CATOLICA PORTO

EDUCACAO E PSICOLOGIA

MMixte: A software architecture for Live Electronics with acoustic
instruments. Exemplary application cases

Thesis submitted to the Portuguese Catholic University for the Doctoral Degree in

Science and Technologies of the Arts

by

Maurilio Cacciatore

ESCOLA DAS ARTES
September 2018

CATOLICA PORTO

EDUCACAO E PSICOLOGIA

MMixte: A software architecture for Live Electronics with acoustic
instruments. Exemplary application cases

Thesis submitted to the Portuguese Catholic University for the Doctoral Degree in

Science and Technologies of the Arts

By Maurilio Cacciatore

Supervised by Prof. Erik G. Ofia, PhD

ESCOLA DAS ARTES
September 2018

Table of contents

Index of Figures
Foreword
Abstract
Keywords
1. Mixed Music between the History of Composition and the History of Technologies
1.1 Birth and Development of Mixed Music
1.2 The Interaction between Instrumentalist and Electronics
1.3 Distinctive Traits of Computer Programming for Mixed Music
1.3.1 Midi Protocol
1.3.2 The Pedal
1.3.3 The Midi Keyboard
1.3.4 Sensors
1.3.5 The Computer Score
1.4 Aesthetic Musings on Practices of Mixed Music Software Programming
2. Software architecture
2.1 Historical framework
2.2 Software architecture definition
2.3 Architecture’s purpose
2.5 Architecture styles
2.6 Design Patterns for Graphic User Interfaces
2.7 Architectural patterns
2.7.1 MVC architectural pattern
2.7.2 MVP architectural pattern
2.7.3 MVVM architectural pattern
2.7.5 PAC, HMVC architectural patterns
3. Software architecture solutions for real time audio
3.1 From mixer to digital audio software
3.2 Primitive architecture for acoustic and mixed music
3.3 Input sources classification
3.4 Output components classification
4. Collection of Max objects and software programs for Mixed Music
4.1 BEAP Modular
4.2 BEASTtools
4.3 CLEF
4.4 Jamoma
4.5 NAJO Max Interface

4.6 Integra Live

4.7 P-Soft

4.8 Usine Hollyhock
4.9 Quality comparison

. MMixte

5.1 Background

5.2 MMixte structure

5.3 The modules

5.3.1 mmx.audio_input
5.3.2 mmx.audio_output
5.3.3 mmx.event_counter
5.3.4 mmx.generator
5.3.5 mmx.initialize

5.3.6 mmx.listener

5.3.7 mmx.lock

5.3.8 mmx.midi-interface
5.3.9 mmx.midi-keyboard
5.3.10 mmx.midi-pedal
5.3.11 mmx.midi-setup
5.3.12 mmx.monitor
5.3.13 mmx.player

5.3.14 mmx.score_qlist
5.3.15 mmx.score_select
5.3.16 mmx.shortcuts
5.3.17 mmx.treatment
5.4 Send, send~, receive and receive~ attributes package list
5.5 Examples of design patterns

Part 2 - Description of works

Introduction

. Lost in feedback (2014)

6.1 Background of the work

6.2 Instrument set-up

6.3 Electric vibraphone

6.4 E-bow

6.5 Double bass bows

6.4 “Reibstabe” Sticks

6.5 Vibrating razors

6.6 The performance canvas

6.7 The diffusion set-up

6.8 Electronics and the title for this piece

44
46
49
50
54
54
57
58
60
62
66
66
68
69
72
72
73
75
76
77
77
78
81
81
82
82
84
91
91
94
94
95
96
96
98
99
100
103
105
106

6.9 Applying MMixte
7.1 don’t need to ...k for music (2016)
7.1 Background of the work
7.2 Instrument set-up
7.3 E-bow and magnet use
7.4 Diffusion set-up
7.5 MMixte Architecture
8. Tutorial 1: #mimesi (2018)
8.1 Background for the piece
8.2 New Font for Microphone Indications
Distant Timbre as Challenge to Mimesis
MMixte architecture
9. Meccanica della solitudine (2018)
9.1 Background for the work
9.2 Instrumental set-up
9.3 New instruments
9.3.1 Hurgy toy
9.3.2 Continuous bow
9.4 DMX protocol and MMixte application
Conclusion
Appendix 1 - Vibrating mallet
Appendix 2 - Public presentations and articles
Appendix 3 - Scores
Appendix 4 - USB stick contents
Bibliography
Scores
Webography

106
109
109
109
110
112
113
115
115
116
119
120
122
122
123
123
124
125
126
131
134
140
141
150
151
156
158

Index of Figures

Fig. 1.1 deferred time mixed music interaction n° 1
Fig. 1.2 deferred time mixed music interaction n° 2
Fig. 1.3 amplified instrument music interaction n° 2

Fig. 1.4 interaction in real time music

© N O o »

Fig. 1.5 Santiago Diez Fischer, Loop’s definition (2010), for Violin and electronics.

Fig. 1.6 Excerpt from Maurilio Cacciatore, Meccanica della solitudine (2018), for barytone
saxophone soloist, percussion co-soloist, ensemble, live electronics and stage setup, pag. 46.

Edizioni Suvini Zerboni, Milan 11
Fig. 1.7: interaction model with Arduino 12
Fig. 1.8: diagram showing interaction in mixed music with live electronics 14
Fig. 1.9: Interaction model where parameters from the external world influence the parameters of
the live electronics. 14
Fig. 2.1 Pipe-filter architecture style 19
Fig. 2.2 Filter connector behaviour in a pipe line 20
Fig. 2.3 Client-server architecture style 20
Fig. 2.4 Feedback Control Loop architecture style 21
Fig. 2.5 Shared data architecture style 21
Fig. 2.6 Layered model 22
Fig. 2.7 MVC pattern 23
Fig. 2.8 MVP pattern 24
Fig. 2.9 MVVM pattern 24
Fig. 2.10 PAC pattern 25
Fig. 3.1 Signal path in a mixer channel 28
Fig. 3.2 Fundamental steps in pipelined architecture for digital audio 29
Fig. 3.3 Integration of the computer score 30
Fig. 3.4 Input data from the outside world 31
Fig. 3.5 event counter 32
Fig. 3.6 Event activation through score following 32
Fig. 3.7 Score following midi 33
Fig. 3.8: Audio and data generalized architecture 35
Fig. 3.9 Two-computer client/server architecture 37
Fig. 3.10 Example of laptop ensemble architecture 37
Fig. 4.1: BEAP modular modules 39

iv

Fig. 4.2: BEASTtools ensemble overview 40

Fig. 4.3: Main panel and CLEF widgets 41
Fig. 4.4: A few Jamoma modules 43
Fig. 4.5: NMI modules and main menu (at the center) 44
Fig. 4.6: window with blocks connection in Integra Live 45
Fig. 4.7: P-Soft software interface 46
Fig. 4.8: Processing architecture in P-Soft 48
Fig. 4.9: Sampo instrument 48
Fig. 4.10: Excerpt from Pulse(s), for alto Saxophone and Sampo, pag. 2 49
Fig. 4.11: An overview of Usine Hollyhock 50
Fig. 4.12 Summary overview of collection of Max objects features 51
Fig. 4.13 Summary overview of Mixed music softwares features 51
Fig. 4.14 Summary of parameters for Max collections and standalone softwares 52
Fig. 5.1 Color patterns used in MMixte 59
Fig. 5.2 mmx.audo_input module in edit mode 60
Fig. 5.3 Bpatcher including mmx.audio_input module controls 61
Fig. 5.4 mmx.audio_input design pattern 62
Fig. 5.5 mmx.audio_output module 62
Fig. 5.6 Partial view of the algorithm generating the number of channels creating channels
connected to the DAC 63
Fig. 5.7 Partial view of the algorithm generating the number of channels deleting channels
connected to the DAC 64
Fig. 5.8 Presentation mode view of the matrix for direct signal routing in three input signal and
eight output channel set-up 65
Fig. 5.9 Module design pattern 65
Fig. 5.10 mmx.event_counter module 66
Fig. 5.11 mmx.generator module 67
Fig. 5.12 mmx.generator module design pattern 68
Fig. 5.13 mmx.initialize module 69
Fig. 5.14 mmx.listener module 69
Fig. 5.15 Trasformation of the input signal amplitude coefficient 70
Fig. 5.16 Onepole~ filter diagram 71
Fig. 5.17 Coefficient transformation according to a pre-ordered function 71
Fig. 5.18 mmx.lock module 72
Fig. 5.19 mmx.midi-interface module 72
Fig. 5.20 Midi controller graphic interface 73

Fig. 5.21 mmx.midi-keyboard module 74

Fig. 5.22 Midi keyboard graphic interface in mmx.midi-keyboard 75

Fig. 5.23 Module design pattern 75
Fig. 5.24 mmx.midi-pedal module 76
Fig. 5.25 mmx.midi-setup module 76
Fig. 5.26 mmx.monitor module 77
Fig. 5.27 mmx.player module 78
Fig. 5.28 Example of a computer score written for a glist object 80
Fig. 5.29 mmx.score_glist module 80
Fig. 5.30 mmx.score_select module 81
Fig. 5.31 The mmx.shortcuts module 82
Fig. 5.32 The mmx.treatment module 82
Fig. 5.33 MMixte list of programmable parameters 83
Fig. 5.34 Design pattern for MMixte n° 1 84
Fig. 5.35 Design pattern for MMixte n° 2 84
Fig. 5.36 Design pattern for MMixte n°3 85
Fig. 5.37 Design pattern for MMixte n°4 85
Fig. 5.38 Design pattern for MMixte n°5 86
Fig. 5.39 Design pattern for MMixte n°6 87
Fig. 5.40 Design pattern for MMixte n°7 88
Fig. 5.41 Design pattern for MMixte n°8 89
Fig. 5.42 Functional interaction between users and modules a0

Fig.6.1 Miniature selected from the score for Lost in feedback indicating the actions to be
performed with the E-bow on the Spring Drum 97

Fig.6.2 Olivier Maurel, percussionist with the Hanatsu Miroir Ensemble in the course of the
creaton of Lost in Feedback 98

fig.6.3 Sonogram representing sounds obtained with polystyrene through rubbing a double bass
bow 99

Fig.6.4 Symbols of the Reibstébe sticks for the score for Lost in feedback 100

Fig.6.5 Currently available Gillette vibrating razor and its stylization in the symbol used in the
score for Lost in feedback 100

Fig. 6.6 Sound spectrum produced by the vibrating razor's plastic tip leaning on a wooden table

without any pressure 101
Fig. 6.7 Sound spectrum produced by the vibrating razor's 101
plastic tip touching a wooden table with considerable pressure 101

Fig. 6.8 Symbol of the vibraphone with snare drum springs and two vibrating razors 102
Fig. 6.9 Yon Costes performing Lost in feedback 103

Fig. 6.10 Piezo microphone matrix for the transmission of information about the performer's
position on the platform 104
vi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

6.11 DJ-Box “Thunder” contact loudspeaker on a Timpani drum
6.12 MMixte architecture for Lost in feedback

6.13 MMixte modules in presentation mode in Max for Lost in feedback
7.1 Diagram of musicians and speakers arrangement

7.2 Excerpt from the score for | don’t need to ...k for music n. 1
7.3 Excerpt from the score for | don’t need to ...k for music n. 2
7.4 Excerpt from the score for | don't need to ...k for music n. 3
7.5 MMixte architecture for | don’t need to ...k for music

7.6 MMixte modules in presentation mode for | don’t need to ...k for music
8.1: Microphones font

8.2 excerpt from the score for Tutorial 1: #mimesi, p. 1

8.3 excerpt from the score for Tutorial 1: #mimesi, p. 3

8.4: MMixte architecture for Tutorial 1: #mimesi

8.5: MMixte modules in presentation mode for Tutorial 1: #mimesi
9.1 Hurgy toy

9.2 Hurgy toy

9.3 Excerpt from the score for Meccanica della solitudine n° 1

9.4 Excerpt from the score for Meccanica della solitudine n° 2

9.5 Continuous bow and engine

9.6 Excerpt from Meccanica della solitudine n. 3

9.7 Diagram of MMixte for Meccanica della solitudine

9.8 MMixte modules for Meccanica della solitudine

A.1: Prototype of vibrating mallet n. 1

A.2: Computer simulation of the battery compartment

105
107
108
110
110
111
111
113
114
117
119
120
121
121
124
124
125
125
126
128
129
130
135
135

A.3: Prototype of a vibrating mallet n° 2. From left to right: the lower threaded cork, the

engine with internal switchable resistor, the stick's body and a threaded head

Fig. A.4: The internal engine. The component at the center is the resistor with four switches in

combination and a total of twelve positions

Fig.
Fig.
Fig.

A.5: M6 thread on a head similar to that of a Snare drum stick.
A.6: M6 thread on a head similar to that of a Timpani drum stick.

A.7: Third prototype of vibrating stick, with an

external resistor inserted in a modified midi “volume” pedal.

137

137
138
138
139
139

Vii

Foreword

The following dissertation is in two parts; the first one is further subdivided in two sub-

sections.

The argument stresses the significance of software architecture for mixed music, with
special attention paid to solutions available in the market for middleware programming to

manage electronics in concert situations.

Following a description of the history of technological evolution all through the
development of mixed music repertoire in the past few decades, | move on to describe

the principal theoretical solutions for software architecture and software solutions
available.

On the basis of this research over the last four years, | have been working on a collection

of software modules | have called "MMixte", all of which are dedicated to software
programming within the software Max ! The theoretical background behind MMixte
enables, if necessary, the project's exporting to other software platforms, in the future.
MMixte gathers experiences of mixed music, especially in France, from the last thirty
years and rationalizes signal path within a software program. The order and rationality
applied to the management of audio signal enhances programming quality, the simplicity

of its graphic interface, and at times even the quality of the sound result. Whenever
necessary, it makes debugging much faster. Most dissertations about live electronics take
audio signal processing into consideration as one of the aspects relevant to this domain,

but the topic of software architecture rationalization implementing old and new algorithms
seems to have been neglected in the past few decades. Awareness of the significance of
software architecture was voiced in the Nineties; live electronics, as we know it today, has
reached its musical importance in the field of composition thus evolving, in its
programming strategies, through force of habit. To me, work in rationalizing strategy
seems necessary as it may be helpful to the community of live electronics composers and
programmers. The MMixte project is online and has been for quite some time already: it is
available to anyone wishing to use it; it does not in any way concern audio signal

processing and focuses exclusively on the organization of all such components that make

1 "Max is a visual programming language widely used in by artists and in academia for the development of
ad hoc software for audio, visual media, and physical computing”. www.cycling74.com.

the audio signal path efficient. Due to its nature, it is proposed as middleware, ready for

use in addition to the possibility of being modified depending on specific needs.

In the second part of this dissertation, | illustrate some of the pieces | have written in
these last few years, using MMixte to program their electronic sections.

As complementary development of my compositional work, | add an appendix for one of
the prototypes | have developed through these years, one that is likely to become an

object for further advancement in years to come.

Abstract

MMixte is a middleware based on Max for mixed music with live electronics. It enables
programming for a “patcher concerto”, a platform, that is, for the management of live
electronics in just a few minutes and with extreme simplicity. Dedicated to average and
expert users, MMixte enables true programming of live electronics in very little time while
also enabling easy adapting of previously developed modules, depending on the case
and its needs. The architecture behind MMixte is based on a variation of so-called
“pipeline architecture"; the analysis of the most widely used software architectures in the
market and design patterns to program graphic interfaces has led to the conception of

ways of organizing communication between various modules, the way they are being
used and their graphic appearence. Analysis of other, “state of the art” module collections
and other software programs dedicated to mixed music shows the absence of another

work on software architecture for mixed music. Application of MMixte to some of my
personal works shows demonstrates its flexibility and ease of adaptation. Computer
programming for a piece of mixed music requires much that goes beyond just
programming of audio signal processing. The present work seeks to provide an example

of a solution to such needs.

Keywords

MMixte, Middleware, Mixed music, Max, Software architecture, Design pattern, Pipelined

architecture, Computer score, IRCAM, Maurilio Cacciatore, ESB.

1. Mixed Music between the
History of Composition and the
History of Technologies

1.1 Birth and Development of Mixed Music

The term mixed music designates the co-presence of live acoustic instruments with
acoustic digital resources from audio files or real time elaboration of information coming

from musicians. It is customary to locate the birth of mixed music in 1939, the year when
John Cage composed Imaginary Landscape n. 24 . For the first time ever, pre-recorded
sounds were integrated in an instrumental score. K. Stockhausen's works from the Sixties
were crucial in spreading this new paradigm of musical composition. By the Seventies,

many composers gathered in a number of European countries, often working for national
radio or research center-based electronic music studios implemented various
combinations of acoustic and electro-acoustic resources in their works. Interaction
techniques between musicians and machines occurred in the wake of technological
development. Mixed music was, for quite a long time, the prerogative of just a few
composers possessing the skills and the artistic means to work in electronic music
studios where creation of tapes with pre-recorded sounds was possible; creation of a
mixed music work presupposed the existence of a team, a work place, therefore a
production budget. It was only in the last thirty years, with the mass computers
distribution, that mixed music production became a reality outside research centers. The
evolution of electronics in real time went through a similar fate over a shorter time span.

Born in the Sixties, this sub-genre3 had begun developing in the Seventies: indeed,
IRCAM's contribution from the early Eighties on was crucial for the development of its
techniques and technologies. Numerous American universities also contributed to

forming research teams whose practical results in the conception of new hardware and

2 J. Cage, Imaginary landscape n. 1, 1939, London, Editions Peters, EP6716.

3 At the time, live electronics involved hardly more than amplifying a few acoustic sources with such an
effect on audio streaming resulting from sending the signal into the machines available back then. The use

of variable frequency oscillators was already possible in 1939. As a matter of fact, John Cage uses two of

them in his Imaginary landscape n. 1. This, however, does not justify calling it a work of live electronics,

since it does not involve the kind of audio elaboration required to differentiate diffusion from its source.

software equipment, enabled musical production centres to make new technologies
available for composers to implement in their mixed music works. The works of
composers thus functioned as practical applications of technological research also going
through beta testing phases since, through intensive use, programming faults were
detected just as programming efficiency and interaction between user and software was
being tested. This relationship of beta testing between software programs and pieces of
music first using it still applies today . The construction of machines dedicated to such
interaction in research centres helped define a new basis for new paradigms; only in the
last twenty years, the power of commercial computers and the possibility of privately
purchasing user licenses for professional software has enabled the creation of mixed
music works outside production and research institutions. The conception of the works'
electronic sections, the kind of electro-acoustic material used and the compositional
techniques used to enable the marriage, so to speak, between instrumental and electro-
acoustic resources within the score provided definitions for distinctive compositional

trajectories:
« Deferred Time Mixed Music: instrumental pieces with audio files all through the piece.

+ Music for Amplified Instruments: one or more microphones diffusing audio on a speaker
chain capture instrumental performance. Audio is handled in terms of dynamics,
generally with the purpose of enabling the perception of sounds too feeble in the real
world for clear perception in a concert hall or to attempt balancing them out with those
of classic instrumental playing. Although the use of reverb is technically real time audio
transformation, it is considered rather as a necessary “adaptation” to the acoustic
reality of the concert hall, and firmly remains a part of the characteristics of this

repertoire, alive and well nowadays.

- Real Time Mixed Music: the musicians' instrumental play is captured through
microphones and transformed as to dynamics (amplitude, equalization, signal
compression), morphology (delay, freeze, granulation) and spectral components.
Transformations in the spectral realm include all possible operations involving dynamics

and morphology operating, however, from an FFT or other analysis algorithm instead of

41 have had the chance to contribute to the current version of Antescofo midi, algorithm for score following,
when my Concerto per Tastiera Midi, ensemble e live electronics (2010-2011) was premiered at IRCAM in

2012. It was also at IRCAM that a new version of CataRT was implemented to enable some of the
spatialization processes used in my piece Tamonontamo (2012). In both cases, programming algorithms
was constantly being updated for about three months in view of improving their codes, thinking they were
ready for public release at the time of the first performance of the works and presentation lectures.

2

handling original audio dynamics; this presupposes constant analysis of the audio
streaming making up the basis of digital data subject to elaboration following a

predetermined algorithm transforming input data according to calculated procedures.

- “False” Real Time Mixed Music: a diffusion technique involving the use of real time
elaboration of an instrumental section in a pre-recorded studio; such audio streaming
was recorded on analog support up to the early years 2000 5and simultaneously
diffused with the live instrumental section, much like a mixed music piece with deferred

time electronics. Such technique does have certain advantages:

- the cause-effect relationship between the instrumental section and the streaming
diffused through the speakers is maintained;

- the computer's calculations noticeably decrease through the concert
performance since, from a technical standpoint, one only dealing with diffusion of
audio files with no digital elaboration at all Since real time elaboration is produced
in the studio, problems that might arise, such as proper measuring of parameters,
electro-acoustic chain stability and machine response, et cetera, may addressed
without the interruption of instrumental performance becoming much of a

problem;

- reducing, if not avoiding, accidents inextricably bound to live performance and
potentially causing qualitative changes in real time elaboration that might spoil, as

a result, the composer's artistic idea.

Conversely, false real time can hardly benefit from the kind of expressivity which live
electronics ensure in audio elaboration depending on instant streaming needed live on

stage.

5 The use of cassettes ADAT for professional digital music up to eight channels was common until the early
years 2000; computers' significant increase in RAM has enabled streaming of long, multi-channel pieces
directly from the computer.

1.2 The Interaction between Instrumentalist and
Electronics

Pieces of deferred time mixed music do not require the ADC/DAC 8&ignal transduction in
the electro-acoustic chain since instrumental performance and audio? files are
independent. For a long time, digital sounds were transferred in the studio on a magnetic
support (tape) to be diffused from a player throughout the live performance of the
instrumental section, the electronic section was a single audio file starting at the
beginning and reaching the end of the composition8 In other words, there was no human,

let alone artistic, interaction between the instrumental performer and the electronic part:

player }
p
1
e
c
W e

audio files J >

Fig. 1.1 deferred time mixed music interaction n° 1

Those in charge of tape playing machines or audio files and diffusion machines usually
activate them from the mixing board. In many cases, it is the composer himself who
attends to such tasks, in collaboration with other technicians.

The excessive length of the deferred time section was a major drawback from a
performance standpoint. Because the section was fixed once and for all, pre-recorded
and subject to no changes over time, live performers had no choice but to adapt to the
electronics section doing their best to synchronize their own instrumental performance.

This marked a sort of annihilation of the performer's interpretive dimension who was

6 Analog to digital conversion / digital to analog conversion. For the sake of simplifying the argument, the
need of amplifying acoustic instruments is excluded, in this case, as it would presuppose the need to place
a microphone in front of the instrument in order to capture its signal.

7 Conceptually, and as far as the present argument is concerned, the function of digital audio files as
deferred time electronics is very much like that of tape; as a matter of fact, in our collective imaginary, we

still hear talk today about pieces “for instrument and tape” to indicate the presence of audio files even
though, technically, tape is no longer used.

8 K. Stockhausen, “Mixtur” and “Mikrophonie 1”, in La musica elettronica, Milan, Feltrinelli, 1976.

4

asked, in such contexts, to perform without the possibility of managing the time of
musical performance in terms of his own sensitivity. Time management through
accelerandi and rallentandi is no doubt one of the most sensitive expressions of musical
interpretation. The performer moves around the metronome whose values the composer
sets in the score. These, however, are no more than a reference point since absolute
respect would presuppose performing the piece in question with a metronome or a click
track. If respect for tempo in the instrumental performance by the instrumentalist is
relative to interpretation, the audio file's temporality is absolute insofar as the sounds are
always reproduced in the same way, always at the same speed. Even when diffusing
audio from a DAW which enables changes in dynamics and audio morphology with
relative ease, audio file diffusion will always be stiff, making the performance with the
instrumental section just as stiff because the performer can do no more than adapt and

follow the tempo as best (s)he can.

Such a degree of rigidity increases proportionally to audio file length, thus also increasing
the chances that a mistake might occur: if the instrumentalist were to lose track of
synchronization with the electronics in deferred time without finding it again, the faulty
result would equal the audio file duration. This has led to such demands as further
splitting the electronic section in order to reduce to a bare minimum the chances of
making a mistake resulting from inaccurate synchronization between instrumentalist and
electronics. Following the birth of Digital Audio Workstations (DAW), the electronic
sections for the pieces were not mastered and thus left at the mix level, using the DAW
work session for last minute changes in equalization, compression, diffusion volume, and
the sounds' position within the track as a whole. For both machine operator and
instrumentalist, the score was the common reference point where annotations for the

beginning of the audio file were included:

L player

L scoa Fig. 1.2 deferred time mixed music interaction n° 2

‘ audio technician |

The passage of the diffusion of tracks in deferred time from analog tape to a DAW session
has easily enabled the cutting up of the deferred time electronics in several parts, taking
advantage of eventual pauses in the diffusion of the electronics. The computer operator
takes advantage of the pause to set the cursor towards the new group of audio regions to

be diffused, ensuring diffusion restart at exactly the point indicated in the score.

In the case of music for amplified instruments (as well as in real time electronic music),
one or more microphones capture the instrumental sound and a conversion of the signal
from analog to digital takes place. After processing, in the mixer itself or by means of a
computer, the signal is converted back to the analog domain and is sent to the
loudspeakers. Man-machine interaction with a time latency below 100 ms between audio

input and output? is usually referred to as live electronics.

The electro-acoustic chain required for music for amplified instruments with ADC/DAC

conversion is illustrated in the following diagram:

player

microphone

A O =T

mixer

loudspeaker

Fig. 1.3 amplified instrument music interaction n° 2

In the case of real time audio elaboration, the passage of audio through a processor

(today's computer) will be necessary.

9 Roads Curtis, The computer music tutorial. Cambridge, The MIT Press, 1996.
6

The passage of audio through the mixer today is sometimes substituted by direct
connections between microphones, audio cards and computers. In this case, the
handling of audio dynamics is performed in the box through software plugins instead of
being performed out of the box through assistance from dedicated machines. The present
study shall not be delving into an analysis of the differences between the two types of
chains since, from the standpoint of mixed music architecture given that both solutions

lead to the same interaction scheme:

N
{ player

{ microphone

J

{ mixer }
L audio processing }
{ loudspeaker '—

Fig. 1.4 interaction in real time music

A =T

1.3 Distinctive Traits of Computer Programming for
Mixed Music

1.3.1 Midi Protocol

In 1981, Sequential Circuit technicians organized the first public showcase of Midi

computer language and its first commercial application with the Prophet 600

synthesizer'© which launched in 1982, also at Sequential Circuit's initiative. Although the
GM2 protocol could not reach Midi standards as we know them today until 1997, it has
long-since established itself as the digital protocol suited to data transmission in all

direction between digital instruments, computers and controllers.

One of the first applications of the Midi protocol to a piece of mixed music was Philippe

Manoury's Pluton’? for Midi Grand Piano (nowadays, Disklavier) and 4X'€omputer 13,

The use of the Midi protocol in mixed music has enabled the practice of what may be
defined as Manoury's most significant theoretical contribution as far as the development
of mixed music is concerned. Since the end of the eighties, Manoury has been
conceptualizing and putting into practice “virtual scores”, later called “computer scores”.
The first piece officially adopting such a procedural approach was Jupiter 4 for flute and

live electronics.

1.3.2 The Pedal

A large part of the mixed music repertoire for solo instruments and live electronics has
relied upon assistance from Midi “sustain” pedals. Such pedals feature a spring
mechanism bringing the pedal back into rest position when no foot pressure is applied.
They send figures 0 and 127 in both possible positions: up and down. Original use of the

pedal pertains to sending “sustain” (n° 64) control messages to a keyboard or a Midi

10 Mikhail Malt, Introduction a la norme Midi. Cursus 1 in music computer science 2009/2010. IRCAM, Paris,
2010.

11 Philippe Manoury, Pluton, Editions Durand, Paris, 1989.

12 4X is a circuitry card to be assembled in a computer for its expansion. It was produced in the eighties by
Giuseppe di Giugno at Ircam. Dedicated to real time audio elaboration, it represents one of the first
computers for the processing of real time professional audio. It was followed by the IRCAM Signal
Processing Workstation (ISPW), at first implemented as an expansion of the NeXT computer. The server
software in charge of managing the three DSPs proceeding towards digital computation of audio
elaboration was called FTS (Faster Than Sound). The software program which then became independent in

the Nineties, Max Opcode, actually was a transcription/adaptation of Max-ISPW FTS. various
mathematicians and computer developers worked together on its software program: among them, Miller
Puckette who produced the first version of FTS precisely as an object programming language for the use of
computer 4X functions. The Midi protocol was already in use for the management of digital data for NeXT

as well as 4X later on.

13 Favreau, E., Fingerhut, M., Koechlin, O., Potacsek, P., Puckette, M., and Rowe, R. Software
Developments for the 4X real-time System. Proceedings, International Computer Music Conference. San
Francisco: International Computer Music Association, pp. 43-46, 1986.

14 Philippe Manoury, Jupiter, Paris, Editions Durand, DA 505, 1987.
8

controller capable of transmitting this type of message. When applied to a digital music
context, the digital message enables imitation of the effect obtained with the use of the
grand piano tone pedal. In this case, the function linked to the “sustain” control message

is not used for its original purposes. The pedal's mechanical characteristics are exploited

to send an electrical impulse to the live electronics control software. This impulse then
progressively sets a counter whose numbers correspond to the index numbers of the
events of the electronic part. The sustain pedal is generally used by the same musician
performing on stage. The advantage of assigning this tool for the responsibility of
changes in software status to the player is that musicians can effectively synchronize
instrumental playing with the event launch since the tool does both. If, at times, tight
interlocks between musical events and pedal action are difficult for an operator from the
mixing board, they are much simpler for an instrumentalist as the action on a pedal
amounts to (familiar) instrumental action. Strikes on the sustain pedal are commonly

notated in the score:

g o 3 5 4 5 2
I |
" 4 4 Am———]
{63 e - o == ——— - .
o I A T B I | C A
P —ff L — prp
Viol
posion de
weorame JUE
EE?
i s
lectr a 1o

Fig. 1.5 Santiago Diez Fischer, Loop’s definition (2010), for Violin and electronics.

In the example of Fig. 1.5, numbers on the line below the one for violin indicate index
numbers for the events of the electronic part to be activated as indicated in the score with

a sustain pedal.

This system, however, does have a drawback concerning the visual side of the set-up:

activating electronics events immediately following a single movement on the pedal
makes the relationship between acoustic source and electro-acoustic speakers artificial. It
is clear, for the audience, that something in the electronics has just occurred because the
pedal was just activated. A number of events to be activated at a high temporal frequency

is hardly suitable for this particular technical solution.

1.3.3 The Midi Keyboard

Easy programming of a number coming in the form of a Midi Protocol message control

lies at the very root of the technique enabling integration of the protocol itself within
software programming dedicated to mixed music. The Midi keyboard is another controller
with numerous applications. It reproduces a grand piano keyboard (Midi Keyboards exist

in a variety of sizes from twenty-five to eighty-eight keys) sending two sets of digital data:
The note’s (midi) pitch (a value between 0 and 127) and the note’s “velocity” (a value
between 0 and 127 too) indicating the speed at which the key is lowered, usually
correlating with the intensity of playing. When the Midi keyboard is used as controller for
event launch of the electronics, the key's “pitch” is the only number used, thus recalling

the event of the electronics with the same index number (or, a different one, if need be). In
such cases, as it often happens, the Midi keyboard is notated in the score to be played; it
takes a musician able to correctly follow the tempo (or the conductor, if present, or
through synchronization with the other musicians); in practical terms, those in charge of
activating electronics events are musicians whose contribution counts just as much as

the other musicians' on stage (Fig. 1.6)'5.

It is easy to see this technical solution's advantage, especially in pieces of lengthy
duration including many events: programming up to 88 events (as many as the keys) can

be done without any difficulties. Events can be arranged in ordinal sequence such as a
chromatic scale or not; in the first case, sequential reading of the instructions in every
event is meaningful because it is analogous to the evolution of changes in software status
whereas the second one is not since sequential reading of the events linked to pitch
numbers (indeed, used as event index numbers) has no link to the score events in the

ordinal sequence. Reasons for one choice or another concern conditions beyond

programmingé

As we can see in Fig. 1.6, such a technical solution leads to the paradox whereby a

musical section notated on the staff (since, in order to indicate the keys on a midi

15 The controller part is notated as “Smpl.” in the score.

16 Extra-musical reasons leading to one choice or another might concern, for instance, the types of
instructions or audio files to be activated when certain buttons are pressed. A composer might, for
instance, prefer to activate a high sound with a key up on the high register just as be would, for a low
sound, be activating a key in the lowest octave of the keyboard. If the person at the keyboard also needs to

use other controllers, disposition (to the left, to the right or in front of the keyboard) can be a motivating

factor leading to a preference for planning actions through one of the keys of the keyboard in the low,
middle or high register. Stage motivations can also lend support to these kinds of choices grounded in
musical but not, strictly speaking, computer-based reasons.

10

46

Illl - To be invisible

J=54

mouth directly
on the neck
frull. 7

FEA\\Y
g
RS
J 4]
KL
o

2 |
B. Sx. E R v Z }
2V B =t Rl
P 7 A e oz
[/ .
157 ! 1
7 1 a finger
Change in i] awl
H. Toy @ Polystirene I I |§superball
- ’ 1 s
(avoid any noise click) :
9 ' S
I
P | PTTA
137 5; ;; ;;;;% ! zz7
_ 0D 2
n [l | 2 B —
DEEA - e 3 . = =
P——f —0prf »
9 P -
ah. i ? 2 . ;
roe ¢
! p——— mf—————p
ob. . % : :
137 ! T
vib. § !
border (
® |
B.Dr. |l s - !
7 i
137 3
o +
pro ﬁ :
137 :
p r
o T] i T]
Smpl. 3o i p3 | = 7 p3 |
J

Fig. 1.6 Excerpt from Maurilio Cacciatore, Meccanica della solitudine (2018), for barytone
saxophone soloist, percussion co-soloist, ensemble, live electronics and stage setup, pag. 46.
Edizioni Suvini Zerboni, Milan

11

keyboard, the notes corresponding to the keys are written not as pitch numbers but as if
a conventional keyboard were used) carry mere symbolic and temporal value, not a

musical one: in other words, written notes match computer sections, not music.

1.3.4 Sensors

Sensors are objects capable of generating small electrical currents or resistance to
electrical currents. By means of interaction with the external world and through
appropriate connection with some sort of transducer, they are capable of gathering

information and converting it to a digital data format.

Their use is typical of interactive electro-acoustic installations where interpreting data
from the outside world is necessary in order to obtain status changes of the set-up the
installation is made up of.

Digital data expressing the way the sensors work are generally computed according to

the canons of Midi protocol (counting from 0 up to 127, compatibility with protocol control
figures), facilitating their integration in a mixed music hardware/software system since
computer programmers already possess the necessary know-how for the integration of

the hardware section with the rest of the software. Sensors mainly in use (pressure
sensors, speed meters, and passage sensors) need to be connected to a device capable

of collecting and digitalising the data and to transmit it in turn to the software program.

One of the most used hardware solution in the past few years has been the Arduino
board'? prototype construction with Arduino presupposes specific skills in the fields of
electro-technics, electrical engineering and other specific skills depending of the nature of

the project.

real world ; } (s) ; ‘ Arduino “ Hardware setup

Fig. 1.7: interaction model with Arduino

17 https://www.arduino.cc

12

1.3.5 The Computer Score

A computer score is a list of instructions split in groups called “scenes” or “events”
whose purpose is to change status of the computer in charge of real time elaboration, to
diffuse audio files and, more generally, attending to all functions needed for proper

instrument/computer interaction.

These groups of instructions are recalled through index numbers progressively arranged

and indicated in the scorel8 .

Technically, a computer score might be defined as a list of presets. L’elettronics split in
events cannot do without such a list; the alternative would be the manual status change
of the software program, which makes sense from a live performance standpoint when
the computer operator is on stage but obviously is not very practical when several actions

must be simultaneously activated.

A computer score may contain the following instructions:

- DSP changes;

- digital data for parameters, internal to the software program;

- digital data for parameters external to the software program, whenever a bridge
between audio software and third software is present;

digital data referring to index numbers for audio file cue lists;

- file recall instructions of a different nature, external to the software program;

instructions enabled by the platform hosting the audio software program;

« every command whose scripting is comprehensible from the platform hosting the audio

software.

The corollary to the previous list is that a computer score only contains instructions and, with the
variants for all cases depending on the platform chosen for programming, it is shown in a script.

18 Depending on personal and editorial habits, ordinal numbers matching electronics events are sometimes
written directly on the official score or on a secondary one called “computer producer score”.

13

1.4 Aesthetic Musings on Practices of Mixed Music
Software Programming

The shift from “rigid” electronics to electronics split into events through computer score
programming has empowered a truly interpretive dimension in mixed music, one where
musicians on stage are not mere performers obeying musical indications in the score but
a legitimate interpreter of music. The mechanical action of events launching is subject to
musical playing and yet it is subordinated to instrumental performance and that is what
makes such practice more convincing compared to the independence between musicians

and electro-acoustic parts.

‘ acoustic playing H audio processing]— live result |

Fig. 1.8: diagram showing interaction in mixed music with live electronics

One of the distinctive traits of Manoury's early works and, in all fairness, all of French
mixed music of the eighties and Nineties was the utopia of programming expressive
electronics in such a way as to automatically adapt to extemporaneous instrumental
playing, to diffusion sites, and to acoustic conditions. In other words, one of the
objectives of what used to be considered proper real time electronics programming was

the capacity of the software program itself to escape the cause-effect relationship so

typical of stiff interaction and to approximate human interaction® (fig. 1.9).

{ acoustic playing H audio interpretation H data recognition J

‘ live result |

Fig. 1.9: Interaction model where parameters from the external world influence the parameters of
the live electronics.

19 See the concert program notes or the piece's first performance: http://brahms.ircam.fr/works/work/
10482/.

14

Over the years, mixed music research has evolved, especially in the realm of software
development: indeed, Max (then Pure Data, again, thanks to Miller Puckette) has perhaps
become the most widely used programming tool for ad hoc systems for real time
electronics. This software program's strength lies in visual programming, which leads
directly to the possibility of creating graphic interfaces and implementing new functions in

a number of ways 29, all of which depend on technical needs, on production paradigms 21
and on individual programming skills. A number of software programs for audio
elaboration are produced as standalone applications programmed in Max which, since

2006, is also available in its Max for Live variant designed to work within Ableton's Live
program.

20 Until Max's version 6, it was necessary to implement a new code in order to create a new object. Now
that the “gen~” package is available, ad hoc functions can be written internally through the software
program only using default Max objects or functions.

21 The choice of a strategy to adopt instead of programming a new code depends, for instance, on
programming a public release of such a code or letting the composer/programmer use it exclusively.

15

2. Software architecture

2.1 Historical framework

The need for research in software structures was first acknowledged in the
Sixties?2. Since the Seventies, research has been paying considerable attention to
software design. Its premise was that design as an activity is distinct from
implementation, given its demands in terms of special notation, techniques and tools23.

In the Eighties, the focus of software engineering research shifted away from specific
software design and increasingly towards integrating designs and design process into the
broader context of software process and management. As a result of such integration,
implementation languages absorbed many of the notations and techniques developed for
software design.

Research on software architecture was born in the Nineties. The term “architecture”
replaced that of “design”, suggesting notions of codification, abstraction, standards,
formal training, and style.

From the Nineties to the Two-thousands, software architecture definitely rose from a sub-
discipline to a prominent domain in software engineering. Job titles as Technical Architect
and Chief Architect now flourish in the software industry. A Worldwide Institute of
Software Architects24 and a great number of professionals are eager to emphasize their

roles as architects in software engineering systems.

2.2 Software architecture definition

Trying to define a term as software architectures (SA) always implies potential
danger in light of the absence of a widely accepted definition in the academic world; nor
does the industry provide one. The number of SA definitions in the literature and on

specialized websites is impressive. A community of software developers has collected all

22 F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading, M.A. 1972.

23 G.D. Bergland, A Guided Tour of Program Design Methodologies, |EEE Computer, Vol. 14, No. 10, Oct. 1981, pp
13-37;

P. Freeman and A.l. Wasserman, Tutorial on software design techniques, IEEE Computer Society Press, 1976;

W.E. Riddle, J.C. Wilden and A.l. Wolf, OROS, Towards a Type Model for software Development Environments, Proc,
OOPSLA ’89, New Orleans, Louisiana, October 1989.

24 hitp://www.wwisa.or

16

definitions of AS5all of which tend to focus on different aspects of the topic in their
attempt to give a definition from a specific point of view. The relationship between
hardware and software, CPU engineering and software instruction, the relationship
between hardware and programming language, programming style, purposes of use, and
the level of opening or closing of the system are among the most common approaches to
this definition. The ISO/IEC Standard 42010 “Systems and Software Engineering—
Architecture description” defines software architecture as “The fundamental properties of

a system in its environment embodied in its elements, relationships, and in the principles

of its design and evolution”. Three of the most widely used definitions in academic areas

most often quoted in specialized journals:

e “Architecture is defined by the recommended practice as the fundamental organisation
of a system, embodied in its components, their relationships to each other and the

environments, and the principles governing its design and evolution.”26

e “The software architecture of a program or computing system is the structure of
structures of the system, which comprise software elements, the externally visible

properties of those elements and the relationships among them. 27

The third main definition makes such issues as scalability and distribution more explicit

than the first two definitions:

e “Software architectures go beyond the algorithms and data structures of computation;
designing and specifying the overall system structure emerges as a new kind of
problem. Structural issues include gross organisation and global control structure;
protocols for communication, synchronisation, and data access; assignment of
functional to design elements; physical distribution, composition of design elements;

scaling and performance; and selection among design alternatives.”28

In an attempt to merge the above definitions, | shall be considering one last definition of
SA:

25 http://www.sei.cmu.edu/architecture/start/glossary/community
26 ANSV/IEEE Std 1471-2000, Recommended Practice for Architectural Description of Software-Intensive Systems.
27 L. Bass, P. Clements, R. Kazman, Software architecture in Practice (2nd edition), Addison-Westely 2003.

28 D, Garlan, M. Shaw, An Introduction to Software Architecture, Advances in Software Engineering and Knowledge
Engineering, Volume |, World Scientific, 1993.
17

e “The architecture of a software system, shortly called Software Architecture, is the
structure of the system, constituted by the parts of the system, the relations among the

parts and their visible properties. 29

Various authors tend to identify architecture with its description. However, in the last
definition provided, concepts are kept distinct. Software architecture works for defining

how the sub-parts of a system work together, how is the hierarchy among these sub-
parts and how the same structure can be modified or translated on another platform
along the time. Software architecture description is the “philosophical” concept behind

the realization of the software itself.

2.3 Architecture’s purpose

Every software architecture should contain some features in order to apply to a
practical realization. These way of conceiving an architecture has become a standard in
the last 20 years, allowing the update of software also by third-part developers without

the onset of troubles in previous users. Basically, these features are:

- Modifiability. The change of a sub-part does not face the change of other sub-parts

nor their functioning.

 Portability. The software might be re-written for another platform or another hardware

structure3o, existent or future.

* Re-use. Sub-parts of a previous software could be useful if implemented in a new
software architecture. The conceiving of sub-parts that can be easily adapted to new

projects makes faster the realisation of new software systems.

These concepts have been developed by large-scale software companies dealing in
domains not related with music informatics. Although their first application did not
concern mixed music, they can be applied for conceiving software architectures
dedicated to music informatics. Composers usually re-use strategies or parts taken from

previous works by their own and this way of work needs the creation of workspaces that

29 C. Montangero, L. Semini, Architettura software e Progettazione di dettaglio, Dipartimento di Informatica, Universita
di Pisa, University Press, 2014.

30 This feature is dramatically important nowadays: a large part of software provide an implementation for Windows and
for Apple computers, as well as mobile application provide their version for Android and Apple platforms.

18

can be easily modified for their adaptation to new application. Portability is also important

and it is a topic that also touches the domain of conservation of digital art.

2.5 Architecture styles

Architecture style is a set of principles implying ways of elaborating information
and ways in which various software program sections interact with each other.
Nevertheless, architecture style also implies the delicate shift between software and
hardware, considering which method, sequence, priority and hierarchy computers
elaborate information coming from the software section. Thus, there's a time when a
software program's architecture style affects - and is itself affected by - the hardware's
architecture the software was installed in.

Below is a list of architecture styles that might concern audio applications. Styles relevant

to other kinds of different software compared to those relevant here are therefore

excluded:

* Pipe-Filter style enables sequential data processing. Components are “filters” reading
data streams on its inputs and producing data streams on its outputs. Connectors are
pipes transmitting the output streams of one filter to inputs of another. Two or more
filters can operate in parallel: one downstream filter can operate on the first data of the
sequence di output of an upstream filter, while it continues elaborating its own input
sequence. In the Pipe-Filter style, components and connectors behave in particular
ways and should be configured so as to enable sequential data processing.
Components, called “filters,” read data streams on its inputs and produce data streams

on its outputs, typically applying local transformations to every

‘ A+B ’

Fig. 2.1 Pipe-filter architecture style
19

element of the input streams and incrementally computing corresponding elements of the
output streams. Connectors, serve as streams conducts transmitting outputs of one filter
to inputs of another. Pipe-Filter style can be used to model part of a system with
sequential data-flow which filter components will be transforming. Filter components
function as a filter transforming flowing data. The connector functions as a pipe
conducting data from a sink in one component to a source in other component.

Components are sequentially connected.

1 e
From Any To Any

|
Y

Fig. 2.2 Filter connector behaviour in a pipe line

- The Client-Server style enables components called “clients” to send requests to a
component called “server”’, and expect a reply. The servers' interfaces describe
services (or, by and large, functionalities) offered; clients' interfaces describe used
services. Clients initialize communication and prepare an answer from the servers.
Clients must know server identity, while the converse does not hold; the client's identity
is communicated with service query. Connectors represent an interaction protocol
including a question and an answer in the base case. It can also prompt clients to begin
a session with the service, to respect eventual regulations concerning the order of
queries, or close the session.

query

Y

Client Server

€
<

answer

Fig. 2.3 Client-server architecture style

* Feedback Control Loop style allows central components and connectors configured to
allow a central component control of several actuators through analysis of sensor
information. FCL style is usually used to model a part of a system with a central

controller to control one or more actuators by using data from one or more sensors.

20

‘ Sensor |

A

{ Conitroiler | Fig. 2.4 Feedback Control Loop architecture style

‘ Actuator |

- Shared data style focuses on access to data shared among various components. It
integrates such components as databases, for instance, maintaining shared status and
a set of independent components operating on data. Shared status, at least in a “pure”
shared data system, is the only communication channel among components. A
connector linking the data base with components operating on data can describe, for
instance, an interaction protocol beginning with an authentication phase.

unit 1 unit 2

data storage

unit 3 unit4

Fig. 2.5 Shared data architecture style

21

2.6 Design Patterns for Graphic User Interfaces

Regardless of the kind of software architecture being used, the relationship
between the software program and the user is mediated by the graphic interface (GUI)
through which software programs are enabled to function. If we wished to divide into
further levels the shift from user to hardware physical components, we could define four

levels which the conception of software architecture should be supporting:

Digitization of
mechanical components

Modules

User Interface

Fig. 2.6 Layered model

Users physically work only with the furthest out layer of the external interface;
communication with the underlying layers is more or less implicit and it can be expressed
through various kinds of interaction with the layer located further out. The different ways

of having the GUI communicate with the user leads to the definition of several possible
design patterns. Starting with the Nineties, when software program commercialization
and therefore their usability having become crucial in programming user-oriented
software, design patterns have been following a parallel evolution with programming

languages. The GUI design pattern relies on a different chain integrating three main elements:

- the module is the software program's core whose algorithms gather, elaborate and
render data from and for users;

« the controller enables users to input data;

- the view enables users access to software status and data output.

The arrangement of these three elements brings life to different kinds of design patterns,

illustrated here below.

22

2.7 Architectural patterns

2.7.1 MVC architectural pattern

The Model/View/Controller (MVC) triad of classes, first described by Krasner and
Pope in 198831, is used to build user interfaces in a software called Smalltalk-80. MVC is
the first design pattern to be formalized and applied in hundreds of software programs
following the graphic interface method instead of scripting as a communication channel
between agent and calculator. Controls status change directly influences the model's way

of working; this, in turn, sends visible output data through the graphic interface.

Sees

View

Model

’ Manipulates
Controller J

)

1 Updates

Fig. 2.7 MVC pattern

2.7.2 MVP architectural pattern

“Model-view—presenter (MVP) is a derivative of the model-view-
controller (MVC) architectural pattern whose origin goes back to the early Nineties” 32. It is
used mostly for building user interfaces. In MVP, the presenter takes on the “middle-man”
functionality; all presentation logic is pushed to the presenter. MVP pattern was
developed to ensure easier automated unit testing and enhance concern separability in

presentation logic.

31 G.E. Krasner, S.T. Pope, A cookbook for using the model-view controller user interface paradigm in Smalltalk-80,
Journal of Object-Oriented Programming, Vol. 1 Issue 3, Aug./Sept. 1988, pp. 26, 49.

32 M. Potel, MVP: Model-View-Presenter. The Taligent Programming Model for C++ and Java.Taligent Inc., 1996
23

While it is the view’s responsibility to display model data the presenter governs the way

the model can be manipulated and changed by the user interface. This is where the heart

of an application's behaviour resides. In many ways, an MVP presenter is the equivalent

of the application model in MVC; most of the code dealing with the way a user interface

works is built into a presenter class. The main difference is that a presenter is directly
linked to its associated view so that both can closely collaborate, fulfilling their roles as

suppliers for the user interface for a specific model.

Passive view

User events Updates view

Presenter
(supervising controller)

3

Updates model State-change events

Model

Fig. 2.8 MVP pattern

2.7.3 MVVM architectural pattern

In this design pattern, graphic elements coincide with controls. This design pattern
is an improvement of the MVP adapting to those software programs used, in some way or

other, in the question/answer form.

owns Fetch [

Sees
View View/Model Model
Uses

/ Load
Data & User

action binding

Fig. 2.9 MVVM pattern

24

2.7.5 PAC, HMVC architectural patterns

“The Presentation-Abstraction-Control pattern (PAC) is an interaction-oriented SA.
It defines a structure for interactive software systems in the form of hierarchy of
cooperating agents”s3. Every agent is responsible for a specific aspect of the
application's functionality made up of three components: presentation, abstraction, and
control. This subdivision separates the human-computer interaction aspects of the agent
from functional core and communication with other agents.
PAC recycles basic MVC pattern component characteristics, except in their being
structured according to a functional logic where every component gains direct access to
the model and univocally responds to a single output. This kind of organization
presupposes a functional structure of SA general organization; in other words,
components act locally according to a model model-view-controller but in the overall
processes they play a defined, multi-layer hierarchical role lending itself to being
implemented on several machines working in synergy, where each one plays a defined
role in the SA general strategy. A design pattern of this kind unties the concept of SA from
the possibility of it being implemented in a single machine; in other words, one potentially
responsible for every shift from data input up to the resulting output and up to variable
transformation. The key feature of this organization model is the hierarchy between

machines and possible multi-tasking.

Intermediate-level agent Intermediate-level agent

Bottom-level agent Bottom-level agent

Abstraction ’ ‘ Presentation

Fig. 2.10 PAC pattern

33 Q. Kai, Interaction-oriented Software Architectures. Software Architecture and Design llluminated. Jones and Bartlett
llluminated., 2009, p. 200.

25

HMCYV pattern was presented in 2000 with the intention of bringing SA development into

the field of nowadays so-called “widgetization”, “widget architecture” or, more
specifically, “widget-server architecture”34. These have opened up the possibility,
especially for less experienced users, to combine ready-to-use modules. Users program

on their own at the SA bottom level, with no sense of any hierarchy hidden by the SA

itself. This pattern does not present any substantial differences with PAC, as the author of

a Java magazine 3% article has confirmed. The doubling of the same idea presented with

the PAC pattern, conceived in 19873 and therefore thirteen years before HMVC,
somehow represents the validation of this model as a need to further develop MVC
patterns, and to bring the SA on a hierarchical structure capable of supporting multi-

tasking and multi-threading.

34 X. Zhiqging, W. Si, Y. Heqi, W. Zhenyu, C. Hao, Z. Chunhong, J. Yang, A new architecture of web applications — The
Widget/Server architecture. Network Infrastructure and Digital Content, 2010 2nd IEEE International Conference.

35 https://web.archive.org/web/20050205080537/http://www.javaworld.com/javaworld/jw-09-2000/jw-0908-letters.html

36 Coutaz, J. PAC, an Object Oriented Model for Dialog Design. In Rullinger, H. I. and Shackel, R. (eds), Human-
Computer Interaction - INTERACT ’87. Elsevier Science Publishers, 1987, pp 431-436

26

3. Software architecture solutions
for real time audio

3.1 From mixer to digital audio software

Most commercially available software programs and visual programming
languages used for acoustic and mixed musics are based on pipeline software
architecture. Taking into account the entire ADC / DAC chain, data and audio streaming
shift algorithms in almost linear fashion. Digital Audio Workstations such as Pro Tools,
Logic, Digital Performer, Cubase, Nuendo, and a host of others devoted to the structure
of every channel/track also draw inspiration for their graphics from audio processing
sequences of analog mixers the input signal is entered in, modified in some of its
components, and managed in panning to be sent as output to the machine with a final
general amplitude (fig. 3.1). Such a scheme replicates assembly chains of analog
machines for all of these steps. Thus, a mixer channel scheme sums up wiring rules
applicable to audio processing machines. Today's digital mixers integrate communication
protocols enabling digital parameter management of all data forwarding from other,
external machines. Data communication might be relevant to input as much as output
data since midi or osc 37 protocols, for instance, are both programmed for two-way data
communication. In most cases, however, digital data are almost always sent as input in
the mixer, gathering, that is, outside information affecting audio according to a cause/
effect relationship.

Dante protocolR® enables communication via ethernet by turning the mixer into a
component of a broader hardware architecture potentially including more machines

communicating with each other in different rooms. Audio mixers' electro-acoustic chain is
basically a model adapted in software programs for audio transformation for such post-

production purposes as mixing and mastering.

37 It is worth noting the extent to which integration of midi protocols parallels the market launch of digital mixers. New
digital mixers often include the integration of the OSC protocol to enable software management from dedicated
applications installed on smartphones and tablets.

38 “Dante is an uncompressed multi-channel digital media networking technology, with near-zero latency and
synchronization that has been adopted by more pro-audio AV manufacturers”. https://www.audinate.com

27

The one aspect which DAW mostly develop is the audio transformation section generally
implementing algorithms external to software programs (i.e. plugins) ready for recall and
data forwarding so as to obtain such processing sequences as users wish.

The analog-to-digital transition makes parametric control of each step more fluid since it
always occurs within the software program (acting as well as a hardware analog
machine), ensuring multiple implementation of signal sendings in the middle or at the end
of the processing chain. Since the inboard processing sequence is not pre-constituted,
programming software for audio basically enable the same operations even more freely:

users must not therefore create it each and every time. This enables, on the one hand, the
actualizing of two principles:

Audio input

Pre-amplification

Equalization

Compression

other audio

treatments
(reverberation,

delay, etc.)

‘ to any other channel
‘ via internal bus

stereo panning

Volume control

Output

Fig. 3.1 Signal path in a mixer channel

28

+ economy: only effectively used algorithms are implemented; only effectively used
variables are activated;

- efficiency: the chain structure meets the project's local needs.

Obviously, such freedom presupposes skill in terms of how to structure a processing

sequence. At any rate, the sequence of operations always leads back to an archetype of

pipeline architecture, and a more or less complex one depending on the project yet

unchanged in its substance.

3.2 Primitive architecture for acoustic and mixed music

By and large, the audio transformation is based on four fundamental steps:

Audio input

Audio treatments

Routing

A

Audio Output

Fig. 3.2 Fundamental steps in pipelined architecture for digital audio

The introduction of computer scores since the end of the Eighties substantially
established the concept of timeline in pipelined architecture for digital audio for acoustic
music in real time and mixed music. Software status basically varies through instruction
blocks triggered throughout the performance of a piece so it may change depending on

the needs prescribed within a score or predictable external factors. A computer score
always and only contains data; it is therefore capable of altering the status of variables

from every inboard part following audio input and up to audio output (fig. 3.3).

29

Audio input Computer score

Audio treatments

Routing

Audio Output

Fig. 3.3 Integration of the computer score

The management of the audio streaming and the computer score is done by the CPU.
Producing a software system for real time audio management requires a number of
intermediate components with the aim of efficiently performing the task of the software
program itself.

Accessory components enabling software program control are likewise needed to ensure
its governability. Indeed, a mixer would be ungovernable if it didn't have knobs and faders
enabling interaction with the matching variables. Control implementation in design
patterns regulating the software program's graphic interface meets the same control
needs as outboard machines.

In practical terms, these are hybrid solutions since external control machines are
connected to the software program: software functions retrieve the physical interface.
These controllers enter data into any one of the points pre-programmed by the pipeline
the programmer has built. They can also receive data from the software program
matching parameter status. Other machines enabling data send may be responsible for
changes in software status over time. This occurs with sensors and all those electro-
mechanical machines potentially connected to the computer through digital protocols. At

this point, this is what the architecture looks like:

30

Data input ‘

K

Audio input Computer score

Audio treatments

N Routing

Audio Output

Fig. 3.4 Input data from the outside world

Outside input data can perform the same functions of computer score instructions. The
difference is that data from the outside world coming through controls and sensor set-ups
are in real time and therefore dynamically unpredictable; computer score data are instead
pre-ordered and deterministic leading to the same kind of result whenever the same set

of conditions is repeated. A forceful activation of instructions is due to timeline
management. Such instructions are regrouped in sub-lists activated by recalling an index
number, usually an ordinal and sequential one. Thus, lists of instructions are recalled
through the so-called “stage figures” or “cue list”.

The activation block of the instructions lists is therefore mediated by a counter which
turns out to be the module effectively communicating with the equipment sending data to
the calculator (midi controller, HWP, GUKO, etc. - fig. 3.5) or algorithms in the case of

automatic activation as in score following (fig. 3.6):

39 Human User Interface.

40 Graphic User Interface

31

Data input

Event counter

Computer score

Fig. 3.5 event counter

Audio input Event counter

Data input

Audio analysis

(listener) Computer score

Audio treatments

Y

A

Routing

A

Y

Audio Output

Y

A

Fig. 3.6 Event activation through score following

32

Score following of midi instruments is a specific case:

Data input ’ Data analysis

N

{ Audio input | Event counter

A

—
Audio analysis
(listener) Computer score

v

Audio treatments <

y

N Routing

A,

(Audio Output

L !‘

Fig. 3.7 Score following midi

A simpler case, used very often in the mixed music of the 90s, is that in which a midi
keyboard, instead of being used as a musical instrument, is used to directly activate
events. The activation of each event corresponds in this case to the numbers of the midi
notes. In such case the further analysis of the data is not necessary. The model is
ultimately that of the sampler; taking into account only audio files, a sampler calls one or
more audio files inserted into a memory location associated with a key of the physical

interface of the instrument.

33

3.3 Input sources classification

Audio input sources may be categorized according to three types:
- audio from a microphone: digital audio from an ADC conversion;
- audio file: deferred time digital audio recalled by the computer's memory;
- audio digital generators: various kinds of computer-generated audio on the basis of
primitive functions (simple waves) or specific algorithms (as in musical instruments'

physical models).

| can therefore speak of audio input class, since the three cases indicated occupy the
same box within a software architecture for live electronics.

Likewise, data input can occur through:

« Human interfaces: physical or graphic interfaces (the two are often associated) for
digital data input;

« midi musical instruments;

+ Sensors;

- other external machines using digital protocols (i.e. OSC or DMX).

| can therefore complete the previous architecture as follows:

34

Midi devices

Human interfaces

Sensors

A

Other data devices

Data analysis

Microphones

Sound files
Event counter

Wave generators

A A

Audio analysis
(listener) Computer score

A4

> Audio treatments "

Routing <

> Audio rendering

Fig. 3.8: Audio and data generalized architecture

3.4 Output components classification

The aim of a software architecture for acoustic music and mixed music is to have
the audio output transformed according to certain procedures in given times. However, it
might be necessary to have data output send information mostly for the application of
multi-channel audio diffusion algorithms: Vector Based Amplitude (VBAP), Wave field
Synthesis (WFS), Ambisonics, HOA, etc., inboard as well as outboard, that is, for external
machines control. This is the reason why it is best to separate the channel routing phase
from the audio output phase, which is presented as an audio rendering phase - as

indicated in fig. 3.8. Routing consists of sending the effective channels in the software

35

program whereas the rendering adapts the routed channels to the existing ones in the
diffusion system.

Audio rendering flows then an audio card physically connected to acoustic speakers.
Hardware equipment can in turn be connected to other machines to send information
which other software architectures manage, in turn, by working either in synchronization

or independently of each other. We shall not be dwelling on such specific cases given that
architecture hardware and audio machine wiring are topics that extend far beyond the
scope of this dissertation.

Along with partial data output, audio rendering send can flow into a parallel software
architecture hosted by another computer through communication protocols between
machines: UDP4'TCP #r other protocols currently in use or upcoming.

This is an interesting case as it presupposes the use of more machines in the same audio
architecture. Locally, the architecture is always pipelined whereas the general model will

tend, instead, to work like a client/server architecture where computer A usually sends
information to computer B. The two (or more) computers may be synchronized to each

other, depending on whether they are employed for the sole purpose of dividing the
necessary calculations across several machines 43 or assembled with no such need, as in
laptop ensembles. Various computers can be directed towards different audio cards or
the same one, depending on location (whether in the same hall or in a different one) and

also depending on wiring choices for diffusion set-up. The use of several audio cards
requires the insertion of a synchronization system of the machines' clock in the software-
hardware chain: one is usually configured as master, the other ones as slave.

Here is a possible example of architecture between two machines. Such architecture have

a number of variations on local components depending on the kind of project: it is
therefore only a general model only to be adapted on a case-by case basis where the

adoption of this architecture is necessary:

41 User Datagram Protocol.

42 Transmission Control Protocol.

43 This particular case is increasingly less adopted today since modern computers are powerful enough not to need to
share the operation load across several machines. Until a few years ago such a solution was often necessary since CPU
power was often not enough to guarantee reliable performances in situations featuring live electronics with real time
audio analysis requiring a significantly high number of calculations.

36

Computer A (server) ’ audio and data streaming N Computer B (client)

audio and data streaming

audio rendering

Audio interface

Fig. 3.9 Two-computer client/server architecture

In laptop ensembles signal and data send is reciprocal between various computers: they

are therefore nodal points of a flat architecture, having neither master nor slave up to the
audio output. It is only at this point that a master needs to be established in order to
synchronize every machine's audio-clock on a single computation algorithm. For one last
small, final part, we go back to a client/server system, albeit for a single operation. In the

case of performances with computers located in different spaces (with audio send
through ethernet cables or, as is more often the case, through the web) clock

management for audio synchronization becomes crucial.

Data and audio {
Computer A < 1 Computer B
’ Audio ‘
audio rendering < > audio rendering
4 Y
clock synchronization

Audio interface (master) ; :‘ Audio interface (slave)

Fig. 3.10 Example of laptop ensemble architecture

37

4. Collection of Max objects and
software programs for Mixed
Music

In the past fifteen years, numerous software programs and Max collections have
been released to simplify the programming process of live-electronics part coding of a
piece of music. This area generally deals with acoustic and electronic sources interaction.
All systems have evolved and now face different challenges and have different goals. This

chapter examines five collections designed for Max use:

« BEAP modular
- BEASTtooIs

+ Clef

- Jamoma

+ Najo Max Interface

Three stand-alone applications for mixed music as alternatives to the use of Max are also

described below:

« P-Soft
« Integra Live

+ Usine Hollyhock

Max object collections ensure ready-to-use solutions for a number of data and audio
processing needs through patcher programming phases. Stand-alone software programs
enable programming computer sections of a piece of mixed music with possibilities which
the software program itself makes available. They are always compatible with Midi and

OSC protocols.

The attention which, in the last ten years, many university departments have devoted to
these issues and especially to the release of these collections and software programs is
evidence for the need to create software and middleware to make computer section
programming of a piece of mixed music easier. These solutions differ significantly in terms

38

of degrees of personalization, possibilities to combine parts of the middleware itself or

third parties and whatever else they might enable.

4.1 BEAP Modular

Developed at the Berklee College in Boston, Berklee Electro Acoustic Pedagogy
Modular fig. 4.1 is a Max module collection fully compatible with Ableton Live through the
Live Max library. Matthew Davidson, a former employee of Cycling 74, developed this
project with a team under his supervision. Graphics are fully compatible with the latest
Max and Live versions; the blocks quality sets limits to customization possibilities to
expert Max users only.

“This collection bridges Live's user-friendly interface with the unlimited possibilities of
patching through Max for Live. The use of the BEAP modules supplies to the need of
patching, running the concept to build a modular and customizable synthesizer in Live
through Max”44.

Fig. 4.1: BEAP modular modules

44 https://www.ableton.com/en/blog/beap-powerful-modules-max-live/
39

Since the release of Max 7, BEAP modular blocks can be recalled through an icon on the
Max window frame. The collection covers modules for control, data and audio
processing, mixing, diffusion and sequencing. Users can daisy-chain blocks through input
and output connections.

4.2 BEASTtools

BEASTtools is a fully modular cross-platform environment for 2- and 8-channel
format sound exploration and processing. It was developed by Daniel Barreiro, Pete
Batchelor, Eric Bumstead, James Carpenter, Alex Harker, Jonty Harrison and Chris Tarren
with special thanks to Ben Thigpen.

The system includes a number of processing 'tools’, each with specific functions, and the
possibility for daisy-chaining so as to form a work environment. BEASTtools also features
facilities to accept live audio streams, host VST plugins, up to 8-channel recording, and
controlling channel routing for different software programs and applications”45.

This collection's concept is similar to BEAP modular's: a collection of modules works in
bpatcher frames for users to place on a Max patch. Users can daisy-chain blocks;
processing in each module is defined in the collection while the final chain depends on
users' choice. Each module is open and may be modified or integrated by other modules.

This system requires some basic patching skills.

Thimia € \FI iy i 1 B pare 7 iy s
o= A E i

BEASI teols |E-a—-

_.....

Tl e e— — i
(e
'—-——.

[T T ST ee—

Fig. 4.2: BEASTtools ensemble overview

45 http://www.birmingham.ac.uk/facilities/aestudios/research/beasttools.aspx
40

4.3 CLEF

CLEF (CIRMMT Live Electronics Framework, 2009-2014) is a Max-based modular
environment for composition and live electronics performance, developed by Marlon
Schumacher of the CIRMMT/McGill University. Ideas for the development of this package
draw inspiration from the Integra Live's GUI. CLEF bridges features of a module collection
with the hard architecture of stand-alone software. It has no external objects, libraries or
complied codes; users work in a standard Max patch. The package works as a collective
application and provides a specific menu within Max applications. This enables easy
recall of the main windows to add modules, store and play. “CLEF separates domain
model from data access layer and user interface, relying on dedicated technologies:
OpenSoundControl for data access, Max dictionaries for module description and pattr for
storage management”46,

The system requires division of the electronics in cues and events much like glist. Data
storage is separated from audio processing. A number of sub-windows make the
controller section more user-friendly: the most relevant features allow drawing lines in a
timeline to define parameters and the main routing can be displayed as a flowchart [fig.
4.3]. A collection of .vst objects completes the package. Since none of the patches is

editable, users cannot customize the collection.

Fig. 4.3: Main panel and CLEF widgets

46 http://clef.sourceforge.net
41

4.4 Jamoma

An open source project released as a Max package, Jamoma (2003-2016) was
developed by a team of programmers and supported by Norwegian and Canadian
institutions. As a work in progress, it welcomes third party contributions. The last official
release is the 0.5.7, tested for Max 6. Like the previous ones, this one owns a series of
abstractions to be filled in some bpatcher objects and chained as desired. Graphics
enable users with a basic knowledge of Max to create audio processing. The patch
collections covers control, audio and video processing. The version 0.6 is in alpha state
and stears the project into another direction. An own syntax and way to recall and use
modules appear on the overview of this release. Users may use existing modules or
create new abstractions following the logic of this system. More extensive background in
patching is required.

Jamoma Core provides a set of layered C++ frameworks and extensions to create an
object model, preparing it for advanced purposes such as audio and graphics. Jamoma
Core can be used with a wide range of hosting environments. So far, development was
geared mainly towards the use with Cycling’74 Max, but example code exists illustrating
how it can be used with other environments such as PureData (Pd), AudioUnit plugins,

and iOS. Communication between environments runs through the OSC protocol.

Jamoma is downloadable in its version to be used in Max as well as in the version
suitable for PureData. C++ object codes are publicly made available through free
downloads in order to enable further development of both new and existing modules.
Upcoming updates ought to expand the collection for communication with CSound,
SuperCollider, Open framework and VST4Pplugins.

47 Virtual Studio Technology is a plugin standard developed by Steinberg.
https://www.steinberg.net/
42

@ /mydbap (1)
@ /mydbap

Edit Sources Edit Speakers

(1)

® ciose visuaiise speaker [N

for source 1

© famogwai

Speaker Weights

pren s
BT
offset

Feedback
level

o
delay time
Mix

00000000

|© /mydbap
”! /mapper_help 000 18

Input: (= /mouse/position/x b0 Min:po. Maxpi @) 5 B
Output: (&' /degrade~/bitdepth bo Minp1 Maxh2a G :

Weights
Function: power ~ Ramp: 0. Output unit: -

Blur

=

(® /mapper_help
Input: | & /mouselposition/x Index: p0 Ramp:)0, Qn;wtunil:
Output: | & /degrade~/bitdepth Index:)0 clipmode: (R (0 G vo

Function: T power ~ | PowerValue: -0.75 Symmetry: none

Bandwidth 1.01 Octaves
[View Phase ‘Add Band

Fig. 4.4: A few Jamoma modules

4.5 NAJO Max Interface

Najo Max Interface (also called Najo Modular Interface) (fig. 4.5) is a free-download
Max package of audio modules by Jean Lochard (Ircam, Pedagogy Department) with
contributions from other IRCAM “€olleagues of his. It offers easy access to many of the
processing techniques developed at IRCAM without requiring exceptionally strong
patching techniques. Najo Max Interface versions prior to 2014 were released as a stand-
alone application. The present v2.4 March 2018 release is totally organized