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ABSTRACT 

Human brain is a complex organ and made up of integrative networks encompassing a large 

number of regions. These regions communicate with each other to share information involved 

in complex cognitive processes. Functional connectivity (FC) represents the level of 

synchronization between different brain regions/networks. Studying functional interactions of 

the brain creates a platform for understanding functional architecture of the brain as an 

integrative network and has implications for understanding human cognition. Furthermore, 

there is evidence that FC patterns are sensitive to different diseases. In addition, age is a 

significant determinant of intra-/inter-individual variability in the FC patterns. Therefore, key 

aims for the studies included in this thesis were to apply and develop novel resting-state FC 

methodologies, with applications in healthy aging and ADHD. Indeed, measures of the 

brain’s FC may serve as a useful tool to diagnose and predict the course of disease, and useful 

in developing individualized therapies. 

Age- or disease-related alterations in the FC could reflect a multitude of factors, including 

changes in structural connectivity. However, we still have limited knowledge of the 

emergence of brain dynamics from the underlying anatomy. The interplay between the 

brain’s structure and dynamics underlies all brain functions. Therefore, in the last study we 

focused on the systematic modeling of the brain network dynamics. Large-scale 

computational models are uniquely suited to address difficult questions related to the role of 

brain’s structural network in shaping functional interactions. In addition, computational 

modeling of the brain enables us to test different hypotheses without any experimental 

complication while it provides us with a platform for improving our understanding of 

different brain mechanisms. A new macroscopic computational model of the brain 

oscillations for resting-state fMRI was introduced in this thesis, which outperforms previous 

model in the same class. Then, the effects of malfunctions in different brain regions were 

simulated and subsequently predicted perturbation patterns were recruited for local 

vulnerability mapping as well as quantification of hazard rates induced after perturbing any 

brain region. 
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1 CHAPTER 1: PERSONAL INTRODUCTION 

Growing up in a big family surrounded by different characteristics and various ways of 

thinking taught me that heterogeneity is an essential element of community success and an 

integrated community benefits a lot from all the interactions within the group and the 

communications with the other communities. Through my lifetime experiences I realized 

how the entity and function of a community depends upon its interactions at multiple spatial 

and temporal scales, and dealing with inevitable dynamic re-organizations.  

Acquiring a wide range of general information and the rich experience in group integration 

were among the many advantages arising from the heterogeneity and information transfer in 

our community. With all the advantages of being a member of a big group, I also had 

experiences of observing the failures and perturbations applied to our community, or its 

neighbor communities and higher-level networks. I learned how a synergetic network is 

capable to find a way of coping with unavoidable life incidents, highlighting the necessity of 

having network dynamics.   

With all that being said, I believe that my academic background in network science goes back 

to high school, when I was introduced with the fascinating world of network theory in a 

course called “discrete mathematics”. I found the beauty of network theory in its capability to 

address a broad range of questions and the wide range of applications while exhibiting 

maximum parsimony. Then, I got fascinated with exploring the most complicated network in 

the known universe, the brain. Understanding the interactions in the complex brain network 

can be a double-edged sword. Not only will it help us get the hang of brain development and 

aging, brain disorders, and complex cognitive processes, with potential therapy implications, 

but also to shed light on engineering efficient and robust social and artificial networks.  

Later, I was introduced to mathematical modeling of biological systems and nonlinear 

dynamics, during two fascinating inter-related courses given by prof. Farzad Towhidkhah and 

prof. Mohammad Reza Hashemi Golpayegani, namely “System Identification” and 

“Electrophysiology”. Mathematical modeling is the art of describing real-world systems by 

tractable mathematical language, providing a platform for theoretical analysis to get insights 

into fundamental mechanisms and relationships. And nonlinear dynamics is an amazing 

concept in mathematics that helps us to understand some of the wonders of the nonlinear 

dynamic world.  

This thesis grows from my abiding interest in network science and mathematical modeling 

and combining them for a better understanding of human brain as the most known complex 

system in the world.     
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2 CHAPTER 2: MAPPING FUNCTIONAL ARCHITECTURE 
OF THE BRAIN 

“The brain is similar to an orchestra. It has sections like the strings or percussion. But one 

cannot just look at it in that way. An orchestra is much more than its sections, they all need to 

come together to produce music.”  

― Marcus E. Raichle 

Understanding the functional architecture of the human brain is an increasingly attractive 

topic in neuroscience. Human brain is a complex organ and made up of integrative networks 

encompassing a large number of regions. These regions communicate with each other to 

share information involved in complex cognitive processes. Temporal dependency between 

neuronal activities of different brain regions is known as functional connectivity (FC). 

Investigation of the FC in the brain has been facilitated by recent advances in the functional 

neuroimaging techniques, in terms of both acquisition and analysis of the brain activity data. 

2.1 FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) 

Researchers have been fascinated by brain activity for a long time. The first documented case 

of measuring the change in the blood flow in relation to the brain activity goes back to the 

19th century, when an Italian physiologist (Angelo Mosso) recorded the pulsation of the 

human cortex in patients with skull defects. He concluded that mental activity causes an 

increase in brain blood flow. His research was a forerunner of the functional neuroimaging 

techniques like functional magnetic resonance imaging (fMRI). The fMRI methodology 

relies on the tight coupling between blood oxygenation and neuronal activation (Bandettini, 

2009), such that areas with more blood flow have greater neuronal activity. The fMRI data 

are comprised of thousands of voxels exhibiting blood-oxygen-level dependent (BOLD) 

signals, and is an indirect, but fairly accurate, measure of neuronal activity (Figure 1).  

 

Figure 1. Example fMRI data. 
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The association between the BOLD signals and the underlying neuronal activity is not clear. 

However, a previous science paper (Mukamel et al., 2005) provided some evidence that 

fMRI BOLD signals can provide a reliable measure of the neuronal firing rates. In particular, 

fMRI with a very high spatial and relatively good temporal resolution has received interest in 

the brain-imaging literature, allowing researchers to safely and non-invasively map neural-

activity changes while participants are either resting or performing a cognitive task. 

2.1.1 Resting-state versus Task-based Experiments 

“The brain apparently uses most of its energy for functions unaccounted for—dark energy, in 

astronomical terms.”  

― Marcus E. Raichle 

Most of our knowledge about brain function comes from task-related fMRI experiments 

during which subjects perform a cognitive task (e.g. an episodic memory task). It should be 

noted that, task-based fMRI studies are commonly analyzed based on linear superposition 

theory, which is a reductionistic approach. The linear superposition theory claims that 

intrinsic activity and task evoked activity linearly sum together to procedure the observed 

signals. However, previous literature (Bolt et al., 2018; Huang et al., 2017), suggests that 

there is a functional interdependence between them. Hence, separation of intrinsic and task-

evoked activity based on linear superposition is false, or at least not universal (Bolt et al., 

2018). 

Furthermore, task-related fMRI may not inform us about spontaneous neuronal activity 

during resting state which is intrinsically generated by the brain. This is a serious omission, 

because the resting brain consumes a substantial portion of the body’s energy, but only 

accounts for 2% of the body mass. Interestingly, task-evoked increases in energy-

consumption are less than 5%, compared with baseline energy consumption (Fox and 

Raichle, 2007). As Fox and Raichle stated: “If we hope to understand how the brain operates, 

we must take into account the component that consumes most of the brain's energy: 

spontaneous neuronal activity” (Fox and Raichle, 2007). Moreover, we note that the brain’s 

intrinsic activity is not random noise, but it exhibits specific spatial and temporal organization 

across the whole brain (Biswal et al., 1995; Fox and Raichle, 2007; Fransson, 2005). These 

spontaneous fluctuations continue throughout task paradigms and contribute to inter-trial 

variation in BOLD activity as well as behavior (Fox and Raichle, 2007).  

Therefore, resting state fMRI has received growing attention during the last two decades. 

This functional imaging technique provides a powerful tool to map the functional architecture 

of the brain by measuring interactions among different brain regions while a person is not 

performing a specific task (Biswal et al., 1995). Findings from resting-state fMRI posit a new 

view on brain function, based on which the brain is not idle at rest (Ingvar, 1979). Rather, low 

frequency (i.e., at or below 0.1 Hz) fluctuations of the BOLD signal, conceptualized as either 

endogenous oscillations or spontaneous neural activity, is pervasive and consume a major 

portion of the brain’s energy (Raichle, 2006).  
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The amount of available resting-state data has been exploded because of several advantages 

that it has, such as being very simple and less susceptible to task-related compliance and not 

being confounded by task performance, effort, practice effects, etc. Besides, it takes away the 

difficulties of experimental design, subject compliance and training requirements, making it 

an appropriate choice for a broad range of developmental and clinical studies like older adults 

and sedated patients with brain injury (Ombao et al., 2016). Also, less movement artifacts are 

expected. Furthermore, a brief fMRI (e.g. 6 min) resting-state session is sufficient to explore 

diverse brain systems and interactions among systems. By measuring the level of co-

activation between BOLD signals extracted from distal brain regions, we are able to estimate 

FC between those regions. Resting-state studies have found large-scale spatial patterns of 

coherent signals, which are corresponding to functionally relevant systems reflecting the 

neuronal baseline activity supporting fundamental processes in relation to perception and 

cognition. In other words, brain regions with similar functionality which cooperate during 

active tasks, are also functionally connected to each other during resting-state. 

Indeed, low frequency fluctuations of the BOLD signal are often synchronized in a hierarchy 

of functional brain networks spanning different brain-circuits (Biswal et al., 1995). These 

resting-state networks (RSNs) have showed a high degree of consistently both across groups 

of subjects (including for example, monkeys (Vincent et al., 2007) and infants (Fransson et 

al., 2007)) and in repeated sessions on the same subject, exhibiting significant temporal 

dynamics (Damoiseaux et al., 2006; van de Ven et al., 2004). The RSNs in the adult human 

brain are including but not limited to visual, somatosensory and attention networks, as well as 

the default mode network (DMN). Yet despite the gross similarities, resting-state functional 

connectivity analyses have revealed inter-subject variability in the intrinsic organization of 

the brain predicting individual differences in cognitive domains and age (Almgren et al., 

2018; Geerligs et al., 2015b; Mueller et al., 2013; van den Heuvel et al., 2009).  

The brain's functional architecture is remarkably preserved across different mental states as 

well (Calhoun et al., 2008; Cole et al., 2014; Smith et al., 2009), albeit with significant state-

dependent temporal and spatial modulation of the RSNs and their related FC patterns 

(Arbabshirani et al., 2013; Calhoun et al., 2008; Cole et al., 2014; Geerligs et al., 2015b). 

Despite the fact that FC patterns are to some degree state-dependent, the underlying intrinsic 

functional organization during resting-state may still act as a functional fingerprint (Dubois, 

2016; Finn et al., 2015).  In more detail, previous research suggests that RSNs are able to 

discriminate individuals, indicating the potential use of FC as a stable, trait-like measure to 

draw inferences about single subjects (Finn et al., 2015). 

2.2 THE DEFAULT MODE NETWORK 

“A baseline or control state is fundamental to the understanding of most complex systems.”  

― Marcus E. Raichle 

The DMN was originally identified in a meta-analysis of task-induced deactivations in 

positron emission tomography (PET) data (Shulman et al., 1997), however the explication of 
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the DMN is associated with a seminal study by Raichle and collegues (2001), who found the 

same set of brain regions being consistently deactivated while subjects were involved in 

cognitive demanding tasks. Findings from resting-state FC analyses revealed information 

about the functional architecture of the DMN (Buckner et al., 2008; Fransson, 2005). The 

DMN consists of multiple dynamically coupled and widely distributed subsystems (Andrews-

Hanna et al., 2010; Buckner et al., 2008; Raichle et al., 2001; Salami et al., 2016). One of the 

core DMN subsystems encompasses the posterior cingulate cortex (PCC) and the 

retrosplenial cortex (RSC) (Buckner et al., 2008; Fransson and Marrelec, 2008; Fransson, 

2005), often jointly referred to as posteromedial cortex. There are also other DMN regions 

located in the lateral parietal and medial prefrontal cortices. In addition, a medial temporal 

lobe (MTL) subsystem, including hippocampus and adjacent structures, is distinct from, yet 

related to, the major cortical DMN regions (Andrews-Hanna et al., 2010; Buckner et al., 

2008; Salami et al., 2016). The DMN, particularly the posteromedial cortex, shows high 

neural activity when an individual is nominally at rest— lying still in the scanner— or is 

retrieving an autobiographical memory (“What did I have for lunch?”) (Foster and Parvizi, 

2012). In addition, the aforementioned network may show decreased activation during 

attention-demanding tasks compared to the baseline conditions (Buckner et al., 2008; Fox et 

al., 2005; Fransson, 2005). Interestingly, the DMN consumes more energy than any other 

network in the brain (Raichle and Snyder, 2007). The exact function of the DMN is still 

unclear, however; DMN activity has been associated with different cognitive domains (e.g., 

episodic memory, self-referential processing, mind wandering) (Buckner et al., 2008). 

Indeed, there are two key hypotheses for DMN function. The first proposal suggests that the 

DMN underlies autobiographical memory and self-referential thoughts related to either the 

past or the future (Buckner and Carroll, 2007; Buckner et al., 2008; Holland and Kensinger, 

2010; Spreng and Grady, 2010). Each DMN subsystem underlying a specific task (e.g. 

autobiographical memory, emotional and self-referential social thoughts) is integrated 

through the act of a particular DMN hub and the subsystems are ultimately interlinked 

through the action of DMN “hubs” (Buckner et al., 2008). The second proposal suggests that 

the DMN acts to focus our attention in a broad sense (Gusnard et al., 2001; Raichle et al., 

2001; Scheibner et al., 2017), such that goal-directed tasks requiring deliberate allocation of 

attentional resources, result in suppression of DMN activity (especially in posterior DMN 

hubs).  

Abnormalities in intrinsic FC within the DMN have been related to almost all major 

psychiatric disorders including dementia, schizophrenia, epilepsy, anxiety, depression, 

chronic pain, obsessional disorders, autism, attention deficit hyperactivity disorder (ADHD) 

(Broyd et al., 2009; Buckner et al., 2008; Menon, 2011). Particularly, there is a body of 

evidence that the DMN exhibits abnormal activity and connectivity patterns in patients with 

ADHD compared to healthy controls. Notably, there is an overall decrease in the DMN 

coherence in ADHD (Castellanos et al., 2008; Uddin et al., 2008), with particularly reduced 

FC between the precuneus and other DMN subsystems (Castellanos et al., 2008; Uddin et al., 

2008). Additionally, an increasing bulk of evidence suggests age-related alterations in FC 
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within the DMN (Andrews-Hanna et al., 2007; Damoiseaux, 2017; Ferreira and Busatto, 

2013; Spreng et al., 2016). Critically, age-related DMN alterations have been linked to 

cognitive impairment in old age (Andrews-Hanna et al., 2007; Greicius et al., 2004; Salami et 

al., 2016, 2014; Wang et al., 2010).  

Taken together, understanding the DMN’s functional architecture and its alterations across 

different conditions have important implications for cognitive impairment in aging and 

disease. The chief aims of the first conducted studies were to further investigate alterations of 

the DMN using new methods for resting-state FC analysis, and to elucidate how individual 

differences in DMN connectivity is linked to cognition, age and ADHD. 

2.3 METHODOLOGY 

2.3.1 Preprocessing of the fMRI Data 

“A better world won’t come about simply because we use data; data has its dark underside.”  

― Mike Loukide 

Analyses of resting-state data is a relatively challenging task. Resting-state fMRI is affected 

by several factors, such as variability across time within individuals (Poldrack et al., 2011) 

and artifacts caused by head movement (Poldrack et al., 2011; Van Dijk et al., 2012). It is 

thus essential to perform different pre-processing operations on fMRI data and to correct for 

potentially confounding artifacts, as well as prepare the data for later processing stages.  

There is a standard fMRI pre-processing pipeline that is widely used. The standard pipeline 

includes: 

 Detecting and correcting scanner artifacts (e.g. spikes and ghosting). 

 Slice-timing correction to compensate for differences in the acquisition of slices in the 

image. 

 Realignment of scans across time by rigidly aligning each volume to the first image 

volume (also known as motion correction). 

 Co-registration of fMRI data to T1-weighted images using within-subject rigid 

registration. 

 Segmentation of T1-weighted images into gray matter (GM) and white matter (WM). 

 Spatial normalization into Montreal Neurological Institute (MNI) template space and 

smoothing by a Gaussian kernel. 

 Removing nuisance and motion-related regressors.   

 Temporal band-pass filtering to remove non-neural fluctuations of the BOLD signal. 

This pipeline is widely used in the literature. However, these steps are not all necessary. For 

example, the fMRI data which is acquired for neurosurgical planning does not require any 

normalization or spatial smoothing. In addition, there is considerable amount of discussion on 

how to effectively remove the nuisance signals. One of the most popular methods is 

anatomical component based noise correction, namely CompCor (Behzadi et al., 2007). This 
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technique uses noise-related principal components estimated from the WM and cerebrospinal 

fluid (CSF) voxels. Compared with averaging across WM and CSF voxels, CompCor may 

provide a better proxy for nuisance signals from WM and CSF (Chai et al., 2012; Parkes et 

al., 2018). This method does not however eliminate the need for global signal regression (Liu 

et al., 2018; Murphy and Fox, 2017; Parkes et al., 2018). Global signal regression removes 

the average signal extracted from the whole brain and may eliminate non-neuronal sources. 

There is some evidence that fluctuations in arousal contribute to this global signal and, for 

example, caffeine intake modulates this signal. Therefore, avoiding global signal regression 

may provide more precise results in circadian studies (Power et al., 2017). Global signal 

regression needs to be performed with additional care for comparing cohorts with dissimilar 

noise characteristics, for example in comparison of schizophrenic versus healthy controls 

(Murphy and Fox, 2017; Nalci et al., 2017). 

Resting-state functional and structural MRI data were here preprocessed using the Statistical 

Parametric Mapping software (SPM12; Welcome Department of Cognitive Neurology, 

University College London, London, United Kingdom). Using computational methods, the 

preprocessed data can be subsequently analyzed using various approaches, among which the 

most common methods are described below. 

2.3.2 Functional Connectivity Metrics 

“All mass is interaction.” 

― Richard Feynman 

Studying functional relationships between different brain regions has been one of the main 

aims of functional neuroimaging. FC is defined as the undirected association between signals 

from two different brain regions, with no assumptions about the underlying biology. 

Although, we can quantify FC based on both linear (temporal correlation, spectral coherence) 

and nonlinear (mutual information, phase synchronization) measures of synchronization 

(Quian Quiroga et al., 2002), the Pearson correlation coefficient is the most commonly used 

measure of resting-state FC. 

Back in 2005, Biswal used correlation between time-courses of low frequency (< 0.1 Hz) 

fluctuations, arising from changes in blood oxygenation flow, for mapping the functional 

connectivity patterns of the brain at rest (Biswal et al., 1995). The idea of using correlation 

function to estimate the functional relationships between brain regions goes back to 

nineteenth century, using electroencephalogram (EEG) signals (Shaw, 1984). Afterwards, the 

seed-based correlation approach has been one of the most widely adopted analytical 

techniques for studying the cross-talk between distal brain regions (Biswal et al., 1995; Fox 

et al., 2005; Fransson, 2005; Fransson et al., 2011; Nyberg et al., 2016). This is often carried 

out by predefining a seed region of interest (ROI), based on a priori hypothesis. Then, the 

correlation between the BOLD signal extracted from the seed ROI and BOLD signals in all 

other voxels of the brain is computed. It is based on the assumption that voxels with similar 

neuronal activity will change proportionally. As a result, a connectivity map is obtained, 
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representing brain regions strongly correlated with the predefined ROI. In order to compute 

the signal of the predefined ROI, one may simply average the signals across all voxels within 

the ROI (Biswal et al., 1995; Fox and Raichle, 2007; Fransson, 2005). However, it has rather 

been suggested to use the first eigenvariate of the ROI instead of the average signal (Poldrack 

et al., 2011).  

Coherence, that is the spectral representation of correlation in the frequency domain, has been 

another suggested function for computing the FC (He et al., 2007; Li et al., 2009), although it 

may be considered of less interest for the low frequency fluctuations as observed in resting-

state fMRI data. Coherence captures the relationships either based on change in power or 

change in phase, which makes the interpretation of relationships more difficult. Furthermore, 

coherence only captures the stability of the relationship between two signals, rather than 

providing direct information on their relationship (Sakkalis and Zervakis, 2009). 

Usually, FC is calculated over an entire scan, as one averaged measure of inter-regional 

neural interaction, referred to as “static connectivity”. However, previous studies have 

revealed that investigation of interactions at different frames of neural signals could provide 

additional knowledge about the brain function. We can easily extend the existing connectivity 

methods to capture temporal fluctuations in FC, for example calculating correlation measures 

over sliding time-windows gives a time-series of FC (often referred to as “dynamic” or “time-

varying” FC). 

Characterization of time-varying FC in the brain is important not only to gain a better 

understanding of brain functions (Zalesky et al., 2014), but also to classify clinical 

populations (Rashid et al., 2016). In detail, time-varying measures of FC have been shown to 

provide important additional information regarding functional organization of the brain. For 

example, Zalesky and his colleagues computed window-based correlation metric to explain 

the dynamics of modular organization by investigating how the integration and segregation of 

different RSNs change by time. They found that the most dynamic connections are inter-

modular, linking regions from separable systems, whereas regions composing the same 

module have a predominantly static nature. Their findings suggest that brain dynamics gives 

rise to a balance between optimizing information processing and minimizing metabolic 

expenditure (Zalesky et al., 2014). Additionally, a previous study on classification of healthy, 

schizophrenia and bipolar patients suggest that dynamic FC significantly outperforms the 

static FC in terms of classification accuracy (Rashid et al., 2016). However, sliding-window 

based approaches have necessary restrictions on the length of the temporal window, which in 

turn limits the temporal resolution of the resultant FC (Lurie et al., 2018). 

On the contrary, instantaneous phase synchronization offers single time-point resolution, 

enabling us to assess the time-varying FC with the highest temporal resolution. In this 

context, the synchronization is captured based on the relation between the phases of 

interacting regions, regardless of their amplitudes, hence it is not affected by inter subject 

amplitude variability. Unlike correlation and coherence, phase synchronization has the 

advantage of not requiring the stationarity, which is not an appropriate prerequisite in practice 
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(Sakkalis and Zervakis, 2009). Additionally, being a nonlinear measure of FC, makes it an 

appropriate choice for identification of complex dynamic processes in the brain (Glerean et 

al., 2012; Pereda et al., 2005). We note that the phases of two coupled nonlinear oscillators 

may synchronize, even if their amplitudes remain uncorrelated (Pikovsky et al., 2002). Due to 

its several advantages, it has gained considerable attention in the recent literature 

(Omidvarnia et al., 2016; Pedersen et al., 2017; Ponce-Alvarez et al., 2015). The 

instantaneous phase synchronization for each pair of regions is defined as the cosine 

similarity of instantaneous phases obtained from associated regions’ signals. Hence, the 

Hilbert transformation is applied to the regional BOLD signals to derive the analytic 

representation of the real-valued BOLD signals and subsequently estimating the 

instantaneous phase of the analytic signal as the inverse tangent of the quotient formed by 

dividing the imaginary part by the real part of the BOLD signal. 

2.3.3 Data-driven Functional Connectivity Analysis 

“All data has its beauty, but not everyone sees it.”  

― Damian Mingle 

So far, we have discussed the simplest FC analysis approach, namely the seed-based 

connectivity analysis, which involves computing pairwise interactions of a predefined voxel 

or ROI with the rest of brain voxels (Biswal et al., 1995; Fox et al., 2005; Fransson et al., 

2011; Nyberg et al., 2016). This method can be biased by arbitrary selection of the seed 

region. Additionally, it only detects networks which include that particular seed region, which 

makes it an inappropriate method for exploratory analysis. However, data-driven methods 

like clustering analysis (Fadili et al., 2000) and different blind source separation techniques, 

like Principal Components Analysis (PCA) and Independent Component Cnalysis (ICA) are 

capable to go beyond pairwise interactions. Among the data-driven techniques, ICA has 

demonstrated considerable promise for the exploratory analysis of fMRI data (Calhoun and 

Adali, 2006). 

ICA is a multivariate data-driven technique that applies higher-order statistics to estimate 

maximally independent components (Calhoun et al., 2001a; McKeown and Sejnowski, 

1998). ICA is a technique that attempts to recover unknown source signals underlying sets of 

observations based on information theory. In this method, the observed multivariate data 

variables are assumed as linear mixtures of some hidden variables which are maximally 

independent of each other and are referred to as independent components/sources. ICA was a 

proposed approach to solve one of the most traditional blind source separation problems, the 

cocktail party problem, which refers to the problem of deciphering the underlying source 

signals (voices of different speakers) from the mixed signals recorded by several 

microphones in the room (Calhoun and Adali, 2006).  

Compared with alternative FC methods, ICA has several advantages, such as being data-

driven, independent of an a-priori temporal model (which makes it an appropriate choice for 

resting-state condition), and less sensitive to confounding factors such as motion. It has, 
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therefore, been increasingly used in resting-state research. The assumption of independence 

among sources can be made in either space or time, yielding two varieties of ICA which are 

used to discover either spatially or temporally independent components. However, spatial 

ICA has been the most dominant technique in the functional imaging literature due to several 

reasons including larger spatial dimension compared to the temporal dimension (Calhoun and 

Adali, 2006; Calhoun et al., 2001a; McKeown and Sejnowski, 1998). Spatial ICA 

decomposes the fMRI data into a set of maximally spatially independent maps and their 

respective time-courses (Figure 2). Regions with significant contribution in each component 

are temporally coherent with each other. We note that statistical independence in space does 

not mean the same as non-overlapping components, since a given voxel may have 

contributions from different components.  

 

 

Figure 2. Example resting-state networks and their respective time-courses, derived by 

applying group ICA to the resting-state fMRI data. Spatial maps in the first row are 

respectively associated with posterior DMN, anterior DMN and posterolateral parietal DMN 

centered at the temporoparietal junction. Left and right frontoparietal control networks, and 

the cingulo-opercular network are respectively illustrated in the second row.  

 

Making group inferences using ICA has flourished over the last decade and currently plays a 

key role in the study of brain networks (Allen et al., 2011; Calhoun et al., 2001b). ICA has 

shown to be a powerful method in identification of different types of signals of interest such 

as task- and function-related signals, as well as signals of non-interest including physiology- 

and motion-related signals (Calhoun and Adali, 2006; Du et al., 2016; Glasser et al., 2017; 

Salimi-Khorshidi et al., 2014; Smith et al., 2013). Figure 1 in Paper I and Paper III, are 

examples of resting-state networks identified by ICA.  
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3 CHAPTER 3: RESTING-STATE FUNCTIONAL 
CONNECTIVITY AS A BIOMARKER  

“There is therefore nothing surprising in considering the functional mental disorders as 

fundamentally diseases of memory, of the circulating information kept by the brain in the 

active state, and of the long-time permeability of synapses. Even the grosser disorders such 

as paresis may produce a large part of their effects not so much by the destruction of tissue 

which they involve and the alteration of synaptic thresholds as by the secondary disturbances 

of traffic — the overload of what remains of the nervous system and the re-routing of 

messages — which must follow such primary injuries.” 

― Norbert Wiener 

There is evidence that diverse measures related to FC patterns of RSNs are sensitive to 

psychiatric disorders (Fornito and Bullmore, 2010) and other conditions, such as Alzheimer’s 

disease (Greicius et al., 2004), Parkinson’s disease (Helmich et al., 2010) and stroke (Park et 

al., 2011). In addition, age is a significant determinant of inter-individual variability in intra- 

and inter-network FC patterns (Andrews-Hanna et al., 2007; Geerligs et al., 2015a), and 

findings regarding age-related alterations in FC of RSNs have attracted considerable attention 

(Grady, 2012). Therefore, measures of the brain’s FC may serve as a useful tool to diagnose 

and predict the course of disease (Zhang and Raichle, 2010), and useful in developing 

individualized therapies. 

3.1 RESTING-STATE FUNCTIONAL CONNECTIVITY AND AGING 

Central cognitive abilities, such as working memory and episodic memory, are highly age-

sensitive according to both cross-sectional and longitudinal studies (Park et al., 1996; 

Rönnlund et al., 2005). The incidence of cognitive impairment and dementia increases 

exponentially with advancing age (Fratiglioni et al., 2000). Such impairments come with 

major individual and societal costs. Hence, it is important to better understand the brain basis 

of cognitive decline in aging.  

Developments in neuroimaging techniques have provided opportunities to investigate the 

aging brain in vivo (Grady, 2008). Age-related intra- and inter-individual cognitive 

differences have been associated with differences in various fMRI measures. Age-related FC 

changes have been found to be topographically heterogeneous, similar to the non-uniform 

profile of cognitive decline associated with normal aging. Thus, age-related cognitive 

impairment may, at least in part, result from disruption of RSN FC.  

Age-related alterations in RSN FC could reflect a multitude of factors, including changes in 

structural connectivity, GM volume, and WM structure. For example, GM volume loss in a 

specific region may cause contamination of voxels with CSF, which affects FC due to 

decreased signal-to-noise ratio (Bodurka et al., 2005). In addition, there is evidence that 

resting-state FC reflects the underlying architecture of anatomical connectivity (Damoiseaux 

and Greicius, 2009; Greicius et al., 2009). Anatomical connectivity, as measured, for 
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example, by diffusion-tensor imaging, shows pronounced age-related decline according to 

both cross-sectional (Salami et al., 2012) and longitudinal (Barrick et al., 2010) studies. 

These alterations tend to accelerate with advancing adult age (Burzynska et al., 2010). Thus, 

it is reasonable to assume that the loss of structural WM connectivity in aging may lead to 

aberrant FC, and in turn cognitive decline. Notably, there is body of evidence supporting the 

view that an impaired structural connectome may cause disrupted FC, contributing to 

neurodegenerative diseases (for example, see (Griffa et al., 2013)).  

There is growing consensus regarding age-related decline in FC within the DMN (Andrews-

Hanna et al., 2007; Damoiseaux, 2017; Ferreira and Busatto, 2013; Spreng et al., 2016), as 

well as in failure to deactivate DMN regions during demanding tasks (Andrews-Hanna et al., 

2007; Damoiseaux, 2017; Ferreira and Busatto, 2013; Ng et al., 2016; Spreng et al., 2016). In 

addition, studies have found age-related alterations in between-network connectivity of brain 

circuits (e.g., connectivity between the DMN and the executive network) (Chan et al., 2014; 

Geerligs et al., 2015a; Ng et al., 2016). These changes may result in less modular or 

segregated networks in aging (Chan et al., 2014; Geerligs et al., 2015a; Ng et al., 2016). Note 

that these studies are primarily based on cross-sectional data, and the biological mechanisms 

underlying connectivity disruptions in the DMN are not yet clearly understood. There are 

observed associations between decline in DMN FC and loss of GM and WM integrity in the 

DMN (Andrews-Hanna et al., 2007; He et al., 2009). Based on previous reports linking DMN 

connectivity and self-referential cognitive processes (Buckner and Carroll, 2007), it is 

reasonable to assume that a lower level of DMN within-network connectivity partly accounts 

for age-related cognitive impairments. Moreover, longitudinal studies of age-related changes 

in different DMN subsystems are scarce. This is an important omission, as the actual rate of 

age-related changes as well as the onset of disruption in DMN FC can only be accurately 

estimated using longitudinal data. 

3.1.1 Theories of Aging 

Theories are parsimonious explanations of why different concepts are interconnected. 

However, no single theory can explain all aspects of a phenomenon perfectly. Therefore, 

theories are not mutually exclusive; they might partly overlap and even complement each 

other. Here, I will briefly review a few of the theories that try to map age-related cognitive 

decline to changes in the brain. These theories are “cognitive reserve”, “compensation”, 

“brain maintenance”, and “brain plasticity”. 

The concept of “cognitive reserve” was proposed to address the disconnection between level 

of brain damage and clinical outcomes. Although many people are sensitive to brain damage, 

some people can tolerate more damage than others and still maintain a high level of function. 

Cognitive reserve-enhancing factors include various aspects of life, such as educational and 

occupational attainment, physical exercise, and leisure activities particularly in late life. 

These factors allow some individuals to cope better than others with progressing 

accumulation of damage (Stern, 2009). Thus, we do not observe a linear relationship between 

brain damage and cognitive decline. This account is used in epidemiology to explain reduced 
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risk of dementia and slower cognitive decline for individuals with more exposure to 

educational, occupational, physical, and leisure activities (Fratiglioni et al., 2004; Stern, 

2009). A possible neurobiological mechanism is “efficiency” and “flexibility” of brain 

networks (for example extracted from fMRI data). This notion may be studied by applying 

graph theory-based analysis with a prediction that individuals with preserved functional 

architectures (e.g. preserved modularity) in older age are those with greater reserve-

enhancing factors. 

Another perspective in this field is called “compensation theory”. This theory postulates that 

when brain structures and consequently functional networks are interrupted by malfunction 

somewhere in the brain, other brain regions and networks will cope with the dysfunction, 

because of synergy among them (Bäckman and Dixon, 1992). This may be manifested in the 

form of greater activity or stronger FC somewhere in the brain, in response to an emergent 

fault (Cabeza and Dennis, 2013; Grady et al., 1994). On the other hand, the “brain 

maintenance theory” is based on the notion that elderly individuals who preserve their 

cognitive performance levels may have relatively intact brains (Nyberg et al., 2012).  

Adherents of both “compensation theory” and “brain maintenance theory” claim that there is 

an association between changes in brain properties (for example at the functional-

connectivity level) and changes in cognitive performance. By examining the direction of 

association between FC changes and cognitive decline, one might find any evidence 

supporting either compensation or maintenance theories, or even a combination of both. For 

example, if we hypothesize that segregation/modularity of brain networks declines with 

advanced age, then we might face two different scenarios, in which accounts compete against 

each other:  

I. The level of decline in segregation is positively correlated with cognitive performance 

decline, which would support the brain maintenance view;  

II. The level of decline in segregation is negatively correlated with decline in cognitive 

performance, which would support the brain compensation view. 

Finally, the “brain plasticity theory”, assumes that our brain shows lifelong capacity for 

adaptive structural and functional changes in exposure to environmental demands and 

experience. These changes are bidirectional such that brain function can get strengthened or 

weakened, depending on the conditions. In normal aging, accumulative effects of physical, 

behavioral, and environmental changes may cause brain plasticity that affects brain function. 

The key reasons behind functional decline are structural brain downturn (e.g., noisy 

processing and inadequate neuromodulatory control) and behavioral and environmental 

changes (e.g., less scheduled brain activity). The interplay among these factors results in a 

self-reinforcing downward spiral of degrading brain function in advanced age (Mahncke et 

al., 2006). 
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The “brain maintenance” and “compensation” theories may be useful in explaining the link 

between age-related changes in FC patterns and decline in episodic memory, as investigated 

in the first study in this thesis. 

3.2 RESTING-STATE FUNCTIONAL CONNECTIVITY AND ATTENTION 
DEFICIT HYPERACTIVITY DISORDER (ADHD) 

ADHD is characterized by high distractibility and impaired executive functions such as 

working memory and cognitive control. A large number of neuroimaging studies have 

targeted structural and functional brain activity changes related to the impairment of 

executive functioning and attentional processes in the ADHD cohorts (Bush, 2010; De La 

Fuente et al., 2013; Konrad and Eickhoff, 2010; Krain and Castellanos, 2006; Martínez et al., 

2016). Task-based fMRI studies have noted altered brain function involving areas in the 

frontal, temporal and parietal lobes (Krain and Castellanos, 2006; Wilens and Spencer, 2010). 

However, no consensus agreement has yet been reached (Hoogman et al., 2017; Konrad and 

Eickhoff, 2010; Samea et al., 2019). With regard to static (i.e. by computing the temporal 

mean of correlation) resting-state fMRI, previous studies have reported significant ADHD-

related dysfunctions for both cognitive control networks and the DMN. Failures in regulating 

the dynamics of activity and interactions between these large-scale networks have been 

hypothesized as the underlying functional mechanisms for impaired cognitive control. 

Cognitive control regions separate into frontoparietal control network (FPN) and cingulo-

opercular network (CON) (Dosenbach et al., 2008; Marek and Dosenbach, 2018). The FPN is 

optimized for rapid adaptive control, whereas the CON is known for stable task-set 

maintenance (Dosenbach et al., 2008) and sustained attention/tonic alertness in general 

(Sadaghiani and D’Esposito, 2015; Sadaghiani et al., 2010). Existence of such parallel 

control architecture gives rise to a flexible but highly stable behavior, increasing the 

resilience of top-down control to perturbations (Dosenbach et al., 2008). 

The FPN (or executive control network), seems to support phasic aspects of attentional 

control such as initiation and adjustment of control signals as well as decision-making 

processes. It comprises the lateraled prefrontal parietal network including bilaterally the 

lateral prefrontal cortex, dorsal frontal cortex, inferior parietal lobule and precuneus (Corbetta 

et al., 2002; Dosenbach et al., 2008; Sadaghiani and D’Esposito, 2015; Vincent et al., 2008). 

The CON (also referred as salience network) is the other cognitive control network, anchored 

in the anterior insula and dorsal anterior cingulate cortex, which was primarily known as 

being involved in integrating sensory data with autonomic, visceral and somatic markers, in 

order to identify the biologically and cognitively relevant stimuli (salient events), particularly 

to facilitate attentional reorienting and access to memory resources in high-level cognitive 

control and attentional processes (Menon and Uddin, 2010; Sevinc et al., 2017; Sridharan et 

al., 2008). Additionally, activity in the cingulo-opercular regions regulates the activity and 

interactions of the DMN and FPNs (Di and Biswal, 2014; Menon and Uddin, 2010; Sevinc et 

al., 2017). Therefore, this network has a key role in the hierarchical initiation of cognitive 

control signals, particularly in relation to the dynamics of switching between other large-scale 
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networks (Di and Biswal, 2014; Menon and Uddin, 2010; Sevinc et al., 2017). In a different 

line of research, where aforementioned regions are more often referred as the CON (rather 

than salience), strong evidence suggests a quite different functional role for this network. In 

this view, the fundamental function of CON is set-maintenance activity (Dosenbach et al., 

2008; Sadaghiani and D’Esposito, 2015) and even more broadly, it is suggested to underlie 

maintained tonic alertness/sustained attention (Sadaghiani and D’Esposito, 2015; Sadaghiani 

et al., 2010). Indeed, a previous fMRI-EEG study proposed that the CON serves maintaining 

tonic alertness by employing cortical alpha oscillations to suppress task-irrelevant 

information causing distraction and maintain cognitive faculties accessible for current 

processing demands (Sadaghiani et al., 2010). 

In relation to ADHD, unsuccessful suppression of the default mode network (DMN) and 

failure in regulation of signaling between the DMN and FPNs have been suggested as the key 

underlying functional mechanism for impaired cognitive control. Additionally, a large body 

of research indicated the presence of pronounced fluctuations in the strength of functional 

connections over time (for example see, (Hutchison et al., 2013)), particularly for the inter-

network connections between the DMN and FPNs (Zalesky et al., 2014). However, the 

importance of the temporal dimension, both in terms of measurements of fMRI brain 

connectivity as well as the nature of ADHD symptoms, have previously not been adequately 

taken in account. Importantly, one of the most prominent signatures of disrupted cognitive 

processing in ADHD subjects is the pervasive temporal lapses of attention, the reoccurring 

signs of impulsivity and interferences during tasks (Sonuga-Barke and Castellanos, 2007). 

Clearly, the temporal fluctuations of cognitive impairment as typically observed in ADHD do 

not easily lend themselves to be fully described using conventional linear modeling of task-

related BOLD responses or to static network measures of functional brain connectivity.  

In the context of ADHD brain connectivity, of particular interest are the previously observed 

temporal fluctuations in the strength of connectivity between the DMN and the cognitive 

control networks (FPN and CON). It has been suggested that the interaction between these 

networks that efficiently balance network segregation and integration across various neural 

dynamical scenarios over time may play a pivotal role in the manifestation of the 

aforementioned fluctuations in cognitive performance in ADHD (Broyd et al., 2009). 

Moreover, it has been shown that individuals with ADHD, compared to healthy individuals, 

have a higher variability in their resting-state BOLD signals (Mowinckel et al., 2017; Nomi 

et al., 2018). 

With that said, it is reasonable to think that a connectivity analysis approach that is capable of 

providing a fine-grained account of the dynamic nature of interactions between different 

networks is required to a better characterization of putative abnormal brain network 

configurations linked to ADHD. 
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4 CHAPTER 4: DYNAMICAL SYSTEMS THEORY 

“Chaos: When the present determines the future, but the approximate present does not 

approximately determine the future.” 

― Edward Lorenz  

Dynamical systems theory is a mathematical framework used to describe the behavior of 

dynamical systems, that is, systems that evolve with respect to time. Accordingly, the 

dynamical system may be defined as a rule (or model) for time evolution of the state of a 

system, providing a prediction of the consequent(s) to a given current state. Time can be 

either thought of as a continuous or a discrete integer-valued variable. If there is a 

theoretically unique consequent to an initial state value, the evolution rule and the related 

system are said to be deterministic. Otherwise, if there is a probability distribution of possible 

consequents, it is called a stochastic or random system (Ott, 2002; Strogatz, 2015). 

The dynamical systems theory provides a level of convergence which enables the unification 

and linking of physical characteristics of biological systems and multiple behavioral 

phenomena. Indeed, various biophysical changes may bring on the same dynamical 

phenomena (for example oscillations, attractors and etc.), whereas similar changes in 

dynamical phenomena may cause unlike behavioral symptoms. Putting the focus on 

dynamics, with such a property, could have implications for a better diagnosis and prognosis, 

as well as designing optimal and robust goal-directed therapies for the treatment of 

psychiatric disorders (Durstewitz et al., 2018).  

4.1 NONLINEAR DYNAMICS — MODEL-BASED ANALYSIS 

 “The whole is greater than the sum of its parts.”  

― Aristotle 

The analysis techniques for the linear systems are largely based on superposition principle. 

Indeed, linear systems can be broken down into parts that can be solved independently and 

finally the individual solutions will be combined to get a solution for the whole-system. 

However, the analysis of nonlinear dynamic systems is encountered with solving one 

complex problem that cannot be chopped into smaller parts. Poincare in the late 1800s 

introduced a new geometric approach suggesting a qualitative rather than quantitative 

perspective, which can be considered as the biggest step forward in the analysis of nonlinear 

dynamic systems. His geometric reasoning was further developed during the late 19th 

century, and resulted in the concept of state space (or phase space) which is a useful 

construction to handle dynamical systems and perform qualitative geometrical analysis 

(Izhikevich, 2010; Ott, 2002; Strogatz, 2015). 

The state space of a dynamic system is an abstract space with a coordinate system which is 

spanned by all system variables, which are required to describe the state of that particular 

system. Every potential system state can be represented with a unique point in the state space. 
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For any particular initial condition, the time evolution of a state (i.e., the time evolution of all 

system variables) can be plotted as a curve in the state space which is referred to as a 

trajectory. Trajectories provide information about the behavior of dynamical systems. 

Therefore, we can draw the state space trajectories and extract information about the system 

behavior (solutions of the differential equations) qualitatively without analytically solving the 

equations driving the system’s dynamics (Strogatz, 2015).  

In a dynamical system, fixed points (equilibrium points) of the system are all points where 

there is no flow in the system (i.e., the derivative of system’s state variable is equal to zero). 

Consider a one-dimensional dynamical system, in which temporal evolution of the state 

variable     , that is its first derivative with respect to time ( ̇  
  

  
),  is described by a scalar 

function ( ̇      ). The fixed points of the system are the values of the state variable 

(symbolized by   ),where        . If the initial value of the state of the system      is set 

exactly to a fixed point (  ), then the state variable will rest there, otherwise if the initial state 

     is set close to a fixed point (  ), the state variable may either converge to that fixed 

point or diverge from it (denoted by the vector         in state space). In a nutshell, fixed 

points represent steady state solutions which do not change by time. Local stability of fixed 

points in a one-dimensional system can be easily determined by comparing the sign of the 

function that determines the time evolution of that system ( ), before and after any fixed 

point. If the sign of       changes from negative to positive, in other words the derivative of 

function   with respect to   at the fixed point is positive (
  

  
|
    

  ), therefore the fixed 

point is unstable. Otherwise, if the sign of       changes from positive to negative, in other 

words the derivative of function   with respect to   at the fixed point is negative (
  

  
|
    

 

 ), the fixed point is stable. A stable fixed point is said to be an attractor, since it attracts all 

the solutions in its neighborhood. A stable fixed point is the only type of attractor that a one 

dimensional continuous dynamical system can have, however other types of attractors can 

exist in systems with higher dimensionality.  

Consider a two-dimensional dynamical system (or a planar system), in which temporal 

evolution of the 2-dimensional state variable, as defined by variables      and     , is 

described by the functions   and  . In the general framework of coupled ordinary differential 

equations, it can be written as below: 

{
 ̇        
 ̇        

 ̇        ̇   
⇒                  

The equilibrium points of this system are derived by simultaneously solving  ̇    and  ̇  

 . If the initial value of the state of the system         is set exactly to the fixed point, then 

the state variables will not change by time, otherwise if the initial state is close to the fixed 

point the state variables may either converge to the fixed point or diverge from that (denoted 

by the vector                     in state space). Local stability of a fixed point in higher 

dimensional systems requires a further evaluation of the sign of the real part of eigenvalues 
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obtained from the Jacobian matrix at the fixed points. Generally, fixed points can be 

categorized by evaluating the eigenvalues of the Jacobian matrix at these points, which 

subsequently helps in determining the qualitative behavior of the system in the neighborhood 

of fixed points. The Jacobian of a system is the matrix of all its first-order partial derivatives 

regarding its state variables, defined for a fixed point (     ): 

  

[
 
 
 
  

  
   
  

  
  

  
   
  

  ]
 
 
 

    

    

|    |  
⇒                

We note that a nonlinear system can have many fixed points and accordingly the Jacobian 

matrices are defined for each fixed point, separately. The eigenvalues of the matrix   are 

values of 𝝀 for which the determinant of the matrix      is zero, where   is the identity 

matrix. If the eigenvalues of the fixed point (  and   ) are real numbers (i.e.,    ) and of 

the same sign, the fixed point is called a Node (the first letter is capitalized to highlight its 

difference from the term node as it will be later used in the definition of networks). Positive 

eigenvalue implies instability, whereas negative eigenvalue implies stability of the Node 

(Figure 3, first row).  

Having eigenvalues which are complex conjugate numbers is an indication of spiral behavior 

in the state space and the respective fixed points are referred to as a “focus”. In this case, the 

stability of the fixed point can be determined based on the sign of the real part of the 

eigenvalue. In other words, if      then the focus is a stable equilibrium with solutions 

spiraling into that (spiral sink). However, if    , then the focus is unstable (spiral source) 

with solutions spiraling out from that (Figure 3, second row). The frequency of rotation of 

trajectories around this type of fixed point can be determined from the imaginary part of the 

eigenvalues ( ) (Hilborn, 2000; Kuramoto, 1984; Strogatz, 2015). 
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Figure 3. When the eigenvalues of a fixed point have the same sign, the fixed point is called a 

Node. If the eigenvalues are complex-conjugate, respective fixed point is called a focus. 

 

As mentioned earlier, a stable fixed point is not the only possible attractor for a two 

dimensional dynamical system. Indeed, other types of attractors such as limit cycles can exist 

in systems with two or higher dimensionality. A limit cycle is an isolated closed trajectory in 

the state space with the neighboring trajectories spiraling toward or away from that. A limit 

cycle in the state space corresponds to a special type of solution for a system, representing the 

periodic behavior of that dynamical system. The limit cycle is stable if all the trajectories in 

its neighborhood approach it. Solutions that reside inside of the closed orbit will spiral out 

towards the orbit, while solutions outside of the orbit will spiral inward. If the initial value of 

the state variable is on a limit cycle, then the state space solution remains on that periodic 

trajectory forever, exhibiting a periodic behavior for the system. In the planar systems, there 

is always at least one fixed point inside any limit cycle (Izhikevich, 2010; Strogatz, 2015). It 

is intuitively expected that inside a stable limit cycle, there must be an unstable equilibrium 

point or an unstable limit cycle, since neighboring trajectories spiral toward the stable limit 

cycle. 
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Figure 4. Examples of stable and unstable limit cycles. Left panel shows an unstable focus 

inside a stable limit cycle, and the right panel shows the opposite. 

 

Stable limit cycles model dynamic systems showing self-sustained oscillations (i.e., the type 

of oscillating behavior which persists even in the absence of external periodic forcing or 

facing with slight perturbations). Relatively, a dynamical system displaying a stable limit 

cycle in the state space is usually known as an oscillator. Oscillator systems are abundant in 

nature. They are often described as systems that produce a continuous, repeated, alternating 

output (so called oscillations) without any input. In other words, oscillation can simply denote 

something moving back and forth. Familiar examples of oscillation include beating of 

the human heart, a person's sleep-wake patterns and a swinging pendulum. Neural oscillations 

are rhythmic or repetitive neural activity patterns driven either by individual neurons (e.g., 

oscillations in membrane potential) or via interactions among neurons in neural ensembles 

(e.g., macroscopic neural oscillations observed during electroencephalography). Different 

types of oscillators in virtually every area of science share this amazing feature that they can 

be defined only by a single phase variable, rotating on a circle. Oscillators with weak 

interactions with each other can adjust their oscillating rhythms (synchronize) and display 

collective behavior that is not intrinsic to any individual oscillator. The word “synchronous”, 

which means “occurring in the same time”, and related terms like “synchronization” refer to a 

variety of seemingly different phenomena that can be understood within a common 

framework based on dynamical systems theory (Hoppensteadt and Izhikevich, 1997; 

Pikovsky et al., 2003). Using phase models to understand the collective dynamics of many 

coupled oscillators will be described later in the computational modeling of brain network. 

Systems with nonlinear dynamics, even the ones with only one dimension, can show a 

peculiar dynamical behavior, namely bifurcation. Bifurcation refers to an abrupt qualitative 

change in the behavior of a nonlinear system, caused by applying a slight change to a control 

parameter of the system. Ubiquitous patterns of bifurcations have been identified, resulting in 

their categorization to different bifurcation types. For example, one of the most fundamental 

bifurcations is the Hopf bifurcation which occurs when the stability of the equilibrium of a 

system switches, and it gives birth to a limit cycle. If the resultant limit cycle is stable, the 

https://en.wikipedia.org/wiki/Human_heart
https://en.wikipedia.org/wiki/Membrane_potential
https://en.wikipedia.org/wiki/Macroscopic_scale
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bifurcation is called a supercritical Hopf bifurcation otherwise it is called a subcritical Hopf 

bifurcation when the limit cycle is unstable (Hilborn, 2000; Kuramoto, 1984; Strogatz, 2018). 

4.2 NONLINEAR DYNAMICS — MODEL-FREE ANALYSIS 

“Certain systems will, after a sufficiently long but finite time, return to a state very close to 

(for continuous state systems), or exactly the same as (for discrete state systems), their initial 

state.”  

― Poincaré recurrence theorem 

We note that the dynamical system theory relies on the concept of state space which can be 

derived from the underlying system’s differential equations or theoretically by having time-

varying measurements of all the state variables. Typically, the system’s differential equations 

are not known, and on the other hand constructing the state space is commonly confronted 

with a time-varying measurement of only one observable system variable, since not all 

system variables are measurable. One suggested solution is to apply the time-delay 

reconstruction technique, which is a frequently used method for state space reconstruction 

(Takens, 1981), based on the time delayed values of the observed system variable. This 

technique approximates an attractor in higher dimension space, assuming that variables which 

were not measurable are probably somehow depending on the sequence of numbers 

generated from observations of the system, but lagged at some time scale (time delay). Time 

delay ( ) and embedding dimension ( ) are two parameters regarding this technique that 

need to be estimated. Embedding dimension is the number of degrees of freedom which is 

sufficient to describe key properties of the state space according to the delay embedding 

theorem (Takens, 1981). Using such a model-free approach for studying the dynamical 

systems properties has several practical advantages, by obviating the need for developing an 

accurate mathematical model of the system. 

In practice, when given a scalar time series of whatever origin, embedding parameters are not 

known a priori. The optimal embedding parameters (the embedding dimension   and the 

time delay  ), can be estimated utilizing the amount of false nearest neighbor (Kennel et al., 

1992) and mutual information algorithms, respectively. It is shown that a good candidate for 

an appropriate time delay   is when the statistical dependence between the components of the 

embedding vector approaches zero. A well-established strategy is to compute the mutual 

information between the time-series and its delayed versions, for different values of delay, 

and subsequently select the appropriate delay as the one at which the time delayed mutual 

information exhibits an obvious minimum. Afterwards in order to estimate the optimal 

embedding dimension   according to the concept of false nearest neighbors algorithm 

(Kennel et al., 1992), one can examine how the proximity relations between state-vectors 

change as a function of successive increase in the embedding dimension. Indeed, there will be 

many false neighbors for the too low values of embedding dimension, whereas by choosing 

an appropriate embedding dimension (or higher), the neighbors are real. Hence, we can 
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determine a reasonable embedding dimension   by examining how the number of neighbors 

changes as a function of dimension (Kennel et al., 1992).  

State space reconstruction provides astonishing applications for different problems in the 

analysis of real data. In some circumstances, it can help us to get a general expression of the 

whole dynamics and the behavior of a system, for example to distinguish between periodic 

and chaotic behaviors. Additionally, it can be utilized for an approximate estimation of the 

key properties of dynamical systems, like the Lyapunov exponent which characterizes the 

average exponential separation rate of initially nearby state space trajectories. A positive 

value of Lyapunov exponent is the characteristic of a chaotic system (Josiński et al., 2015). 

A fundamental property of deterministic dynamical systems is that after some time the 

trajectory returns to an approximately close location it has visited previously (Ott, 2002; 

Poincaré, 1890). Therefore, by evaluating statistical similarity between different segments of 

a time-series, we can identify the times at which the trajectory of the system visits 

approximately the same area in the state space (Marwan et al., 2007). States which are in an 

ε-neighborhood of each other characterize recurrence points which can be exploited to 

investigate a high dimensional state space trajectory via a two-dimensional recurrence plot. A 

recurrence plot is a binary graph in which recurrent and non-recurrent pairs of state vectors 

are respectively illustrated as black and white points (Eckmann et al., 1987). Figure 5 

represents an illustrative example of a toy signal, applying the mutual information and nearest 

neighbor tests for the estimation of its parameters, reconstructed state space trajectory and 

finally its respective recurrence plot. 

Recurrence plots exhibit characteristic large-scale patterns of recurrences classified as 

homogenous, periodic, drift or disrupted, which are associated with particular dynamics of 

the system (Marwan et al., 2007). Due to the characteristic behavior of the state space 

trajectory recurrence points may stay as individual dots or form other small-scale structures, 

characterized as diagonal lines, vertical/horizontal lines or a combination of both. If the 

values of state strongly fluctuate, they can be revisited only for a considerably short duration, 

appearing as single dots. When a segment of the trajectory in the state space runs parallel to 

another segment, so that the trajectories evolve through the same ε-tube for some time, we 

observe a diagonal line in the recurrence plot. However, a vertical (horizontal) line structure 

characterizes a state that is trapped for some time because the state is not changing or it is 

changing very slowly (Marwan et al., 2007).   
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Figure 5. For the illustrated toy signal, the optimal values for the time delay   and 

embedding dimension   were estimated as the location of the knee of curves associated with 

the auto mutual information and the amount of false nearest neighbors respectively. 

According to the appropriate parameter set (   ,    ), the state space trajectory is 

reconstructed and subsequently its respective recurrence plot is depicted (threshold was 

arbitrarily set to 0.4).  

 

In order to evaluate the recurrence plot in a quantitative approach, small-scale recurrence 

structures can be employed in the recurrence quantification analysis (Zbilut & Webber 1992; 

Marwan et al. 2002). Recurrence rate is the simplest quantifiable measure which is simply the 

density of recurrence points. Determinism or predictability of the system can be measured by 

computing the ratio of recurrence points that form diagonal lines with the minimum length to 

all the observed recurrence points. The average length of diagonal lines is introduced as a 

measure of mean prediction time. In addition, the length of maximum diagonal line can be 

utilized to measure the divergence speed of trajectory segments, so that the shorter diagonal 

lines represent the faster divergence of trajectory segments. Laminarity of the system is 

introduced as the ratio of recurrence points that form vertical lines to all the observed 
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recurrence points, comparative to the description of the determinism. Additionally, the 

average time interval that the system is trapped at specific states is known as trapping time 

(Marwan et al., 2007). 

Notably, a state space based recurrence plot can be treated as a network, in which the 

sampled state vectors are interpreted as vertices and recurrences are interpreted as edges. In 

other words, any pair of state vectors which are mutually close in the state space will be 

represented by an edge connecting them to each other. Reinterpretation of recurrence plots in 

the framework of network theory provides new analysis concepts for discovering hidden 

patterns in a time-series. Similar to any other network, graph theoretical measures (which will 

be explained in the next chapter) that characterize the individual vertices or individual edges, 

as well as global network characteristics can be utilized for the analysis of recurrence 

networks. For example, the nodal degree characterizes local recurrence rate of an individual 

state, and the average path length represents the average state space separation of states. 

Recurrence networks have been previously suggested as a complex network approach to 

nonlinear time-series analysis (Donner et al., 2011; Zou et al., 2018). 
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5 CHAPTER 5: NETWORK SCIENCE 

“All models are wrong, but some are useful.” 

― George Box 

Network science is an interdisciplinary field which studies the structure and function of 

networked systems, such as biological systems and telecommunication networks, that are 

composed of numerous elements interacting with each other (Sporns, 2018). We focus on 

graph theory as the principal mathematical scaffold behind the network science (Barabási, 

2016), although a repertoire of other theories and methods from different fields (e.g., data 

mining and statistical inference) are employed in the network science, too.  

5.1 GRAPH THEORY 

“Mathematics is the art of giving the same name to different things.”  

― Henri Poincaré 

Systems consisting of different interacting units are naturally represented as a graph with a set 

of vertices (or nodes) and their mutual interactions (i.e., edges or links), which in their 

simplest form can be described in the form of a 2-dimensional adjacency matrix (Sporns, 

2018). The two nodes which are linked are said to be adjacent. Indeed, the two different 

terminologies ({network, node, link} and {graph, vertex, edge}) can be used interchangeably, 

although there is subtle distinction made by Barabási suggesting that the first set usually 

refers to real systems (e.g., brain as a network of regions linked by FCs), whereas the latter 

seems more appropriate for the discussions around mathematical representation of networks 

(Barabási, 2016).  

Graph theory has attracted exponentially increasing attention in analyzing large-scale 

neuronal communications in the brain, as it provides the simplest approach to capture the 

organizational properties of brain network. The functional architecture of the brain is readily 

characterized as a network of interacting elements, which makes graph-theoretical 

frameworks ideal for comprehensive studies of brain connectivity (Bassett and Sporns, 2017; 

Sporns, 2018). Depending on the measurement technique, brain can be mathematically 

characterized as a graph with a set of vertices representing either individual neurons or entire 

brain regions and a set of edges representing synaptic connectivity among neurons or inter-

regional FCs (Sporns, 2018). The sequence of analytic steps in creating a connectivity matrix 

for resting-state fMRI data is illustrated in (Figure 6, left column). As such, it is possible to 

estimate various key measures of the brain as a whole, its subsystems, or individual nodes 

(Harary, 1969; Newman et al., 2011; Sporns, 2018), allowing us to characterize different 

aspects of this network. Brain network analyses may provide unique insights for 

understanding intra- and inter-individual differences as well as group differences in brain 

architecture (Aerts et al., 2016; Simpson and Laurienti, 2016). 
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Figure 6. Average regional BOLD signals were extracted from pre-processes fMRI data, 

based on an arbitrary brain parcellation. The entries of the connectivity matrix correspond to 

Pearson correlation coefficients (color-coded) of the BOLD signals associated with each 

possible pair of brain regions. The data source for creating this figure was the resting-state 

fMRI data from Human Connectome 500 subject release and its associated parcellation 

derived by performing gray matter segmentation on the T1-weighted images. We calculated 

the group-level static FC matrix by averaging the z-transformed subject-level connectivity 

matrices and illustrated the positive matrix entries. Subsequently, the optimal community 

structure was extracted by applying Louvain algorithm with iterative community fine-tuning. 

Resultant four communities are displayed in different colors. The size of nodes varies by their 

level of connectedness. We computed a composite hub score using average of three different 

unity-based normalized centrality measures (including degree, closeness centrality and 
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betweenness centrality). Relative thresholding (15%) was applied prior to extracting 

centrality measures. Various centrality measures might rank the network nodes in different 

orders. 

 

Brain networks can be decomposed into several subgroups of highly connected nodes, often 

termed as modules or communities, indicating some commonality or specialization of 

function (Figure 6). Each module comprises nodes, which are more densely connected to 

each other than to nodes from other modules (Fornito et al., 2016). Typically, modular 

networks have “small-world” characteristics. A high clustering coefficient and a low 

characteristic path length are key properties of a small-world network. The clustering 

coefficient, which is quantified as the ratio of the count of present edges to the entire number 

of potential edges between the neighbors of a node captures the level to which the neighbors 

of that particular node are connected to each other. One can compute the clustering 

coefficient either at the nodal-level or across the whole network (by averaging it across all the 

nodes of the network). The characteristic path length is the mean of shortest paths connecting 

the network’s nodes. A feasible contiguous sequence of edges from one node to another one 

is called a walk, and a path is defined as a walk in which all nodes and edges are unique. The 

shortest path between two nodes corresponds to the path with the smallest number of edges 

that connect these two nodes, and its length is called geodesic or topological distance. A 

network with a small characteristic path length shows strong global efficiency (Barabási, 

2016; Fornito et al., 2016).  

In addition, there is a broad set of measures, termed as centrality measures, reflecting the 

importance of a node for network integration (Barabási, 2016; Fornito et al., 2016; Rubinov 

and Sporns, 2010; Sporns et al., 2007). Centrality measures are computed based on different 

aspects of the topological organization of a node, and are selected depending on the exact 

nature of the scientific question at hand (van den Heuvel and Sporns, 2013). Among 

centrality measures, betweenness and closeness centrality (Freeman, 1977; Sporns et al., 

2007) are computed based on the shortest paths in a network. Betweenness centrality of a 

node reflects the proportion of the shortest paths among all other nodal pairs going through 

that particular node. As such, a node with the highest betweenness centrality mediates most 

of the traffic while controlling information transfer within a network. Closeness centrality is 

typically computed as the inverse of the average topological distance of a particular node, to 

all the other network nodes, such that a node with higher closeness centrality on average has a 

shorter topological distance to the other nodes. There is another set of measures that 

quantifies the centrality of a node based on its connections (i.e. connectedness). One such 

measure, the so-called degree, is derived by counting the number of direct links between a 

given node and the rest of the network. Nodal strength, on the other hand, is the sum of 

weights of direct links connected to the node. Eigenvector centrality is computed by 

considering the overall connectivity pattern of the network and based on the concept that 

being connected to nodes with higher centrality is more beneficial than to nodes with lower 
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centrality. Therefore, a node with the high eigenvector centrality represents a highly 

connected node, which is connected to other highly connected nodes (Fornito et al., 2016; 

van den Heuvel and Sporns, 2013; Zuo et al., 2012). 

The aforementioned measures may also be computed considering the spatial distribution of 

connections. For example, the participation coefficient of a node is computed based on the 

distribution of intra-module connections, in relation to the total connections of the node. 

Therefore, a higher participation coefficient indicates proportionally greater communication 

with nodes in other modules. There is also a within-module version of degree, known as the 

within-module degree z-score (Guimerà and Amaral, 2005). Different centrality measures 

might rank the network nodes in different orders (Zuo et al., 2012). However, nodal rankings 

based on different centrality measures are often associated (van den Heuvel and Sporns, 

2013). Therefore, it may be suggested to aggregate different standardized centrality scores 

and create a composite measure of hubiness for an overall classification of nodes (Rubinov 

and Sporns, 2010; van den Heuvel and Sporns, 2013). Identification of the hubs which are the 

most central nodes in a network is a controversial topic, with a large range of opinions based 

on different centrality measures. For example, one of the first proposals proffered has three 

key features (Freeman, 1978): First, it evaluates the maximum number of connections (nodal 

degree) compared to the rest of network nodes. Existence of highly connected network nodes 

is based on the fact that the distribution of connectivity is not uniform across the nodes of the 

brain. Second, the central node has the shortest path length (i.e., maximum closeness) to all 

other nodes. Third, it is located on the shortest possible topological path between all pairs of 

nodes. Figure 7 illustrates different nodes with the highest betweenness, closeness, degree, 

and eigenvector centralities. 

 

Figure 7. Brain networks can be described as graphs consisting of nodes (representing brain 

regions) and edges (describing functional connectivity). The circles denote nodes, and the 

links between them are edges. Nodes with the highest centrality are different, depending on 

the chosen centrality measure. 
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The relationship between brain topology and cognitive function is relatively unexplored. The 

simplicity and generalizability of graph theory turns it into an appropriate method to address 

this relationship. The method provides a systematic approach to investigate how the 

organization of communication patterns is linked to cognition. Using different graph indices 

for probing the organization of communication patterns of a complex brain network may give 

us a better understanding of cognitive functions and ultimately serve as a biomarker of 

psychiatric brain disorders as well as of neurodegenerative diseases (Bassett et al., 2008; 

Bullmore and Sporns, 2009; Supekar et al., 2008; van den Heuvel et al., 2010).  

Studying the organization of functional connections in the brain via graph theory is not 

without difficulties. The number of nodes and the average degree of the network are shown to 

influence graph measures, which is of particular importance for direct comparisons of graph 

measures derived from different networks (van Wijk et al., 2010). Therefore, the first 

obstacle in using graph theory for exploring brain function concerns the very definition of 

nodes. A typical suggestion is to use brain atlases in which regions of interest are defined 

based on macroscopic landmarks (Desikan et al., 2006; Tzourio-Mazoyer et al., 2002). 

Random parcellation of GM into contiguous nodes with equal sizes is another proposed 

method (Zalesky et al., 2010). However, there are brain atlases based on structural 

(Anwander et al., 2007) and functional (Craddock et al., 2012; Power et al., 2011; Yeo et al., 

2011) connectivity patterns, which have gained considerable success. In particular, 

multivariate decomposition of fMRI data using methods such as ICA (Kiviniemi et al., 2009; 

Yu et al., 2017) is being increasingly applied as a node-detection technique. Because of age-

related spatial reorganization of RSNs and changes in the location of functional regions 

(Chan et al., 2014; Goldstone et al., 2016; Littow et al., 2010; Sohn et al., 2015), as well as 

disease-related brain variability (Toga et al., 2001), additional care must be taken in using 

atlases from young healthy subjects in studies involving elderly persons or patient samples.  

Additionally, we note that functional graphs are often very dense because they are created 

based on the statistical dependencies among regional time series. Therefore, graph analysis 

will mostly benefit from applying a threshold to maximize the separation of putatively real 

links from spurious and noisy ones. However, the choice of an appropriate threshold is up to 

the analyst and must be made with caution. Additionally, applying a fixed threshold to the 

connectivity matrices of individuals with different average levels of connectivity, leads to 

differences in the connection densities of individual networks. For example, previous 

research reported lower overall FC in both schizophrenia and autism patients compared with 

controls (van den Heuvel et al., 2017). Applying the same threshold (for example 0.2) to 

patients and controls, results in higher network density for the controls. Since graph measures 

are mostly sensitive to the number of edges as captured by network density, this variation 

causes a serious problem. 

An alternative approach is to use density-based thresholding strategy, to achieve the same 

number of edges in all individuals by allowing the value of absolute threshold to vary from 

network to network. Following on from the previous example, for a fixed network density, 
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the value of absolute threshold will be higher for the control network as compared with the 

patient one. Therefore, the patient’s network comprises more correlations of low-value, 

which possibly represent spurious links, leading to for example artificially inflated and biased 

differences in network efficiency and clustering. Preserving a higher proportion of potentially 

spurious links may have the consequence of rendering the network topology more random 

(Fornito et al., 2016; van den Heuvel et al., 2017). Particularly, the network topology in 

schizophrenia and some other psychiatric disorders have been shown to appear more random 

compared with healthy individuals, which may only be induced through density-based 

thresholding strategy. In the present case, untangling differences in FC weights from 

differences in network measures can be very difficult (Fornito et al., 2016; Rubinov et al., 

2009; van den Heuvel et al., 2017). In conclusion, these approaches have their own benefits 

and pitfalls, and therefore none of them gives rise to a fully unbiased analysis.   

5.2 TEMPORAL NETWORKS 

“Change is the only constant in life.” 

― Heraclitus 

So far, we explained how systems consisting of different interacting units can be described as 

a graph, where each node symbolizes one single unit of the system and each link represents a 

certain type of relationship between the units. However, in a real-world networked system, 

the interactions among units are seldom persistent over time and therefore a static adjacency 

matrix seems an oversimplifying approximation. Instead, we need to represent a time-

evolving networked system as a time-series of matrices namely time-varying (dynamic) 

graphs or temporal networks. 

In general, adding the time dimension to the graphs introduces complexity to both 

visualization of the network and exploiting the relevant information in the form of different 

measures to characterize the network. If we deal with small, sparse networks, the temporal 

network can be represented as a sequence of edges or contacts over time (for example see 

Figure 1a and 1c in (Sizemore and Bassett, 2018)), however this visualization technique 

becomes less appropriate as the number of time-points increases. Temporal networks with 

long time-series are sometimes illustrated as a time-aggregated graph in which information 

about the time dimension is neglected (for example see Figure 1b in (Sizemore and Bassett, 

2018)).  

The key step in the network analysis is extracting informative measures to help us understand 

and describe how network units are organized and exchange information. Graph theory is 

simply applicable to the networks with time-varying edges, if we ignore the temporal 

dependencies between consecutive graphs ordered in time and just attach to the previously 

defined metrics which were all based on the node adjacency. Accordingly, we can track 

changes in the network properties by investigating time-varying graph measures which are 

computed at each time-point independent from the rest of time-points (Sizemore and Bassett, 

2018; Sporns, 2018; Zalesky et al., 2014). Following the aforementioned approach, several 
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studies have found interesting associations between network characteristics and time, like a 

time-varying nature for the modular organization of functional brain networks during resting 

state (Fukushima et al., 2018; Jones et al., 2012; Zalesky et al., 2014). Another study further 

investigated spatiotemporal properties of time-varying brain network in the intervals with low 

and high modularity, and suggested that fluctuations in modularity of resting-state brain 

network may be rooted in the differences in the tendency of the DMN to dissociate from task-

positive networks (Fukushima et al., 2018). Furthermore, regional efficiency has been shown 

to vary over time, in a sense that brain dynamics gives rise to short-term spontaneous 

increases in the global efficiency of the network ensuring a balance between efficient 

information exchange and metabolic costs (Zalesky et al., 2014).  

Although this intuitive extension of measures as a function of time may seem a reasonable 

method for many nodal and global measures like clustering coefficient efficiency, it is not 

generally applicable (Sizemore and Bassett, 2018). Additionally, characterizing the network 

structure and evolution only by means of the metrics which are defined based on the nodal 

adjacency, neglecting the temporal dependencies of the sequential graphs, fails to explicitly 

account for the time dimension and leads to inaccuracies in the identification of network 

reconfigurations. Therefore, there have been considerable attempts to extend the concept of 

adjacency for the case of temporal networks by including time as one additional dimension in 

the definition of the graph (Holme and Saramäki, 2013, 2012; Nicosia et al., 2013; Sizemore 

and Bassett, 2018; Thompson et al., 2017). In a temporal network, the term “edge” is often 

substituted by the term “contact”, whose definition requires the time-point as an additional 

restriction on connectivity.  

In the graph theory, the reachability between two nodes is related to the concept of walk or 

path, where a walk or path is defined as an ordered sequence of edges connecting two nodes 

in a contiguous manner, depending on the adjacency of nodes. Given that in a temporal 

network the nodal adjacency may vary as a function of time, the nodal reachability is 

redefined in terms of time-respecting paths. Specifically, a time-respecting path is a sequence 

of contacts {(Nodei, Nodej, t1 ), (Nodej, Nodek, t2 ),(Nodek, Nodem, t3 ), …}, which agrees 

with the arrow of time, meaning that it does not break the contiguity of the sequence in time.  

We note that a time-respecting path is not necessarily transitive (as it was in static graphs), 

meaning that the existence of a path from Nodei to Nodek, and also a path from Nodek to 

Nodez, is not an indication of the existence of a path from Nodei to Nodez..Correspondingly, 

Nodei is temporally connected to Nodem only if a time-respecting path traveling from Nodei 

to Nodem exists. It is worth mentioning that because of the importance of temporal ordering, 

this type of connectedness is not symmetric. That is, if Nodei is temporally connected to 

Nodem, in general Nodem can be either temporally connected or disconnected to Nodei. If 

there is a two-way temporal connection, these two nodes are said to be strongly connected. 

Studying reachability of a node based on the notion of time-respecting paths allows us to 

define two key time-varying features for an individual node, namely the source set and 

influence set. At any chosen specific time-point, the source set of a node is defined as the 
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collection of all nodes that can reach a given node of interest through time-respecting paths, 

within a given time interval. Additionally, again at any chosen specific time-point, we can 

define the set of influence of a node as the collection of all nodes that can be reached from 

that particular node via time-respecting paths, beginning no earlier than a given start time. 

The size and composition of the source and influence sets of an individual node, can provide 

useful information about the function of that particular node in information integration and 

sharing. 

The duration of the path, computed as the time difference between the last and first contacts, 

is known as the temporal path length. The temporal path length of the rapidest path 

connecting two nodes (the shortest traveling time between those two nodes) is known as their 

latency (temporal distance). Correspondingly, temporal betweenness centrality of an 

individual node is defined as the fraction of fastest paths traveling through that particular 

node. Similarly, various graph measures have been redefined and many new measures have 

been introduced to characterize for temporal networks. We refer the readers to the detailed 

description of measures related to the concept of temporal networks (Holme and Saramäki, 

2012; Nicosia et al., 2013; Sizemore and Bassett, 2018). 

5.3 COMPLEX NETWORKS 

“I think the next [21st] century will be the century of complexity.” 

 ― Stephen Hawking 

Many of the systems around us are complex systems. Complex systems are often 

characterized by a collection of components whose dynamic interactions (which are mostly 

local) with each other gives rise to the emergence of global properties that cannot be inferred 

from properties of individual system components. Therefore, a complex system has a non-

linear dynamic nature and we cannot understand it in the reductionism frameworks like by 

using superposition principle (Mora-Lopez, 2009). 

The popular phrase by Aristotle "The whole is more than the sum of its parts" aptly defines 

the concept of such an emergent behavior in complex systems. Complex systems are difficult 

to understand or analyze, because describing the whole system’s function (its collective 

behavior) requires understanding the behavior of each individual component in relation to the 

other components (Bar-Yam et al., 1998). Accordingly, it has been previously recommended 

to use the term “interdependent” instead of “interconnected” for describing the components 

of a complex system, in order to highlight the influence one component has on another as an 

essential property of the dynamic systems (Bar-Yam et al., 1998; De Bot et al., 2007).  

It might be worth to highlight that the word “complex” is not interchangeable with the word 

“complicated”, as it is inherently more challenging and unpredictable, with no necessity to 

have so many components (Rogers, 2008). A double pendulum which is simply made by 

attaching one pendulum to the free end of another pendulum is one of the simplest examples 

of a complex system, showing chaotic dynamics. Such a complex behavior which is resulted 

from the interaction between two pendulums seems very different and often unexpected from 
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properties of each individual pendulum. Systems with chaotic dynamics are often 

deterministic systems whose behavior can theoretically be predicted, but it is extremely 

sensitive to the initial conditions. Therefore, in practice, their behavior is predictable only for 

a short time which varies by the accuracy in measuring the initial condition. Indeed, 

unavoidable uncertainty of measuring instruments makes the long-term prediction of chaotic 

behavior impossible (De Bot et al., 2007).  

Complexity science deals with understanding how a collection of locally-collaborating 

components, can spontaneously self-organize to exhibit a functioning whole. Think of the 

complex flying patterns formed by the bird flocks in sky. It seems like an amorphous moving 

creature which is constantly changing in shape, but once you get closer you will see hundreds 

of birds each one acting as an individual agent (component) in this complex system. Indeed, 

complex self-organization characteristic has been observed in different types of swarms, 

although they work through very simple rules of behavior – like locally interacting with their 

neighbors at small scales, avoiding collision and trying to align themselves to the average 

direction of the agents in their neighborhood. When confronted with a predator, they scatter 

away at random and attract to each other afterwards. Although this constant splitting and 

reforming seems like an effortful act being made by each individual aiming to cooperate, all 

this comes out of their selfish behavior to save themselves. Swarming is indeed an advantage 

for every individual, as there are many eyes to spot an attack, and in the case of any danger, 

waves of panic will quickly propagate over long distances (Mora-Lopez, 2009; Pikovsky et 

al., 2002; Strogatz, 2004).  

Since complex systems are dynamical systems, they can be studied in terms of the temporal 

changes of their states. As discussed in the previous section, the state of a system is a set of 

variables that is capable to best characterize the system at any time. Temporal changes in the 

states of a complex system are typically non-linear, meaning that the change is not directly 

proportional to the system’s current state or changes in the environment, causing different 

change rates depending on their states and their environment (Bar-Yam et al., 1998; Mora-

Lopez, 2009).  

Besides the nonlinear dynamic character of the system, the architecture of the network is 

another important property that characterizes a complex system (Mora-Lopez, 2009). There 

have been several attempts to generate networks with the similar topology to complex 

networks in the real-world. For example, Barabási and Albert suggested an algorithm for 

generating networks with the scale-free property, as approximately seen in some natural and 

human-made complex systems (Barabasi and Albert, 1999; Barabási, 2016; Broido and 

Clauset, 2019). The network growth in the Barabasi-Albert model has been based on 

preferential attachment theory, so that nodes that enter the network with a higher probability 

will attach to the nodes with more connections. Degree distribution of these networks can be 

estimated by a power law, rather than binomial or exponential distributions. Most nodes in a 

power-law distribution have a low level of degree, although there are some nodes with high 

connectedness, too. Therefore, we cannot select a single node to represent the others, 
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providing an estimate of the average degree of the other nodes. Networks following power-

law degree distribution are called scale-free networks, because they do not have any 

characteristic scale (Barabasi and Albert, 1999). In regular and random networks, the 

breakdown of the system in face of random failure is not a gradual process; rather, there is an 

abrupt phase transition from a large connected component to fragmentation, as assumed by 

the inverse-percolation theory (Stauffer and Aharony, 1994). However, the fragmentation 

process in the presence of random failures in scale-free networks is gradual. This 

characteristic makes them remarkably robust compared to random or regular networks. 

However, they are more vulnerable than other networks to selective attacks. Removing nodes 

with the highest degree (i.e. hubs) may promptly break the network into small disconnected 

clusters (Barabási, 2016).  

Every individual component of a complex system can also be a whole new system, a 

characteristic that is known as multi-scale structure. Therefore, network science theories and 

approaches applied in such cases, need to be further developed to account for 

interdependencies between different scales (Betzel and Bassett, 2017; Michelson et al., 

2018). 

Computational modeling of nonlinear dynamics provides us with the opportunity to deepen 

our understanding of how complex systems are structured and change with time (Bar-Yam et 

al., 1998; Mora-Lopez, 2009). 

5.3.1 Human Brain as a Complex Network 

“Overall, the human brain is the most complex object known in the universe – known, that is, 

to itself.” 

― Edward Osborne Wilson 

Human brain is an extraordinary complex system, in which global dynamical states have been 

brought about by the activation of interconnected neuronal populations, giving rise to 

complex processes involved in perception and cognition (Mesulam, 1998; Sporns, 2004). 

Understanding the principles that underlie complex structures of cortical organization has 

been proven to be difficult. Segregation and integration are two dominant principles of 

functional organization of the cerebral cortex that play fundamental roles in neural 

processing. Advances in neuroimaging approaches have provided overwhelming evidence to 

support the view of functional specialization at multiple spatial scales as a fundamental 

organizational motif (Sporns, 2004; Tononi et al., 1998). Information conveyed by individual 

activities of functionally specialized areas must be rapidly evaluated and integrated into a 

unified coherent scene. Previous findings suggest that, similar to functional specialization, 

rapid integration of information occurs at multiple spatial and temporal scales, even when we 

are asleep (Tononi et al., 1998). The structural basis for the functional interactions underlying 

the integration of neural activity between specialized regions has been formed by anatomical 

pathways, which are found at all levels of scales, including the long-range ones linking 

remote brain regions across the cerebral cortex. Although structured anatomical paths are 
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central to interactions between specialized components and generating an organized whole 

activity, we still have limited knowledge of the emergence of brain dynamics from the 

underlying anatomical connectivity (Jirsa and Kelso, 2004; Tononi et al., 1998). 

Understanding the architecture of the human brain as an integrative network with flexible 

neural dynamics is an increasingly attractive topic in neuroscience. Network science creates a 

platform to study information integration in the brain, how such integration is altered across 

different conditions, and may have implications for understanding cognitive problems and 

brain disorders. Brain-network analysis was catalyzed by remarkable advances by the advent 

of neuroimaging techniques (both in acquisition and analysis of imaging data), which made it 

possible to explore connectivity patterns in the brain more comprehensively. Research based 

on FC analysis gave us new insights into both local and global organization of 

communication patterns in the brain. For example, there is some evidence suggesting that 

resting-state FC in the human brain has a combined small-world and scale-free organization 

(Eguíluz et al., 2005; Fornito et al., 2016; van den Heuvel et al., 2008). On the other hand, 

some studies have argued that human brain networks have exponentially truncated power law 

degree distributions, implying relatively less probabilities of hubs with large connectendness 

(Achard et al., 2006; Aerts et al., 2016). This characteristic makes brain networks more 

resilient to targeted attacks on the central regions than a comparable scale-free network 

(Achard et al., 2006; Aerts et al., 2016). 

A number of experimental studies support the critical brain hypothesis, according which the 

collective dynamics of large neuronal networks works near the critical point of a phase 

transition. In the immediate vicinity of the critical point, the whole-brain activity would be 

continuously transitioning between two phases associated with either rapidly reducing and 

dying activity, or amplifying over time. Particularly, resting-state networks are shown to 

operate at the vicinity of critical point, where there is continuous switching between two 

network states, characterized by uncoordinated cortical activity (lack of integration) and 

coherent cortical activity (lack of segregation). Regarding the proposed role of criticality in 

resting-state brain dynamics, there is a body of evidence from EEG, 

magnetoencephalography (MEG) and fMRI studies indicating a dynamic balance of 

integration and segregation for large-scale resting-state systems, near the critical point. It is 

also suggested that a slight incursion away from the critical regime may be required in 

cognitively demanding tasks (Cocchi et al., 2017).   

Additionally, recent understanding of the multiscale nature of the brain is one of the new 

horizons which have opened in the field (Bassett and Siebenhühner, 2013). Today, we know 

that our brain with about 100 billion neurons is organized over multiple scales of space and 

time (Betzel and Bassett, 2017; van den Heuvel and Hulshoff Pol, 2010). Characterization of 

networks over multiple spatial scales refers to their elements that may range from cells to 

large-scale networks. The concept of multiple temporal scales refers to the precision, varying 

from milliseconds (Khambhati et al., 2015) to the entire lifespan (Zuo et al., 2010). In 

parallel, topological scales of network analysis vary from individual nodes to the whole 
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network (Betzel and Bassett, 2017; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). 

Integration of neural activity across multiple scales gives rise to complex cognitive functions.  

It is previously argued that network science requires multi-scale and multi-modal approaches 

with the capability of forming bridges between different scales in order to link neural activity 

across scales (Betzel and Bassett, 2017; Michelson et al., 2018). Thus far, the mechanisms 

that unify neural activity across different spatiotemporal scales are to a large extent unknown 

(Cocchi et al., 2017).  

The framework of network science has revealed higher-order organization patterns, such as 

“rich clubs” which may direct us to a kind of unifying mechanism cross scales. Indeed, the 

constellation of highly connected hub regions that form an interconnected rich-club supports 

a core-periphery organization of the brain network dynamics which is characterized by 

multiple temporal scales. In this organization, a set of hub regions, largely operating at slow 

frequencies, acts as an integrative core, whereas peripheral regions such as the visual and 

sensorimotor systems operating at faster frequencies introduce stimuli related variability in 

the system (Bassett and Siebenhühner, 2013; Cocchi et al., 2017; Gollo et al., 2015). Equally 

important, phase-amplitude cross-frequency coupling is a suggested mechanism for 

communication between brain areas (Canolty and Knight, 2010; Canolty et al., 2006; Florin 

and Baillet, 2015; Szczepanski et al., 2014). In this case, a previous study using 

magnetoencephalography imaging during rest indicated that the resting-state networks 

emerge from cross-frequency coupling between the phase of a low-frequency oscillation and 

the high-frequency oscillation’s amplitude in neural oscillations across the brain (Florin and 

Baillet, 2015; Szczepanski et al., 2014). Notably, several studies have demonstrated that the 

synchronized phase-amplitude coupling operates through a physiologically plausible 

mechanism (Cardin et al., 2009; Ray and Maunsell, 2011; Szczepanski et al., 2014).  

5.4 COMPUTATIONAL MODELING OF BRAIN NETWORK 

“Mathematicians do not study objects, but relations between objects. Thus, they are free to 

replace some objects by others so long as the relations remain unchanged. Content to them 

is irrelevant: they are interested in form only.” 

― Henri Poincaré 

Studying a complex system often begins with a set of models that are capable of capturing 

some aspects of the dynamics in that particular system (Bar-Yam et al., 1998). Graph-

theoretical representation of brain network, by means of either static or time-varying 

(dynamic) measures of FC, has gained considerable ground in neuroscience (Bassett and 

Sporns, 2017; Bullmore and Sporns, 2009; Fornito et al., 2013). Network mapping by 

comprehensive recording of connections in the brain system have consistently revealed 

nonrandom topological attributes like highly connected hub regions, and even more complex 

organizational features such as hierarchical organization (Bassett and Sporns, 2017). Abstract 

characterization of brain network based on graph theory mainly aims to summarize the 

empirical data in terms of some graph measures in order to describe the network organization. 
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Therefore, it can be categorized as a more descriptive type of modeling, with very limited 

predictive usages. Even though simple generative principles may in parallel be employed for 

making statistical comparisons, as a complement for descriptive accounts of network 

topology (Rubinov and Sporns, 2011; Sporns, 2018), more advanced generative models (so 

called mechanistic models) of brain responses are required to illuminate the emergence of the 

brain dynamics and FC patterns based on a network of structural couplings and for a further 

understanding of their breakdown in disease (Cabral et al., 2014; Deco and Kringelbach, 

2014; Deco et al., 2011; Honey and Sporns, 2008). Nowadays, with access to greater 

computational power, it is possible to build forward models which can help us explain and 

predict empirical functional network data by simulating the activity of neural elements and 

their interactions based on the biophysical properties of neural elements that are linked via 

structural links (Bassett and Sporns, 2017).  

The interplay between the structural connectome and the dynamics of the brain, yet to the 

large extent unknown, is said to underlie all different functions from consciousness and 

perception to learning, memory, and movement (Deco et al., 2008). Accordingly, 

mathematical modeling of the brain network dynamics has launched an initiative to address 

the key questions regarding to the role of brain’s structure in shaping FCs within the brain 

and also the emergence of complex brain dynamics (Breakspear et al., 2010; Cabral et al., 

2014; Fink, 2018; Ritter et al., 2013; Roberts et al., 2018). This is leading to expectations that 

whole-brain computational modeling is a good entry point for understanding cognitive 

impairments and brain disorders at a causal mechanistic level, and ultimately designing goal-

directed therapeutic interventions based on appropriate targets (Deco and Kringelbach, 2014). 

Computational modeling based on non-linear differential equations helps neuroscientists 

understand the fundamental mechanisms that underpin neural dynamics, at different space–

time scales (Breakspear et al., 2010; Deco et al., 2008; Sporns, 2018). There is a wide range 

of candidate models commonly used in neuroscience, from simple algebraic forms to 

complex networks of multi-compartment neurons connected based on a synaptic map. 

Detailed computational models of individual spiking neurons, like different types of electrical 

input–output membrane voltage, have helped to investigate specific mechanisms and generate 

spiking and bursting behaviors replicating electrophysiological observations. However, 

systematic exploration of such complex models is hampered by increasing number of model 

parameters (Breakspear et al., 2010).  

In order to investigate how interactions between locally generated oscillations at different 

cortical regions give rise to the emergent dynamics at the level of whole brain, we need to 

think beyond microscopic firing of single neurons and instead think about mesoscopic 

behavior observed for neuronal populations (Deco et al., 2008).  

Accordingly, one solution is considering neural mass models by which the complexity of 

neural models is reduced to a set of nonlinear differential equations modeling the activity of a 

population of neurons (Cabral et al., 2014; Deco et al., 2008). Computational modeling of 

whole-brain network dynamics through reduced neural mass models, mostly attempts to 



 

38 

unravel the fundamental laws governing spontaneous emergence of resting-state fluctuations, 

in order to generate neural activity and dynamics from simple structural ingredients 

(Breakspear et al., 2010; Sporns, 2018). Using neural mass models coupled according to the 

realistic structural connectivity has been attracting a growing body of research for the 

understanding of resting-state dynamics (Breakspear et al., 2010; Cabral et al., 2014, 2011; 

Deco et al., 2008). Parsimonious models in general can provide central targets for therapeutic 

interventions and therefore they can have important implications for the diagnosis and 

treatment of brain disorders (Durstewitz et al., 2018). 

A number of studies have tested multiple oscillator types to describe the local dynamics of 

each brain region in the neural mass modeling, including the Stuart-Landau oscillator. The 

Stuart-Landau oscillator is a nonlinear oscillating system near the Hopf bifurcation, capable 

of expressing both noisy asynchronous dynamics and oscillatory behaviors, and therefore it is 

thought of as the principal model to describe amplitude dynamics (Röhm, Lüdge, & 

Schneider, 2018). When coupled together at the optimal working point, the collective 

behavior of interacting oscillator systems has been shown to reproduce the key structures of 

brain dynamics (Deco, Kringelbach, Jirsa, & Ritter, 2017; Freyer et al., 2011). A previous 

study which used these oscillators for modeling resting state dynamics in fMRI have found 

that the best fit of this model to the neuroimaging data occurs at the brink of bifurcation 

(transition from fixed point to oscillating behavior), where the steady state solutions and the 

periodic oscillations co-exist (Deco et al., 2017). This type of behavior is called multistability 

(Deco et al., 2017; Freyer et al., 2011; Tognoli and Kelso, 2014). A system with multiple co-

existing stable states or attractors which requires external input to cause switching between 

stable states, is called a multistable system (Kelso, 2012). Apart from multistability, this 

model captures another key feature of a healthy brain dynamics as well, namely high 

metastability. Metastability refers to the simultaneous realization of two competing 

tendencies (existence of a form of winnerless competition) to synchronize and desynchronize, 

achieved by spontaneous shifting between unstable states or transient attractor-like states 

(Kelso, 2012). Additionally, models with Hopf bifurcation are particularly well-suited for 

simulating the effects of GM lesions (Deco et al., 2018), with no need to remove any 

structural link in the network.  

An increased degree of reduction of a neural-mass model to a phase oscillator has been 

attracting great attention in computational neuroscience (Breakspear et al., 2010; Cabral et 

al., 2011), supported by both experimental and theoretical studies (Brunel and Wang, 2003; 

Hoppensteadt and Izhikevich, 1997; Schuster and Wagner, 1990). Indeed, applying more 

abstracted models not only further enhances analytical tractability, but also may better 

explain common fundamental mechanisms that may underpin a variety of diverse anatomical 

and physiological processes (Breakspear et al., 2010). In terms of describing coupled 

oscillator systems, the simplest model achievable is the Kuramoto model (Kuramoto, 1984). 

Kuramoto suggests that activity of a local system (e.g., a neuron or a brain region) can be 

adequately characterized only by its phase (Figure 8). Kuramoto model is built based on 

several assumptions, including the existence of weak coupling between oscillators, as well as 
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the dependency of interactions on the sine of phase difference between each pair of 

oscillators. 

In order to describe the emergence behavior in a system of oscillators, as described in the 

framework of Kuramoto problem, consider N oscillatory units coupled based on the simplest 

network structure (all to all with equal strength). The state of each unit at time   is described 

only by one state variable, representing the phase of its oscillation (  ). The state space of an 

individual unit can be illustrated as the circumference of a unit circle, and each unit’s state is 

denoted by a point in the state space (Figure 8). We assume that oscillator frequencies are 

randomly selected from a distribution with a single local maximum.  

 

Figure 8. An individual oscillator represented by its circular phase. 

According to the most common form of the Kuramoto model, the phase of unit   at time   

(  ) obeys the following dynamical equation: 
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In this case, oscillators are coupled together according to the second term in this equation, 

where   is a constant value representative of the magnitude of the coupling. The two terms in 

this equation are competing with each other. To clarify, assume a specific case in which the 

global coupling constant is set to zero (   ). Additionally, assume that all these oscillators 

are initialized in synchrony with each other (meaning that their phases are all gathered 

together as illustrated in the right phase space of Figure 9). After these oscillators are coupled 

altogether, they all go around at different rates spreading out over   , reducing the synchrony 

in phase (similar to what we see in the left phase space of Figure 9). However, in the case of a 

nonzero value for the global coupling constant,    increases when the values of   are bigger 

than    (i.e., oscillator   goes faster than its natural frequency to catch up oscillator  ), 

whereas    decreases as the values of   are smaller than    (i.e., oscillator   goes slower than 

its natural frequency to reach oscillator   which is behind it). For this reason, the second term 

in the equation is said to promote synchrony in phase. Kuramoto introduced complex order 

parameter to capture the level of macroscopic synchrony of the collection of N phase 

oscillators. The order parameter ( ) is simply resulted from averaging the complex numbers 

representing the phase of N oscillators on the unit circle. Therefore, it can be written as: 
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Importantly, the magnitude of the order parameter ( ) describes the global phase coherence of 

the system at each time-point. As illustrated in Figure 9, when the phases of oscillators have 

large circular variance (meaning that they are uniformly spread out over   ), the global phase 

coherence approaches zero, whereas it approaches one when all the oscillators are moving 

nearly in phase (Breakspear et al., 2010). Usually, the global dynamic behavior of the 

ensemble of oscillators is described by the mean and standard deviation of the magnitude of 

the order parameter across all time-points, respectively called the global synchrony and 

global metastability of the whole system (Cabral et al., 2011; Váša et al., 2015).  

 

 

Figure 9. Order parameter measuring the global coherence of the system. As the figure 

illustrates, the level of synchrony in population stays weak until k passes a critical coupling 

strength (  ). Above the critical coupling strength (  ), oscillators starts to synchronize and r 

monotonically increases. 

 

Using the Kuramoto model, whole-brain network dynamics can be simulated by a number of 

phase oscillators which are coupled to each other based on the underlying anatomical 

skeleton (Breakspear et al., 2010; Cabral et al., 2011). The Kuramoto model has been proven 

capable of showing non-trivial collective dynamics and synchronization behaviors, as 

observed in a wide variety of fields, including biological systems. Additionally, many 

generalizations of the Kuramoto model (with delays and complex coupling structures) have 

been proposed to analyze a wide variety of complex dynamics (Acebrón et al., 2005; 

Breakspear et al., 2010; Lee et al., 2009; Yeung and Strogatz, 1999). 
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Previous attempts to model the resting-state oscillations using the well-studied Kuramoto 

model suggested using a generalized version which takes into account the delays for the 

interactions between oscillators. Specifically, they reported that the best fit of Kuramoto 

model with the neuroimaging data occurs for sufficiently large coupling delay, in the critical 

border between asynchrony and partial synchrony, representing an intermediate regime 

between incoherence and global synchronization (Cabral et al., 2011), where metastable 

partial synchronization occurs.  

Inferring subject-specific model parameters from the neuroimaging data is of particular 

interest for diagnostic and therapeutic applications, such as pre-surgical assessment of the 

effects of various neurosurgical approaches to optimize the surgical strategy for any particular 

individual (Aerts et al., 2018; Stephan et al., 2015). There are several studies showing 

differences in parameter estimates across drug conditions (Moran et al., 2011) or in disease 

(Saenger et al., 2017). For example, in a previous study where a set of coupled normal Hopf 

oscillators was recruited, bifurcation parameters of individual regions were separately 

estimated by fitting the normalized power of each intrinsic frequency band to the normalized 

power of its respective empirical signal. They found that brain regions in patients with 

Parkinson’s disease were mostly characterized by negative bifurcation parameters 

demonstrating noisy behavior corresponding to an asynchronous firing of neurons (Saenger et 

al., 2017). 

Notably, simulating the effects of brain network failures and perturbations may become a 

useful tool for predicting the course of disease as well as designing goal-directed 

interventions such as presenting sensory stimuli and interventions like applying transcranial 

magnetic stimulation (Aerts et al., 2016; Weerasinghe et al., 2018). Moreover, a previous 

study showed that a mathematical model of the brain oscillations is helpful in designing an 

optimal stimulation strategy by showing promising results for a new closed loop method of 

deep brain stimulation which was based on the ongoing brain activity (Weerasinghe et al., 

2018). 

Computational modeling may also play an important role to better understand why certain 

brain lesions cause cognitive and physical impairment that may become more severe over 

time while other lesion patterns have a much a better long-term outcome (Aerts et al., 2016). 

Indeed, some local brain lesions may initiate a cascade of failures and lead to disease, 

whereas others do not. In a broad sense, different brain diseases may be modeled as a cascade 

failure. For example, in patients with Alzheimer’s disease the deposition of amyloid-β 

plaques which cause synaptic disconnection and neuronal cell death (Mokhtar et al., 2013), 

may be modeled as a failure in brain networks, causing a cascade of failures. Neuronal death 

and disconnection in patients with Traumatic Brain Injury (TBI) may also be modeled in 

terms of compromised brain networks, which in some cases may lead to a cascade of failures. 

Interestingly, there is growing evidence that amyloid-β plaques may be found in the brain of 

TBI patients, even in children. The plaques observed are strikingly similar to those found in 

Alzheimer’s disease, although TBI-associated plaques may have appeared within hours 
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following the injury (Esopenko and Levine, 2015; Johnson et al., 2010; Lye and Shores, 

2000; Sundman et al., 2014). In addition, the process of cognitive aging may go faster in the 

subjects with a history of remote TBI (Esopenko and Levine, 2015). Generally speaking, to 

avoid cascade failures in a system, we need to understand the structure of the network 

supporting the propagation of the cascade. In addition, we must understand the dynamic 

processes in the networks. The interplay between the structure and dynamics of a network 

plays an important role in a system’s ability to survive failures and attacks (Albert et al., 

2000). By perturbing different network nodes and subsequently measuring how the system 

responds to the induced perturbations, we can acquire important information on the 

underlying association between the network structure and dynamics. Large-scale 

computational models are uniquely suited to address questions regarding the relationship 

between the structural backbone and the dynamics of brain activity and also by contributing 

to the modeling of lesion propagation; they in turn improve both predicting the course of 

disease and designing therapeutic procedures.   
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6 CHAPTER 6: RESEARCH REPORTED IN THIS THESIS  

6.1 INTRODUCTION — OVERAL AIMS 

The key aims of this thesis were to apply and develop novel approaches for quantification of 

resting-state FC in healthy aging and ADHD patients, as well as computational modeling of 

whole brain oscillations based on only the structural brain connectome.  

In the first two studies, we hypothesized that individual differences in FC are associated with 

cognitive differences. With a particular focus on the DMN, we explored whether individual 

differences in DMN FC are associated with differences in episodic memory in both age-

homogenous and age-heterogeneous samples. The key aims of the first two studies were: (1) 

to investigate age-related changes in the functional architecture of the medial temporal lobe 

(MTL), a subsystem of the DMN, and their links to perfusion and episodic memory decline in 

old age; (2) to examine the specificity of the association between FC of the DMN subsystems 

and episodic memory in old age. 

In the third study, in an attempt to characterize FC patterns in ADHD, we decided to have a 

less reductionistic perspective. With a particular focus on the FCs of the DMN, we introduced 

a new method for extracting different stable configurations of FC patterns for the DMN, 

namely synergies. We aimed to explore dynamic configurations of DMN connections in 

healthy and ADHD cohorts.   

In the fourth study, we proposed a novel macroscopic computational model of the brain 

oscillations for resting-state fMRI, by introducing the frequency dynamics into a system of 

coupled oscillators. Moreover, we investigated the effects of simulated GM lesions by 

applying an in silico perturbation protocol to the brain model. Therefore, my last study can be 

separated into two themes, (a) computational modeling, and (b) FC analysis. 

6.2 DATASETS 

This doctoral thesis has so far been based on four well-established data sets: the Betula 

project for Study I; the Cognition, Brain, and Aging (COBRA) project for Study II; and two 

open access datasets for Studies III and IV, namely the UCLA Consortium for 

Neuropsychiatric Phenomics and Human Connectome Project. A description of each data set 

is given below. 

6.2.1 The Betula Project 

Betula is an ongoing longitudinal study on aging, health, and cognition, conducted in Umeå, 

Sweden (Nilsson et al., 2004, 1997). The first wave of data collection was done in 1988-

1990. Another five waves of data collection have then followed with five years apart. A total 

of 4500 individuals, randomly selected from the population registry, have participated across 

the waves of data collection. Participants were 25, 30, 35, …, 85 years of age, when first 

tested. A large longitudinal database has been built up, including data from an extensive 

battery of cognitive tests, health variables, demographic variables, and psychosocial 
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variables. The cognitive battery includes various cognitive domains, but is heavily focused on 

episodic memory. Episodic memory was measured in a similar way at 4 equally distributed 

time points across 15 years of study. The task battery consisted of free recall of sentences 

(verb + noun) with and without enactment, delayed cued recall of the same nouns, with and 

without enactment, as well as free recall of word lists. In addition, various brain measures 

including resting state fMRI, were collected at two different time points 5 years apart 

(Nilsson et al., 2004, 1997). At follow-up, cerebral blood flow (CBF) using 3D pseudo-

continuous arterial spin labeling (pCASL) was measured. In Study I, resting-state fMRI, 

CBF, and a composite measure of episodic memory were used. 

6.2.2 The COBRA Project 

COBRA is an ongoing longitudinal multimodal imaging study that started in 2013 in Umeå, 

Sweden. The study follows a large cohort (n=183) of 64-68 years old adults randomly 

selected from the population registry in Umeå and the participants will be followed 3 times 

over a 10 year period. All individuals undergo an extensive test battery including central 

cognitive abilities (e.g. episodic memory, working memory, processing speed). A composite 

measure of episodic memory was made up of scores collected from word recall, number-

word recall, and object-position recall tasks (Nevalainen et al., 2015). Working memory was 

assessed by a combination of verbal, numerical and figural 3-back tasks. In addition, to 

measure perceptual speed, subjects were asked to compare letters, numbers, and figures. Each 

individual underwent a PET session using [11C]-raclopride to estimate DA D2/D3 receptor 

binding potential. Subjects also underwent MRI sessions during which brain structure and 

function were assessed. The data collection for the first wave has been completed, but 

participants will be tested at two additional measurement points, each separated by 4.5 years 

(for further information on the imaging dataset and cognitive battery, see (Nevalainen et al., 

2015; Nyberg et al., 2016)).  In Study II, resting-state fMRI data, as well composite measures 

for episodic memory, working memory, and perceptual speed were used. 

6.2.3 UCLA Consortium for Neuropsychiatric Phenomics 

In Study III, we utilized the open-access resting-state fMRI data from healthy controls (n = 

121, age range: 21-50 yr) and subjects diagnosed with ADHD (n = 40, age range: 21-50 yr) 

from the University of California LA Consortium for Neuropsychiatric Phenomics study. 

Further details regarding the cohorts can be found in (Poldrack et al., 2016).  

6.2.4 Human Connectome Project 

The primary data source for Study IV was the Human Connectome 500 subject release 

(Smith et al., 2013; Van Essen et al., 2012), which is publically available on the 

ConnectomeDB database (https://db.humanconnectome.org). We used resting-state fMRI 

data which was collected during 14.4 minutes with a temporal resolution of 0.72 s. The entire 

dataset consisted of 1200 image volumes.  
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Moreover, high-quality diffusion-weighted MRI data for the same 500 subjects from the HCP 

consortium (Glasser et al., 2013; Van Essen et al., 2012) was used for the streamline 

tractography on 68 gyral-based regions-of-interest (Yeh et al., 2010), which were derived 

from cortical parcellation of subjects’ T1-weighted images (Desikan et al., 2006). This data-

driven parcellation is also known as the 'Desikan-Killiany' cortical atlas. 

6.3 PUBLICATIONS IN A NUTSHELL 

6.3.1 Study I — Longitudinal Evidence for Dissociation of Anterior and 
Posterior Medial Temporal Lobe Resting-state Connectivity in Aging: 
Links to Perfusion and Memory 

6.3.1.1 Aims 

Cross-sectional studies on age-related alterations in resting-state FC of MTL have yielded 

inconsistent findings, suggesting that the effect of aging on posterior and anterior MTL is 

heterogeneous. Therefore, the key aims of this study were: to (a) investigate 5-year changes 

in FC of the anterior and posterior MTL subsystems of the DMN using longitudinal resting-

state data from 198 participants; (b) examine whether there is any specificity in terms of the 

association between FC changes of MTL and episodic memory decline; and (c) explore the 

link between FC and CBF in distinct MTL regions to investigate whether age-related 

alterations in FC have metabolic implications.  

6.3.1.2 Methods 

Longitudinal resting-state fMRI data (two waves 5 years apart) were used as well as offline 

episodic memory assessment from 198 participants in the Betula prospective cohort study on 

memory, health, and aging (Nilsson et al., 2004, 1997). Episodic memory was calculated as a 

composite measure of five different task scores: (1) Free recall of short sentences including a 

command verb and a noun with and (2) without enactment by the subject (16 items each). (3) 

Delayed recall of nouns which were parts of the previously presented sentences with and (4) 

without enactment, with noun categories (e.g., animals and fruits) as cues (16 items each); 

and (5) Free recall of word lists with 12 unrelated nouns presented verbally. Episodic 

memory measurements over 15 years at 5-year intervals were applied to estimate individual 

slopes of memory change. The individual slopes of episodic memory change were estimated 

with linear regression of the cognitive scores against time of measurement. 

In addition, at the follow-up session, CBF data was measured using a background suppressed, 

3D pseudo-continuous arterial spin labeling (pCASL) sequence of MRI. In order to identify 

DMN subsystems, we applied ICA as implemented in the GIFT toolbox (Allen et al., 2011; 

Calhoun et al., 2001a, 2001b) to the preprocessed resting-state fMRI data. In brief, the ICA 

procedure was carried out as follows: (1) Temporal concatenation of intensity-normalized 

data for all participants, (2) Applying a minimum description length algorithm to estimate the 

number of components, (3) Using a two-step data reduction technique using principal 

component analysis (PCA1: 100 components; PCA2: 47 components), (4)  Employing the 
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Infomax algorithm (Bell and Sejnowski, 1995) for optimal extraction of 47 group-level ICs, 

(5) Twenty times repetition of the last step with different initial points using ICASSO, which 

results in compact clusters of components in different runs, to estimate the reliability of the 

ICs, and (6) Performing back-reconstruction using the GICA3 method (Erhardt et al., 2011) 

in order to estimate subject-level, time courses (TCs) and spatial maps (SMs). The value of 

each voxel in a subject-specific SM represents the degree to which that voxel is correlated 

with the given network’s mean TC.  

Subject-level TCs were detrended, despiked, and low-pass filtered (Butterworth, fifth-order, 

cutoff frequency equal to 0.15 Hz). The matrix of inter-network FC was estimated as 

Pearson’s correlation coefficients between each pair of TCs. Then, estimated correlation 

coefficients were Fisher's r-to-z transformed. In addition, we computed two more ICA-based 

measures for the MTL components as follows: (1) A joint amplitude measure of each ICA-

driven network (Allen et al., 2012) was computed for each individual. This measure, which is 

a well-characterized indicator of the network’s activation level, is simply the standard 

deviation of each component’s TC scaled by the average value of the first 20 maximum 

intensities of the related component’s spatial map. Motion parameters were regressed out 

from the TCs in addition to being detrended and despiked, and (2) Global connectivity of 

each ICA-driven network (Glahn et al., 2010), computed as the first principal eigenvector 

extracted from the concatenated subject-specific SMs, indicates how close each subject’s 

spatial map is to the mean spatial map. 

Multiple regression analyses were performed to assess the link between change in voxel-wise 

FC of each MTL component and the level of decline in episodic memory. Sex and frame-

wise displacement (FD) (Power et al., 2012) as well as the baseline measures of episodic 

memory and FC were used as covariates of no interest in all statistical analyses.  

6.3.1.3 Results 

Thirty-two RSNs, including MTL and DMNs were identified. We found discrete MTL 

components along the longitudinal hippocampal axis (anterior MTL [aMTL] vs. posterior 

MTL [pMTL]). A 2 (aMTL vs. pMTL)*2 (baseline vs. follow-up) ANOVA revealed a 

significant interaction effect, suggesting a dissociation in the direction of age-related changes 

for aMTL and pMTL. More specifically, aMTL exhibited age-related decreases in FC, 

whereas pMTL reflected age-related increases. In addition, elevated FC of the posterior MTL 

was associated with level of decline in episodic memory. Further analysis of the CBF data, 

collected at the follow-up session, indicated an age-related CBF increase in posterior MTL, 

along with a positive association between age-related CBF increases and FC in posterior 

MTL. The latter finding suggests that age-related elevation of pMTL connectivity is a 

metabolically demanding process. Taken together, our results suggest that elevated pMTL 

connectivity accompanied by local increased blood flow is detrimental to episodic memory 

functioning. 
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6.3.2 Study II — The Retrosplenial Cortex: A Memory Gateway Between the 
Cortical Default Mode Network and the Medial Temporal Lobe 

6.3.2.1 Aims 

FC between the posterior DMN and MTL has been related to a variety of functions, including 

episodic memory, in both younger (Touroutoglou et al., 2015; Vincent et al., 2006; Voets et 

al., 2014) and older (McCormick et al., 2013; Mevel et al., 2013; Salami et al., 2014; Wang 

et al., 2010) samples.  However, there are other studies that failed to observe the 

aforementioned link (Andrews-Hanna et al., 2007; Beason-Held et al., 2009; Damoiseaux et 

al., 2016; Vidal-Piñeiro et al., 2014). Moreover, the central role of PCC and RSC in the 

functional architecture of the DMN is not fully understood. Thus, the aims of this study were 

to 1) examine the specificity in the FC between MTL and other DMN subsystems (e.g. PCC 

and RSC) in relation to memory; and 2) explore the role of RSC compared to PCC in terms 

of centrality in functional interactions within the DMN. 

6.3.2.2 Methods 

We used resting-state fMRI data collected from 183 healthy older adults (aged 64-68 years) 

in the COBRA project (Nevalainen et al., 2015; Nyberg et al., 2016). In addition, three 

cognitive composite scores representing different domains were used: episodic memory, 

working memory, and perceptual speed. Episodic memory was based on scores from (a) word 

recall, (b) number-word recall, and (c) object-position recall tasks. Working memory was 

determined by combining verbal, numerical, and figural 3-back tasks. Finally, a set of verbal, 

numerical, and figural comparison tasks was performed to assess perceptual speed. 

ICA was applied to preprocessed resting-state fMRI data to identify DMN subsystems. Using 

ICA, we identified 5 DMN components. These included pDMN (mainly PCC [Brodmann 

Area (BA) 23] and precuneus [BA 31]), aDMN (medial prefrontal cortex [BA 32 and BA 

10]), RSC (BA 30), and MTL. After DMNs were identified, additional pre-processing steps 

were carried out to remove the effects of motion and physiological noise from the data. 

Effects of motion (including 24 motion parameters), global signal, WM signal, and 

cerebrospinal fluid signal (extracted from unsmoothed images) as well as linear and quadratic 

trends were removed from the de-spiked data. Finally, spherical ROIs with a radius of 4 mm 

were centered on the non-artifactual local maxima of five DMN-related spatial ICA maps. 

Nodal-based FC between DMN subsystems was computed by averaging significant FCs (ps < 

.05, FDR corrected) among all nodal pairs belonging to different RSNs. Afterwards, inter-

network FC of MTL to RSC and other cortical DMN areas were examined. Partial 

correlations were used to determine the relation between FC and the cognitive measures. FD, 

FD squared, age, and sex were used as covariates of no interest in all statistical analyses.  

Using the MATLAB functions available in (http://wagerlab.colorado.edu/tools), multi-level 

mediational analysis (Kenny et al., 2003) was performed to measure the average mediation 

effect of RSC on the MTL-cortical DMN link. As a control analyses, similar models were run 

with the pDMN (primarily PCC and precuneus) and parahippocampus (pHC) (Ward et al., 
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2014) as the mediator variables. Further, the association between the mediational effects of 

RSC (i.e. standardized mediation coefficients) and episodic memory was investigated.  

To compare the role of RSC to other DMN nodes in terms of centrality, graph-theory based 

analysis was carried out. Using this approach, the DMN was defined as a graph in which 

nodes represent different ICA-derived regions and edges represent interregional FC. The 

group-level thresholding method (de Reus and van den Heuvel, 2013) was employed to 

minimize false positive and false negative edges in the network architecture, at the expense of 

reducing inter-individual differences in FC. Finally, betweenness centrality measures were 

computed for the average connectivity matrix as well as for each subject separately. 

6.3.2.3 Results 

Among the DMN components, the degree of inter-network connectivity between MTL and 

RSC was reliably stronger than for MTL-pDMN and MTL-aDMN. In relating FC between 

MTL and the different DMN components to between-person differences in the episodic 

memory composite, we found a significant link to episodic memory for MTL-RSC FC. 

A multi-level mediation approach showed a very strong positive mediational role of RSC 

such that MTL-cortical DMN FC improved when RSC was acting as a mediator. The degree 

of mediation effect of RSC was associated with episodic memory performance, suggesting 

that greater RSC mediation is beneficial to episodic memory. Further analysis applying 

graph-theory approaches on the signals extracted from the DMN regions showed the 

strongest betweenness centrality for the RSC, approving that a large proportion of shortest 

paths within the DMN travel through RSC. The results from this study suggest that RSC is 

the principal episodic memory gateway linking subcortical and cortical regions of the DMN 

among older adults. 

6.3.3 Study III — Dynamic Synergetic Configurations of Resting-state 
Networks in ADHD 

6.3.3.1 Aims 

High distractibility and impaired executive functions such as working memory and cognitive 

control are the key features of a person with ADHD. Previous neuroimaging studies have 

reported ADHD-related dysfunctions for both cognitive control networks, namely the FPN 

and the CON, as well as the DMN. It has been hypothesized that impaired cognitive control 

in ADHD is related to the failures in regulating the dynamics of activity and communication 

between aforementioned large-scale networks. Additionally, CON’s activity is shown to 

regulate the activity and FC of the DMN and FPNs (Di and Biswal, 2014; Menon and Uddin, 

2010; Sevinc et al., 2017). Additionally, previous research identified pronounced temporal 

fluctuations in the strength of FCs over time, mainly for the inter-network links connecting 

the DMN and FPNs (Zalesky et al., 2014). Of note, ADHD subjects are shown to have a 

higher level of variability in their resting-state BOLD signals (Mowinckel et al., 2017; Nomi 
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et al., 2018). However, the critical role of the temporal dimension in the FC patterns of 

ADHD has previously not been adequately taken in to account. 

In the context of the ADHD brain connectivity, both FCs within the DMN subsystems and 

between the DMN and cognitive control systems are of particular interest. In view of the 

foregoing, we aimed to propose a new FC analysis approach allowing us simultaneously 

assess the time-varying intra-DMN FCs as well as the time-varying FCs of the DMN with 

cognitive control networks (aka inter-DMN FCs), to get a complete picture of putative 

differences in the synergistic cooperation patterns of the DMN, in ADHD compared to 

controls. Particularly, we aimed to preserve the configuration of both intra- and inter-network 

FCs, unlike commonly used methods which reduce this pattern to one single measure 

representing network segregation.  

6.3.3.2 Methods 

We applied standard pre-processing steps to the resting-state fMRI data from 121 healthy 

controls and 40 subjects diagnosed with ADHD (Poldrack et al., 2016). Then, the DMN, 

CON and FPNs were extracted by means of the ICA (Allen et al., 2011; Calhoun et al., 

2001a) and their respective time-courses were detrended, despiked, and low-pass filtered. The 

identified ICA maps included the anterior and posterior subsystems of the DMN (aDMN and 

pDMN), and the posterolateral parietal subsystem of the DMN, centered at temporoparietal 

junction (TPJ), as well cognitive control related networks, including left and right FPNs 

(lFPN and rFPN) and the CON network. Next, we computed the instantaneous phase 

synchrony for each pair of ICA networks, since it provides single time-point resolution of FC, 

with no need for an arbitrary selection of time-window length contrary to correlation-based 

sliding window analysis. Subsequently, intra- and inter-network state-space trajectories were 

constructed for the DMN, in order to perform topological state-space analysis of DMN 

dynamics. In other words, for each individual, we had an intra-DMN trajectory in a 3d state-

space, created from 3 FCs linking different DMN subsystems to each other, as well as an 

inter-DMN trajectory which was in a 9d state-space, formed by 9 FCs, linking the DMN to 

the cognitive control networks.   

After we separately constructed the state-space trajectories for the intra-DMN and inter-DMN 

FCs, we computed their respective recurrence plots separately. Afterwards, we created the 

joint recurrence plot (Marwan et al., 2007) from the recurrence plots computed independently 

for the 3d intra-DMN and the 9d inter-DMN trajectories. Recurrence plot enables us to 

visualize and also to get important insights into the time evolution of the trajectories, 

specifically in the case of high dimensional systems. By quantification of vertical/horizontal 

line structures in the resultant joint recurrence plot, we obtained laminarity and trapping time 

(Marwan et al., 2007), which respectively indicate how often the system is trapped at 

particular states and the average time interval spent at those trapped states. Age, sex and FD 

were regressed out from the aforementioned measures and bootstrap resampling was 

employed to compare them between healthy and ADHD groups. Finally, resultant laminar 

states, which were each characterized by a 12d vector consisting of 12 FC measures (3 intra-
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DMN FCs + 9 inter-DMN FCs) were concatenated across all subjects, in order to split 

connectivity vectors into k clusters. Hierarchical consensus clustering (Jeub et al., 2018) 

allowed us to get the most stable partitions, with no need to an arbitrary choice of the exact 

number of clusters or even a threshold for consensus clustering. The hierarchical consensus 

clustering detected 3 clusters, in each of them the mean vector (centroid) serves as a 

prototype of a particular FC configuration, which we refer to as synergy. Finally, we 

investigated if the ADHD cohort differed in either the synergetic cooperation patterns, or 

their recruitment rate. 

6.3.3.3 Results 

We observed a significantly higher degree of laminarity and trapping time for the healthy 

compared with the ADHD cohort, suggesting that a lesser degree of stable cooperation 

patterns was found for the DMN in ADHD subjects. Accordingly, our analysis of the 

synergistic cooperation patterns between the DMN and cognitive control networks was 

focused on the time-intervals for which the configurations of both intra- and inter-DMN 

connections have jointly reached their steady states. We found three synergies, each of them 

providing us with detailed information regarding the relative values of 12 DMN-related FCs 

recruited in an almost invariable fashion for at least 4 seconds. We observed that 45% of the 

entire laminar states were classified as a synergy which was characterized by a marked 

decrease in the FC between the pDMN and the other two DMN sub-networks (aDMN and 

TPJ), but strong FC between the aDMN and TPJ. The other two synergies were respectively 

employed at 27% and 28% of the laminar states, one of them characterized by an overall 

strong within DMN FC, and the other one related to a noticeable disconnection of aDMN and 

TPJ. 

Furthermore, we observed a significantly stronger recruitment rate for the second synergy in 

the healthy cohort as compared with ADHD group. Finally, we found that ADHD group 

mainly differed in the synergetic cooperation pattern (i.e., the topology of synergies) of the 

synergy specified with strong distinctive within-DMN coherence. In detail, this particular 

synergy involved weaker FC for the pDMN — lFPN, pDMN — CON and aDMN — CON 

network pairs, in the healthy cohort as compared to the ADHD group. 

6.3.4 Study IV — Adaptive Frequency-based Modeling of Whole-brain 
Oscillations: Predicting Regional Vulnerability and Hazardousness 
Rates 

6.3.4.1 Aims 

Computational modeling of whole-brain oscillations allows us to address a broad range of 

questions regarding the interplay between the brain’s structure and dynamics (Breakspear et 

al., 2010; Fink, 2018; Roberts et al., 2018), without any experimental complication. For 

example, it provides us with a platform to simulate the effect of different brain lesions (Aerts 

et al., 2016; Alstott et al., 2009; Deco et al., 2018; Váša et al., 2015) which even further 

improves our understanding of brain function. Modeling large-scale brain dynamics based on 
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the structural connectome has shown great promise in simulating BOLD signals with 

temporal co-activation patterns similar to the FC patterns observed in the empirical data 

during resting state (Cabral et al., 2014; Deco et al., 2017; Ritter et al., 2013). On the other 

hand, previous studies have indicated an inherent dynamic nature for the co-activation 

patterns among distributed brain regions, with regard to the frequency spectrum of intrinsic 

brain oscillations (Chang and Glover, 2010; Yaesoubi et al., 2015). Therefore, we aimed to 

introduce frequency dynamics into a system of coupled oscillators modeling brain dynamics. 

Subsequently, we intended to apply an in silico perturbation protocol to examine the effects 

of lesions on whole-brain co-activation patterns and to suggest a way to quantify local 

vulnerability and hazardousness of different brain regions/connections. 

6.3.4.2 Methods 

We used resting-state fMRI data from the Human Connectome 500 subject release (Smith et 

al., 2013; Van Essen et al., 2012). The data was minimally-preprocessed (Glasser et al., 2013; 

Smith et al., 2013; Van Essen et al., 2012). We performed some further preprocessings like 

despiking, removing nuisance signals (mean WM and CSF signals as well as global signal) 

and temporal filtering (Fukushima et al., 2018). Moreover, cortical surface of T1-weighted 

images were parcellated into 68 anatomically segregated gyral-based regions (Desikan et al., 

2006). Moreover, streamline tractography was performed (Yeh et al., 2010) using the 

diffusion-weighted MRI data (Glasser et al., 2013; Van Essen et al., 2012). Measures of 

streamline density were used for creating the structural connectome (Hagmann et al., 2008; 

van den Heuvel and Sporns, 2011; van den Heuvel et al., 2012).  

Whole-brain network dynamics were modeled by the collective behavior of coupled local 

mean-field models which were interacting through the structural connectome (Breakspear, 

2017; Cabral et al., 2014; Deco and Jirsa, 2012; Deco et al., 2009; Gollo et al., 2015; Honey 

et al., 2009, 2007). By introducing the frequency dynamics, we modified the set of 

differential equations associated with coupled Stuart-Landau oscillators which was previously 

suggested as a model of whole-brain dynamics (Deco et al., 2017; Freyer et al., 2012; Senden 

et al., 2017). We estimated the optimal values for our suggested model parameters by 

maximizing the similarity between model-driven and empirical measures of FC. 

Subsequently, we perturbed different brain regions by shifting the dynamic regime of the 

targeted brain region (characterized by the local bifurcation parameter) from the oscillatory to 

the noisy domain (Figure 10). Benefitting from graph-theory and machine learning 

algorithms, we further investigated the effects of perturbations. First, we investigated whole-

brain network breakdown under random perturbations versus targeted attacks to the hub 

regions, via measuring the fraction of brain regions belonging to the largest connected 

component. Next, we computed relative changes in nodal strength and inter-module FCs, in 

response to distributed perturbations in the whole brain, as suggestive measures of local 

vulnerability. Finally, several FC-based measures were computed for the healthy brain model 

as well as 68 models of the impaired brain (68 whole brain model corresponding to the 68 

simulated local perturbations), to create a 13-dimensional feature vector for every simulated 
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perturbed/unperturbed set of whole-brain signals. Every particular perturbed region is likely 

to cause a feature space divergence from the optimal point associated with the feature vector 

of unperturbed brain model. We introduced the level of induced distance in the feature space 

as a measure of regional hazardousness.  

 

 

Figure 10. Lesions were simulated by applying bifurcation-induced shifts in the 

characteristic behavior of the dynamical system. 

  

6.3.4.3 Results 

First, we provided some evidence that our frequency modulation-based model outperforms 

the previous model in the same class. Additionally, we observed that network fragmentation 

process resulting from random perturbations is gradual, whereas applying targeted attacks to 

the brain network cause abrupt network breakdown. Considering that hub-scores were 

calculated based on the preserved structural connectome and perturbations were simulated as 

a bifurcation-induced shift in the local dynamics, seeing a lower network tolerance for 

selective attacks may further validate our suggested model.  

Further assessment of FC patterns after applying distributed perturbations showed that our 

brain is apparently more susceptible to hyper-connectivity than hypo-connectivity risks, 

particularly in the areas with high level of connectedness. We can see from the nodal 

vulnerability maps that the most noticeable hyper-connectivity risks are related to the regions 

in the default mode, salience, and control systems, namely the anterior-cingulate cortex, the 

inferior parietal cortex, the precuneus cortex, the PCC and the middle frontal gyrus. These 

results are similar to the previous literature on TBI (Hillary et al., 2014; Iraji et al., 2016; 

Mayer et al., 2011). Vulnerability map of inter-system connections is also in line with 

different clinical studies on the effects of injury to brain networks.  
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Quantification of the hazard rates induced by primary failures of individual regions indicated 

the highest level of hazardousness for the superior parietal cortex, the right caudal middle 

frontal gyrus and the bilateral rostral middle frontal gyrus, as well as for the posteromedial 

subsystem of the DM network (particularly the precuneus cortex, the inferior parietal cortex 

and the isthmus – cingulate cortex). In addition, the entorhinal cortex in the limbic system 

was found to be a hazardous region. These findings substantiate the key role of these regions 

for global coordination of information transfer across the whole-brain network. 
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