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ABSTRACT 
The main aim of this thesis was to investigate the genome-wide DNA methylation in tissues 
associated with the immunopathogenesis of two autoimmune diseases, Rheumatoid Arthritis 
(RA) and Multiple Sclerosis (MS), as well as smoking-associated methylome patterns in the 
lung. 

In Study I, we investigated the methylome of two sets of monozygotic twin pairs, representing 
two phases of anti citrulline protein antibody (ACPA)-positive RA disease development. The 
first set included five MZ twin pairs discordant for APCA at risk for developing RA, and the 
second set included seven pairs discordant for ACPA-positive RA. A differentially methylated 
region associated with a protocadherin (PCDH) gene proposes a temporal epigenetic 
connection in the progression from ACPA-positivity to clinical RA. 

In Study II, we investigated the impact of tobacco smoking on bronchoalveolar lavage (BAL), 
which mainly consists of tissue-resident alveolar macrophages. We combined methylome and 
transcriptome data from BAL cells from healthy individuals and provide novel smoking-
associated signatures converging to genes involved in migration, signaling and inflammatory 
response of immune cells. Of note, many of the sites in the smoking-associated methylome 
signature map to enhancer regions. Our findings propose that the epigenetic landscape of BAL 
cells is modified in smokers, and that it may involve active demethylation resulting in induced 
immune-related activities in the lung.  

Despite strong evidence that cigarette smoking is a risk factor for MS, little research has 
focused on smoking-associated changes in the lung of MS patients. In Study III, we show that 
smoking in MS patients resulted in subtle alterations in their methylome related to neuronal 
processes. Additionally, non-smoking MS patients displayed very discrete changes in 
transcriptional and translational processes and enhanced cellular motility, supporting findings 
on lung involvement in the pathogenesis of MS-like disease in animal studies. 

In conclusion, we demonstrate a non-genetically linked temporal epigenetic connection 
between ACPA-positivity and clinical RA that may be of interest in future studies. We reveal 
smoking-associated changes in the epigenetic landscape of BAL cells, and increased activity 
of immune-related processes in the lung, possibly involving active demethylation. We also 
present new insights into the impact of cigarette smoking on pulmonary inflammation in the 
immunopathogenesis of MS. 
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1 INTRODUCTION 
1.1 EPIGENETICS 

With a few exceptions, all cells of one individual carry the same genetic code. When cells 
divide and grow, they express different genes leading to differentiated cell types. The term 
epigenetics refers to mechanisms that can regulate gene expression without involving changes 
to the DNA sequence. Epigenetic alteration is a natural occurrence and essential when cells 
regulate biological phenomena such as cell differentiation, embryogenesis, genomic 
imprinting, and X-chromosome inactivation. Cellular differentiation and cancer are well-
described examples where epigenetic changes occur (1, 2). 

The main molecular mechanisms of epigenetics include DNA methylation, histone 
modifications, and non-coding RNAs. According to the early definitions, epigenetic changes 
were described as heritable through cell divisions (3), but according to that definition, this 
would strictly viewed only include DNA methylation. More recent definitions have 
progressively relaxed the heritability criteria, since the mitotic and meiotic stability of some 
histone modifications and non-coding RNAs remain unclear, yet still are epigenetic marks that 
influence how the genome is interpreted (4-6).  

Epigenetic mechanisms direct gene programs and are affected by external and internal 
influences. In the event of disease, epigenetic deregulation can cause cells to behave and 
respond abnormally. In this context, environmental factors such as pollution, silica dust and 
smoking, can alter gene activity and thereby contribute to pathogenesis (7, 8). The studies 
included in this thesis focus on DNA methylation in health and disease states, which is further 
described in upcoming sections. 

1.2 HISTONE MODIFICATIONS 

Chromatin is a complex of DNA and nuclear proteins called histones (9, 10). Chromatin exists 
as open euchromatin accessible for transcription, and as highly condensed heterochromatin that 
is inaccessible and rarely transcribed. Briefly, DNA is wrapped tightly around eight histones, 
and the structure of chromatin and accessibility of DNA for gene transcription is largely 
controlled by these histone proteins (Figure 1). Histone-DNA interactions are influenced by 
post-translational modifications (PTM), including some that promote euchromatin by 
disturbing these interactions, and others that strengthen the interactions and promote 
heterochromatin. Histone modifications can thereby change the structure of chromatin and 
regulate gene activity (11). 

1.3 DNA METHYLATION AND THE DEMETHYLATION PATHWAY 

In mammals, DNA methylation refers to the covalent addition of a methyl group to the 5-
position of cytosine (5mC) by DNA methyltransferases (DNMTs), preferentially in the context 
of a CpG dinucleotide. DNA methylation is among the most and best studied epigenetic 
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mechanisms and depending on the genomic location, it can correlate with both gene activation 
and repression (2).  

 

Figure 1: Epigenetic modifications of chromatin. Illustration of DNA methylation marks 5mC 
and 5hmC at CpG sites along the DNA strand, and histone modifications (methylation (Me) 
acetylation (Ac). 

DNA demethylation can occur by two conceptually different pathways, passive and active 
demethylation (12). Passive DNA demethylation occurs in the context of DNA replication, 
when maintenance methyltransferases are inactive. This passive process results in 
unmethylated cytosine on the newly synthesized strand, and a dilution of the methylation 
signal. Active DNA demethylation is replication-independent and involves sequential 
oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) (13) and further, to 5-formyl- (5fC), 
and eventually to 5-carboxycytosine (5caC) (14, 15), by the ten eleven translocation (TET) 
family of enzymes (Figure 2). This is followed by subsequent thymine DNA glycosylase 
(TDG) action and base excision repair with reinsertion of an un-methylated cytosine. This 
reaction has recently attracted much attention, and may be positively or negatively associated 
with a cellular environment of oxidative stress, depending on context (16, 17), and may affect 
methylation states, e.g. in the lung (18).  
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Figure 2: DNA demethylation pathway. Active DNA demethylation is replication-independent 
and involves sequential oxidation of 5mC by TET enzymes. 

Hydroxymethylated cytosine (5hmC) is, however, not only an intermediary step of active 
demethylation, but has also been shown as a stable modification with environmental sensory 
and possible gene regulatory properties (19, 20), and indeed it functions as a recruitment mark 
in its own right for transcription factors and gene regulation (21, 22).  

Previous studies have demonstrated a genome-wide presence of DNA methylation in a CpG 
context along gene bodies, other gene-related regions, as well as intergenic regions (1). While 
the majority of the dinucleotide CpGs are methylated, CpG islands (CGIs) are mainly 
unmethylated (1, 23). On average, CGIs are 1000 base pairs long and harbor an increased 
composition of C+G bases and show little CpG depletion, in contrast to other regions 
throughout the genome. Their location can be proximal to transcription start site (TSS), 
intragenically along gene bodies, or in intergenic regions between annotated genes (23). Of 
note, about 70% of annotated gene promoters have been linked to a CGI (24).  
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Figure 3: Features in relation to CpG islands and genes. CpG island-related features: 
Northern (N) and southern (S) shelves and shores surrounding a CpG island. Gene-related 
features including TSS1500, TSS200 (transcription start site), 5’UTR and 3’UTR (untranslated 
region), and 1st Exon and gene body.  

Epigenetic modifications such as DNA methylation have received increased attention when 
studying pathogenesis of human disease, and analysis methods have advanced in both scale 
and resolution. In this way, the epigenome can be screened for biomarkers of e.g. disease risk 
or environmental exposure, and further investigated since epigenetic modifications may 
mediate environmental or genetic risk factors (25). Epigenetic modifications have been well 
described in cancer, but more recently, their role in common disease has also been investigated 
(26-30). 

1.4 PULMONARY IMMUNOLOGY 

The lung is a gas-exchange organ that provides all tissues of the human body with oxygen, 
while also removing carbon dioxide from the blood. It is organized into the upper and lower 
airways, with the upper airways located where the respiratory tract and digestive system cross. 
The lower airways (Figure 4) is a highly branched unit consisting of the trachea, and the bronchi 
dividing into bronchioles that eventually terminates as alveolar ducts. The lung epithelium and 
mucosal surface together with related immune cells serve as a physical barrier to the 
environment, and a first defense against airborne particles and pathogens. As a way to 
coordinate pulmonary innate immunity, epithelial cells direct a complex cross-talk between 
alveolar macrophages, T lymphocytes, and dendritic cells, which is required for a well-
functioning lung (31).  
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Figure 4: Lower respiratory tract. Illustration of the highly branched unit including the 
trachea, bronchi, and bronchioles that terminates as alveolar ducts 

1.4.1 Alveolar Macrophages 

Macrophages are a type of immune cells that exhibit plasticity by adapting to their surrounding 
microenvironment and in response to environmental cues. Their primary role is to ingest and 
kill invading pathogens, and to maintain healthy tissue by clearing dead host cells and debris 
(32, 33). Depending on their location and function, macrophages are divided into distinct 
subpopulations (32, 33). At least two populations of macrophages are recognized in the lung at 
homeostasis (34). The interstitial macrophages populate the interalveolar space where they e.g. 
present antigens, regulate dendritic cell maturation and migration, and aid in maintenance and 
tissue remodeling (34, 35). The other population is alveolar macrophages, which reside in the 
lumen of alveoli and are directly exposed to the environment. Alveolar macrophages are tissue-
resident macrophages with phagocytic capacity, and responsible for clearance of debris, 
microbes, and inhaled substances such as particles in the lung (34). They are also important for 
structural integrity since they catabolize the pulmonary surfactant lining the alveolar surface, 
and thereby prevent alveolar collapse (36-38). 

Most tissue-resident macrophages derive from embryonic precursors with different origins, 
namely the yolk-sac, bone marrow, and fetal liver (39, 40). A recent study of lung macrophages 
in mice describes three lineages of macrophages, all developmentally distinct and expressing 
different markers (38). The first lineage populates the peripheral and perivascular regions as 
primitive interstitial macrophages, and are derived from yolk sac hematopoietic cells. The 
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second population occupies the interstitium and become alveolar macrophages. The third 
lineage are derived from bone marrow, spread diffusely around in the lung parenchym, and 
become interstitial macrophages. The origin of alveolar macrophages remained elusive for a 
long time, but was recently described as cells that derive from fetal monocytes during lung 
development, and self-maintain as mature cells (41). However, it is still unclear how alveolar 
macrophages replenish during conditions disturbing homeostasis. When alveolar macrophages 
are depleted by e.g. lung transplantation, irradiation, or toxins, they may be replenished through 
progenitor cells from the circulation, possibly from one of the lineages (38, 42-45).  

1.5 CIGARETTE SMOKING 

Tobacco smoking with subsequent inhalation of harmful chemicals has long been known to 
impose serious health issues, yet it is still common and remains a global health challenge. The 
composition of cigarette smoke is complex and contains over 6000 chemicals, such as carbon 
monoxide, cadmium, nicotine, and oxidative agents (46). Many of them will reach the lower 
airways where they can influence the respiratory system and disturb lung homeostasis. Smoke 
exposure can thereby have a devastating impact on the body, both through local pro-
inflammatory and oxidative responses in the lung, and by exerting systemic effects (7). 

1.5.1 Smoking and Autoimmune Disease 

Tobacco smoking or smoke exposure increases the risk of developing several diseases, such as 
chronic obstructive pulmonary disease (COPD), cardiovascular disease, asthma, and multiple 
types of cancer (47, 48). It is also an established risk factor for several autoimmune disorders, 
particularly RA and MS, with a recognized interaction between HLA genes and environmental 
factors (49-52). The leading hypothesis is that RA and MS have part of their etiological basis 
in the lungs and that risk and severity is exacerbated by smoking and exposure to other noxious 
airway exposures. The exact events and triggers involved are likely dependent on disease, but 
early inflammation due to smoke may be important during pathogenesis of many autoimmune 
diseases. Furthermore, the triggers likely vary from person to person, further adding to the 
complexity of autoimmune etiology. Smoking and the accompanying inflammation of the lung 
epithelium and subsequent production of autoantibodies represents the first step in a process 
that first may cause lung problems and subsequently severe disease in other organs such as 
joints (RA) and brain (MS). 

1.5.2 Smoking and DNA methylation 

It is well known that cigarette smoke has a devastating impact on health, and that mucosal 
tissues can contribute to autoimmune diseases. Smoking is associated with an increased risk of 
disease in both MS and RA, particularly in genetically susceptible individuals (51, 52). 
However, it is unclear how the epigenome of lung compartments is affected and relates to 
pathogenesis. Studying the epigenome is highly relevant, since it integrates signals from genes 
and the environment, and thereby shapes the transcriptome. 
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Epigenetic modifications may partly mediate effects of cigarette smoke through alterations in 
DNA methylation, which may induce transcriptional changes and contribute to smoking-
associated disease. With the introduction of genome-wide DNA methylation arrays, smoking-
associated signatures in blood cells from adults has been extensively studied (53-55). Cord 
blood and blood obtained from newborns whose mothers smoked during pregnancy also show 
pronounced smoking-associated effects (56, 57).  

1.6 AUTOIMMUNE DISEASE 
The immune system is a complex network of cells, tissues, and organs that function together 
to prevent infection. In autoimmune diseases, the body’s own immune system mistakenly 
identify own antigens as foreign invaders and starts to attack self-tissue. In predisposed 
individuals, a reduced self-tolerance could more easily lead to this immune dysregulation and 
thereby initiation of autoimmune disease (58). 

Pathogenesis of autoimmune diseases is a complex matter, and often involves an interaction 
between susceptibility genes and the environment (7, 8, 49-52). This gene-environment 
interaction can further be mediated by epigenetic modifications of the genome, and 
environmental factors can provoke altered epigenetic states. Alterations in DNA methylation 
patterns has been reported for the development of a range of prevalent autoimmune diseases, 
such as Sjögren’s syndrome, systemic lupus erythematous (SLE), multiple sclerosis (MS) and 
rheumatoid arthritis (RA) (59-62).  

1.7 MULTIPLE SCLEROSIS 

1.7.1 Prevalence and Incidence 

MS manifests as a chronic inflammatory disease affecting the central nervous system (CNS) 
leading to neurological defects and disability. A hallmark of MS is the destruction of myelin 
producing cells (oligodendrocytes) and demyelination of neurons in the central nervous system, 
leading to destabilization of the myelin sheath and subsequent axonal damage (63). 

MS affects millions of people worldwide, but the distribution of affected individuals is 
asymmetrical, with high prevalence at northern latitudes such as northern Europe and America 
(64). In Sweden, the prevalence is 0.2% and females are affected more than twice as often as 
men (65). 

1.7.2 Etiology 

The cause of MS is still unknown, but several factors are known to contribute to MS 
susceptibility. It is likely that the disease develops through an interplay of several factors such 
as genes, environment and epigenome. 

1.7.3 Genetic Risk Factors of MS 

Genetic factors has been established in studies looking at familial aggregation, and later when 
detecting an increased risk of MS when comparing monozygotic twin concordant rates to 
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dizygotic twin concordant rates (66). Many immunologically relevant genes are associated with 
MS, the strongest being the HLA-DRB1*1501 which increases the risk of developing disease 
(67), but also HLA-A*0201, a protective Class I allele that decreases the risk (68). In a large 
international study, over 100 non-HLA risk susceptibility variants were identified, further 
confirming the polygenic nature of MS pathobiology (69). 

1.7.4 Environmental Risk Factors of MS 

As mentioned earlier, environmental factors contribute to MS etiology. The geographical 
location is important but the reason behind this effect is unclear. Some location based theories 
include the ‘hygiene hypothesis’ and sun exposure, with a possible connection to vitamin D 
(70, 71). Other non-geographical environmental factors include early-life obesity, infection, 
and cigarette smoking (72-74). 

1.7.5 Smoking and Citrullination in MS Pathogenesis 

Cigarette smoking increases the risk of developing MS, and high cigarette usage cumulatively 
increases the risk further (74). Just as in RA, citrullination has been shown to play a role the 
pathogenesis of MS, and this is of interest in MS since smoking promotes citrullination and 
disequilibrium in the lung mucosa. Even though the mechanisms behind the smoking-
associated impact in MS pathogenesis is unknown, inflammation and irritation from smoke 
exposure has been described as contributors (75). Whether citrullination induces auto-reactivity 
by activation of T cells is unclear, but could also be a consequence of the inflammatory 
response (76). The role of lung mucosa and associated cells in MS needs further exploration. 

PAD4 is predominantly expressed in neutrophils and eosinophils, while PAD2 is expressed in 
a wide range of tissues (77). Both of these PAD enzymes are expressed in the brain, and PAD2 
targets a constituent of the myelin sheath, the myelin basic protein (MBP). High levels of 
citrullination has previously been reported in white matter of MS patients compared to controls, 
and especially in areas of ongoing demyelination (78, 79). The MBP protein is known for its 
importance when inducing experimental autoimmune encephalomyelitis (EAE), an animal 
model for MS (80). Importantly, there is a growing body of evidence in the EAE model, that 
the lung is a priming site for immune cells prime before the infiltrate the CNS (81-84).  

1.7.6 DNA Methylation and MS 

Epigenetic modifications, such as DNA methylation, have been proposed to mediate 
interactions between genetic and environmental risk factors of autoimmune disease. In MS, it 
was recently demonstrated that DNA methylation is a potential mediator of genetic risk by 
HLA-DRB1*15:01 variant in MS through changes in HLA-DRB1 gene expression (85). In a 
recent study on the association between smoking and the risk of developing MS, smoking was 
shown to affect DNA methylation in peripheral blood cells, and that an exposure-response 
relationship exists (86). 
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1.8 RHEUMATOID ARTHRITIS 

1.8.1 Prevalence and Incidence 
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation in 
synovial joints, leading to functional disabilities, and comorbidities such as cardiovascular 
disease and osteoporosis (87, 88). The prevalence is about 0.5-1% in developed countries and 
is 2-3 times as frequent among women (89).  

1.8.2 Anti-Citrullinated Protein Antibodies 

The disease can be divided into two subgroups, defined by the presence or absence of anti-
citrullinated protein antibodies (ACPAs). These autoantibodies target peptides containing the 
amino-acid citrulline. ACPA is an important early classification biomarker and can be detected 
in approximately 70% of RA patients and has a very high specificity (94-98%) for the disease. 
Presence of ACPA is also associated with a worse prognosis, including a more aggressive 
disease course and more severe joint destruction (90). It was recently shown that ACPA 
induced activation of synovial fibroblasts and osteoclasts, suggesting an important role of 
ACPAs in RA pathogenesis (91, 92). 

1.8.3 Etiology  

Although the etiology of RA is unclear, studies demonstrate that ACPA can be present in sera 
many years before disease onset, before clinical joint manifestations (93). Triggering of 
immune reactions that lead to production of ACPAs is therefore suggested to originate distant 
from the joints, at mucosal surfaces such as gum, gastrointestinal tract and lungs (93).  

1.8.4 Genetic Risk Factors of RA 

Twin studies have shown that genetic factors play an important role in RA pathogenesis, 
contributing to about 40-60% of the risk (94, 95). The strongest genetic risk factor, HLA-
DRB1, is a locus that codes for a region of the HLA class II molecules. There are several alleles 
of HLA-DRB1 (DRB1*0401, *0404, *01) and they all share a highly similar amino acid 
sequence, termed the “shared epitope”. This sequence codes for the peptide binding part of 
HLA II and is likely important for antigen presentation capabilities and relevant in RA 
pathogenesis (96). 

1.8.5 ACPA-positive RA and Citrullination  

Posttranslational modifications (PTMs) such as glycosylation, phosphorylation, citrullination, 
and carbamylation are common biological processes that have critical impact on the structure 
and functionality of a protein. As previously mentioned, ACPA target citrullinated epitopes. 
These epitopes are created through an enzymatic process called citrullination, where 
peptidylarginine deiminases (PAD) enzymes catalyze the conversion of an arginine residue 
into citrulline. This is a physiological process and occurs in various tissues in both health and 
disease (97). In RA, both smokers and ACPA-positive RA non-smokers have an increased 
presence of citrullinated proteins in the lungs (98). Since any inflammation can induce 



10 

citrullination, the citrullinated peptides themselves may not be enough to trigger an 
autoimmune response. However, the recognition and tolerance towards citrullinated peptides 
might be lost, either due to an increase in citrullination or through susceptibility genes, or 
possibly a combination of them both. 

1.8.6 Environmental Exposure 
One of the prevailing hypothesis when it comes to the pathogenesis of ACPA-positive RA, is 
that initial citrullination and ACPA-formation may occur in mucosal surfaces such as the lungs 
promoting systemic autoantibody production and subsequent arthritis development (99, 100). 
Environmental factors such as silica dust, cigarette smoke, and other irritants activate the innate 
immune system by local inflammation, and thereby induces the conversion of arginine to 
citrulline through PAD enzyme activity. Antigen-presenting cells can then present these 
citrullinated peptides by loading them onto MHC II molecules (101). Subsequent activation of 
auto-reactive T and B cells leads to the production of ACPAs by plasma cells, which further 
can enter the blood stream without resulting in any clinical symptoms (99, 102). Increased 
concentrations of ACPAs have been found in the lung compartment of individuals at risk of 
developing RA as well as untreated newly diagnosed RA patients (98). Further, inflammation 
and inducible bronchus-associated lymphoid tissue (iBALT) structures have been found in lung 
biopsies of untreated ACPA-positive individuals with early RA but no associated lung disease 
(99). The hypothesis of ACPAs importance in the pathogenesis of ACPA-positive RA is 
strengthened by the fact that the lungs and joints share common citrullinated targets (103, 104). 

1.8.7 Smoking and PAD Enzyme Activity 

As mentioned, tobacco smoking is strongly linked to risk of disease and to disease phenotype 
of ACPA-positive RA, further suggesting that the initial autoimmune responses could be 
initiated at a mucosal site, such as the lungs (105-107). In fact, more than 20% of all RA, and 
33% of the more severe joint destructive disease, ACPA-positive form of RA is attributed to 
smoking (49). In addition, the gene-environment interaction is strong, with smoking and having 
the “shared epitope”, increasing the risk (21-f(108)old) of developing ACPA-positive RA 
(109). The pathogenesis appears to partly involve citrullination, either by smoking or other air 
pollutants. 

PAD enzymes are expressed in many different tissues and includes five different isoforms, 
where PAD2 and PAD4 specifically has been associated to RA and other autoimmune diseases 
such as MS (77). In RA, PAD2 and PAD4 are the only isotypes expressed in the synovium of 
RA patients (110). In the lungs, healthy smokers also has an increased expression of PAD2. 
Smoking increases PAD2 enzyme expression and citrullination in BAL cells, but only PAD2 
expression in bronchial biopsies (111). However, identical citrullinated peptides are found in 
synovial and bronchial tissues, further supporting a lung-joint connection in RA pathogenesis 
(112). 
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1.8.8 DNA Methylation in RA 

Epigenome-wide analysis of ACPA-positive RA patients has shown that DNA methylation 
may mediate genetic risk for RA, and is located mainly in the MHC region (29). One of the 
identified CpGs was further reported to mediate an interaction between genotype and smoking 
status in the development of ACPA-positive RA (113). Also, DNA methylation clusters of 
variable methylated regions (VMRs) found inside MHC and other regions are associated with 
SNPs, and smoking-associated DNA methylation is 30-fold overrepresented in such clusters 
(114).  
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2 AIMS OF THE THESIS 
The overall aim of my thesis was to characterize genome-wide DNA methylation patterns in 
health and autoimmune disease, more specifically in tissues associated with 
immunopathogenesis of Rheumatoid Arthritis (RA) and Multiple Sclerosis (MS).  

The specific aims of the studies included were: 

Study I: To investigate DNA methylation associated with ACPA and the pathogenesis of 
ACPA-positive RA while nullifying genetic factors. 

Study II: To investigate the impact of cigarette smoke on the methylome and transcriptome 
on lung cells collected from bronchoalveolar lavage (BAL). 

Study III: To acquire knowledge for determining reactions associated with inflammation 
caused by smoke on lung cells and find specific effects in the lung tissue from 
patients with autoimmune disease. 

 

The expected outcomes are to acquire knowledge for determining reactions associated with 
inflammation caused by smoke on lung cells and find specific effects in the lung tissue from 
patients with autoimmune disease. 
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3 MATERIAL AND METHODS 
For a more detailed description of methodologies, see the Material and Methods section for 
each individual study.  

3.1 STUDY COHORTS AND SAMPLE COLLECTION 
Each individual gave their written consent for study participation, and all studies were approved 
by the Regional Ethical Review Board in Stockholm, Sweden.  

Two different cohorts were included in this thesis. In Study I, we included 24 twin pairs 
belonging to a population-based twin cohort (Twingene), which is part of the Swedish Twin 
Registry (115, 116). We obtained DNA from 5 healthy MZ twin pairs discordant for the 
presence of ACPA, and 7 MZ twin pairs discordant for ACPA-positive RA. Replication by 
pyrosequencing was performed on an additional 6 MZ twin pairs discordant for ACPA 
presence, and 6 MZ twin pairs discordant for ACPA-positive RA. ACPA presence was 
determined using CCP2 ELISA assays (Immunoscan CCPlus) according to manufacturer’s 
instructions. Twins participating in Study I donated blood at the clinic, and sera and whole 
blood were transported to Karolinska University Laboratory and then to KI Biobank.  

In Study II and Study III, we obtained BAL samples collected during bronchoscopy of healthy 
individuals and MS patients, as previously described (117). We only included individuals with 
no clinically relevant airway infection, and only those without asthma, lung diseases, COPD, 
or other inflammatory conditions. Individuals smoking >5 pack years (pack years = (cigarettes 
smoked per day / 20) x years of smoking), or at least 5 cigarettes/day, were defined as smokers. 
The non-smoking groups included individuals who had never smoked, or quit smoking >15 
years ago (one subject in Study III). All subjects have been included in a previously published 
study (118). 

3.2 DNA AND RNA EXTRACTION 
In Study I, extraction of DNA was performed using Puregene extraction kit (Gentra Systems), 
and extracted DNA was stored at -20°C (KI Biobank). Aliquots of sera was stored at -180 °C 
(KI Biobank).  

In Study II and Study III, BAL samples were centrifuged (400×g at 4°C, 10 min) in order to 
separate BAL cells from fluid. BAL fluid was immediately aliquoted and stored at -80°C, and 
cells were collected and resuspended in RPMI 1640 (no supplements). Extraction of DNA and 
RNA was performed with AllPrep DNA/RNA/miRNA Universal Kit (Qiagen) according to 
the manufacturer's protocol.  

3.3 EPIGENOME-WIDE ARRAYS 

A range of techniques have been developed for the purpose of investigating DNA methylation. 
In this thesis, two different array-based technologies were used for determining genome-wide 
DNA methylation as described in the following sections.  
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3.3.1 DNA Preparation and CHARM 

For Study I, DNA methylation was profiled using the “comprehensive high-throughput arrays 
for relative methylation” (CHARM) technology, covering 2.1 million CpG sites (119). First, 
DNA was prepared by shearing, McrBC-digestion, and gel separation before being labelled 
and hybridized to arrays according to protocol (120). ACPA-positive healthy discordant twins 
and ACPA-positive RA discordant twins were processed separately in two batches. All samples 
within each batch were processed together. Due to apparent batch effects, the two twin sets 
were not statistically compared. 

3.3.2 Bisulfite Treatment and EPIC 

In Study II and Study III we aimed to investigate 5mC and 5hmC as separate DNA 
modifications. Since conventional bisulfite treatment converts both 5mC and 5hmC, the 
readout will be a combination of both DNA modifications. DNA extracted from BAL cells was 
processed using the TrueMethyl conversion kit (Cambridge Epigenetix). This workflow allows 
investigation of conventional bisulfite-treated samples (BS, 5mC+5hmC), oxidative bisulfite-
treated samples (oxBS, 5mC), and the difference between them (5hmC). 

DNA methylome in Study II and Study III was profiled using the Infinium 
HumanMethylationEPIC BeadChip Kit (Illumina), which covers over 850,000 CpG sites of 
the human genome. The samples were sent to the National Genomics Infrastructure (NGI), 
Science for Life Laboratory at Uppsala University, where they were further processed. In order 
to reduce bias towards any group, samples were randomized according to age, gender, smoking 
status, and macrophage content. IDAT format files containing the raw intensities were used for 
subsequent array analysis. 

3.4 BIOINFORMATIC APPROACHES 

We performed bioinformatics analyses in all studies included in this thesis. The following 
sections briefly describe some of the methodologies used.  

3.4.1 Pre-processing and Analyses of CHARM Methylation Signals 

In Study I, we used the CHARM platform to study the DNA methylation pattern of two phases 
of disease progression in ACPA-positive RA. 

3.4.1.1 Pre-processing 

In order to access the performance of the CHARM arrays (Study I), we considered numerous 
quality controls according to CHARM Bioconductor package (121) including: the signal of 
background probes; the standard deviation of untreated channel signals; the difference between 
the medians of control and non-control probes; the probe quality for inclusion/exclusion of 
samples. Preprocessing and subsequent analyses of each twin set was performed separately due 
to the occurrence of batch effects. Sub-quantile normalization was used to normalize between 
samples. 
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3.4.1.2 Differential Methylation at Single Probes (DMPs) and Across Regions (DMR) 

A linear model, dmrFind from the CHARM Bioconductor package (121), was used for analysis 
of both differentially methylated probes (DMPs) and differentially methylated regions 
(DMRs). No individual probe was significantly differentially methylated at false discovery rate 
(FDR, Benjamini-Hochberg approach (122)) <0.2. Family-wise error rate (FWER) was 
computed for each region of differentially methylated consecutive probes (DMRs).  

For the cell type-specific profiles of DNA methylation we isolated CD4+ and CD8+ T 
lymphocytes, CD56+ NK cells, and neutrophils from peripheral blood from five healthy male 
individuals as previously described (123), followed by CHARM analysis as mentioned above. 
To estimate cell proportion in the MZ twin samples, we utilized a methodology for cell 
deconvolution originally developed for Infinium 450K array (124), and adapted it to CHARM 
arrays using cell type-specific methylation profiles. 

As a way to check if DMRs from ACPA-positive healthy discordant MZ twins were also 
candidate DMRs in ACPA-RA discordant MZ twins, we performed projection analysis by 
computing permuted p-values (125) using test statistics from the DMR finding. 

3.4.2 Pre-processing and Analyses of EPIC Methylation Signals 

In Study II and Study III, we generated DNA methylation datasets using the Infinium 
HumanMethylationEPIC BeadChip arrays (Illumina), which covers approximately 4% of all 
CpG dinucleotides of the human genome. In Study II, we investigated smoking-associated 
patterns of true 5mC and 5hmC in BAL cells from healthy individuals. In Study III we 
deciphered MS-associated changes to BAL cells in smokers and non-smokers, also by studying 
both 5mC and 5hmC.  

3.4.2.1 Pre-processing 

Raw data were imported as IDAT files, then processed using minfi (126, 127) and ChAMP 
(128) packages in the R environment. BS and oxBS-treated samples from the same individual 
were processed together and run on the same array. Normalization was done using stratified 
quantile normalization (SQN) from the minfi package, a normalization strategy that stratifies 
probes by region (e.g. CpG island, shores). 

3.4.2.2 Differential Methylation at Single Probes (DMPs) and across Regions (DMRs) 

DMP analyses on combined 5mC+5hmC and 5mC were performed on M-values transformed 
from β-values (M = log2(β/(1-β)) as recommended by Du et al. (129). Linear modelling 
(limma) with empirical Bayes was used to compute test statistics, with non-smokers as 
reference group and adjustment for covariates. A DMP was considered significantly 
differentially methylated with a p-value < 0.05 after multiple testing correction (FDR, 
Benjamini-Hochberg). In Study II, an additional methylation difference cutoff (15%) was used 
to investigate differences with high effect size. Before performing 5hmC DMP analysis (Study 
II and Study III), normalized oxBS β-values (5mC) were first subtracted from normalized 
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5mC+5hmC (BS methyl) β-values to calculate the hydroxymethyl level (Δβ) at each CpG. As 
above, limma with empirical Bayes was used when calculating test statistics.  

In Study II, we performed DMR analysis in addition to the DMP analysis by applying the 
DMRcate package (130) to profile differences between smokers and non-smokers. A linear 
model of methylation values was fitted at each probe and adjusted for covariates (sex, age). 
DMRs were considered significant with Stouffer-transformed p-values < 0.05 and mean 
absolute Δβ > 15%.  

3.5 VALIDATION AND REPLICATION BY BISULFITE PYROSEQUENCING 
Primers for Study I and Study II were designed using the PyroMark Assay Design 2.0 
software and optimized for best annealing temperature. PCR amplification was performed 
using the PyroMark PCR kit (Qiagen). The resulting PCR product was used with streptavidin 
Sepharose high performance beads (GE Healthcare), sequencing primers, and PyroMark Gold 
Q96 reagent kit (Qiagen), and sequenced on a PSQ 96 system (Qiagen). Signal peaks were 
analyzed using the PyroMark Q96 software. 

Bisulfite pyrosequencing was performed as both technical validation and replication in Study 
I. Technical validation was performed on the same samples used in the CHARM analyses, and 
the percentage of agreement between bisulfite pyrosequencing and CHARM results were 
computed. Next, a replication analysis was implemented by profiling a new set of individuals. 
Additionally, a meta-analysis was performed including bisulfite pyrosequencing data from 
both (unpaired) technical verification and the replication cohort. Two different methods were 
used for the meta-analysis and yielded similar results. One was based on p-values (“summation 
of p-value”-method (131)), and the other on effect size (132). 

In Study II, oxidative and conventional non-oxidative bisulfite pyrosequencing was performed 
to validate 5mC and 5hmC results from Infinium HumanMethylationEPIC BeadChip arrays 
(Illumina).  

3.6 TRANSCRIPTION FACTOR ANALYSIS 

In Study II we performed transcription factor analysis using eFORGE (experimentally derived 
Functional element Overlap analysis of ReGions from EWAS) (133) as a way to identify cell-
type specific signals and to investigate transcription factor motif associations.  As input, we 
used the top 1000 significant BS-DMPs and 5mC-DMPs, and all 67 significant 5hmC-DMPs. 
Each dataset was examined with enrichment analysis of DNase I hypersensitive sites (DHSs) 
and histone marks (H3K27me3, H3K36me3, H3K4me3, H3K9me3, and H3K4me1). 
Transcription factor motifs were linked back to a transcription factor gene list and further 
analyzed using PANTHER pathway analysis (134). 

3.7 RNA SEQUENCING 

Differential expression was investigated in both Study II and Study III. Briefly, RNA 
sequencing reads were quality filtered and trimmed for adapters using TrimGalore. The 
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Kallisto algorithm was used in order to pseudoalign the reads to a reference transcriptome 
(GENCODE v24 comprehensive transcript). Only samples with RIN value > 7 and genes with 
normalized read count > 10 were included for downstream analysis. Transcriptional differences 
were calculated using the DESeq2 package in the R environment, and adjusted for covariates 
sex and age. In Study II, genes with BH-adjusted (FDR) p-value < 0.05 and absolute log2 fold 
change > 1 were considered significant. In Study III, genes with a nominal (unadjusted) p-
value < 0.05 were considered suitable for gene ontology (GO) analysis.  

3.8 NETWORK ANALYSIS 

To gain insights into the biological relevance of differential methylation and expression in 
Study II and Study III, we performed gene ontology (GO) analyses using Ingenuity Pathway 
Analysis (IPA, Qiagen) and overrepresentation analysis (ORA, www.webgestalt.org) (135). IPA 
and ORA analyses were applied using unbiased parameters for all criteria. Right-tailed Fisher's 
exact test was used to calculate p-values, and a p-value < 0.05 was considered statistically 
significant. The REVIGO tool (136) was used when visualizing GO data. STRING database 
was used to generate networks with a minimum level of confidence > 0.4.  

3.9 STATISTICAL METHODS 

This section covers methods used for statistical analyses in Study I-III. All analyses were 
performed in the R environment unless stated otherwise. 

3.9.1 P-values 

A p-value is the observed significance level of data under the condition that the null hypothesis 
(H0) is true, representing the probability of getting the result or more extreme than your 
observed result. For example, a p-value of 0.05 would mean that there is a 5% chance of getting 
your observed result. If the p-value is below a set threshold, H0 is rejected in favor of the 
alternative hypothesis (H1). The significance level was set to <0.05 (*p < 0.05, **p < 0.01, 
***p < 0.001) if not stated otherwise. 

3.9.2 Wilcoxon Rank Sum Test 

Mann-Whitney U/Wilcoxon rank sum test is a nonparametric test to compare two unmatched 
groups. This statistical method was used in Study II when comparing distribution profiles 
related to genomic features and gene locations between smokers and non-smokers. 

3.9.3 Multiple Testing 

When performing multiple statistical tests, some will have p-values < 0.05 due to chance, even 
though all of the null hypotheses are true. This means that a fraction of the results yielded after 
multiple testing will be false positives. The goal when correcting for multiple comparisons is 
to reduce the number of false positives, but it also comes at the cost of an increased number of 
false negatives. 

http://www.webgestalt.org/
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In Study I-III, we used the Benjamini-Hochberg (BH) procedure to control the false discovery 
rate (FDR) of array and sequencing data. When the BH-adjusted p-value was smaller than the 
FDR, the test was considered significant. Multiple testing correction of DMRs in Study I was 
performed through bumphunter (137), which controls the family-wise error rate (FWER). The 
stricter Bonferroni correction, which also controls the FWER, was used when correcting for 
multiple testing in distribution analysis of β-values and in enrichment/depletion analysis.  

3.9.4 Linear Models 
In our analyses, we wanted to discover which features (CpGs or transcripts) were different 
between two groups. For this purpose we used the R package limma, deploying linear 
regression with the aim to model the relationship between a dependent variable and one or 
more independent variables.  

3.9.5 Wilcoxon Signed-Rank Test 

When analyzing feature-specific distribution analysis of β-values in Study II, we used 
Wilcoxon signed-rank test with multiple testing correction by the Bonferroni approach.  

3.9.6 Pearson and Spearman Correlation Coefficients 

Correlation analysis in Study II was calculated using Pearson correlation coefficient for 
normally distributed data, and Spearman correlation coefficient when not normally distributed.  

3.9.7 Chi-square 

In Study II, a Pearson’s Chi-squared test was performed on contingency tables of count data, 
and adjusted for multiple comparison using Bonferroni. 
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4 RESULTS AND DISCUSSION 
The studies included in this thesis cover genome-wide methylome and transcriptome analyses 
in tissues involved in Rheumatoid Arthritis and Multiple Sclerosis immunopathogenesis, as 
well as smoking-associated signatures. This section includes a short summary of the results and 
discussion from each study included in the thesis. The results of the individual studies are 
discussed more extensively in the respective paper or manuscript. 

4.1 STUDY I 

In this study, we explored the genome-wide DNA methylation using the CHARM platform, 
and describe differentially methylated regions (DMRs) of two groups of monozygotic twin 
pairs (Study I; Table 1). One set of twin pairs (5 pairs) were discordant for a generally presumed 
pre-stage of RA, i.e. healthy with high titer of anti-citrullinated peptide antibodies (ACPAs) vs. 
low ACPA titer, and the second group (7 pairs) was discordant for ACPA-positive RA vs. 
ACPA-negative healthy individuals. Raised ACPA titer, which indicates an abnormal 
immunity reaction taking place, can exist long before any clinical symptoms of RA are evident. 
The two discordant groups may thus serve as an epigenetic disease trajectory model 
representing different phases of disease development, without involving genetic confounding 
effects. 

We implemented a statistical method aimed at investigating genome-wide DNA methylation 
in a small number of samples, and by employing paired analyses of the genetically identical 
discordant MZ twins, we were able to neutralize any genetic influence while profiling 
epigenetic patterns. Since DNA was extracted from whole blood, we also applied a 
mathematical cell deconvolution algorithm adapted to CHARM that adjust for epigenetic 
alterations related to differences in cell type proportions. These DNA methylation patterns were 
only available after additional profiling DNA methylation patterns of physically sorted cell 
types on the CHARM platform. 

Analysis of the CHARM array data was conducted in two steps. First, the analysis was 
performed without including cell proportion profiles in the statistical model. The following 
results reflect changes from both the phenotype of interest, and differences in cell proportion. 
Since these results are not affected by possible errors introduced from statistical corrections, 
they were also used for technical validation.  

We identified 17 genome-wide significant DMRs (FWER <0.2) in the ACPA discordant twin 
pairs (pre-RA stage) after adjusting for cell type proportions. In the ACPA-positive RA 
discordant group, we found 36 DMRs where only one remained after cell type correction, 
suggesting that most differential methylation identified in whole blood from ACPA-positive 
RA patients are mainly due to altered cell distributions. Indeed, cell-specific analysis of ACPA-
positive RA vs. their ACPA-negative healthy siblings, identified neutrophils and CD4+ cells 
as the main drivers of the DMRs. A DMR identified in ACPA-positive healthy individuals 
remained after projection analysis to the discordant ACPA-positive RA twin pair set, 
suggesting that the DMR may be involved with onset of ACPA-positive RA. The DMR is 
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related to the protocadherin beta gene cluster, including important cell surface recognition 
factors (138) and may be of interest for hypothesis generation and further research.  

Notably, none of the DMRs overlapped with previously known genetically associated genes 
within the MHC region, suggesting a successful nullifying of genetic factors in our MZ twin 
study design.  

Besides the clinical relevance of the study, we proposed a novel and robust methodological 
framework adapted to identify changes in DNA methylation with high-specificity, reducing the 
number of false positives and problems of low sensitivity. In conclusion, our biostatistical 
methodology optimized for a low-sample twin design revealed differential methylation in non-
genetically linked genes associated with two distinct phases of RA development. 

4.2 STUDY II 
Tobacco smoking is a major health problem known to associate with development of multiple 
diseases including cancer and autoimmune disease. Smoke exposure can alter DNA integrity, 
leading to altered gene expression, partly through changes to the DNA methylome. In this study 
we analyzed smoking-associated changes in 5-methylcytosine (5mC) and its oxidized form 5-
hydroxymethylcytosine (5hmC) in alveolar macrophage-dense BAL cells from 14 smokers and 
21 non-smokers (Study II; Table 1). 

We profiled both the methylome and hydroxymethylome of BAL cells by using both 
conventional bisulfite-treated (BS) and oxidized bisulfite-treated samples in combination with 
the latest Illumina EPIC BeadChip. A large majority of identified smoking-associated BS 
(5mC+5hmC) methyl (1,639/1,667), 5mC (1,738/1,756), and 5hmC (67/67) DMPs have not 
previously been reported in alveolar macrophages (or BAL cells), neither in 27K (139) nor 
450K BeadChip (140). When compared to previously published results from 450K BeadChip 
analyses on alveolar macrophages, we could confirm 60% (18/30) of reported DMPs (140). 

Smoking-associated BS methyl DMPs were predominantly hypomethylated, a signature that 
was even more striking among 5mC DMPs. In contrast, the vast majority of 5hmC DMPs were 
hypermethylated, and thereby opposing the hypomethylated 5mC DMP signature. These 
findings support the hypothesis of a DNA demethylation process initiated by smoking-induced 
oxidative stress, with 5hmC as the first step of a sequential oxidation. Interestingly, oxidative 
stress can lead to 8-oxoG lesions on DNA (141), and it is tempting to speculate that smoking-
induced oxidative stress also introduce the discovered lesions. In this context, the OGG1 
protein which has affinity for the oxidized modification of guanine, is in turn required for TET1 
binding and initiation of the cytosine DNA demethylation pathway (142). This OGG1-TET1 
complex could thereby lead to hypomethylation of CpG sites in smokers. 

Notably, a strong enrichment of enhancer sites was identified among our DMPs (Study II: Fig. 
2d), especially in hypomethylated BS-DMPs and 5mC (from 3.3% of EPIC background probes 
to 18.1% and 20.1% respectively). What this enrichment means functionally remains to be 
investigated, but the enhancer landscape of tissue macrophages are dependent on the 
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surrounding microenvironment (143), and we show that DNA methylation at enhancer sites in 
alveolar macrophages is seemingly affected by cigarette smoke. Further, we used RNA-seq to 
investigate smoking-associated transcriptional changes in the BAL cells. We revealed a 
negative correlation between CpG site-specific DNA methylation and gene expression at both 
promoter regions and enhancer sites (Study II; Fig. 4a, Supplementary Table 10). It is already 
established that interaction between enhancers and promoters plays an essential role in 
regulating gene expression (144), but here we not only report that enhancer-associated DMPs 
are enriched in smokers, but also that they negatively correlate with gene expression. This 
substantially increases our knowledge of gene regulation by inflammatory processes in the 
lung.  

Pathway analysis revealed a strong overlap of biological processes (GO terms) in differentially 
expressed genes and DMP-annotated genes that converge to immune-related processes such as 
cell adhesion, migration, and leukocyte recruitment (Study II; Fig. 6a-b). The migratory profile 
may explain the increased amount of cells found in BAL of smokers.  

In conclusion, we report novel epigenetic biomarkers, relevant disease-associated genes and 
biological processes related to smoking, and thereby increase and refine the knowledge of the 
molecular mechanisms underlying the effect of smoking. Our findings suggest that tobacco 
smoking modifies the epigenetic landscape of alveolar macrophages (BAL cells), possibly 
involving a continuous active demethylation and subsequent increased activity of immune-
related processes in the lungs. 

4.3 STUDY III 

The work in Study III is an extension of Study II, providing an investigation of molecular 
changes occurring in pulmonary immune cells from MS patients. For this purpose, we profiled 
the methylome of BAL cells from 17 female MS patients (8 non-smokers, 9 smokers) and 22 
healthy individuals (HC; 12 non-smokers, 10 smokers) using the Infinium EPIC BeadChip. In 
addition, we investigated the transcriptomic profile of MS patients compared to healthy 
individuals. 

In order to statistically determine differential methylation and hydroxymethylation in BAL 
cells, we used a linear model with eBayes and adjusted for covarites (age, sex, macrophage 
content). The most noticeable changes were detected in relation to smoking, both in MS and 
HC. DMP analysis in MS patients revealed 1376 BS, 131 5mC, and four 5hmC-DMPs (BH-
Padj < 0.05) between smokers and non-smokers (Study III; Fig. 1, Table 2, Supplementary Table 
2). In healthy individuals, we identified 1821 BS, 234 5mC, and one 5hmC-DMPs smoking-
associated changes. No DMPs were significantly associated with MS compared to healthy 
individuals, neither in smokers nor non-smokers. Interestingly, only a fraction (~1/3) of the 
smoking-associated DMPs found in MS were also differentially methylated in healthy 
individuals. This difference may partly be due to our cohort characteristics (e.g. sample size), 
but may also represent distinct smoking-associated profiles between MS patients and healthy 
individuals.  
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To gain insight into the shared and distinct smoking-associated methylome profiles in MS 
patients and healthy individuals, we performed GO analyses on smoking-associated genes in 
MS (827 genes) and in healthy individuals (1036 genes). Enrichment analysis for Biological 
functions and Diseases revealed that the MS and HC profiles share most categories, including 
the top significant terms cytoskeleton rearrangement, immune cell trafficking, and cellular 
movement (Study III; Fig. 3a). Likewise, analysis of smoking-associated enrichment for 
Canonical Pathways in MS and HC revealed many shared processes, including integrin and 
actin cytoskeleton signaling (Study III; Fig. 3b). Further exploration of pathways that were 
specifically enriched in MS after smoking revealed a distinct neuronal signature, including 
synaptogenesis signaling as the most enriched process (Study III; Fig. 3c). This profile may 
appear strange for immune cells residing in the bronchoalveolar space, but might be highly 
relevant in other tissues. Systemic smoking-induced alterations in the methylome could 
potentially have functional consequences in specialized cells in other compartments. However, 
whether this smoking-associated neuronal signature is reflected in other tissue macrophages, 
blood monocytes, or other cells and tissues should be further explored. Notably, some of the 
BS-DMPs from our cohort overlapped with the smoking-associated profile in whole blood 
from MS patients (86), but with increased effect size in our study for the majority (9/13) of 
candidate BS-DMPs (unadjusted p-value < 0.05). Due to the limited sample size of our cohort 
we were unable to investigate whether MS disease modifies the effect of smoking in BAL cells 
by interacting with smoking load, as reported for whole blood (86). 

Motivated by the distinct smoking-associated profile of MS in BAL cells, and with 
accumulating evidence that the lung is involved in MS immunopathogenesis, we profiled the 
methylome and transcriptome of MS patients compared to healthy individuals. Neither DMPs 
nor transcripts passed significant threshold after correction for multiple testing. This could 
reflect a profile comprising only minor biological differences between MS patients and healthy 
individuals, but may also be a result of the undeniable lack of power due to our relatively small 
and heterogeneous cohort. However, subtle differences between MS and healthy controls 
(unadjusted p-value < 0.001) were detected in both the smoking and non-smoking group, and 
converged to cytoskeleton dynamics and cellular mobility, transcription, and neuronal 
processes (Study III, Fig. 4a). These changes support studies in EAE animals that demonstrate 
motility of circulating immune cells homing into lung tissue (81-84). Thus, our study may 
provide novel insights into MS pathogenesis, and support the hypothesis of a relationship 
between the CNS and inflammatory processes in the lung. 
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5 CONCLUSIONS AND FUTURE PERSPECTIVES 
The underlying theme in this thesis has been genome-wide investigation of DNA methylation 
patterns in patients with autoimmune disease and healthy individuals. We have utilized two 
different genome-wide methods to measure DNA methylation. The main conclusions are 
presented in the following sections. 

In Study I, we adapted a statistical framework to empower low-sample twin design and present 
non-genetically linked genes of relevance for development of ACPA-positive RA. These 
results should be of interest for further studies of epigenetic mechanisms influencing disease 
progression of RA. Our optimized statistical framework may also prove useful in twin studies. 
Since both RA (and MS) pathogenesis have genetic components, twin studies are important 
to nullify the confounding effect of different gene setups. Our study included a limited 
number of monozygotic twins, but with the adapted statistical framework, we aimed to 
minimize the number of false positives. 

In Study II, we report smoking-associated methylome and transcriptome signatures in 
alveolar macrophage-dense BAL cells from otherwise healthy patients. We thereby provide 
insights into the local impact of smoking-associated effects in the lung, which may be 
reflected systematically through peripheral immune functions. These findings may also be of 
relevance in the immune events leading up to disease. We reveal many new smoking-
associated methylation sites that especially map to regions not covered be previous 
epigenome-wide methodologies, but could also confirm previously reported differential 
methylation in alveolar macrophages. In addition, we present pathways that are affected and 
altered by smoke, along with associated gene activities.  

It would be interesting to further explore the DNA demethylation pathway in the context of 
cigarette smoking and oxidative stress, since we found an opposing effect of 5mC and 5hmC. 
The DNA demethylation process may be induced by oxidative stress caused by cigarette 
smoking, and the interactions and mechanisms involved may be relevant to investigate using 
in vitro models. 

The etiology and immunopathogenesis of MS remains elusive but involves multiple factors 
that increase the risk of developing disease. Individuals with genetic predisposition, and that 
are exposed to triggering environmental factors such as cigarette smoke, may initiate a cascade 
of immune system events that lead to demyelination of nerve cells. In Study III, we 
demonstrate that BAL cells from the lungs of MS patients display molecular patterns that are 
distinct to those from healthy individuals, both in smokers and non-smokers. Our findings 
support the hypothesis that there is a bidirectional autoimmune link between the lungs and 
CNS. These findings may contribute to the complex picture of MS disease pathogenesis, and 
highlight the importance of lifestyle factors in prevention and treatment of MS. It would be of 
interest to stratify MS patients into HLA-DRB1*15 carriers and non-carriers, since the 
combination of smoking and having the HLA-DRB1*15 allele is one of the major risk factors 
for MS. A similar study of BAL cells from smoking and non-smoking RA patients would be 
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interesting, especially when stratified for ACPA-positivity, since ACPA-positivity increases 
the risk of developing RA. 

Overall, it would be valuable to expand the studies in this thesis. Collecting the samples from 
healthy individuals for Study II, and especially MS patients in Study III, was a tremendous 
task since BAL is usually only performed to diagnose lung disease. This would have allowed 
us to detect smaller differences in effect size, such as 5hmC patterns or methylation 
differences between non-smoking MS and healthy individuals.  

For the future, it would be interesting to characterize BAL cell populations and investigate if 
there are in fact differences in surface expression molecules, ultimately representing different 
cell populations of macrophages. Whether this is a smoking signature of resident alveolar 
macrophages, or reflects the influx of another macrophage population with a different 
methylation profile remains to be investigated. Another way to further strengthen our 
findings would be to use sorted cell populations for genome-wide analysis, in addition to 
total BAL cells, but this would ultimately mean multiplying the number of processed samples 
many times and a steep increase in cost.  

Studies of epigenetics make it possible to better understand how environment and life style 
influence disease, and indeed are interacting with the genome. While we have identified genes 
and pathways associated with inflammation induced by cigarette smoking, it would be out of 
interest to study functional aspects of specific genes identified in our studies. Specifically, 
mechanisms involving environmental-induced changes of the functional genome, thus act 
through epigenetic modifications determining the functional state of a gene, or genetic element. 
We have already adopted an organotypic 3D model of lung tissue and implemented alveolar 
macrophages from healthy patients to further investigate the response to cigarette smoke 
extract in vitro.  

DNA methylation is partially recognized for its association to many diseases, but its 
functional role in pathogenesis still needs to be clarified in most cases. It would be interesting 
to expand our analyses by simultaneous studies of other epigenetic marks, i.e. histone 
modifications that can affect DNA methylation (145). Single cell techniques would also add 
additional layers of information to the studied cell populations both in health and disease. 

To summarize, our findings add interesting and valuable information about RA 
immunopathogenesis and MS disease, in addition to novel insights of smoking-associated 
impact on the lung. The leading hypothesis is that the autoimmune disease MS (and also RA) 
has part of its etiological basis in the lungs and that risk and severity is exacerbated by 
smoking. In the future we would like to acquire in-depth knowledge about reactions associated 
with inflammation caused by smoke on lung cells and find specific effects in the lung tissue 
from patients with autoimmune disease. We would like to investigate and find ways to 
interfere with epigenetic regulation of key players using therapeutic approaches, that could 
be used locally (e.g. by inhalation), targeting the epigenome and specific disease implicated 
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genes. New knowledge may also be used to accurately communicate the public of risks and 
desirable lifestyles for preventing the appearance of the disease in the first place. 
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