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Abstract: Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to
the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were
analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling via
proper management of tissue Fe accumulation and transport, which in turn influences the regulation
of heme and non heme containing enzymes involved in Fe uptake and ROS scavenging. Inefficient
plants displayed higher oxidative stress and lower ferric reductase activity, whereas root and leaf
catalase activity were nine-fold and three-fold higher, respectively. Efficient plants do not activate
their antioxidant system because there is no formation of ROS under iron deficiency; while inefficient
plants are not able to deal with ROS produced under iron deficiency because ascorbate peroxidase
and superoxide dismutase are not activated because of the lack of iron as a cofactor, and of heme as a
constituent of those enzymes. Superoxide dismutase and peroxidase isoenzymatic regulation may
play a determinant role: 10 superoxide dismutase isoenzymes were observed in both cultivars, but
iron superoxide dismutase activity was only detected in efficient plants; 15 peroxidase isoenzymes
were observed in the roots and trifoliate leaves of efficient and inefficient cultivars and peroxidase
activity levels were only increased in roots of efficient plants.

Keywords: ∂-aminolevulinic acid; FeSOD; heme-containing enzymes; hemin; oxidative stress

1. Introduction

Iron (Fe) is an essential micronutrient required for the plant growth, being involved in several
metabolic processes, including photosynthesis, respiration, nitrogen fixation, DNA synthesis, hormone
production, and chlorophyll biosynthesis [1]. Although Fe is present in sufficient amount in the soil,
under alkaline conditions its bioavailability is limited, resulting in the appearance of iron deficiency
chlorosis (IDC).

Soybean (Glycine max L.) is the most important legume crop with an estimated world production
of more than 350 million tons in 2017 [2]. Several crops are highly affected by IDC; however, one of
the most susceptible crops, especially at early developmental stages, is soybean. IDC symptoms are
characterized by yellowing of the upper leaves, interveinal chlorosis, and reduced growth and yield [3].
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When there is a depletion of Fe, chlorophyll and other photosynthetic pigments, like anthocyanins
and carotenoids, decreases as Fe is essential for their biosynthesis [3]. Because symptoms in soybean
are so pronounced and because the economic consequences are so severe (yield losses have been
estimated in excess of $120 million annually in the western Corn Belt and Great Plain Regions of the
United States) [4], the vast majority of studies dealing with IDC have been published in soybean. The
higher susceptibility of certain soybean lines to IDC is multifactorial and mainly because of genetic
factors [5], but the physiological and biochemical underlining factors are still poorly understood.
Soybean cultivars have been differentiated regarding their IDC susceptibility, where Fe-efficient plants
activate biochemical reactions to make Fe more bioavailable, and Fe-inefficient do not [6], reinforcing
the interest of this crop as a model system for studies regarding Fe-uptake efficiency [7]. The main
biochemical reaction induced by dicotyledonous plants to cope with Fe deficiency is a reduction-based
strategy for iron absorption (Strategy I) leading to the reduction of Fe3+ to Fe2+ by a root cell plasma
membrane ferric reductase (like ferric reductase oxidase, FRO), and Fe2+ transport to the cytoplasm
via iron regulated transporters [8,9], thus increasing Fe availability for the plant. One important
characteristic of the FRO enzymes, in the context of Fe nutrition, is that they have a heme group as a
constituent, which is essential for their functioning [9]. In turn, heme is produced via the tetrapyrrole
cycle and Fe is essential for its biosynthesis [10]. Briefly, this cycle occurs mainly in the plastids, where
5-aminolevulinic acid (ALA) is synthesized via the conversion of glycine and succinyl-CoA by ALA
synthase, and later on is converted to protoporphyrin IX [11,12] (Figure 1). The cycle is then divided in
two branches, the “magnesium-branch” that leads to the synthesis of chlorophyll, and the “iron-branch”
that leads to the formation of heme. In the first branch, Mg2+ is inserted into the backbone of proto
forming Mg-protoporphyrin IX, which, after a series of modifications, forms chlorophyllide a that
is esterified to synthesize chlorophyll a. Chlorophyllide a can also be converted into chlorophyllide
b, forming chlorophyll b which can be converted again into chlorophyll a, forming the chlorophyll
cycle. In the second branch, a ferrochelatase is responsible for inserting Fe2+ into proto to form heme b
(protoheme) [11,13]. Once it is produced, heme is incorporated in several enzymes of the antioxidant
system and Fe metabolism pathways [11] (Figure 1). It is known that heme suffers degradation when
exposed to oxidative stress, being oxidized into its ferric form hemin [14], that is also pro-oxidant [15].
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Iron is a constituent of the electron transport chain in mitochondria and chloroplasts, and its
deficiency causes changes in cellular redox, resulting in reactive oxygen species (ROS) accumulation [16].
It has been shown that Fe-deficient plants are ROS producers [17–20], probably because Fe is a cofactor
in ROS-detoxifying enzymes. Heme is also a necessary cofactor for the proper functioning of these
enzymes [21], and lower levels of heme under Fe deficiency may further exacerbate ROS accumulation.
To cope with oxidative stress and regulate ROS levels, plants have developed the antioxidant system
comprising two levels of regulation, mediated by: (i) enzymes, namely, superoxide dismutase (SOD),
catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR) and others,
such as guaiacol peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate
reductase (DHAR) of which SOD, CAT and APX are heme containing proteins or use Fe as a cofactor;
and (ii) metabolites, like ascorbate (ASC), glutathione (GSH), phenolics and carotenoids [22] among
others [16,23–25]. SODs dismutate O2

− to H2O2, the major ROS produced in electron transport
chains in both chloroplasts and mitochondria [16]. Moreover, SODs are classified into three classes
according to the metal co-factor found in the active site of the enzyme, which are MnSOD, Cu/ZnSOD,
and FeSOD. In particular, FeSOD is located in the chloroplasts and is an important regulator of the
antioxidant response against abiotic factors [26]. CAT catalyzes the conversion of hydrogen peroxide
(H2O2) to H2O [27], being an important part of the plant antioxidant system, and, like FRO, it is also
a heme-dependent enzyme [28]. APX, also a heme containing enzyme, catalyzes the reduction of
H2O2 to H2O, doing so through the oxidation of ASC and it is highly substrate specific, requiring
reducing power for its functioning, being particularly associated with enhanced tolerance against
abiotic stress [29]. Lower APX activities are associated with Fe-sensitive plants [30]. GR is involved in
defense against oxidative stress and regenerates GSH from its oxidized form, allowing the ASC-GSH
cycle to proceed [31]. Reports show that GR activity varies depending on the mineral stress to which
the plants are subjected and it has been suggested that under Fe deficiency the activity of this enzyme
may be increased [32,33].

Few studies have evaluated the relationship between the tolerance to Fe deficiency, the triggering
of the tetrapyrrole cycle and the antioxidant defense mechanism in plants (recently reviewed in [21]).
In the present study, we hypothesize that Fe efficiency, being linked to Fe accumulation and transport
to the aerial organs, will be the key in the antioxidant system and tetrapyrroles synthesis regulation,
through the activity of several heme (SOD, CAT, APX, and FRO) and non-heme (GR) containing
enzymes. Here, inefficient plants, which are generally classified as unable to activate Fe-uptake
mechanisms, are expected to suffer from greater oxidative damage, because of their inability to activate
ROS scavenging enzymes, hence having lower antioxidative responses; while efficient plants, that
activate the necessary biochemical reactions to make Fe available for absorption, should be able to
properly activate the ROS scavenging enzymes, resulting in lower oxidative stress. We also hypothesize
that efficient and inefficient plants differently regulate the SOD and POX isoenzymes, in order to better
control the oxidative damage. To verify this hypothesis, the responses of two soybean lines with
contrasting susceptibilities to Fe stress were evaluated by analyzing the morphological, physiological,
and biochemical parameters. The constituents of the tetrapyrrole cycle were evaluated (ALA, total
chlorophyll and heme in its oxidized form), as well as the photosynthetic pigments anthocyanins
and carotenoids. In order to evaluate the oxidative stress of the plant tissues, lipid peroxidation was
measured as the amount of thiobarbituric acid reactive substances (TBARS).

2. Results

2.1. Growth and Chlorosis Evaluation

Fe stress led to a decrease in the total dry weight in both efficient and inefficient plants. Inefficient
plants under Fe sufficiency and Fe deficiency had the lowest total plant DW (1.8 ± 0.09 g and
0.90 ± 0.08 g, respectively), which corresponded to about half of the DW observed in efficient plants



Plants 2019, 8, 348 4 of 19

(Figure 2A). Visible interveinal chlorosis with remaining green veins was apparent in both lines under
Fe deficiency, but was more acute in inefficient plants, confirming their initial classification (Figure 2B).
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Figure 2. Morpho-physiological effects of Fe deficiency in efficient (EF) and inefficient (INF) soybean
lines. (A) Total dry weight (DW); (B) chlorosis symptoms; (C) Fe concentration (µg/g) in roots and
trifoliate leaves. Plants were grown under Fe sufficiency (+Fe, 20 µM) or Fe deficiency (−Fe, no Fe)
for 14 days under hydroponic conditions. Data are means ± SE; different letters indicate significant
differences (p < 0.05) by ANOVA with Tukey correction test.

As expected, Fe concentration was about two-times lower in Fe-stressed roots of both efficient and
inefficient plants, when compared to the Fe-sufficient plants (Figure 2C). In inefficient plants, Fe was
mostly accumulated in the root tissues, with very low levels of leaf Fe concentration, independent
of the Fe treatment. In contrast, efficient plants had higher concentrations of Fe in the leaves and no
significant differences were found between this organ and the roots.

2.2. ALA and Photosynthetic Pigments Evaluation

Although Fe stress did not cause a significant effect on ALA concentrations, the inefficient plants
accumulated 40% less ALA than the efficient plants in the trifoliate leaves (Figure 3).
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Figure 3. ∂-aminolevulinic acid (ALA) concentration (mg/L) in roots or trifoliate leaves of efficient
(EF) and inefficient (INF) soybean lines. Plants were grown under Fe sufficiency (+Fe, 20 µM) or Fe
deficiency (−Fe, no Fe) for 14 days under hydroponic conditions. Data are means ± SE; different letters
indicate significant differences (p < 0.05) by ANOVA with Tukey correction test.

Total chlorophyll (Figure 4A), anthocyanin (Figure 4B), and carotenoid (Figure 4C) concentrations
were evaluated. In the efficient plants, Fe stress induced decreases between 30% and 39% of these
pigment concentrations, but in the inefficient plants, Fe availability did not significantly affect the
photosynthetic pigments accumulation. On the other hand, inefficient plants presented significantly
lower total chlorophyll (Figure 4A) and carotenoids (Figure 4C) concentrations when compared to the
efficient plants.
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2.3. Oxidative Stress Evaluation

As an approach to the analysis of the oxidative stress in the tissues, lipid peroxidation and
the concentration of the oxidized form of heme–hemin were evaluated (Figure 5A,B, respectively).
Fe availability had no significant effect on MDA accumulation (Figure 5A). However, MDA values
of inefficient plants were about 55% higher than those registered for efficient plants in the roots
(p < 0.0001). In contrast, in the trifoliate the opposite trend was found, with a higher MDA concentration
(20% increase) in the efficient line but only under Fe sufficiency.
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Figure 5. Malondialdehyde (MDA) concentration (nmol/g) and hemin concentration (fmole) in the roots
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concentrations. Data are means ± SE; different letters indicate significant differences (p < 0.05) by
ANOVA with Tukey correction test.

When looking at hemin concentration (Figure 5B), under Fe deficiency, it was significantly
decreased in efficient roots and leaves, but significantly increased in double in inefficient roots.
Additionally, hemin concentration was always higher in inefficient tissues when compared to the
efficient counterparts (p < 0.05).

2.4. Enzymatic Activity

Iron stress caused a significant decrease in FRO activity of efficient plants but no significant
changes were induced in the inefficient plants. Inefficient plants presented significantly lower levels
of FRO activity when compared to the efficient plants (Figure 6). Under Fe stress, FRO activity of
inefficient plants was of 0.007 ± 0.001 µmol Fe/g FW h, which was three-times lower than that of the
efficient plants (0.021 ± 0.005 µmol Fe/g FW h).

To better understand the dynamics of O2
− scavenging upon Fe deficiency, SOD activity was

analyzed (Figure 7) and the pattern of SOD isoenzymes was also investigated. Total root SOD activity
was similar between efficient and inefficient plants, in both Fe treatments. However, under Fe deficiency,
the inefficient cultivar had 31% higher SOD activity in trifoliate leaves compared to the efficient one
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(Figure 7A). Efficient plants were able to maintain FeSOD activity in both Fe treatments, while in
inefficient plants FeSOD activity was null in the roots and decreased seven-fold in the leaves under Fe
deficiency (Figure 7B). Concordantly, there were clear changes in SOD isoenzyme patterns (Figure 7C).
A total of one MnSOD, three FeSOD, and six Cu/ZnSOD isoenzymes were observed. FeSOD isoenzymes
were lost under Fe stress both in roots and trifoliate leaves of inefficient cultivar, while the same
phenomenon was not observed in the efficient cultivar. On the other hand, other isoenzymes such as
Cu/ZnSOD1 were induced by Fe stress, explaining the unchanged total SOD activity.Plants 2019, 8, x FOR PEER REVIEW 6 of 19 
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Figure 6. Root FRO activity (nmol Fe/g FW h) of efficient (EF) and inefficient (INF) soybean lines
grown under Fe sufficiency (+Fe, 20 µM) or Fe deficiency (−Fe, no Fe) for 14 days under hydroponic
conditions. Data are means ± SE; different letters indicate significant differences (p < 0.05) by ANOVA
with Tukey correction test.
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under Fe deficiency (Figure 7B). Concordantly, there were clear changes in SOD isoenzyme patterns 
(Figure 7C). A total of one MnSOD, three FeSOD, and six Cu/ZnSOD isoenzymes were observed. 
FeSOD isoenzymes were lost under Fe stress both in roots and trifoliate leaves of inefficient cultivar, 
while the same phenomenon was not observed in the efficient cultivar. On the other hand, other 
isoenzymes such as Cu/ZnSOD1 were induced by Fe stress, explaining the unchanged total SOD 
activity.  
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Figure 7. Total SOD activity and isoenzyme patterns of the roots and trifoliate leaves of efficient
(EF) and inefficient (INF) soybean lines. Plants were grown under Fe sufficiency (+Fe, 20 µM) or Fe
deficiency (−Fe, no Fe) for 14 days under hydroponic conditions. (A) Total SOD activity; (B) FeSOD
activity; (C) leaves and roots SOD isoenzyme patterns. Data are means ± SE; different letters indicate
significant differences (p < 0.05) by ANOVA with Tukey correction test.
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POX activity levels only increased in roots of efficient plants with Fe stress (by 26%), otherwise no
significant effect of the Fe treatment was observed. Also, under Fe deficiency, the roots of efficient plants
had 37% higher POX activity than the roots of the inefficient plants. Total of 15 different isoenzymes of
POX were observed in the roots and trifoliate leaves of the efficient and inefficient cultivars (Figure 8).
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Figure 8. Total POX activity and isoenzyme patterns of the roots and trifoliate leaves of efficient
(EF) and inefficient (INF) soybean lines. Plants were grown under Fe sufficiency (+Fe, 20 µM) or Fe
deficiency (−Fe, no Fe) for 14 days under hydroponic conditions. Data are means ± SE; different letters
indicate significant differences (p < 0.05) by ANOVA with Tukey correction test.

Under Fe deficiency total POX activity was significantly increased only in the efficient plant roots.
In shoots, Fe deficiency did not induce any significant changes in the total POX activity (Figure 8A).
However, cultivar, tissue, and Fe treatment-dependent changes in POX isoenzyme pattern were
observed (Figure 8B). In roots, POX14 and POX15 were exclusively expressed under Fe stress in both
cultivars, whereas POX2 and POX3 were only observed in inefficient plants; POX8 and POX9 had a
drastic decrease of expression under Fe deficiency in the leaves of both lines.

Under Fe deficiency, roots of the inefficient plants increased CAT activity by 30% (Figure 9A). CAT
levels were highly increased in the inefficient plants when compared to the efficient ones (Figure 9A).Plants 2019, 8, x FOR PEER REVIEW 8 of 19 
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Figure 9. Enzyme activity in the roots and trifoliate leaves of efficient (EF) and inefficient (INF) soybean
lines. (A) catalase activity (CAT); (B) ascorbate peroxidase activity (APX); (C) glutathione reductase
activity (GR). Plants were grown under Fe sufficiency (+Fe, 20 µM) or Fe deficiency (−Fe, no Fe)
for 14 days under hydroponic conditions. Data are means ± SE; different letters indicate significant
differences (p < 0.05) by ANOVA with Tukey correction test.

APX presented an opposite pattern to CAT, being significantly lower in the inefficient plants
when compared to the efficient ones, with no significant changes registered between Fe treatments
(Figure 9B).
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Fe deficiency led to a 30% increase of GR activity in the trifoliate leaves of the inefficient plants
(Figure 9C). Concerning the activity of this enzyme in the efficient plants no significant changes were
registered between Fe treatments both in roots and shoots. Finally, in the trifoliate leaves, GR activity
was significantly induced in the inefficient plants when compared to the efficient ones (Figure 9C).

2.5. Principal Component Analysis

A PCA model was performed to extract the most important information from the current data set.
The resulting components explained 73% of the variance (Figure 10).

When analyzing the score plot of PC1 vs. PC2 (Figure 10) it was found that samples corresponding
to efficient or inefficient plants were separated along the PC1 (60% of total variance) and samples
of the efficient plants were further separated along the PC2 (13% of total variance), according to the
Fe treatment.

Moreover, a high correlation between the photosynthetic pigments, leaf ALA concentration, APX
activity (leaves and roots), leaf MDA concentration, GR activity in the roots, and FRO activity was
observed. These factors were also highly correlated to the efficient plants. On the other hand, root
ALA concentration, hemin concentration (leaves and roots), CAT activity (leaves and roots), leaf GR
activity, root MDA concentration, and SOD activity (leaves and roots) were grouped, being correlated
to the inefficient plants.

Additionally, for the efficient plants, two correlation levels were found, depending on Fe stress:
Under Fe sufficiency, there was a correlation with leaf photosynthetic pigments, MDA concentration,
ALA concentration, and activity of APX; under Fe deficiency a correlation was found with root APX,
GR, and FRO activities.

3. Discussion

In calcareous soils where high pH and bicarbonate ion concentrations are prevalent, Fe uptake
is impaired given that, under such conditions, Fe is mostly in its ferric form (Fe3+) which is not
bioavailable for direct plant absorption [3] causing severe yield losses in different crops worldwide.
One of the possible strategies to reduce this problem is to select tolerant or efficient cultivars that
are able to sustain Fe-deprivation stress [34]. As aforementioned, the definition for this Fe efficiency
comprises the ability to induce biochemical reactions that make Fe available in a useful form [6].
However, this definition still lacks information on other factors that could contribute to this trait and
recent studies have shown the importance of physiological [7,35] and molecular [36] mechanisms in
the Fe efficiency trait of soybean plants. Meanwhile, other studies reported an induction of oxidative
stress related reactions when Fe is unavailable for plant uptake and mobilization, since this nutrient is
essential for a vast number of biological processes [37–39]. Plus, it has been shown that Fe uptake and
tetrapyrrole biosynthesis are co-regulated [40].

The ability to induce the antioxidant machinery could have an important role in the Fe efficiency
trait and tetrapyrroles were proposed as the signaling molecules for oxidative stress [21]. In this study,
an integrative overview looking at tetrapyrrole cycle constituents (ALA, chlorophylls and heme in its
oxidized form) as well as heme and Fe-cofactor containing enzymes was undertaken to understand
the differences between two soybean lines with contrasting susceptibilities to Fe limitation. First, the
difference in susceptibility to Fe stress was evaluated looking at the main symptoms associated to
IDC, namely, stunted growth and interveinal chlorosis. Inefficient plants were smaller and displayed
more noticeable visual IDC symptoms than the efficient plants, which confirmed previous studies
using these accessions [36]. In the current study, the efficient line had higher levels of FRO activity
in the roots when compared to the inefficient one, which suggests a higher Fe absorption. Once in
the roots, Fe must be translocated to the shoots. Previous works have shown that inefficient soybean
lines have less Fe translocation ability and tend to accumulate most of the absorbed Fe in the root
tissue [36,37]. This was also true in the present study, showing that the ability to reduce and translocate
Fe to the upper organs could be one of the major contributors for Fe-stress tolerance. The network of



Plants 2019, 8, 348 9 of 19

Fe transporters from the root to the shoot are well described [41], and may be linked to changes in
organic acid metabolism, which are known to be correlated with Fe transport within the plant [42].

The response of the efficient and inefficient soybean cultivars to Fe deficiency, regarding ALA
accumulation, was evaluated. Here, Fe deficiency did not have a significant effect on ALA accumulation,
but the inefficient plants had lower leaf ALA concentrations when compared to the efficient plants.
The reactions for ALA synthesis occur in the stroma of chloroplasts [43] and, since inefficient plants
displayed more acute IDC symptoms and leaf damage, synthesis of ALA could be impaired, while
efficient plants (that were greener and healthier) could allow for a more active synthesis of this product.
Also, under Fe deficiency, inefficient plants have lower Fe concentration in their leaves which can
decrease biosynthesis of ALA, since Fe stress downregulates the heme biosynthetic genes [12]. ALA
is a precursor for chlorophyll biosynthesis, and a positive feedback correlation between these two
metabolites has been reported [44–46]. Chlorophyll levels were significantly reduced in the shoots
of the efficient cultivar because of Fe deficiency, whereas in the inefficient cultivar the reduction was
not significant. This is in accordance to previous studies [36] and could be a mechanism used by
the efficient plants for ROS control under stress, since decreasing chlorophyll lowers photoinhibition
levels that would lead to ROS production [47]. The lower chlorophyll levels in the shoots of the
inefficient line under Fe sufficiency may be a consequence of its inability to translocate Fe to the
aerial parts, a necessary step for chlorophyll biosynthesis. Given the fact that Fe is essential for
chlorophyll biosynthesis, other photosynthetic pigments are expected to decrease under Fe stress, such
as anthocyanins and carotenoids [3]; however, in the inefficient plants this was not observed. The
maintenance of anthocyanin and carotenoid concentrations under Fe limitation in inefficient plants
could be a strategy for protection against photosystem damage linked to an increase in xanthophyll
biosynthesis [48,49].

As recently reviewed [50] ALA has an important role in enhancing antioxidant defense. The higher
accumulation of ALA by efficient plants enabled a better tolerance to Fe deficiency, probably because
ALA is a precursor of heme. Under oxidative stress conditions, heme is released from hemoproteins
and forms hemin, its oxidized form [51]. In the present study, hemin accumulation significantly
increased in the leaves, particularly in the inefficient plants, being an indicative of higher oxidative
stress by these plants. This fact is important since the tetrapyrrole cycle is mainly located in the
photosynthetic tissues [10], which is in agreement with the expected higher leaf accumulation levels
obtained here. Furthermore, hemin is a form of protoporphyrin IX containing ferric Fe [14] and, when
present, it also acts as a strong pro-oxidant in cells because of its participation in H2O2-dependent
redox reactions and to the release of ferric Fe upon its degradation [13,14]. These reactions cause the
reduction of molecular oxygen and form ROS [47], thus the observation that inefficient plants had
higher oxidative stress. Intracellular accumulation of hemin is highly toxic for cells and plants with
low detoxifying ability and cause greater damage, as seems to be the case of inefficient plants.

When chloroplasts of the mesophyll cells cease to function or are damaged, both anthocyanins
and carotenoids have an important photoprotective role, acting as powerful antioxidants [22,52].
Thus, since inefficient plants showed lower levels of these molecules, their capability to manage
photooxidation could be hampered. Roots have been shown to accumulate high levels of ROS under
mineral stresses [53,54]. MDA levels were higher in the roots of inefficient plants than in efficient
plants independently of the Fe conditions, corroborating that the former plants were under higher
oxidative damage, since this is an often-used oxidative stress indicator [31,54,55]. This may be due to
the very high levels of Fe in the roots of the inefficient plants, which by reaching toxic levels triggered
MDA synthesis. On the other hand, there was no significant effect of the Fe availability on MDA
accumulation. This result could be perceived as unexpected; however, MDA is one of the final products
of lipid peroxidation in the cells and this is usually a reflection of severe oxidative stress [56]. It is
possible that our imposed level of Fe deficiency was not severe enough to induce quantifiable changes
in lipid peroxidation because of insufficient membrane damage [56].
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The membrane-bound FRO enzyme contains the heme-group as a constituent, and it is responsible
for the reduction of extracellular Fe, its activity being necessary for Fe uptake [9]. In this study, Fe
deficiency did not induce higher levels of FRO activity. Although this is the typical phenotype in
Arabidopsis subjected to Fe deficiency [9,57,58], soybean plants oftentimes show a contrasting behavior,
as previously shown [8,35,36]. In the current study, this is probably due to the fact that FRO is a
heme containing protein and, under Fe deficiency, soybean plants displayed lower levels of heme,
as indicated by the lower ALA in the leaves where heme is produced.

FeSOD contains Fe in its active site as a co-factor, indicating a possible interaction with Fe
deficiency symptoms. As expected, under Fe deficiency, only the efficient plants were able to maintain
the FeSOD activity. This points to a very important role of the FeSOD in the determination of Fe
efficiency in soybean. The inability of inefficient plants to maintain FeSOD activity may have led to
the observed oxidative stress. This has also been observed in Fe-impaired transgenic tobacco plants
which showed decreased FeSOD activity [59]. In Arabidopsis, it has also been demonstrated that Fe
deficiency down-regulates FeSOD transcripts [60]. Inefficient plants induced Cu/ZnSOD isoenzymes,
which could be a mechanism to replace the lost FeSOD activity. However, current knowledge indicates
that FeSOD is indispensable for healthy chloroplast biogenesis and photosynthesis, as shown in
Arabidopsis, where plants demonstrated severe albino phenotypes when chloroplastic FeSODs were
knocked out [61]. Therefore, loss of FeSOD activity or the inability to maintain control levels by the
inefficient plants might have accelerated the chlorosis in this cultivar.

In the current study, inefficient plants, which had lower Fe accumulation in the leaves and
displayed IDC symptoms, had lower APX activity in general. The lower levels of tissue Fe may have
impaired APX activity in these plants since APX is a Fe-containing enzyme. APX activity has been
shown to be lower in Fe-deficient conditions [62] as a consequence of insufficient Fe availability for
the enzyme, as it contains, in addition to the heme group, another Fe atom [62]. This observation
has been reported for pea, pear, and quince [62,63]. Together, low APX and FeSOD activity renders
inefficient plants unable to deal with the high levels of ROS (increased hemin and MDA in the roots)
when compared to the efficient ones.

Unlike APX, CAT was upregulated under Fe stress in inefficient plants. Previous studies have
reported that when there is an upregulation of CAT, a downregulation of APX may occur [64]. Both
enzymes are responsible for the conversion of H2O2 into water, however, while CAT is able to directly
reduce H2O2 into the water with no energy consumption. Despite the fact that lower Fe availability
decreases both APX and CAT activity [17,27,30], unlike CAT, APX activity requires ascorbate as a
reducing equivalent, being a more energy demanding reaction [30]. This could explain why inefficient
plants focus on inducing CAT for oxidative stress defense, presenting lower levels of APX under Fe
deficiency. Fe stress increased total POX activity in roots of efficient plants. The regulation of the
heme-dependent POX enzymes is influenced by the Fe availability since heme itself requires Fe for
proper functioning [21,28]. Inefficient plants were able to maintain relatively high levels of POX activity,
because not all peroxidases have a heme group [65]. Still, isoenzymes were differentially regulated in
both cultivars. In particular, the accentuated decreases in POX8 and 9 in Fe-deficient leaves of both
cultivars deserve further investigation. The substrate used in the current assay (3-3’-diaminobenzidine)
is not specific, and does not allow to discriminate neither the physiological role of the enzymes nor
their cellular localization.

In the current study, the inefficient plants showed high levels of GR in the leaves, but the
concentration of GR in the efficient plants remained at low levels. As the inefficient cultivar accumulated
higher ROS levels, triggering the antioxidant system, it seems that GR was particularly induced since it
does not contain a heme group in its composition. As such, this enzyme seems to be a good marker for
low Fe efficiency in soybean. Glutathione reductase (GR) may allow plants to cope with Fe deficiency
in several ways. It is responsible for the reduction of glutathione disulfide to glutathione (GSH), which
in turn is able to scavenge H2O2 through the ascorbate-glutathione cycle [66]. As suggested by others,
the up-regulation of the antioxidant system has a direct effect on peroxidative conditions, particularly
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GR that, as shown here, contributes directly to the decrease in TBARS accumulation and improved
defense to Fe deficiency stress [67,68]. Also, GR may aid plants in coping with Fe deficiency through
the glutathione peroxidase (GPX) cycle, in combination with SOD [32]. Finally, GR may also play an
indirect role in modulating internal Fe homeostasis via nitric oxide (NO) mobilization of Fe [69] or via
the dinitrosyl-diglutathionyl–Fe complex [70].

The PCA performed here (Figure 10) shows that the efficient and inefficient lines have distinct
behaviors and are clearly separated. Moreover, while in the inefficient plants group there was no
separation between +Fe and −Fe treatments, the efficient plants group was clearly divided into two
sub-groups correspondent to the Fe treatment showing that inefficient plants are less responsive
to Fe stress, and even when Fe is supplied they are unable to utilize it in their metabolism. It is
evident that high hemin levels are highly correlated to the inefficient plant trait, which could be key to
explain the trait of inefficiency: as these plants are unable to reduce the oxidative stress caused by Fe
deficiency, heme molecules are oxidized and, consequently, unavailable to integrate FRO [14] and other
Fe metabolism-related enzymes such as SOD and APX. This could explain the lower levels of FRO
induction by inefficient plants, observed here and suggested before [36]. The presence of increased
hemin levels could have led to more oxidative stress, particularly in the roots, and inefficient plants
only seem to trigger the low substrate affinity enzyme CAT. Also, inefficient plants, in an attempt
to deal with oxidative stress, were correlated to GR activity at the leaf level. Additionally, Figure 10
displays the previously discussed correlation of the efficiency trait with the antioxidant pigments, leaf
MDA accumulation, and APX accumulation.

Plants 2019, 8, x FOR PEER REVIEW 11 of 19 

 

a good marker for low Fe efficiency in soybean. Glutathione reductase (GR) may allow plants to cope 
with Fe deficiency in several ways. It is responsible for the reduction of glutathione disulfide to 
glutathione (GSH), which in turn is able to scavenge H2O2 through the ascorbate-glutathione cycle 
[66]. As suggested by others, the up-regulation of the antioxidant system has a direct effect on 
peroxidative conditions, particularly GR that, as shown here, contributes directly to the decrease in 
TBARS accumulation and improved defense to Fe deficiency stress [67–69]. Also, GR may aid plants 
in coping with Fe deficiency through the glutathione peroxidase (GPX) cycle, in combination with 
SOD [32]. Finally, GR may also play an indirect role in modulating internal Fe homeostasis via nitric 
oxide (NO) mobilization of Fe [70] or via the dinitrosyl-diglutathionyl–Fe complex [71]. 

 
Figure 10. Biplot of score and loading factors of the principal component analysis (PCA). Efficient 
(circles) and inefficient (squares) soybean lines, grown under Fe sufficiency (+Fe, 20 µM; solid 
symbols) or Fe deficiency (−Fe, no Fe; open symbols) for 14 days under hydroponic conditions and 
associated factors: 1—anthocyanin concentration; 2—total chlorophyll concentration; 3—carotenoid 
concentration; 4—leaf ∂-aminolevulinic acid concentration; 5—leaf MDA concentration; 6—leaf 
ascorbate peroxidase activity; 7—root ascorbate peroxidase activity; 8—root glutathione reductase 
activity; 9—root reductase activity; 10—root ∂-aminolevulinic acid concentration; 11—leaf hemin 
concentration; 12—root hemin concentration; 13—leaf catalase activity; 14—root catalase activity; 
15—leaf glutathione reductase activity; 16—root MDA concentration; 17—leaf SOD activity; 18—root 
SOD activity. 

The PCA performed here (Figure 10) shows that the efficient and inefficient lines have distinct 
behaviors and are clearly separated. Moreover, while in the inefficient plants group there was no 
separation between +Fe and −Fe treatments, the efficient plants group was clearly divided into two 
sub-groups correspondent to the Fe treatment showing that inefficient plants are less responsive to 
Fe stress, and even when Fe is supplied they are unable to utilize it in their metabolism. It is evident 
that high hemin levels are highly correlated to the inefficient plant trait, which could be key to explain 
the trait of inefficiency: as these plants are unable to reduce the oxidative stress caused by Fe 
deficiency, heme molecules are oxidized and, consequently, unavailable to integrate FRO [14] and 
other Fe metabolism-related enzymes such as SOD and APX. This could explain the lower levels of 
FRO induction by inefficient plants, observed here and suggested before [36]. The presence of 
increased hemin levels could have led to more oxidative stress, particularly in the roots, and 
inefficient plants only seem to trigger the low substrate affinity enzyme CAT. Also, inefficient plants, 
in an attempt to deal with oxidative stress, were correlated to GR activity at the leaf level. 
Additionally, Figure 10 displays the previously discussed correlation of the efficiency trait with the 
antioxidant pigments, leaf MDA accumulation, and APX accumulation. 

4. Methods 

Figure 10. Biplot of score and loading factors of the principal component analysis (PCA). Efficient
(circles) and inefficient (squares) soybean lines, grown under Fe sufficiency (+Fe, 20 µM; solid symbols)
or Fe deficiency (−Fe, no Fe; open symbols) for 14 days under hydroponic conditions and associated
factors: 1—anthocyanin concentration; 2—total chlorophyll concentration; 3—carotenoid concentration;
4—leaf ∂-aminolevulinic acid concentration; 5—leaf MDA concentration; 6—leaf ascorbate peroxidase
activity; 7—root ascorbate peroxidase activity; 8—root glutathione reductase activity; 9—root reductase
activity; 10—root ∂-aminolevulinic acid concentration; 11—leaf hemin concentration; 12—root hemin
concentration; 13—leaf catalase activity; 14—root catalase activity; 15—leaf glutathione reductase
activity; 16—root MDA concentration; 17—leaf SOD activity; 18—root SOD activity.

4. Methods

4.1. Plant Material and Growth Conditions

One Fe efficient (PI437929 / VIR 316) and one Fe inefficient (PI378676A / Primorskaja 500) G. max
accession [7], with identical phenology, were selected from the USDA (United States Department
of Agriculture) germplasm collection via GRIN (Germplasm Resources Information Network) [71]
Seeds were germinated for seven days in the dark, at 25 ◦C. Germinated seedlings were transferred to
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5 L vessels containing hydroponic solution with different Fe treatments. Each vessel contained
five plants (n = 5) of one accession grown under Fe sufficiency (+Fe, 20 µM Fe (III)-EDDHA
[ethylenediamine-N,N’bis(o-hydroxyphenyl)acetic acid]) or Fe deficiency (−Fe, no Fe).

The vessels were placed in a climate chamber (Aralab Fitoclima 10000EHF) with 16-h day
photoperiod providing 325 µmol s−1 m−2 of photosynthetic photon flux density at plant level, supplied
by a mixture of incandescent bulbs and fluorescent lights. Temperatures were set to 25 ◦C during
the light period and to 20 ◦C during the dark period, and relative humidity was maintained at 75%
throughout the day and night. The standard solution for hydroponic growth of G. max included:
1.2 mM KNO3; 0.8 mM Ca(NO3)2; 0.3 mM MgSO4.7H2O; 0.2 mM NH4H2PO4; 25 µM CaCl2; 25
µM H3BO3; 0.5 µM MnSO4; 2 µM ZnSO4·H2O; 0.5 µM CuSO4.H2O; 0.5 µM MoO3; 0.1 µM NiSO4.
Hydroponic solution was buffered with 1mM MES [2-(N-morpholino)ethanesulfonic acid], pH 5.5 and,
during the experimental time, pH was measured and solutions were changed every three days. The
experiment ended 14 days after transferring the plants to the climate chamber, when soybean plants
usually show the most contrasting symptoms of IDC [72]. Plants were harvested, frozen immediately
in liquid nitrogen, and stored at −80 ◦C for further analysis.

4.2. Fe Determination by ICP-OES

A total of 100 mg of dried plant tissue (root and trifoliate leaves) was mixed with 5 mL of
65% HNO3 in a Teflon reaction vessel and heated in a SpeedwaveTM MWS-3+ (Berghof, Germany)
microwave system. Each plant organ from all the treatments (n = 5) was ground and five independent
digestions were carried out.

The digestion procedure was conducted in five steps, consisting of different temperature and
time sets: 130 ◦C/10 min, 160 ◦C/15 min, 170 ◦C/12 min, 100 ◦C/7 min, and 100 ◦C/3 min. The
resulting solutions of the digestion procedure were then brought to 20 mL with ultrapure water and
filtered for further analysis. Mineral concentration determination was performed using inductively
coupled plasma optical emission spectrometer (ICP-OES) Optima 7000 DV (PerkinElmer, USA) with
radial configuration.

4.3. ALA, Hemin, and Photosynthetic Pigments Evaluation

Protocols for ALA quantification in the leaves were optimized based on protocols previously
published [11]. In short, frozen samples (n = 5) were ground with liquid nitrogen, using a mortar
and pestle, and 200 mg of ground sample was suspended in 1.5 mL of 20 mM potassium phosphate
buffer (pH = 6.8). After centrifuging for 10 min at 16,000g, 400 µL of the supernatant were mixed
with 100 µL of acetylacetone. The mixture was incubated for 10 min at 100 ◦C and then transferred to
room temperature (RT), until cool. At this point, 500 µL of modified Ehrlich’s reagent were added
to each sample, the mixture was let to stand for 5 min, and then centrifuged for another 5 min at
16,000g. Absorbance was read at 553 nm and ALA concentration was calculated according to a standard
calibration curve of 5-aminolevulinic acid hydrochloride (Sigma-Aldrich, #A3785).

Estimated heme protein content in leaves and roots (n = 5) was performed by measuring the
oxidized version of this protein, hemin, using an enzymatic assay kit (Hemin Assay Kit; Sigma-Aldrich)
following the manufacturer instructions.

Chlorophyll, anthocyanin, and carotenoid concentrations were measured on the last fully expanded
trifoliate leaf of plants grown in the previously described conditions (n = 5). The referred compounds
were extracted and quantified according to a modified protocol [73]. Briefly, 0.1 g of leaves ground
with liquid nitrogen, were extracted with 10 ml of cold acetone/Tris buffer solution at 1 M (80:20 vol:vol,
PH = 7.8). Samples were incubated at 4 ◦C for 72 h and absorbance values were recorded at 470, 537,
647, and 663 nm. The amount of anthocyanins, chlorophyll a and b, and carotenoids were determined
according to previously published equations [73].
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4.4. Lipid Peroxidation

To evaluate the lipid peroxidation, thiobarbituric acid reactive substances (TBARS) were measured
using a colorimetric adapted method [74]. In short, 0.1 g of roots or trifoliate leaf samples (n = 5) were
homogenized in 10 mL of 0.5% thiobarbituric acid in 20% trichloroacetic acid (w/v) and incubated
at 100 ◦C for 30 min. The reaction was stopped on ice and samples were centrifuged at 5000 rpm
for 10 min. The supernatant was filtered, absorption was read at 450, 532, and 600 nm, and MDA
concentration (µmol g−1) was calculated from: 6.45 × (A532 − A600) − 0.56A450.

4.5. Enzymatic Activity

4.5.1. Root Iron Reductase Activity

Root FRO activity was quantified as previously described by [72]. The measurements were carried
out in roots of intact plants (n = 5) via the spectrophotometric determination of Fe2+ chelated to
BPDS (bathophenanthroline disulfonic acid). Roots of each plant were submerged in assay solution
containing: 1.5 mM KNO3, 1 mM Ca(NO3)2, 3.75 mM NH4H2PO4, 0.25 mM MgSO4, 25 µM CaCl2,
25 µM H3BO3, 2 µM MnSO4, 2 µM ZnSO4, 0.5 µM CuSO4, 0.5 µM H2MoO4, 0.1 µM NiSO4, 100 µM
Fe(III)-EDTA (ethylenediaminetetraacetic acid), and 300 µM BPDS. All nutrients were buffered with
1 mM MES, pH = 5.5. The assays were conducted under dim light conditions at 20 ◦C and were
terminated after 45 min by removal of the roots from the assay solution. Absorbance values were
obtained spectrophotometrically at 535 nm, and an aliquot of the solution that had no roots during the
assay was used as a blank. Rates of reduction were determined using the molar extinction coefficient
of 22.14 mM−1cm−1.

4.5.2. SOD and POX Activity

Enzyme extraction was performed at 4 ◦C as described in [75]. SOD and POX activity and gel
staining of their isoenzymes were carried out according to [76] and references therein. SOD activity
was measured by monitoring photochemical reduction of nitroblue tetrazolium (NBT) at 560 nm. The
amount of enzyme that inhibited 50% NBT photoreduction was defined as one unit of SOD. POX
activity was measured with reaction mixture that contained 3,3-diaminobenzidine, 0.1% (w/v) gelatine
in 150 mM Na-phosphate-citrate buffer (pH = 4.4). Reaction was started by the addition of H2O2 with
0.6% final concentration. Change in absorbance at 465 nm was followed for 1 min. A unit of POX
activity was defined as µmol H2O2 decomposed ml−1 min−1.

For separation of SOD and POX isoenzymes 12.5% and 10% native separating gels were used
respectively. Equal amounts of proteins (50 µg) were loaded to each lane. SOD activity in gels were
detected by photochemical staining in the presence of riboflavin and NBT. The different types of
SOD were differentiated by incubating gels in inhibitors of SOD prior to NBT staining, such as 2 mM
KCN to inhibit Cu/ZnSODs and 3 mM H2O2 to inhibit Cu/ZnSODs and FeSODs (MnSOD activity is
resistant to both). For staining of POX activity, gels were incubated for 30 min in 200 mM Na-acetate
buffer (pH = 5.0) containing1.3 mM 3,3-diaminobenzidine and 3% H2O2 [76]. Gels stained for SOD
and POX were photographed with Vilber Lourmat gel documenting system and then analyzed with
ImageJ. Isoenzymes in each gel were numbered according to their migration distance. Table S1 from
Supplementary Material shows a list of enzymes investigated in this work accompanied with the
reactions they catalyze, their EC numbers, and genes in soybean that encode proteins related to these
specific EC functions. Soybean genome annotation v1.1 was searched for specific enzyme functions (by
using EC no as search string) and genes encoding related proteins were listed. Reactions related to
specific EC functions were taken from EXPASY database.

4.5.3. CAT and APX Activity

For the evaluation of CAT and APX activity, an enzymatic extraction was performed according
to [77]. Roots and trifoliate leaf samples were analyzed separately (n = 5) and 100 mg of ground tissue
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were homogenized with 1.5 mL of extraction buffer composed of 0.1 M potassium phosphate buffer
(pH = 7.0), 0.1 mM EDTA, and 1% polyvinylpyrrolidone. Samples were vortexed for 2 min and then
centrifuged for 10 min at 5000 rpm at 4 ◦C. The supernatant was collected and diluted three-fold. CAT
was measured using 666 µL of the diluted supernatant, to which 334 µL of 73 mM H2O2 in 0.5 M
Tris-HCl buffer (pH 7.0) was added. Absorbance was read for 3 min at 240 nm and CAT activity was
calculated according to [78]. APX was measured using 100 µL of the initial supernatant, to which 450 µL
of 25 mM ascorbic acid and 450 µL of 17 mM H2O2 in 0.5 M Tris-HCl buffer (pH = 7.0) were added.
Absorbance was measured for 3 min at 290 nm and APX activity was calculated according to [79].

4.5.4. GR Activity

For GR, 100 mg of ground roots and trifoliate leaf tissue (n = 5) was homogenized with 1.5 mL of
extraction buffer containing 50 mM Tris-HCl (pH = 7.5) and 1 mM EDTA. The mixture was vortexed
for 2 min and centrifuged for 10 min at 5000 rpm at 4 ◦C. To 100 µL of the supernatant, 1 mL of a
solution containing 1 mM EDTA, 0.5 mM GSSSG, 0.15 mM NADPH, 50 mM Tris-HCl buffer (pH = 7.5),
and 3 mM MgCl2 was added to each sample. Absorbances were read for 1 min at 340 nm and GR
activity was calculated according to [80].

4.5.5. Statistical Analysis

Data were analyzed with GraphPad Prism version 6.00 for Mac OS X (GraphPad Software, La Jolla
California USA, www.graphpad.com). Differences among all groups (treatments and cultivars) were
tested with two-way ANOVA corrected for multiple comparisons using Tukey method. Statistical
significance was considered at p < 0.05.

Principal component analysis (PCA) was performed to establish the relationships among the
different variables. The data set included 16 continuous variables, namely, the concentration of
anthocyanins, total chlorophylls, carotenoids, leaf ∂-aminolevulinic acid, root ∂-aminolevulinic acid,
leaf hemin, root hemin, leaf MDA and root MDA; and the activity of leaf APX, root APX, leaf GR,
root GR, root FRO, leaf CAT and root CAT. This analysis was performed using Tanagra data mining
software, version 1.4.5 (Lyon, France) [81].

5. Conclusions

Efficient plants under Fe sufficiency do not over accumulate Fe in the roots, and are able to transport
adequate levels of Fe to the shoots, thus avoiding IDC. They adjust their pigment concentration under
Fe stress to lower photoinhibition and consequently ROS levels while inefficient plants are not able to
do so. As such, lower stress levels are sensed by the upper organs and MDA concentrations remain
unaltered in root and shoot tissues, independent of Fe supply. ALA remains available in the leaves for
chlorophyll synthesis and the heme-group continues to be available for enzyme integration. In this way,
FRO activity is higher in efficient plants when compared with the inefficient ones and FeSOD activity is
maintained, even under Fe deficiency. Efficient plants do not need to activate their antioxidant system
because there is no formation of reactive oxygen species under iron deficiency.

In Figure 11 we summarize the antioxidant responses and tetrapyrrole metabolism regulation
associated to the inefficient plants when exposed to Fe deficiency. This study shows that inefficient
plants are unable to transport adequate levels of Fe to the shoots, resulting in IDC symptoms. They have
lower photosynthetic pigments concentration when compared to the efficient plants and are unable to
adjust to the photosynthetic pigment concentration under Fe stress, leading to photoinhibition. High
levels of ROS are then accumulated and high oxidative stress levels are imposed to the plant, leading to
MDA and hemin accumulation. ALA levels are reduced, leading to lower production of heme, which
in turn impairs APX, FeSOD, and FRO activity. At the root level, CAT is induced, as this is the less
energy requiring antioxidant enzyme and, at the leaf level, GR activity is induced, as this is a non-heme
and non-Fe containing enzyme.

www.graphpad.com
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