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Abstract
One of the key features of network meta-analysis is ranking of interventions accord-

ing to outcomes of interest. Ranking metrics are prone to misinterpretation because of

two limitations associated with the current ranking methods. First, differences in rel-

ative treatment effects might not be clinically important and this is not reflected in the

ranking metrics. Second, there are no established methods to include several health

outcomes in the ranking assessments. To address these two issues, we extended the

P-score method to allow for multiple outcomes and modified it to measure the mean

extent of certainty that a treatment is better than the competing treatments by a cer-

tain amount, for example, the minimum clinical important difference. We suggest to

present the tradeoff between beneficial and harmful outcomes allowing stakeholders

to consider how much adverse effect they are willing to tolerate for specific gains

in efficacy. We used a published network of 212 trials comparing 15 antipsychotics

and placebo using a random effects network meta-analysis model, focusing on three

outcomes; reduction in symptoms of schizophrenia in a standardized scale, all-cause

discontinuation, and weight gain.

K E Y W O R D S
benefit–risk assessment, clinically important value, multiple outcomes, network meta-analysis, ranking

metrics

1 INTRODUCTION

Systematic reviews increasingly employ network meta-analysis (NMA) to compare three or more competing interventions for a
condition (Petropoulou et al., 2017). The two main outputs of a NMA are the relative treatment effects between all treatments
and treatment ranking. The former is usually presented in forest plots of summary effects (e.g., all treatments vs. the reference
one) or in a league table that includes all relative effects. This is easily achieved with the netleague command in R (RStudio
Team, 2015) and Stata (Chaimani, Higgins, Mavridis, Spyridonos, & Salanti, 2013; Rücker, Schwarzer, Krahn, & König, 2018;
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StataCorp, 2013). At the same time, several graphical and quantitative measures have been developed for ranking interventions
(Rücker & Schwarzer, 2015; Salanti, Ades, & Ioannidis, 2011). Many of the measures use the distribution of relative effects
to estimate probabilities for any intervention assuming any possible rank. Such probabilities are easily estimated in popular
software for NMA (Lunn, Thomas, Best, & Spiegelhalter, 2000; Rücker et al., 2018; White, 2015). The most commonly used
ranking approaches include the probability of each treatment to produce the best outcome (Pbest), rankograms, mean rank,
estimating the surface under the cumulative ranking curve (SUCRA) and their equivalent P-scores (Rücker & Schwarzer, 2015;
Salanti et al., 2011; Trinquart, Attiche, Bafeta, Porcher, & Ravaud, 2016). PRISMA guidelines state that ranking metrics can
be reported along with corresponding estimates of pairwise comparisons between interventions as they may exaggerate small
differences in relative effects if looked at in isolation (Hutton et al., 2015).

The Pbest was largely employed when NMA was first introduced and up until 2016, 43% of NMAs providing a treatment
hierarchy were using that metric for ranking interventions (Petropoulou et al., 2017). However, this probability ignores the entire
distribution of rank probabilities and places emphasis only on one end of the distribution. Some interventions may be studied
in a couple of small studies and their effects cannot be informed precisely by the network. As a result, they end up having the
same probability for any possible rank, for example, if there are four interventions, one may have 25% probability of assuming
any rank from 1 up to 4. Then, the probability of the intervention to rank first is quite high (25%) but so is the probability to
rank last.

We can explore the entire ranking distribution by creating rankograms that depict the probability for any intervention of
assuming any possible rank. Ranking distributions can be produced by resampling from the posterior relative treatment effects
distributions (if NMA is fitted in a Bayesian environment) or by simulating from the estimated effects and their variance–
covariance matrix (if NMA is fitted in a frequentist setting). If there is much uncertainty associated with an intervention, this
will be reflected in a flat ranking distribution (Salanti, Del Giovane, Chaimani, Caldwell, & Higgins, 2014). Salanti et al. sug-
gested summarizing the ranking distribution by calculating the surface under the cumulative ranking curve (SUCRA). Chaimani
et al. (2013) suggested using multidimensional scaling techniques to visualize the level of similarity in the ranking between
interventions. Rücker and Schwarzer (2015) developed a measure called P-scores, which is equivalent to SUCRA but is not
simulation-based and can be computed analytically.

Most meta-analyses report on many outcomes and typically each outcome is analyzed and ranked separately. In practice,
treating physicians and patients making decisions weigh the benefits and risks of each intervention and such a decision is
difficult to communicate without a systematic method on how to conduct a benefit–risk assessment. Outcomes both within and
across studies are correlated. Ideally, we would like to analyze outcomes in a single framework by using multivariate meta-
analysis (Mavridis & Salanti, 2013) and multiple outcome network meta-analysis (Efthimiou et al., 2014, 2015). Methods to
rank interventions taking into account multiple outcomes have been suggested in the literature. A simple approach is to combine
ranking measures for two different outcomes in a single plot (e.g., a scatterplot of the SUCRA/P-scores value for one outcome vs.
the SUCRA/P-scores value for another outcome or rankograms for different outcomes presented in the same figure). Veroniki,
Straus, Fyraridis, and Tricco (2016) presented the rank–heat plot, a simple graphical approach to present treatment ranking
including multiple outcomes. Tervonen et al. (2015) provide guidance on applying multiple criteria decision analysis in benefit–
risk assessment. Rücker and Schwarzer (2017) suggest using partial ordering to reveal both orders of treatments that hold for all
outcomes and sets of treatments where ordering is not the same across all outcomes.

Primary and secondary outcomes are not equally important and there is usually no consensus on their importance as different
stakeholders (e.g., clinicians, patients) have different perspectives. Naci, van Valkenhoef, Higgins, Fleurence, and Ades (2014)
suggest that individual stakeholders can assign weights to all outcomes so that we result in individual rankings. Another approach
that focuses on patients preferences is based on the concept of a Minimal Clinically Important Difference (MCID), which
determines the smallest amount an outcome must change to be meaningful to patients (Jaeschke, Singer, & Guyatt, 1989). Several
methods have been suggested for determining the MCID (Johnston et al., 2015; Rai, Yazdany, Fortin, & Aviña-Zubieta, 2015).

In this paper, we use the minimum Clinically Important Value (CIV) for a relative effect for each outcome. Conditional
on the minimum CIV, we may produce a ranking of interventions. Suppose that we have two interventions A and B and two
outcomes, one for efficacy and one for safety, with intervention A being more efficacious but less safe. We aim to extend the
ranking metrics to address situations where multiple outcomes are of interest and differentiate between clinically important
and unimportant treatment effects. Conditioning on the CIVs, we get a ranking that is based on how much one is willing to
tolerate for specific gains. We advocate the use of graphical measures and show how P-scores can be presented graphically for a
benefit–risk assessment. A similar approach has been suggested that focuses on Pbest (Brignardello-Petersen, Johnston, Jadad,
& Tomlinson, 2018). In Section 2, we present the ranking metrics for one and multiple outcomes as well as how P-scores can
be used for a benefit–risk assessment using CIVs. In Section 3, we illustrate the methods presented in Section 2 using a network
of 212 randomized controlled trials (RCTs) comparing antipsychotics. We conclude in Section 4 with a discussion.
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2 RANKING METRICS

2.1 Ranking metrics for a single outcome
Suppose that we have I interventions and 𝑃𝑖𝑟 refers to the probability that intervention 𝑖 assumes rank 𝑟 with 𝑖, 𝑟 = 1,… , 𝐼 .
These rank probabilities form a discrete distribution

∑𝐼

𝑟=1 𝑃𝑖𝑟 = 1with cumulative distribution function (cdf)𝐹 (𝑖, 𝑥) =
∑𝑥

𝑟=1 𝑃𝑖𝑟.
Salanti et al. (2011) suggested a summary ranking metric, called SUCRA, that is based on summarizing the surface under the
cumulative ranking curve using a step function. An ideal intervention would have SUCRA = 1 because it would have probability
1 to achieve the top rank place and zero probability of achieving any other place (𝑃𝑖1 = 1 and 𝑃𝑖𝑟 = 0 ∀ 𝑟 ≠ 1). A SUCRA value
for an intervention 𝑖 is the proportion of competing treatments worse than 𝑖 (Rücker & Schwarzer, 2015) and is computed as

SUCRA𝑖 =
1

𝐼 − 1

𝐼−1∑
𝑟=1

𝐹 (𝑖, 𝑟) = 1
𝐼 − 1

𝐼−1∑
𝑟=1

𝑟∑
𝑥=1

𝑃𝑖𝑥

and it has a one-to-one relationship with the average or mean rank (𝐸(rank𝑖)). More specifically,

SUCRA𝑖 =
𝐼 − 𝐸

(
rank𝑖

)
𝐼 − 1

.

In meta-analysis models, normal distributions are conventionally assumed for the absolute and, subsequently, for the relative
effects. More specifically, we assume that 𝜇𝑖 ∼ 𝑁(𝜇̂𝑖, 𝑠2𝑖 ) ∀ 𝑖 where 𝜇𝑖 is the effect of treatment 𝑖 on the health outcome estimated
with variance 𝑠2

𝑖
. For any pair of interventions 𝑖 and 𝑗 we have

𝑃𝑖>𝑗 = 𝑃
(
𝜇𝑖 > 𝜇𝑗

)
= Φ

(
𝜇̂𝑖 − 𝜇̂𝑗

𝑠𝑖𝑗

)
, (1)

where 𝑃𝑖>𝑗 is interpreted as the extent of certainty that the outcome for 𝑖 treatment, 𝜇𝑖, is larger than 𝜇𝑗 and Φ is the cdf of a
standard normal distribution. Note that when using ratios as effect sizes (odds/risk ratio) Equation (1) should have the difference
in outcomes on the logarithmic scale. When the outcome is harmful, 𝑖 is preferable than 𝑗 when 𝜇𝑖 < 𝜇𝑗 .

The difference 𝜇̂𝑖 − 𝜇̂𝑗 and its standard error 𝑠𝑖𝑗 are standard outputs of a NMA and they are typically reported in a league

table. Generally, there are
(
𝐼
2
)

effect sizes (𝜇̂𝑖 − 𝜇̂𝑗) and 95% confidence/credible intervals (or alternatively standard errors 𝑠𝑖𝑗).
Rücker and Schwarzer (2015) consider the mean value

𝑃𝑖 =
1

(𝐼 − 1)
∑𝐼

(𝑟,𝑟≠𝑖)
𝑃𝑖>𝑟, (2)

where𝑃𝑖 is interpreted as the mean extent of certainty that𝜇𝑖 is larger than any other 𝜇𝑗 , averaged over all competing interventions
j (𝑗 ≠ 𝑖) with equal weights. Rücker and Schwarzer (2015) named P-score the summary measure estimated in Equation (2) and
provided a formal proof that P-scores and SUCRA values are identical if the true probabilities are known.

2.2 Ranking metrics for multiple outcomes
Suppose that we have two interventions 𝑖 and 𝑗 and two outcomes 𝑂1 and 𝑂2. Without loss in generality we suppose that for
both outcome the larger the value the better the treatment. The probability that intervention 𝑖 is better than intervention 𝑗 in both
outcomes 𝑂1 and 𝑂2 is

𝑃𝑖>𝑗 = 𝑃

(
𝜇𝑖𝑂1

> 𝜇𝑗𝑂1
∩ 𝜇𝑖𝑂2

> 𝜇𝑗𝑂2

)

= 𝑃

(
𝑍𝑂1

<

𝜇̂𝑖𝑂1
− 𝜇̂𝑗𝑂1

𝜎𝑖𝑗𝑂1

∩𝑍𝑂2
<

𝜇̂𝑖𝑂2
− 𝜇̂𝑗𝑂2

𝜎𝑖𝑗𝑂2

)
= Φ2

(
𝑍𝑂1

<

𝜇̂𝑖𝑂1
− 𝜇̂𝑗𝑂1

𝜎𝑖𝑗𝑂1

, 𝑍𝑂2
<

𝜇̂𝑖𝑂2
− 𝜇̂𝑗𝑂2

𝜎𝑖𝑗𝑂2

)
,

where 𝑍𝑂1
, 𝑍𝑂2

∼ 𝑁(0, 1) and Φ2 is the cdf of a standard bivariate normal distribution with between-study correlation 𝜌between
𝑂1𝑂2

.
We used R package mvtnorm (Hothorn, Bretz, & Genz, 2001) to compute cumulative probabilities from a multivariate normal
distribution.
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Ideally, a multivariate NMA would provide us with correlation estimates but the method is not so easy to use in practice. Two
common problems in multivariate meta-analysis are that the within-study correlations are usually not reported in individual
studies and the between-study correlation is poorly estimated (Mavridis & Salanti, 2013).

The following strategies are possible:

1. Ignore the correlation and analyze each outcome separately (𝜌between
𝑂1𝑂2

= 0)

2. Estimate the between-study correlation using multivariate network meta-analysis (Efthimiou et al., 2014, 2015) if within-
study correlations are known or can be assumed known.

3. Use expert opinion to inform 𝜌between
𝑂1𝑂2

4. Undertake a sensitivity analysis assuming a plausible range of values for 𝜌between
𝑂1𝑂2

The probabilities estimated in Equation (1) refer to one intervention producing values for an outcome that are preferable to
those produced by the other treatment. Small differences are not necessarily clinically important and may be irrelevant.

Suppose that we are interested in the probability that the relative effect of i versus j is greater than a Clinically Important
Difference (CIV𝑖𝑗).

We modify Equation (1) to be

𝑃𝑖>𝑗 = 𝑃
(
𝜇𝑖 − 𝜇𝑗 − CIV𝑖𝑗 > 0

)
= Φ

(
𝜇̂𝑖 − 𝜇̂𝑗 − CIV𝑖𝑗

𝑠𝑖𝑗O1

)

and then use these probabilities to estimate P-scores using Equation (2).
This new modified P-score is a CIV ranking metric and it reflects the mean extent of certainty that 𝜇𝑖 is larger than any

other 𝜇𝑗 + CIV𝑖𝑗 averaged over all competing interventions. For brevity, we assume that the CIV is the same for all treatment
comparisons i versus j (CIV𝑖𝑗 = CIV). Ideally, we would like CIV to be informed by a method that reflects patient perceptions.
If its value is unknown, we may consider a range of values for CIV.

2.3 Benefit–risk assessment using P-scores and CIVs
In many cases, it is the most effective drugs that perform poorly in terms of adverse events. Decision-makers need to assess
the benefit/risk of profile for competing interventions. Although subjectivity in the assessment of the benefit–risk profile is
unavoidable, there have been attempts to formalize the process for evaluating the balance between healthcare interventions
(Najafzadeh et al., 2015; Puhan, Singh, Weiss, Varadhan, & Boyd, 2012; Tervonen et al., 2015; van Valkenhoef et al., 2012).
Most methods require weighting the various outcomes either by patients or from other sources (i.e., clinicians) and then, benefit–
risk methods estimate some function of the weights and the probability of experiencing a beneficial and a harmful outcome.
We present below a visual method that shows how ranking changes by using different CIV values for harmful and beneficial
outcomes.

We consider differences in summary estimates smaller or larger than certain effects (the CIVs). For example, we may want
to estimate the probability that 𝑖 is better than𝑗 in efficacy (outcome 𝑂1) by a certain amount CIV1 when their differences in
acceptability (outcome 𝑂2) is less than CIV2.

𝑃

(
𝜇𝑖𝑂1

− 𝜇𝑗𝑂1
− CIV1 > 0 ∩ 𝜇𝑖𝑂2

− 𝜇𝑗𝑂2
− CIV2 > 0

)
.

By changing CIV1 and CIV2, we can see how this probability fluctuates and using Equation (2), we can take a graphical
presentation of the P-scores that will give us the ranking of treatments for various pairs of CIV1 and CIV2.

Similarly, we may expand the method to more outcomes by adding extra parameters. Such computations will allow
us to consider various tradeoffs between efficacy and acceptability and conduct a risk-benefit assessment. We provide
easy-to-use R code that handles all cases presented in this section (https://github.com/DimitrisMavridis/RankingNMA/
blob/master/extendedP-scores).

https://github.com/DimitrisMavridis/RankingNMA/blob/master/extendedP-scores
https://github.com/DimitrisMavridis/RankingNMA/blob/master/extendedP-scores
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3 APPLICATION: RANKING ANTIPSYCHOTICS FOR SCHIZOPHRENIA

3.1 Description of the dataset
We use a network of 212 randomized controlled trials (RCTs) and 43,049 participants comparing 15 antipsychotic drugs and
placebo (Leucht et al., 2013). Details about the methodology and results for this systematic review can be found in the relevant
publication (Leucht et al., 2013). In this manuscript, we focused on the primary efficacy outcome measured by the overall
change in symptoms on a validated scale, all-cause discontinuation (acceptability) and weight gain. Efficacy and weight gain
are continuous outcomes and treatment differences are measured with the Standardized Mean Difference (SMD) whereas the

Odds Ratio (OR) is used for acceptability. We transform the ORs to SMDs using formula SMD =
√
3

𝜋
logOR (Chinn, 2000).

3.2 Ranking antipsychotics for one outcome
Table 1 shows the P-scores and the ranks for each outcome. Figure 1 shows the scatterplots for the SUCRA values for each of
the pairs of the following outcomes; efficacy, acceptability and weight. If we focus on reduction in symptoms (efficacy) and
all-cause discontinuation (acceptability), we see that clozapine, amisulpride, olanzapine, risperidone, and paliperidone form a
distinct class of drugs taking the five top ranks in both outcomes. It is also noteworthy that although haloperidol performs pretty
satisfactorily on efficacy (7th rank), it performs poorly on acceptability (15th rank). If we include weight gain, ranking is not
straightforward. Clozapine and olanzapine perform poorly on weight gain and naturally, placebo ranks top in the hierarchy for
this outcome. Only amisulpride performs well in all three outcomes. Clozapine and olanzapine perform very good in the lower
(efficacy–acceptability) plane.

Figure 2 shows how P-scores for efficacy reduce for all antipsychotics for an increasing CIV (measured as the effect sizes
on an SMD scale). For CIV = 0, we get the P-scores in Table 2. In this case, the average P-score across all antipsychotics is
0.5 but it is reduced for increasing CIV. We have labeled only the lines with the most effective antipsychotics and placebo for
illustration purposes. The remaining lines drop very quickly, an indication that they are not much superior to placebo and, given
the potential side-effects of an active drug, one may not be willing to get a drug with a small effect. In those drugs, although
there were some differences in the P-scores for efficacy in the primary analysis (Table 2), differences become negligible as soon
as we are looking for SMDs that differ by CIV = 0.1 units or more. It is also clear that P-score for clozapine has a lower rate of
decrease and remains the best choice even for large values of CIV. We also see that for CIV = 0.3 only amisulpride and clozapine
are above the average P-score.

T A B L E 1 P-scores (as percentages %) and rank for each antipsychotic and three outcomes as obtained from three independent network

meta-analyses models

Efficacy All-cause discontinuation Weight gain
Antipsychotic P-scores (%) Rank P-scores (%) Rank P-scores (%) Rank
Clozapine (CLO) 99 1 85 3 17 14

Amisulpride (AMI) 92 2 93 1 69 6

Olanzapine (OLA) 85 3 89 2 5 16

Risperidone (RIS) 79 4 73 5 44 9

Paliperidone (PAL) 64 5 85 4 49 8

Zotepine (ZOT) 61 6 40 9 10 15

Haloperidol (HAL) 53 7 15 15 86 2

Quetiapine (QUE) 49 8 56 7 42 10

Aripiprazole (ARI) 46 9 56 6 72 5

Sertaline (SER) 35 10 23 14 28 11

Ziprasidone (ZIP) 35 11 33 12 84 3

Chlorpromazine (CHL) 33 12 47 8 27 12

Asenapine (ASE) 32 13 40 10 65 7

Lurasidone (LUR) 19 14 25 13 84 4

Iloperidone (ILO) 17 15 40 11 19 13

Placebo (PLA) 0 16 1 16 99 1
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F I G U R E 1 Three two-way scatter plots for the SUCRA values for each of the pairs of the following outcomes (efficacy, acceptability, weight

gain)

F I G U R E 2 P-scores for the 16 antipsychotics in terms of efficacy only, for various benefit (CIV) considerations. We have labeled only the

lines with the most effective antipsychotics and placebo for illustration purposes. A dotted line is used to show the mean P-score

3.3 Ranking antipsychotics for several outcomes
For illustration purposes we set the correlation between efficacy and weight gain and acceptability and weight gain equal to −0.5
and the correlation between efficacy and acceptability equal to 0.5. Table 2 shows the extended P-scores that take into account
both efficacy and acceptability (second column) or all three outcomes (third column). P-scores reduce for increasing number of
outcomes, this is because we ask for interventions to be better than others in all three outcomes. When we move from analyzing
only efficacy (Table 2) to analyzing both efficacy and acceptability, there is a small reduction in P-scores. This is happening
because efficacy and acceptability are positively correlated (Table 2). It seems that participants dropout from treatments that are
ineffective. There is a sharp decrease in P-scores in two of the most effective antipsychotics (clozapine and olanzapine) when
we consider weight gain together with efficacy and acceptability (Table 2).

When all outcomes are considered (Table 2), amisulpride is ranked top (56%) with risperidone and paliperidone following
on the second place (26%) while the most effective drug (clozapine) is ranked very low (14%) because it performs poorly in
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T A B L E 2 P-scores (as percentages) for more than one outcome

Antipsychotic
Efficacy and
acceptability

Efficacy, acceptability,
and weight gain

Clozapine 85 14

Amisulpride 87 56

Olanzapine 81 3

Risperidone 70 26

Paliperidone 63 25

Zotepine 31 1

Haloperidol 13 5

Quetiapine 40 13

Aripiprazole 38 20

Sertaline 14 2

Ziprasidone 19 10

Chlorpromazine 24 4

Asenapine 21 8

Lurasidone 10 3

Iloperidone 13 1

Placebo 0 0

F I G U R E 3 P-scores for the 16 antipsychotics in terms of efficacy and weight, for various risk (CIV) considerations. We have labeled only the

lines with the most effective antipsychotics for illustration purposes. A dotted line is used to show the mean P-score

weight gain (Table 1 and Figure 1). For the benefit–risk assessment, we focus only on efficacy (𝑂1) and weight gain (𝑂2) for
illustration purposes.

We considered a risk-benefit assessment in which we are willing to tolerate a certain increase in the weight for a certain
benefit in efficacy.

In Figure 3 we present P-scores based on the probability 𝑃 ((𝜇𝑖𝑂1 − 𝜇𝑗𝑂1
< 0) ∩ (𝜇𝑖𝑂2 − 𝜇𝑗𝑂2

− CIV < 0)) where CIV is the

difference in weight gain we are willing to tolerate and it takes negative values. It varies between 0 and −1. SMDs of 0.6 are
considered quite large and considering inference on these scenarios imply that retaining the baseline weight is not highly valued.
Note that small values are desirable in both outcomes. Figure 3 shows that amisulpride is ranked high even for zero tolerance
to weight gain. As we increase the amount of weight gain, we are willing to tolerate, clozapine, and olanzapine increase their
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F I G U R E 4 P-scores for the 16 antipsychotics in terms of efficacy and weight, for various risk (CIV) considerations when we are looking for a

benefit of at least 0.2 in the SMD scale for efficacy. We have labeled only the lines with the most effective antipsychotics for illustration purposes. A

dotted line is used to show the mean P-score

P-score. However, clozapine’s P-score exceeds amisulpride’s when CIV = −0.65 and even exceeds the P-scores of risperidone
at CIV = −0.6 and paliperidone at CIV = −0.25.

In Figure 4, we have set the CIV for efficacy at 0.2 and we estimate P-scores based on the probability
𝑃 ((𝜇𝑖𝑂1 − 𝜇𝑗𝑂1

− 0.2 < 0) ∩ (𝜇𝑖𝑂2 − 𝜇𝑗𝑂2
− CIV < 0)). This shows how P-scores fluctuate for various amount of weight gain

we are willing to tolerate for a benefit in efficacy equal to 0.2. We considered a correlation of −0.5 between the two outcomes,
meaning that the largest the reduction of schizophrenia symptoms, the largest the weight gain. We see that the intersection point
of the curves for clozapine and amisulpride is now at CIV = −0.4. We also assumed other values for the correlation between
the two outcomes and no changes were observed. Both clozapine and amisulpride single out for the rest of the antipsychotics as
these are the only two that have a large probability of getting a difference larger than 0.2 from the rest of the drugs.

4 DISCUSSION

Recommending an intervention is a complex issue in which several components such as efficacy, safety, and cost should be taken
into account. We argue that ranking metrics should not be treated in isolation but along with the relative effects. Things get more
complicated as more outcomes are considered and a benefit–risk assessment is important for making recommendations.

The methods presented here differ for other approaches used in ranking interventions and for benefit–risk assessment. We
have extended summary ranking metrics to take into account multiple outcomes and we allow for a benefit–risk assessment
using CIVs. Most systematic reviews consider many outcomes but analyze them separately. In this manuscript, we extended the
calculation of P-scores to the case of multiple outcomes. We allow for a joint analysis based on assumptions about the correlation
across outcomes. The multi-outcome version of P-score refers to the probability that a treatment is better than the remaining
treatments in the outcomes considered. We showed how one can extend P-scores both for one and multiple outcomes so that they
allow for certain tradeoffs between benefits and harms. A similar modification to Pbest has been suggested in a Bayesian setting
(Brignardello-Petersen et al., 2018). We think that this extended ranking metric is useful to present at the systematic review level.
However, its usefulness and application in the development of recommendations remains to be proven in practice. Treatments
with remarkably different safety and efficacy outcomes might produce similar P-scores and decision-makers would need to
look at each outcome separately in a qualitative manner. Moreover, different stakeholders may weigh outcomes differently (Naci
et al., 2014). Summarizing the trade-offs between benefits and harms is very important and the multi-outcome version of P-score
provide a summary measure at the NMA level. We showed how one can extend P-scores both for one and multiple outcomes
so that they allow for certain tradeoffs between benefits and harms. A similar modification to Pbest has been suggested in a
Bayesian setting (Brignardello-Petersen et al., 2018).
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A visual representation of the benefit–risk assessment will give an overall picture of how ranking fluctuates once we condition
on certain CIVs for benefits and harms. Eventually, all P-scores would converge to zero for increasing gains in efficacy and a
visual comparison of the rate of convergence is informative regarding the efficacy of the drug. The visual representation of rank-
ing for certain benefits and risks can be informative and provides a hierarchy of interventions for any set of CIVs. The stakeholder
can look at the ranking for the harmful effects (s)he considers acceptable and is willing to exchange for certain benefits.

Ideally, methods presented here would use effect sizes estimated within a multiple outcome NMA so that effects, 95% confi-
dence/credible intervals and correlations among outcomes are estimated in the same setting. This is rarely the case and effects
are often estimated in multiple, assumed independent outcome-specific NMA models. This may theoretically lead to loss in
precision and, subsequently, less precise ranking although limited empirical evidence suggests this is unlikely to occur in prac-
tice (Trikalinos et al., 2013). Expansion of the method to account for clinically important effects requires estimation of CIVs.
However, ideally, the clinician should try to determine the CIVs for the different outcomes—and in particular efficacy and
harms—from patients. What we considered in the graphs employed in the motivating example is ranking for a range of CIVs.

Ranking metrics, just like effect estimates, do not (and should not) encompass any information about the risk of bias in the
included studies. The credibility of any summary from evidence, be it a relative treatment effect or a treatment hierarchy, need to
be evaluated accounting for various evidence characteristics. In an NMA, evaluation of the credibility of relative treatment effects
is not straightforward as most studies (that can differ materially in their risk of bias) contribute to the estimation of all treatment
effects, either directly or indirectly. Nikolakopoulou et al. (2019) have developed a system for evaluating the Confidence In Net-
work Meta-Analysis (CINeMA) based on the contribution matrix that shows how much each study contributes to each network
estimate and, hence, we can evaluate if an estimate is mainly informed by studies at low risk of bias or not. A natural further step
is to extend the CINeMA framework to evaluate an obtained treatment hierarchy as initially described in Salanti et al. (2014).

The approach presented in this manuscript results in many individualized rankings taking multiple outcomes into account.
The method is illustrative and reveal graphically how ranking changes for various tradeoffs between benefits and harms. Ranking
metrics, when extended along the lines presented in this paper, can reflect clinically important differences on several safety and
benefit outcomes. Individualized rankings should not dictate drug prescription but are very informative and a move away from
the “one size fits all” standard care of patients to a more personalized one tailored to patient’s individual health needs. In practice,
other factors not related to the benefit–risk assessment of the interventions such as economic, social, and ethical factors may
influence the final decision. Generally, the extended P-score is a step towards considering multiple outcomes simultaneously and
a useful summary measure of an NMA. Their interactions are not always straightforward and prioritizing/weighing outcomes
or deciding what deterioration in one outcome could be traded off for certain benefits in another outcome remains a difficult
question, both at the individual and population levels (Boers et al., 2010; Yebyo, Aschmann, & Puhan, 2019). As with all
quantitative summaries from evidence synthesis, the extended P-scores run the risk of misinterpretation if users will rely too
much on a single measure without considering the actual effect sizes or differences in importance across outcomes.
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SUPPORTING INFORMATION

Additional supporting information including source code to reproduce the results may be found online in the Supporting Infor-
mation section at the end of the article.
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