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"Our notions of law and harmony are commonly confined to those instances which we detect; 
but the harmony which results from a far greater number of seemingly conflicting, but really 
concurring, laws, which we have not detected, is still more wonderful." -Henry David Thoreau 





 

 

ABSTRACT 
Cancer is a leading cause of death worldwide with one in 8 men and one in 11 women 
dying from the disease (World Health Organization, 2018). Despite vast improvements in 
cancer diagnosis and therapy, the global cancer burden continues to rise in unison with 
population growth and longevity. Although cancer presents itself as a heterogeneous group 
of diseases, often divided by tissue of origin, tumor characterization increasingly identifies 
molecular level commonalities and patterns that are similar across all cancers. Expanding 
our knowledge of these molecular characteristics, together with the development of new 
tools and technologies, has historically been one of the most efficient ways to increase the 
effectivity of cancer therapies and thus, decrease the cancer burden of the population. This 
thesis investigates two newly identified molecular mechanisms, long non-coding RNAs and 
cell-cell interactions, whose role are increasingly appreciated in tumor progression and 
development. In addition, the thesis reports the development of methods and tools that have 
been established to facilitate further investigation of cancers molecular attributes by the 
scientific community.  
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1 INTRODUCTION 
 
In recent years, considerable progress in the treatment of cancer has been witnessed by the 
medical and research communities. From major advances in chemotherapy treatment, to 
various forms of targeted therapies, and vaccines aiding in the prevention of cervical 
cancer, the last four decades have seen rapid improvements in cancer therapy. Many of 
these discoveries can be directly related to improving technologies that facilitate a better 
understanding of the underlying biology of cancer. Armed with this understanding, 
researchers have been able to develop methods to target cancers vulnerabilities via both 
general and specific mechanisms. For example, in the 1960’s-1970’s the discovery of the 
proto-oncogene Src (Oppermann et al., 1979) and epidermal growth factor receptor (Cohen 
and Elliott, 1963), as well as the role these play in growth factor signaling, opened the door 
for the development of drugs targeting tyrosine kinases and also initiated the era of 
“targeted therapies”. Among the more recently discovered players in oncogenesis, long 
non-coding RNAs (lncRNA) and cell-cell interactions have both been in the limelight of the 
scientific community due to their evolving role in cancer biology and their promising 
potential as therapeutic targets (Balas and Johnson, 2018; Kamińska et al., 2015). This 
thesis presents a multi-level investigation of these newly appreciated molecular elements as 
well as several methodologies and high-throughput bioinformatic-based tools developed for 
their interrogation in cancer development and progression. 
 

1.1 LONG NON-CODING RNA 
 
Characteristics of lncRNAs. Advances in sequencing technology have revealed that a 
large portion of the genome is transcribed while only a fraction of transcripts gives rise to 
proteins (Djebali et al., 2012; International Human Genome Sequencing Consortium, 
2004). These non-translated RNAs are collectively termed non-coding RNAs (ncRNAs) 
and are typically further sub-classified by their size and/or their location in relation to other 
genomic features. One of these classes, microRNAs (miRNA), have been intensively 
studied and are involved in a wide range of disease types such as inflammatory, 
neurodevelopmental, and autoimmune diseases, as well as cancer (Ardekani and Naeini, 
2010). The roles of another class of ncRNAs, lncRNA, are currently being unraveled and 
have been shown to be involved in the regulation of key cellular processes, such as 
chromosome inactivation, differentiation, cell cycle, and apoptosis (Johnsson et al., 2014). 
Despite this, to date only a handful lncRNAs have been functionally characterized. 
lncRNAs are, per definition, non-coding and longer than 200 nucleotides and also tend to 
show a lower rate of conservation and expression but higher rate of cell-type specificity 
than protein coding genes (Uszczynska-Ratajczak et al., 2018). Various mechanisms, 
mediated by RNA:RNA, RNA:protein, and RNA:DNA interactions, have been shown to be 
implemented by lncRNAs to control transcriptional and post-transcriptional regulation 
(Figure 1). These include transcriptional regulation via epigenetic mechanisms in both cis 
and trans, altering the stability of protein-coding RNAs, and inhibition of post-translational 
modifications (Johnsson et al., 2013; Mahmoudi et al., 2016; Wang et al., 2014). 
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Figure 1. Mechanisms of lncRNA-mediated gene regulation. Genes reported to be regulated by the illustrated 
mechanisms are listed above each respective panel. A) lncRNAs can bind directly to DNA at gene promoters and 
subsequently recruit additional factors that can both positively or negatively regulate gene expression. B) lncRNAs can 
function as competing endogenous RNAs blocking miRNA-binding sites resulting in de-repression of miRNA target 
genes. C) Anchor-like functions have been reported for lncRNAs where they serve as scaffolds for multiple factors e.g. at 
gene promoters. D) Direct binding of lncRNAs to mRNA can post-transcriptionally increase or decrease mRNA 
degradation. 

 
lncRNAs in cancer. Early indications arose that lncRNAs may be involved in cancer 
development and progression when many were found to be dysregulated in various cancer 
types (Niknafs et al., 2016; Prensner et al., 2011). Individual functional studies revealed the 
specific interactions of several of these lncRNAs and, as well, demonstrated their utility as 
diagnostic and prognostic markers (Gupta et al., 2010; Redis et al., 2013). The lncRNA 
antisense noncoding RNA in the INK4 locus (ANRIL), for example, has been shown to 
epigenetically silence the tumor suppressor gene INK4/p15 by recruitment of the polycomb 
repressor complex 1 component, chromobox 7 (Yap et al., 2010; Yu et al., 2008). High 
levels of ANRIL are associated with poor prognosis in numerous cancer types, such as 
hepatocellular carcinoma, lung cancer, and cervical cancer (Hua et al., 2015; Lin et al., 
2015; Zhang et al., 2017). Another well-studied lncRNA, Hox antisense intergenic RNA 
(HOTAIR), serves as a scaffold for several protein complexes including members of the 
polycomb repressive complex 2 and Lsd1. Recruitment of these chromatin modifying 
factors to specific genomic loci deposits the repressive H3K27me3 histone modification 
and removes the activating H3K4me2 histone modification resulting in a net repression of 
the loci (Tsai et al., 2010). HOTAIR was initially implicated in the regulation of the HOXD 
gene in trans but was subsequently shown to regulate multiple genes across the genome 
including the metastasis suppressors PCDH10, PCDHB5, and JAM2 (Gupta et al., 2010; 
Rinn et al., 2007). Regulation of these metastasis suppressor genes is thought to give rise to 
the poor survival and increased occurrence of metastasis associated with high HOTAIR 
levels in breast and colorectal cancers, among others (Gupta et al., 2010; Kogo et al., 2011). 
 
The future of lncRNAs in the clinic. Although lncRNAs are already proving to be 
important diagnostic and prognostic biomarkers, their use in treatment regimes faces a long 
road ahead with many obstacles to be overcome (Mouraviev et al., 2016; Sánchez and 
Huarte, 2013; Saus et al., 2016). Due to lncRNAs cell-type specificity and lack of post-
translational modifications, they may be especially suited as biomarkers. Although 
utilization of lncRNAs as biomarkers in the clinic is currently limited, initial studies show 
promising results (Lee et al., 2011; Qi et al., 2016).  Despite the fact that lncRNA-based 
therapies have not yet advanced to clinical studies, other non-coding RNAs have seen some 
clinical progress (Beg et al., 2017; Kao et al., 2015). Several strategies can be envisioned 
for modulating lncRNAs clinically such as targeting a) over-expressed lncRNAs, b) 
lncRNA interactions, or c) lncRNA structure. Repression of lncRNAs directly may 
potentially be mediated via siRNAs or other modified short nucleic acids, the utility of 
which has shown to be promising in multiple clinical studies (Kanasty et al., 2013; 
Zuckerman and Davis, 2015). Regulating lncRNA interactions offers an alternative 
approach where either the interacting region of the lncRNA may be targeted or, in the case 
of RNA:protein interactions, the interacting partner may be targeted, potentially via small 
molecule inhibitors. Finally, due the proposed importance of lncRNA secondary structure 
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for lncRNA functionality, structural disturbance of these could also be a valid route towards 
mediating the effect of specific lncRNAs (Li et al., 2016). Currently, fast and reliable 
prediction of lncRNA secondary structure and its associated function is limited and 
advances in this field would need to be accomplished before this approach would be 
feasible. 
 

1.2 CELL-CELL INTERACTIONS 
 
Cell-cell interactions during tissue homeostasis. Strict control of tissue architecture is 
necessary to maintain continued functionality of the tissue throughout the life of 
multicellular organisms (Morrison and Scadden, 2014; Sato et al., 2011). For example, the 
small intestine (SI) is organized into discrete structures, known as villi and crypts, which 
increase the tissues surface area and are essential for its ability to effectively perform its 
absorptive functions (Figure 2). It is estimated that some 1011 cells per day are shed from 
the human intestine (mice ≈ 2 x 108) underlining the continuous need for organizational 
control over the massive amount of turnover and regeneration that is continuously ongoing 
in this tissue (Williams et al., 2015). Even in cases such as the SI, where the tissue 
architecture is well characterized, mechanisms that regulate this organization are not well 
understood, although cell-cell junctions are thought to play a leading role. 
 
Cell-cell interactions are also important for controlling various cellular functions and the 
maintenance of cell identity (Morrison and Scadden, 2014; Sato et al., 2011). For example, 
a stem cell population residing at the bottom of the SI crypts produces the SI cell types. 
These stem cells undergo symmetric cell division where the daughter cells are initially 
equivalent but either maintain their stem cell identity or become differentiated cells 
dependent on cellular context (Figure 2, Lopez-Garcia et al., 2010; Snippert et al., 2010). 
The cells are positioned as such that when cell divisions take place they may lose 
 

 
 

Figure 2. Gut architecture. The architecture of the small intestine (left panel) and colon (middle panel) showing major 
cell types.  The legend (right panel) illustrates the differentiation scheme for gut cell types. Transit amplifying (TA), 
Enteroendocrine (EE). 

 



 

8 

contact with a specific neighboring cell type, known as a paneth cell. Interaction with 
paneth cells promotes the preservation of the stem cell phenotype and thus, it is the loss or 
maintenance of this contact that determines if the daughter cells remains a stem cell or 
differentiates. Other well studied changes in cell identity regulated by cell-cell interactions 
include epithelial-mesenchymal transition (Arias, 2001), retinal vascular and endothelial 
cell survival (Giannotta et al., 2013; Roy et al., 2017), and epidermal vs. neuronal fate 
specification via lateral inhibition (Alberts et al., 2002). 
 
The role of cell-cell interactions in the tumor microenvironment. The previous view 
that a tumor is wholly composed of a relatively homogeneous group of uncontrollably 
proliferating cells, has been gradually replaced with the insight that a tumor’s complexity 
actually reflects or exceeds that of a normal organ, as well as the tumor microenvironment’s 
(TME) instrumental role in shaping that complexity (Egeblad et al., 2010). The TME 
constitutes the non-cancerous cell types surrounding and infiltrating the tumor, the 
extracellular matrix, as well as conditions that are shaped collectively by these and the 
tumor cells such as hypoxia, pH, and interstitial fluid pressure. In recent years, advances in 
high-throughput single cell applications have begun to uncover the heterogeneity of tumor 
cell populations, on both a genetic and transcriptomic level, although the functional 
characterization of these sub-populations still remains challenging (Gawad et al., 2014; 
Patel et al., 2014). During tumor development, the TME is gradually transformed from a 
structurally organized normal tissue to a heterogeneous group of cells and conditions 
reflecting the environment formed by the various cell populations residing within the tumor 
(Marusyk et al., 2012; Wells et al., 2015). In addition, the TME provides the selective 
pressure for the ongoing Darwinian selection process of the tumor cell population, resulting 
in clones with improved fitness characteristics. Efforts are ongoing to characterize the 
interactions of the tumor cell populations with their TME “niche” as this interaction has 
been reported to support multiple features of cancer progression, such as increased cell 
survival, metastasis, therapy resistance, inflammation, and angiogenesis, among others 
(Hanahan and Weinberg, 2011; Junttila and de Sauvage, 2013). 
 
Detecting cell-cell interactions. Current methods capable of interrogating cell-cell 
interactions in a high throughput and quantitative manner can be roughly divided into four 
main groups: array-based, fluorescence in situ hybridization (FISH)-based, 
microdissection-based, and in situ sequencing-based (Boisset et al., 2018; Codeluppi et al., 
2018; Crosetto et al., 2015; Ståhl et al., 2016; Wang et al., 2018). In addition to detecting 
cell-cell adjacency, these methods all quantify gene expression to determine individual cell 
types and, thus, the gene expression quantification values are included as part of the 
methods output. In several cases, these methods are also able to relate changes in gene 
expression to a specific interaction type. Despite this, all of these methods suffer from a low 
spatial resolution, reliance on pre-defined cell type biomarkers, a limited number of genes 
that can be quantified, RNA diffusion, or a need for non-standard specialized equipment. 
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2 METHODOLOGICAL CONSIDERATIONS 
 
The projects contained within the thesis make use of previously developed statistics, 
algorithms, and scientific methods. A brief overview of some of these methods is provided 
below to give sufficient background to the reader. 
 

2.1 RNA SEQUENCING 
Quantification of gene expression via measurement of RNA abundance can be 
accomplished using multiple methods on both a targeted and global analysis level. Of these, 
RNA sequencing (RNAseq) uses next generation sequencing technology to identify and 
quantify the RNAs present in cells and can be performed at both bulk and single cell 
resolution (Stark et al., 2019). Briefly, the in vitro elements of RNAseq are carried out by 
isolating RNA, performing reverse transcription, cDNA fragmentation, size selection, and 
addition of sequencing linkers. The resulting libraries are sequenced and result in 
generation of data in the form of RNA sequences or “reads”. In order to identify which 
genes the reads correspond to and quantify the gene expression, the in silico analysis begins 
by aligning the reads to an annotated reference genome with known gene coordinates. 
Quantification can subsequently be performed in several ways, such as counting of reads 
that are aligned to a specific area of the genome that corresponds to a known gene.  
 
Single cell (sc) RNAseq protocols, generally follows the same steps as bulk RNAseq with 
several modifications to overcome the reduced amounts of starting material. Individual 
cells are isolated into wells, typically using fluorescence-activated cell sorting (FACS), or 
individual droplets using microfluidics-based techniques (Picelli et al., 2014; Zheng et al., 
2017). Technologies exist enabling the sequencing of 5-prime, 3-prime, or full-length 
sequences and may or may not facilitate the use of unique molecular identifiers (Islam et 
al., 2014; Kivioja et al., 2012). 

2.2 DIMENSIONALITY REDUCTION 
Dimensionality reduction is a technique to reduce high dimensional data to a lower 
dimensional representation and, thus, limit the number of features needed to represent the 
data. Oftentimes, high dimensional data has multiple features that strongly correlate with 
each other and can be represented in a simplified but sufficient fashion by merging these 
features. This is especially relevant in the case of gene expression where e.g. an 
environmental signal initiating a change in gene expression causes up- and down-regulation 
of multiple genes. Dimensionality reduction facilitates visualization of the data and is often 
used as a feature selection and noise reduction pre-processing step for further downstream 
analysis.  
 
Multiple dimensionality reduction methods exist, (e.g. Principal Component Analysis 
[PCA], t-Distributed Stochastic Neighbor Embedding [t-SNE], and Uniform Manifold 
Approximation and Projection [UMAP]), and vary in their suitability in a specific case 
depending on the type of input data and the goals of the analysis (Hotelling, 1933; Maaten 
and Hinton, 2008; McInnes et al., 2018; Pearson, 1901). Some dimensionality reduction 
methods, e.g. PCA, seek a linear combination of the features whereas others, e.g. t-SNE or 
UMAP, are non-linear. In addition, some of dimensionality reduction methods aim to 
maintain global data structures whereas others do not. t-SNE, for example, was primarily 
designed as a visualization aid and, hence, does not maintain global data structures well 
whereas PCA and UMAP have a stronger capability to do so and are therefore more 
suitable for pre-processing applications. Together, the attributes of the dimensionality 



 

10 

reduction algorithm and the goals of the analysis help to aid in deciding which method is 
most appropriate for the application at hand. 
 

2.3 CLASSIFICATION 
Classification aims to identify which group within a population a new sample belongs to 
depending on the similarity of the sample to already defined samples. Classification can be 
performed in either a supervised or unsupervised fashion. Supervised classification uses a 
subset of the total data where the classifications are known to “learn” how to identify the 
classes before being utilized on another dataset where the classes are unknown. 
Unsupervised classification, on the other hand, is performed without the algorithm 
obtaining prior information regarding the classes and performs the classification solely on 
the basis of the data provided. This results in the definition of groups of samples within the 
data that have similar feature patterns to each other. Some examples of unsupervised 
classification include k-means clustering, autoencoders, and graph-based methods.  
 
Graph-based classification methods utilize data representations if the form of a network 
structure that can be created by computing a distance/similarity metric to portray the 
relationship of the samples to each other. One such graph-based classification algorithm, 
Louvain community detection, functions by optimizing graph modularity and is quick and 
effective at resolving classifications in large datasets (Andrea Lancichinetti and Santo 
Fortunato, 2010; Blondel et al., 2008). Despite this, graph-based classification methods 
often require input from the user based on assumptions reflecting the number of classes that 
are expected to be present in the data. In addition, they are known to suffer from a 
resolution limit under which their capability of detecting clusters is diminished (Fortunato 
and Barthélemy, 2007). This is especially important to take into account when utilizing 
graph-based classification algorithms to analyze scRNAseq data when rare cell populations 
are present. 

2.4 PARTICLE SWARM OPTIMIZATION 
Particle swarm optimization is one of many types of mathematical optimization whose goal 
is to select an optimal value from many choices based on a set of criteria. Typically, 
optimization is used to minimize or maximize a function by iteratively and systematically 
altering candidate solutions. With particle swarm optimization these candidate solutions, 
known as particles, move in the search space under the influence of the currently best-
identified solution, as well as mathematical constraints such as particle position, velocity, 
and user defined constraints. The algorithm terminates upon reaching various stopping 
criteria providing both the best identified candidate solution and the value produced by the 
function using said solution. Particle swarm optimization is a robust stochastic optimization 
method and, due to its emulation of biological behavior, is especially suited to situations 
where it is difficult to assess the validity of assumptions concerning the scale, 
differentiability, or shape of the problem (Ab Wahab et al., 2015).  

2.5 PRINCIPAL CURVE 
Principal curve analysis is a method that aims to produce a smooth and nonlinear summary 
of multidimensional data. It is approximated in such a way that each point on the curve is 
an average of the surrounding data points and passes through the middle of the data in an 
orthogonal sense (Figure 3). The principal curve algorithm typically begins by using the 
first principal component as a line through the data after which the algorithm optimizes the 
average distance in arc length of the p-dimensional points from the previous iteration until 
self-consistency is reached. Self-consistency, in this case, means that the position of the 
curve at any individual point can be identified by calculating the average of all data points 
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projecting to that point. Hastie and Stuetzle state “The human eye is skilled at making 
trade-offs between smoothness and fidelity to the data; we would like a procedure that 
makes this judgment automatically” (Hastie and Stuetzle, 1989). Due to this, principal 
curves are especially useful in cases where it is necessary to easily understand and judge the 
relationship between the data and the curve. 
 

 
 

Figure 3. Principal curve. The figure illustrates two-dimensional in silico-generated data (black points) with a principal 
curve (red line) indicating how the curve produces a smooth summary and passes through the middle of the data. 
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3 AIMS OF THE THESIS 
 
The overall aim of the thesis was to investigate mechanisms that play a pivotal role in 
oncogenesis. This was accomplished by specifically focusing on two relatively novel 
players in tumor development: lncRNAs and cell-cell interactions. The thesis also aims to 
describe several bioinformatics-based methods and software that were designed and utilized 
to help achieve the overall goals of the thesis. 
 
The specific aim of each paper was: 
 
Paper I: Here we present ClusterSignificance; a software and statistical methodology 
allowing for the determination of class separations in dimensionality reduced data. In 
addition, the paper aims to use ClusterSignificance to evaluate a potential role of lncRNAs 
in the identity of hematological malignancies.  
 
Paper II: In this paper we aim to characterize lncTAM34a, a long non-coding RNA in 
antisense orientation to the tumor suppressor micro-RNA 34a, and its role in oncogenesis. 
 
Paper III: This paper aims to present Cell Interaction by Multiplet Sequencing (CIM-seq), 
a high-throughput and unsupervised method for investigating cell-cell interactions. We 
subsequently utilize CIM-seq to explore and gain a better understanding of the architecture 
of murine colonic crypts. 
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4 RESULTS 

4.1 PAPER I: ClusterSignificance: a bioconductor package facilitating 
statistical analysis of class cluster separations in dimensionality reduced 
data 

 
In this paper we describe the development ClusterSignificance, a software and method that 
facilitates the evaluation of a separation between known classes in dimensionality-reduced 
data. Although routinely used in research, the output of dimensionality reduction algorithms 
is typically evaluated in a subjective manner through visualization of their output. 
ClusterSignificance provides statistical rigor to this process and formally evaluates the 
independence of the known class labels and the features (genes). ClusterSignificance is 
useful when e.g. a set of genes is thought to characterize two patient groups but it is unclear 
if these two groups are separated when evaluating the output from dimensionality reduction 
algorithms. The method works by further decreasing the data dimensionality into one 
dimension before scoring the separation based on the user defined classes and comparing 
this separation score to separation scores from permuted data. ClusterSignificance is also an 
intuitive and strongly visual method and has limited assumptions, making it useful for a 
broad range of researchers and research questions. 
 
ClusterSignificance requires the known class labels and the data representation post-
reduction as input after which the workflow proceeds in three distinct stages, 1) Principal 
Curve Projection, 2) Separation Classification, and 3) Score Permutation (Paper I, Fig 1a-
1c). A brief description of each stage is outlined below: 
 

1) Principal Curve Projection: The goal of this stage is to further reduce the data to one 
dimension. This is accomplished by projecting the data points onto a principal curve 
and subsequently calculating the Euclidean distance between the points, thus 
completing the one dimensional projection.  

2) Separation Classification: In this stage, the previously projected data is used to 
determine the optimal separation between classes in the projected space using the 
class definitions provided by the user. Each possible separation is scored by 
calculating the complement of the Euclidean distance along the ROC curve to the 
operating point. The highest separation score is retained for later use. 

3) Score Permutation: In the final stage, the user defined classes are randomly assigned 
to the data and steps 1-2 are re-run n times with the best separation score being 
recored each time. Once n runs are completed, a p-value for the separation is 
calculated as the fraction of separation scores for the permuted data that were higher 
than the original data. 

ClusterSignificance was tested using in silico data generated to have either 0 or 100% 
overlap of the classes and was shown to correctly characterize true and false separations in 
contexts where they are known to exist (Paper I, Supplementary Fig. 1a-1c). 
 
Finally, we used ClusterSignificance to determine if patients with multiple types of 
hematological malignancies could be defined by their lncRNA expression alone. To this 
end, we utilized 2096 microarray samples representing 6 different hematological 



 

14 

malignancies as well as non-leukemic and healthy patients. The results from 
ClusterSignificance indicated that the vast majority of malignancies were significantly 
separated, suggesting the importance of lncRNAs in the identity of these cancers and 
prompting further investigation to better understand their role in these diseases (Paper I, 
Fig. 2a-2b). 

4.2 PAPER II: An antisense RNA capable of modulating the expression of the 
tumor suppressor microRNA-34a 

 
Here we identify and characterize long non-coding transcriptional activator of micro-
RNA34a (lncTAM34a), a lncRNA transcribed in a head-to-head antisense orientation to the 
micro-RNA34a (miR34a) tumor suppressor gene (Paper II, Fig. 1a). Due to miR34a’s 
known role as a master regulator of tumor suppression it is not surprising that its expression 
is dysregulated in a broad range of hematological and solid tumors. Despite this, the 
mechanisms underlying this dysregulation are largely unknown. We hypothesized that 
lncTAM34a may be important in the regulation of miR34a expression and, therefore, began 
by examining its expression in a panel of cell lines and a large dataset of primary human 
cancers. Due to the fact that miR34a is a direct downstream target of TP53, we chose to 
include cell lines and samples with varying but known TP53 status. Collectively these 
results indicated that miR34a and lncTAM34a are positively correlated in both TP53 wild-
type and mutated settings (Paper II, Fig. 1b-1c, Supplementary Fig. 1a). In addition, we 
found that both lncTAM34a and miR34a expression levels are reduced in TP53-/- cell lines 
and patients with nonsynonymous TP53 mutations (Paper II, Fig. 1b-1c, Supplementary 
Fig. 1b). 
 
We next performed a thorough molecular characterization of lncTAM34a by first 
determining its transcription start and stop sites (Paper II, Fig. 1d-1e, Supplementary Fig. 
2a), polyadenylation status (Paper II, Supplementary Fig. 2b), alternative splicing isoforms 
(Paper II, Supplementary Fig. 2c), and nuclear localization within the cell (Paper II, 
Supplementary Fig. 2d). We also confirmed lncTAM34a’s non-coding status using two 
separate bioinformatics-based methods and, in addition, searching a large dataset of mass 
spectrometry peptides from eleven cancer cell lines for peptides corresponding to 
lncTAM34a (Paper II, Fig. 1f, Supplementary Fig. 2e). 
 
miR34a and lncTAM34a expression have been previously reported to be increased upon 
cellular stress that results in the activation of TP53. As such, we investigated this in 
multiple experimental systems and showed miR34a and lncTAM34a expression to be 
induced upon DNA damage-mediated TP53 activation (Paper II, 2a-2b). We furthermore 
demonstrated that TP53-mediated miR34a and lncTAM34a expression can be regulated 
from a single promoter and that the expression takes place in a bidirectional manner (Paper 
II, 2c).  
 
We next examined the function of lncTAM34a hypothesizing that it may serve to regulate 
the expression of miR34a host gene (HG). Using si- and sh-RNA in several cell lines and in 
the presence or absence of activated TP53, we demonstrated the ability of lncTAM34a to 
positively regulate miR34a expression (Paper II, Fig. 2d-2e, Supplementary Fig. 3c). 
Despite the confirmed ability of TP53 to regulate the miR34a/lncTAM34a locus, previous 
results had indicated that other factors were also able to regulate this locus (Paper II, Fig. 
2b). In order to better understand the regulation dynamics of lncTAM34a and miR34a in 
the absence of TP53, we stably overexpressed lncTAM34a in three different TP53-null cell 
lines. Our results indicated that lncTAM34a overexpression was sufficient to rescue 
miR34a expression even in the absence of TP53 (Paper II, Fig. 3a). miR34a is known for 
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its role in the regulation of multiple oncogenesis-related phenotypes, such as cell cycle and 
cell growth, among others. To further confirm the functionality of lncTAM34a-mediated 
miR34a expression in a TP53-null background, we examined cell cycle (Paper II, Fig. 3b, 
Supplementary Fig. 4b), miR34a-mediated decrease of cell cycle regulators (Paper II, 
Supplementary Fig. 4b-4c), and cell growth in this system (Paper II, Fig. 3c, 
Supplementary Fig. 5a-5b). In summary, these results indicate that increased expression of 
lncTAM34a in a TP53-null background is sufficient to upregulate miR34a and lead to 
known miR34a induction phenotypes. Finally, these results (Paper II, Fig. 3c), together 
with others (Paper II, Fig. 2e), indicate that lncTAM34a-mediated miR34a regulation is 
especially crucial to drive the appropriate cellular responses when cells encounter stress 
conditions.  
 
We next asked at what level lncTAM34a regulates miR34a. Due to the fact that several of 
the cell lines that were engineered to stably overexpress lncTAM34a had an undetectable 
level of miR34a previous to lncTAM34a overexpression, we hypothesized that the 
regulation level was transcriptional. Therefore, we began by performing phosphorylated 
polymerase II chromatin immunoprecipitation (ChIP) at the miR34a promoter. Importantly, 
primers detecting phosphorylated polymerase II enrichment were located outside of the 
cloned and overexpressed lncTAM34a region. The results showed that overexpression of 
lncTAM34a increased phosphorylated polymerase II binding at the miR34a promoter and 
therefore indicate that lncTAM34a regulates miR34a at the transcriptional level (Paper II, 
Fig. 3d). 
 
Finally, we utilized RNAseq data from The Cancer Genome Atlas, comprised of 17 
different cancer types, to understand the association between lncTAM34a expression and 
survival. Our results indicate that there is indeed an association between decreased 
lncTAM34a expression and decreased survival in multiple cancer types (Paper II, Fig. 4a-
4b). Despite the fact that this result does not implicate any causal relationship, we believe 
that it provides a basis for further investigation using controlled trials. 
 
In summary, we identify and characterize lncTAM34a finding it to positively regulate 
miR34a transcription in both TP53 wild type and deficient cells. Although previous studies 
have used various molecular biology methods to upregulate miR34a expression, this is, to 
our knowledge, the first time an endogenous method has been shown to be able to achieve 
this in the absence of TP53. 
 

4.3 PAPER III: Unsupervised cell interaction profiling based on multiplet RNA 
sequencing reveals major architectural differences between small 
intestinal and colonic epithelium 

 
In this work we describe Cell Interactions by Multiplet Sequencing (CIM-seq), a high 
throughput, hypothesis free, intuitive, and easily implemented method to interrogate global 
cell-cell interactions within a tissue. CIM-seq relies on RNA sequencing of incompletely 
disassociated cells (multiplets) that are a common by-product in single cell RNAseq 
experiments. With CIM-seq we repurpose these multiplets to give us information 
concerning the cell-cell interactions in the intact tissue and simultaneously use fully 
dissociated single cells (singlets) to procure single cell resolution RNAseq data. This allows 
us not only to deduce the global map of cell-cell interactions in the tissue but also relate 
gene expression changes to specific cell-cell interactions without a predefined hypothesis. 
We subsequently utilize CIM-seq to explore cell-cell interactions within the architecture of 
mouse colonic crypts. 
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CIM-seq works by first performing an incomplete dissociation of the target tissue and 
subsequent FACS sorting of single cells and multiplets separately (Paper III, Fig. 1a). 
Both singlets and multiplets are then RNA sequenced and the data is analysed individually. 
The singlets are used to form a blueprint of the cell types in the tissue via unsupervised 
graph-based classification methods. Given the set of transcriptional profiles corresponding 
to the different cell types and an estimate of cell numbers in each multiplet, the multiplets 
are deconvoluted, resulting in a fractional contribution of each cell type for all of the 
multiplets under consideration. Finally, in order to gain an understanding of which 
interactions are overrepresented in the data, we calculate an enrichment score (observed / 
expected) and probability for each of the observed cell-cell interaction types. 
 
In order to verify the assumptions necessary for the CIM-seq method to work, we began by 
examining the propensity of cells to re-associate after incomplete dissociation, which would 
cause the detection of cell-cell interactions that are not representative of interactions present 
in the tissue. Our results indicate that singlet reassociation was less than 0.5% after 2 hours 
(Paper III, Extended Data Fig. 1a). By visually examining cells after incomplete 
dissociation we found that the majority of multiplets were comprised of two cells bound 
together (Paper III, Fig. 1b). To test CIM-seq in a controlled setting, we next sequenced 
singlets and multiplets of a known composition from three cell lines. By examining the 
fraction of ERCC reads at different known cell counts we could show that they provide a 
reasonable proxy for cell number and correspond well to the known number of cells in the 
multiplets (Paper III, Fig. 1c-1d). The singlets were then subjected to graph-based 
classification to distinguished the different cell types and thus provided a blueprint for the 
deconvolution algorithm (Paper III, Extended Data Fig. 1c). Finally, the deconvolution 
revealed that CIM-seq was capable of accurately recovering the expected connections with 
an average misclassification rate of < 5% in all of the examined cell compositions (Paper 
III, Fig. 1e, Extended Data Fig. 1d-1e). 
 
Next, we utilized mouse SI to evaluate the performance of CIM-seq in a complex tissue. SI 
stem cells reside at the base of the intestinal crypts and maintain contact with paneth cells 
that provide Wnt signaling and, thus, facilitate the stem cells ability to maintain their 
stemness characteristics. We tested the ability of CIM-seq to detect this previously known 
cell-cell interaction in an unsupervised manner. As such we sorted, sequenced, and 
classified 1214 single cells from the SI epithelium. Classification of these singlets revealed 
previously reported cell types and states known to exist in the tissue (Paper III, Fig. 2a). 
Due to the fact that the validity of the classifications is essential to the interpretation of the 
results from the CIM-seq algorithm, multiple additional steps were taken to verify the 
soundness of these classifications. In summary, the results indicated that the classification 
procedure successfully identified bona fide cell types and states with differential gene 
expression in all cases (Paper III, Extended Data Fig. 2a-2b). Subsequent deconvolution of 
451 multiplets isolated from the same suspensions as the singlets, revealed the frequencies 
of cell types detected in the multiplets to strongly correspond to the cell type frequencies in 
singlets (Paper III, Fig. 2b). Enrichment analysis showed that cell types that are known to 
be equally distributed throughout the crypt were rich in connections but none of these were 
significantly enriched (Paper III, Fig. 2c). On the other hand, paneth and stem cells 
showed a highly enriched connection reflecting the previously known SI crypt architecture. 
RNA in situ hybridization (ISH) verified the adjacency of Lgr5+ stem cells and Lyz1+ 
paneth cells in vivo (Paper III, Fig. 2d). In summary, these results indicate that CIM-seq is 
capable of accurately detecting known cell-cell interactions and functions as expected in a 
complex tissue. 
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Although the colon has a similar crypt structure as the SI, it lacks villi and its crypt 
architecture is not as well defined. To gain a better understanding of the similarities and 
differences between the two tissues, we sequenced 2462 single cells isolated from the 
mouse colon. Our results showed a larger and more diverse goblet cell population in the 
colon than had been observed in the SI (Paper III, Fig. 3a) with two of these classes 
expressing the wound-healing marker Plet1 (Paper III, Extended Data Fig. 3a). 
Deconvolution of 1703 multiplets showed a distinct interaction pattern when comparing 
Plet1+ and Plet1- goblet cells (Paper III, Fig. 3c). Whereas Plet1+ goblet cells had a 
preferential interaction with the most highly Lgr5 expressing stem cells, Plet1- preferred to 
interact with stem cells located further along the differentiation trajectory. ISH for Lgr5 and 
Plet1 showed that Plet1+ goblet cells adjacent to Lgr5+ stem cells (Paper III, Fig. 3d). 
Finally, quantification of Plet1 along the longitudinal crypt axis revealed Plet1+ goblet cells 
to be localized at the base of the crypt and their distribution to mirror that of Lyz1+ paneth 
cells in the SI (Paper III, Fig. 3e). Collectively, these results indicate that CIM-seq 
identified a novel cell-cell interaction between Plet1+ goblet cells and Lgr5+ stem cells in 
the colon stem cell niche. 
 
Although the dogma regarding paneth cells as the main source of stemness signaling in the 
SI is generally established, there are multiple competing theories regarding how this takes 
place in the colon. One theory postulates that there is a paneth cell equivalent that resides in 
the colon whereas another claims that the stroma is largely or entirely responsible for 
providing the necessary environment to facilitate stemness. We wanted to investigate the 
possibility that Plet1+ cells are a source of stemness signaling in the colon and began by 
searching our singlet expression data for expression of classical stemness ligands. Our 
results showed that both paneth cells as well as the stroma are responsible for stemness 
signaling in the SI, in agreement with previous results ( Paper III, Fig. 4a-4b, Degirmenci 
et al., 2018; Shoshkes-Carmel et al., 2018; Valenta et al., 2016). In the colon, we also 
identified stemness-signaling originating in the stroma, although the role of the epithelial 
compartment is not as clear. Stemness factors can be seen to originate from several 
different colonic epithelial cells, including Plet1+ goblet cells, but additional experiments 
would be needed to determine if the stemness factors originating from these cell types are 
essential for the maintenance of colonic stem cells (Paper III, Fig. 4a-4b). Thus, our results 
indicate that Plet1+ goblet cells are unlikely to be a specific source of stemness signaling in 
the colon.  
 
Interestingly, Plet1 has been previously shown to be important both in wound healing in the 
intestinal epithelium and in cell migration. We detected high expression levels of genes 
involved in cell-cell adhesion, tissue organization, inflammation, and cellular signaling in 
Plet1+ goblet cells (Paper III, Extended Data Fig. 3a). To further investigate Plet1+ goblet 
cells role in wound healing and maintenance of tissue architecture, we induced epithelial 
injury via dextran sodium sulfate (DSS) treatment and subsequently analysed the 
expression of Plet1. Our results indicated an increased expression of Plet1 at areas of DSS 
induced erosion (Paper III, Fig. 4c). In summary, these results indicate that Plet1+ goblet 
cells are an important component in wound healing and maintenance of intestinal tissue 
integrity. 
 
In conclusion, we developed CIM-seq, a high throughput method for interrogating cell-cell 
interactions. Analysis of the mouse colon identified a cell-cell interaction between a subset 
of Plet1+ goblet cells and stem cells with additional results indicating that the interaction 
may be crucial for the maintenance of tissue architecture. We believe that CIM-seq will be 
capable of addressing a wide array of scientific questions and shed light on currently 
unknown cell-cell interactions giving rise to specific changes in cell identity.  
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5 DISCUSSION 
 
This section includes some project-specific discussions, “behind the scenes” details, and 
successes and failures encountered during the realization of the projects described in the 
thesis. It is not intended to be an in-depth discussion of each project as a whole but, instead, 
select things that I have found to be interesting or challenging, points that I would like to 
highlight, or reflections since the project was completed. 
 

5.1 PAPER I: ClusterSignificance: a bioconductor package facilitating 
statistical analysis of class cluster separations in dimensionality reduced 
data 

 
The separation score function. For much of the development phase of ClusterSignificance 
the function to calculate the separation score was different than that which was used in the 
final publication. The original function basically calculated the number of correct 
classifications minus the incorrect classifications at each possible projected separation. In 
the course of the algorithms development, some testing revealed strange results that we 
could not explain immediately. After some further investigation, these results seemed to 
stem from the fact that, in the specific test examples we were using, the class sizes were 
very different and this was causing false positive results. While searching for a solution I 
came across the Song et al. paper that described a calculation that seemed as though it 
would resolve this issue. In addition, the new calculation had the added advantage of being 
based on a receiver operating characteristic (ROC) curve which many people are already 
familiar with. We implemented the complement of the Song et al. equation (Equation 1) as 
the new score calculation and it proved to work as well as we had hoped. 
 
 
Equation 1.  1− 1− 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ! + 1− 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦! 
 
 
Quantifying a separation. With the new score calculation it was also possible to describe 
an effect size, in the form of area under the curve (AUC), for a specific separation. 
Although we became aware of this almost immediately, we were hesitant to implement it in 
the software. One of the criticisms typically leveled at ClusterSignificance is, just because a 
separation is significant does not mean that it has any biological meaning. Typically, in 
other types of quantification-based analysis, people use an effect size to estimate if 
something that is statistically significant actually has any biological effect. Despite the fact 
that, in my humble opinion, setting arbitrary cutoffs is less than optimal, it is typical 
operating procedure due to the lack of a better alternative and, in most cases serves, to limit 
the false positives discovered in the analysis. Specifically, we were aware that there were 
very few instances that the AUC could actually tell the users anything realistic about 
whether or not a result was biologically meaningful. Therefore, we believed that providing 
a metric that quantified separation would most often lead to its misinterpretation and 
decided it was best to not include it. Nevertheless, during the review process the issue of 
effect size and biologically meaningful separations was brought up and we were persuaded 
to include the AUC in the output of the separation scoring procedure. 
 
Confirmatory not exploratory. There are several elements concerning the use of 
ClusterSignificance that, in hindsight, I believe could have been highlighted better in the 
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final publication. The first is that ClusterSignificance is intended to be a confirmatory 
method not an exploratory method and is designed, and tested to aid in the confirmation of 
a preconceived hypothesis. Due to this, using it as an exploratory method may give 
inaccurate results. Somewhat related is that, it is not valid to use the gene expression data 
itself to define the classes. The best way that I have found to explain why this is the case is 
because we are formally testing the independence of the labels and the features, if the 
features define the labels we basically already know the result without running the test. 
 

5.2 PAPER II: An antisense RNA capable of modulating the expression of the 
tumor suppressor microRNA-34a 

 
A lesson in determination. The lncTAM34a project was the longest running project 
included in this thesis. I actually started working on it as a master’s thesis project and didn’t 
publish it until the later stages of the PhD. Most of the initial identification and 
characterization of the transcript itself went very quickly and even the analysis concerning 
the TP53-mediated control over transcription was straightforward. The functional 
characterization, on the other hand, was much more time consuming. I felt that there were 
two things that caused a lot of difficulty. One was that we were often plagued by was the 
lack of an experimental method that could efficiently measure the expression of 
lncTAM34a in some of the experimental systems we used. Although lncTAM34a is 
expressed at a reasonable level in many TP53 wild-type systems, the levels are almost non-
existent in TP53 null cell lines. This meant that, when working in the TP53 null systems 
where lncTAM34a was overexpressed, we were continuously trying to measure extremely 
minute levels of lncTAM34a in our controls. This led to us working very close to the Q-
PCR detection limit and made each experiment extremely sensitive to small deviations of 
the protocol. At one point we tried to utilize digital PCR to address this problem and, 
although it did not work well for this issue specifically, it did confirm that our control cells 
were averaging much less than one lncTAM34a transcript per cell. It was necessary for us 
to set strict quality control guidelines for the Q-PCR experiments and they were often 
repeated additional times to gain more confidence in our results. 
 
This missing link. The second aspect of the project that made deducing lncTAM34a 
function difficult was the “missing link”, i.e. the details concerning the mechanism by 
which lncTAM34a functions. I would estimate that some 50% of the time that the project 
was ongoing we were focused on identifying the mechanism that lncTAM34a used to 
regulate miR34a expression. We already knew that lncTAM34a positively regulated 
miR34a expression and, as well, that it was mediated through polymerase II recruitment. 
Despite this, we didn’t know the details of how this was occurring. Was lncTAM34a 
binding directly to the DNA and recruiting polymerase II? Was it acting as a scaffold that 
enabled the binding of other transcription factors that in turn recruited polymerase II? Were 
we dealing with some new and yet unreported mechanism by which lncRNAs can regulate 
gene transcription? This felt like the golden key to unlock the rest of the mystery and 
complete the story and I remained very determined to find it for a very long time. 
Nevertheless, despite lots of time, money, and bloodshed we never did manage to discover 
these details. Mostly this was due to both various technical difficulties and a lack of a more 
high throughput analysis that we had faith in to help resolve the question. I firmly believe 
that discovering this missing link would have shed light on a lot of the “head scratchers” we 
had experienced during the project. One criticism of some of the results might be the 
relatively small effect size that is seen in some of the experiments. This can be explained in 
several ways. One would be that lncTAM34a is primarily important when the cell is 
encountering stress and, therefore, in all cases where we did not induce stress, the effects of 
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lncTAM34a modulation on miR34a are minimal. Another possibility is that lncTAM34a is 
a fine-tuning regulator and that its role is primarily to serve as one of several factors that 
regulate the strength of the miR34a response. Another explanation would be that the factors 
that allow lncTAM34a to regulate miR34a expression are not present, or not induced, in 
those systems where we overexpress lncTAM34a and thus create a bottleneck. Having 
discovered the mechanism by which lncTAM34a functions would not only have allowed us 
to provide a more complete account for this lncRNA but also helped us to understand more 
about our other observations and potentially, establish better systems to examine the 
function of lncTAM34a in future experiments. 
 

5.3 PAPER III: Unsupervised cell interaction profiling based on multiplet RNA 
sequencing reveals major architectural differences between small 
intestinal and colonic epithelium 

 
Need for speed. Since this project is still, to some extent, underway, I don’t have as much 
benefit of hindsight as I do with the other projects and it is somewhat harder to reflect on it 
in the same way. Despite this, I do think that there are a few interesting things that haven’t 
really found their place in any of the text that would be worthwhile to bring up. One thing 
about CIM-seq that will not be apparent to anyone reading the paper is that it takes some 
time to run. Despite having worked extensively to improve the algorithms efficiency, to the 
best of our abilities, it still borderlines on reasonably slow. How slow? Well, run times are 
strongly dependent on the input parameters. The number of classes and features, the 
number of synthetic multiplets and permitted optimization iterations, as well as, the number 
of multiplets to deconvolute all affect runtimes. I routinely ran all of our deconvolutions on 
the Uppmax supercomputer at Uppsala University and would utilize around 100 cores per 
run. Under these circumstances, all analyses completed in less than 24 hours but that 
doesn’t really help the guy who wants to run CIM-seq on his Macbook Pro. One of the post 
publication project goals is to work further, perhaps in collaboration, to find additional 
ways to reduce the algorithms speed and make it more accessible to a wider variety of 
users. 
 
Why empirical? One of the reasons that the algorithm takes so much time is that the cost 
function that is optimized during the deconvolution is fairly computationally complex. This 
is due to the fact that we empirically model the multiplet values using the blueprint, formed 
by the singlets, in order to estimate the fraction of contribution for each possible cell type. 
There are theoretically much easier, and faster, ways to do this and, in fact, we have 
experimented with multiple cost functions over the course of CIM-seqs development. One 
of the early cost functions used the mean gene expression of each cell type defined in the 
blueprint. After adjusting these mean gene expression values for each cell type using the 
candidate solution and calculating the mean for each gene, we calculated the sum of 
differences between these values and the real multiplet gene expression values. This sum of 
differences was the cost that was being minimized by the particle swarm optimization 
algorithm. This was blazing fast and performed fairly well with the sorted cell line 
multiplets but we ultimately found that it was not sufficient when utilized in a complex 
tissue. This led us to the conclusion that, instead of trying to find a better metric that would 
apply well to all genes, it would be better to empirically model the multiplets using the 
singlet gene expression values. This led to the current cost calculation that was found to 
perform much better in real world applications but had a larger time penalty. 
 
Cell types, states, and trajectories. During the development of CIM-seq there was one 
consideration that arose repeatedly and it took us some time to settle how we wanted to deal 
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with it. CIM-seq is developed in such a way that it requires discrete cell types to be 
classified before the deconvolution can take place and this has both pros and cons 
associated with it. Humans tend to like to classify things into individual categories in order 
to simplify problems but this is often at the expense of appreciating the complex reality of 
the situation. Cell types have traditionally been viewed as discrete entities although; in part 
by the advent of scRNAseq, this viewpoint is being questioned more and more often. It has 
in fact been argued that cell identity exists on a manifold where some paths are more easily 
traveled than others but all space on the manifold can theoretically be occupied. In this 
case, different end-states could be viewed as discrete entities but cell types as a whole are 
connected to each other via continuous trajectory gradients. In many tissues where CIM-seq 
could be utilized, we would expect to find a mix of both discrete end-points (i.e. cell types) 
and continuous trajectories (i.e. differentiating cells or cell states) and therefore, classifying 
all of these as discrete cell types is sub-optimal. During the deconvolution stage, the 
fractional contribution vector is the length of the number of cell types in the blueprint and, 
hence, we constrain the problems solution into a discrete space when, in fact, some of the 
discrete variables may be better represented simultaneously as a continuous process. One 
possible solution to this would be, to not use the classification in the deconvolution but 
instead consider each singlet as an individual cell type and then, post-deconvolution, 
determine which class, or where on the cell type manifold, that cell is. Although this may 
better match the present view concerning how cell types exist on a manifold, it is currently 
infeasible due to the computational complexity of the problem and the difficulty of 
interpretation of the output by the user. In practice we believe that these considerations will 
not have a drastic effect on the interpretation of the results and, in addition, feel as though 
the current algorithm makes reasonable compromises between theoretical accuracy and 
enabling user interpretation. 
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6 CONCLUDING REMARKS 
 
Despite the widespread use of dimensionality reduction algorithms, their output is typically 
solely judged on a subjective basis via visualization. In Paper I we develop 
ClusterSignificance, a method and software that facilitates the analysis of statistical 
significance of class separations in dimensionality reduced data. We subsequently utilize 
ClusterSignificance to identify a role for lncRNAs in the identity of multiple hematological 
malignancies. 
 
miR34a is a well characterized tumor suppressor that is a direct downstream target of TP53 
and a master regulator of tumor suppression. The anti-tumor effects of increased miR34a 
expression are so widespread and ubiquitous that it is one of the very few miRNA that have 
been involved in clinical trials via miRNA replacement therapy. miR34a has been seen to 
be dysregulated in a multitude of tumor types both hematological and solid in nature, 
although the underlying mechanisms causing this are largely uninvestigated. In order to 
gain a deeper understanding of mechanisms that regulate miR34a, Paper II characterizes 
lncTAM34a, a lncRNA located in the antisense orientation to miR34a. Our results indicate 
that lncTAM34a positively regulates miR34a transcriptionally via recruitment of 
polymerase II. Our results further indicate that this regulation is especially crucial in 
contexts of cellular stress such as those routinely experienced during tumor development. 
 
scRNA-seq has provided an unprecedented insight into the myriad of cell types present in 
various multicellular organisms. Efforts such as The Human Cell Atlas (Regev et al., 2018) 
will surely uncover additional levels and complexity while providing a broad overview of 
cell identity. Despite this high-resolution glimpse at the manifold on which cell types can 
exist, it remains challenging to attribute functions to these as they are discovered. In Paper 
III we develop CIM-seq, a high throughput hypothesis-free method to profile cell-cell 
interactions. Analysis of the scRNAseq data from mouse colonic crypts identified two 
novel goblet cell subsets with specific expression of the Plet1 gene. Subsequent utilization 
of CIM-seq to profile cell-cell interactions in the colonic crypts identified a previously 
unknown interaction in the stem cell niche between stem cells and Plet1+ goblet cells with 
further investigation indicating the potential role of these goblet cells in the maintenance of 
tissue architecture. In summary, CIM-seq is a widely applicable method facilitating high 
throughput cell-cell interaction profiling and is currently the only method that can relate 
cell-cell interactions to specific changes in gene expression without a previous hypothesis. 
 
Despite the fact that, in the scope of this work, CIM-seq is not utilized to examine cell-cell 
interactions in tumors or the tumor microenvironment, hopefully the development and 
characterization of the algorithm completed thus far will aid in such analyses at a future 
time. 
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