets data from the database and this is used in predicting the NPK Level. Once the 

recommendation is done, a farmer receives a text of their application guide via Twilio. 

Below is a snippet of the code that enables connection of the database to the model. 

import mysql.connector 

from mysql.connector import Error 

connection = mysql.connector.connect(host='localhost', 

                            database='npkanalysis', 

                            user='root', 

                            password='') 

mycursor = connection.cursor() 

mycursor.execute("SELECT * FROM npkanalysissensorvalues") 

myresult = mycursor.fetchall() 

5.3.4 Modelling and Implementation of the ANN Model  

The system used artificial neural networks algorithm to predict the nutrient levels of NPK in the 

soil. Once the nutrients available are noted, fertilizer is recommended based on the soil need. 

Forward propagation ANN was used to generate NPK level predictions given the temperature and 

PH of the soil. The input layer receives the Temperature and PH readings and passes to the hidden 

layer where the computations are done. The output layer use hidden layer node to make the 

predictions. An epoch is done such that the temperature and PH dataset are learnt. 

5.3.5 Weather API Input 

The weather influences fertilizer absorption. This determines either its optimum take in or wastage. 

Too much sunshine, causes fertilizer burn while too much rain causes waterlogging which causes 
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nitrification; loose of Nitrogen in the soil or all fertilizer wash off. The farmer therefore needs to 

fertilizer at optimum condition to ensure they do not end up wasting because of wrong alignment 

with the weather patterns. The weather API was roped in using Node Red as illustrated in figure 

5.8 below. 

 

Figure 5.8: Weather API Implementation on NodeRed 

5.3.6 SMS Notification to Farmer 

The system sends a farmer a notification, which is the fertilizer application guideline. Twilio was 

used as the SMS platform. Based on the results, a sample of the SMS content is in figure 5.9. 
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Figure 5.9: Sample SMS 

5.4 Model Training 

Experiments were done to compare how the model performed with various inputs; PH, 

Temperature, N, P and K values gotten from KALRO Research Laboratory. 

5.4.1 Model Experimentation 1 

The inputs consisted of Soil PH and NPK values. 75 % was used for training while 25% used for 

testing. The data was used as presented and no normalization done. The mean square error was 
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357.1804533241052 while the mean absolute error was 5.724771949061643 for the y test 

predictions. 

Below is a python code snippet demonstrating how the training and testing environment were set 

up on Jupyter notebook. 

import numpy 
from keras.datasets import mnist 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import Dropout 
from keras.utils import np_utils 
import numpy as np 
import pandas as pd 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error,mean_absolute_error 
from sklearn.preprocessing import MinMaxScaler 

Building of the ANN Regression Model 

# define baseline model 
def ph_model(): 
    # create model 
    = Sequential() 
    model.add(Dense(3, activation='relu', input_shape=(1,))) 
    model.add(Dropout(0.5)) 
    model.add(Dense(9)) 
    model.add(Dropout(0.5)) 
    model.add(Dense(6)) 
    model.add(Dense(3)) 
    model.compile(loss="mae", optimizer='adam', metrics=['mae']) 
    return model 

model = ph_model() 
trained_model = model.fit(X_train_, y_train,epochs=100000, batch_size=200, verbose=2) 
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5.4.2 Model Experimentation 2 

The inputs consisted of Temperature, Soil PH and NPK values. 75 % was used for training while 

25% used for testing. The temperature values were normalized using the equation 5.1below. 

 

Equation 5.1: Normalisation Equation 

The mean square error was 6.5499164361463516 while the mean absolute error was 

0.7736487456041057 for the y test predictions. 

The inclusion of the second input made the model have a better performance with less error. 

A snippet of the code with inclusion of normalized temperature values; 

# define baseline model 
def ph_model(): 
    # create model 
    model = Sequential() 
    model.add(Dense(2, activation='relu', input_shape=(2,))) 
    model.add(Dropout(0.5)) 
    model.add(Dense(4)) 
    model.add(Dropout(0.5)) 
    model.add(Dense(4)) 
    model.add(Dense(3)) 
    model.compile(loss="mae", optimizer='adam', metrics=['mae']) 
    return model 

model = ph_model() 
trained_model = model.fit(X_train_, y_train,epochs=100000, batch size=100, verbose=2) 

5.4.3 Model Experimentation 3 

Building on experiment 2, the Nutrients inputs; NPK were normalized as well. This yielded an 

RMSE of 0.5 and further iterations and inclusion of more inputs such as soil moisture did not make 

a difference in the results. The model and database were connected with PH and temperature values 

used to make predictions using the model created. Figure 5.10 below illustrates how the picks 
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values from the database to be used for prediction of NPK values and recommendation of fertilizer 

to be applied. 

 

Figure 5.10: Database-Model Connection code snippet 

Prediction test 

The code below illustrates the prediction test of the model given PH values in the arrays below. 

array([[ 5., 20.], 

       [ 2., 23.]]) 

m = open('model.json', 'r') 

model= m.read() 

m.close() 

model = model_from_json(model) 

# load weights into new model 
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model.load_weights("model.h5") 

print("Loaded model from disk") 

results = model.predict(prediction_test) 

last_one = results[-1] 

last_one 

array([0.09236324, 0.79424584, 0.4954729 ], dtype=float32) 

n, p, k = last_one 

next_one_wk = True 

Fertilizer recommendation 

def n_decider(n): 

    if n < 0.27: 

        print("Apply Fertilizer any of the following") 

        for fert in sulphates_low: 

            print(fert) 

    elif n>=0.27 and n<4.0: 

            for fert in sulphates_medium: 

                print(fert) 

    elif n>4.0: 

        for fert in sulphates_high: 

            print(fert)    

    if(not next_one_wk): 

    p_decider() 

    k_decider() 

    n_decider() 
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else: 

    print(" Low Phosphorus, Apply Urea") 

5.5 Model Testing 

Various tests were carried out as shown in table 5.1 to determine whether the system developed 

satisfied the proposed requirements. The sample test cases below illustrate how the developed 

system matched the proposed requirements. 

Table 5.1: Model Testing 

Test Case Importance Test Results 

Does the application successfully 

capture temperature and PH values 

from the soil? 

High Soil temperature and PH were 

captured by soil sensors  

Does the application successfully 

upload sensor data to the server? 

High data successfully uploaded to the 

server 

Does the application provide real-time 

data to the administrator? 

Medium The administrator is able to access 

real-time data on temperature and PH 

readings on Node red dashboard 

Does the weather API send the weather 

forecast to the system? 

High Forecast weather successfully sent to 

the system and used in the application 

guide 

Is the weather forecast considered in 

the application recommendation 

High Weather forecast successfully 

integrated in the recommendation 

process. 

Does the application send out an SMS 

notification to the to farmers 

High Farmer successfully received the 

SMS via Twilio. 
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Chapter 6:  Discussions 

6.1 Introduction 

This chapter discusses the results of the solution developed as compared to the objectives and 

research questions set in chapter one. The main objective was to develop a model for prediction of 

NPK levels in soil, recommend the best fertilizer remedy and application in alignment with the 

weather. The model used ANN algorithm to predict the macronutrient levels. The inputs from the 

soil sensors included temperature and PH.  

As discussed in the problem statement, this model responds to the challenges faced by farmers in 

identifying the best fertilizer and improving existing frameworks used in determining soil 

suitability levels and fertilizer recommendation. The developed model fills the gap by enabling a 

farmer to identify their farm’s deficiency and applying the right remedy in time avoiding errors in 

fertility management and the tedious time consuming process of taking the soil to the soil 

laboratories for testing and awaiting results. This also takes care of the guesswork and intuition or 

mere farmer to farmer inconsistent reference when it comes to fertilizer recommendation. This 

justifies the reason for change of fertilizer regimes to match crop and region needs and also take 

care of the ecosystem reducing environmental pollution by caused by fertilizer wastage. 

The study established that sorghum required PH of averagely 6.5, temperature between 240 and 

300 and NPK ranges of N (100-180), P (20-45) and K (35-80) to optimally grow. The temperature 

and PH influenced the availability of nutrients further affecting the absorption of the 

macronutrients. 

6.2 Results of the Study 

Historical data used in the experiments were obtained from the KALRO Library. In the live 

experiments, the sensors were deployed in soil to capture temperature and PH levels. The data is 

processed and fed to the NN algorithm that gives predictions based on various computations. The 

recommendations sent to the farmer via SMS. Section 5.4 discusses how the experiments were 

done, comparing how the inputs were iterated to achieve the lowest RMSE. An RMSE of 0.5 was 

achieved after the third experiment done using an ANN model. The aim of the experiments was to 

identify the best inputs based on the NPK and environment relationship and ones chosen were 

normalized to achieve the best training for the prediction. Building on a previous studies and 
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recommendations on the best algorithm to use considering the kind of data, attribute relationships 

and need from the model, ANN was considered the best algorithm to use hence no comparative 

analysis was done. 

6.3 Validation of the System 

This is a task to find out if the system created represents the proposed system and to what extent. 

The system met its proposed functional requirements as it was able to retrieve soil parameters, 

send the data to the database which was interfaced with the model and make an application 

recommendation based on the weather. The system was reliable to perform its function and it was 

easy to identify error and fix them though the accuracy of the prediction was not perfectly achieved 

as demonstrated by the RMSE of 0.5. 

6.4 Validity of the Proposed Systsem 

Several systems and solutions have been developed for precision agriculture- fertilizer 

management. In Kenya, Mobile laboratories were introduced to save the farmers the trouble of 

finding agriculture labs but this failed, as farmers were not willing and or available to avail 

themselves. Most trust their intuition and past experiences and fertilizers use. Wrong fertilizer use 

continues to destroy our soil profiles, continually depleting a certain nutrient or boosting some to 

unnecessary levels. This causes reduction in produce and endangers food security. The cheap 

available solutions continually kill our potential due to lack of knowledge on the same or proper 

systems to help mitigate the wrong use of fertilizers.  

On the other hand, developed countries have solutions that do not fit our problems. Most work in 

controlled farms that have systems set for automatic farm management. Also, some solution 

developed by them have not been made available for use. For example, a company in Austria has 

a direct NPK sensor that is able to give direct NPK reading but it costs 4960 Euros. This is too 

expensive to think of. Progis Company also developed an NPK sensor to measure the macro 

nutrient levels though it is not available for use. This informed the need to get a solution that works 

for non-automated farm systems, cheap, available and easy to use. The proposed solution employs 

use of IoT tools that are able to pick data from the farms and use it for the recommendation process. 

These can be made available for use and the whole process advises the farmer using collected 

information where they are not required to participate in the decision-making. With this system, 
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the farmers receive accurate information about their farms and the specified fertilizer that 

accurately meets their needs.  

6.5 Research Limitations 

The developed solution had several confines;  

i. Fertilizer management is key for all plant species though the study focused on sorghum, 

which happens to be a key crop that can alleviate food deficiency though it is gown in 

marginalized areas; less care taken for it can survive tougher conditions compared to other 

crops.  

ii. The research concentrated on NPK fertilizers that have NPK, the macronutrients that form 

the major components of compound fertilizers. 

iii. The research assumed that not all farmers are tech-savvy or rather have access to 

smartphones. The administrator therefore interacts with the system i.e. for registration and 

update of farmer details as well as observing sensor readings 

iv. This study used environmental available samples from KALRO Library which consisted 

of the temperature, PH and NPK values which greatly influenced the prediction results of 

the model 
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Chapter 7:  Conclusions, Recommendations and Future Works 

7.1 Conclusions  

There is a direct mismatch between farmers’ efforts and their produce as Kenyans still suffer from 

hunger. Kenya imports food from countries like Egypt that have implemented strategies to improve 

their farming conditions We have the power to manage our farms and improve the production to 

reduce the hunger strikes, reduce food importation and produce food for Kenyans, while creating 

businesses and employment in the long run. As the government and other agencies go bench 

making in countries that have gotten it right, there is need to understand that local fit solutions will 

work best as some copied strategies have failed terribly by not meeting the farmers’ challenges 

and needs. Currently, the solution is use of agriculture field officers and tabulated 

recommendations whose challenge is that they are not enough to reach out to all farmers while the 

tabulated solutions to do fit all farms as each farms nutrient is influenced by the surrounding rocks 

(weather to form soil), weather and farming practices. Cheaper farmer fit solutions will work best 

allowing farmers to be informed and able to monitor their farmers. 

This study has presented a model that involves use of sensors that collect data used in 

macronutrient level prediction for fertilizer recommendation. This ensures that the precise remedy 

is applied at the right time for optimum weather. This is ensured by alignment of fertilization 

schedules with the weather patterns. The use of IoT sensors allow the administrator, farmers and 

agricultural agencies i.e. KALRO to have information regarding the nutrient levels and fertilizers 

needed. 

7.2 Recommendations  

Based on the study, the researcher recommends: 

i. Use of several sensors at different points in the farms to get a good representation of the 

farm nutrient status.  

ii. Other sensors can be incorporated to give different environmental readings that influence 

the availability of nutrients moisture, humidity, and measure of soil texture among others 

to increase the accuracy of the prediction results.  

iii. Soil data i.e. PH should be collected periodically and shared with the policy makers and 

manufacturers so that the production aims at fulfilling needs of a particular area. 
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7.3 Future Work 

The proposed system looked into fertilizer recommendation for sorghum. Future studies can 

enhance the model and incorporate other needs: 

i. The developed model could be enhanced to incorporate analysis of other environmental 

factors results, soil statuses and fertilizer use to advise fertilizer produces on fertilizers to 

produce instead of general fertilizers and wholly take care of the ecosystem. 

ii. Future studies can consider elements in the soil that cause deterioration of the nutrients 

needed and come up with ways of ensuring a comfortable environment is not created for 

their occurrence i.e. Aluminium and Sodium and how irrigation and leaching can help get 

rid of excess nutrient elements or the said dangerous elements 

iii. Future studies can focus on post-harvest nutrient management and farm management to 

ensure a boost in nutrients before next planting schedules. 

iv. Natural fertilizer recommendation can be considered i.e. compost manure apart from 

chemical fertilizers 
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Appendices 

 

Appendix I: Fertilizers recommendation sample (Landon, 1984) 

 

 

Caption showing different fertilizers with different nutrient content levels. This can be used to map 

the specific deficiencies to the best fertilizer to use ie, Most deficient mapped to fertilizer with the 

highest level of nutrient to raise the nutrient levels to the optimum required. 

Appendix II: Code 

Arduino Code  

Reading values of PH and Temperature from the sensors. The values are then sent to the database 

for storage. When making predictions the model picks the latest value of PH and temperature to 

predict the NPK Value at an RMSE of 0.5 to recommend the best fertilizer to apply based on the 

weather forecast. 

#define SensorPin 0          //pH meter Analog output to Arduino Analog Input 0 

unsigned long int avgValue;  //Store the average value of the sensor feedback 
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float b; 

int buf[10],temp; 

String temperature; 

String humidity; 

#include <dht.h> 

dht DHT; 

#define DHT11_PIN 7 

void setup() 

{ 

  pinMode(13,OUTPUT);   

  //Serial.begin(9600);   

  Serial.begin(57600); 

  pinMode(DHT11_PIN, INPUT); 

} 

void loop() 

{ 

  for(int i=0;i<10;i++)       //Get 10 sample value from the sensor for smooth the value 

  {  

    buf[i]=analogRead(SensorPin); 

    delay(10); 

  } 

  for(int i=0;i<9;i++)        //sort the analog from small to large 

  { 

    for(int j=i+1;j<10;j++) 
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    { 

      if(buf[i]>buf[j]) 

      { 

        temp=buf[i]; 

        buf[i]=buf[j]; 

        buf[j]=temp; 

      } 

    } 

  } 

  avgValue=0; 

  for(int i=2;i<8;i++)                      //take the average value of 6 center sample 

    avgValue+=buf[i]; 

  float phValue=(float)avgValue*5.0/1024/6; //convert the analog into millivolt 

  phValue=3.5*phValue;                      //convert the millivolt into pH value 

  //phValue = phValue.toInt(); 

  char buffer[10]; 

  dtostrf(phValue, 4, 2, buffer); 

  //charBuf 

  //Serial.print("Soil Moisture value: ");  

  //Serial.print(soilMoisture+soilMoisture); 

  int chk = DHT.read11(DHT11_PIN); 

  temperature = DHT.temperature; 

  //Serial.print(phValue + "," + temperature); 

  //Serial.print("pH:");   
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  Serial.print(phValue,2); 

  Serial.print(","); 

  //Serial.print("Temp:");   

  Serial.println(temperature); 

  //Serial.println(" "); 

  delay(6000);    

} 

Weather API Connection to Model 

The model used an averaged 3-day forecast to determine the suitability of fertilizer application in 

effort to avoid wastage caused by extreme rainfall (wash off) or extreme sunshine (fertilizer burn).  

# importing the requests library  

import requests  

from collections import defaultdict 

# api-endpoint  

URL = "http://api.worldweatheronline.com/premium/v1/weather.ashx" 

#?key=&q=Nairobi&format=json&includelocation=yes 

# location given here  

q = "Nairobi" 

key = "198217c5f587480ca7c212321192803" 

format ="json" 

includelocation = "yes" 

# defining a params dict for the parameters to be sent to the API  

PARAMS = {"q":q,"key":key,"format":format,"includelocation":includelocation}  

# sending get request and saving the response as response object  

r = requests.get(url = URL, params = PARAMS)  
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# extracting data in json format  

data = r.json() 

Normalization Code 

def normalise_me(max,min,x): 

    normalised = (x-min)/(max-min) 

    print(normalised) 

    if x > 30: 

        normalised = 1 

    if x < 7.72: 

        normalised = 0 

    return normalised 
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Appendix III: Sample UI 

 

Running the model on the UI gives the predicted NPK values, which depict the deficiency level of 

the soil tested. This is based on the latest data, PH and Temperature from the database. The model 

then recommends the best fertilizer nutrients to supplement.
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