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Long non-coding RNAs identify a subset of
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Abstract

Background: Muscle-invasive bladder cancer (MIBC) is a heterogeneous disease, and gene expression profiling has
identified several molecular subtypes with distinct biological and clinicopathological characteristics. While MIBC
subtyping has primarily been based on messenger RNA (mRNA), long non-coding RNAs (lncRNAs) may provide
additional resolution.

Methods: LncRNA expression was quantified from microarray data of a MIBC cohort treated with neoadjuvant
chemotherapy (NAC) and radical cystectomy (RC) (n = 223). Unsupervised consensus clustering of highly variant
lncRNAs identified a four-cluster solution, which was characterized using a panel of MIBC biomarkers, regulon
activity profiles, gene signatures, and survival analysis. The four-cluster solution was confirmed in The Cancer
Genome Atlas (TCGA) cohort (n = 405). A single-sample genomic classifier (GC) was trained using ridge-penalized
logistic regression and validated in two independent cohorts (n = 255 and n = 94).

Results: NAC and TCGA cohorts both contained an lncRNA cluster (LC3) with favorable prognosis that was enriched with
tumors of the luminal-papillary (LP) subtype. In both cohorts, patients with LP tumors in LC3 (LPL-C3) were younger and
had organ-confined, node-negative disease. The LPL-C3 tumors had enhanced FGFR3, SHH, and wild-type p53 pathway
activity. In the TCGA cohort, LPL-C3 tumors were enriched for FGFR3 mutations and depleted for TP53 and RB1 mutations.
A GC trained to identify these LPL-C3 patients showed robust performance in two validation cohorts.

Conclusions: Using lncRNA expression profiles, we identified a biologically distinct subgroup of luminal-papillary MIBC
with a favorable prognosis. These data suggest that lncRNAs provide additional information for higher-resolution
subtyping, potentially improving precision patient management.

Keywords: Gene expression analysis, Long non-coding RNA, Molecular subtypes, Muscle-invasive bladder cancer
Background
Bladder cancer has a global annual incidence of 430,000
patients, making it the fourth and tenth most common
malignancy in men and women, respectively [1]. Approxi-
mately 25% of patients present with muscle-invasive blad-
der cancer (MIBC). The recommended treatment option
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for MIBC is neoadjuvant cisplatin-based chemotherapy
(NAC) followed by pelvic lymph node dissection and rad-
ical cystectomy (RC) [2, 3]. Despite this aggressive treat-
ment regimen, the 5-year overall survival (OS) is only
approximately 55% from the time of surgery.
In recent years, gene expression profiling has revealed

that MIBC is a heterogeneous disease; like breast cancer,
it can be stratified into different molecular subtypes [4–7].
At the highest level, there is a division into basal and lu-
minal subtypes, with different models providing additional
subdivisions [8, 9]. Stratifying MIBC by molecular subtype
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has potential clinical value in terms of predicting both
outcome and response to treatment, such as NAC or
immunotherapy [10–12].
While most MIBC studies to date have exclusively

used messenger RNA (mRNA) expression to differenti-
ate molecular subtypes, the mammalian transcriptome is
comprised of a diverse range of coding (mRNA) and
non-coding RNAs. Long non-coding RNAs (lncRNAs)
are mRNA-like transcripts that range in length from 200
nucleotides to over 100 kilobases and lack open reading
frames [13]. They represent a significant fraction of the
transcriptome, and, while it is unclear how many lncRNAs
have biological function, their expression patterns can be
specific to a particular biological or disease state [14, 15].
In the TCGA study, the lncRNA transcriptome divided
the luminal-papillary subtype into two groups with dis-
tinct prognosis [12]. These findings suggest that lncRNA
expression may offer additional resolution of molecular
subtypes, potentially revealing additional prognostic infor-
mation not captured by mRNA profiling.
In the present study, we aimed to expand these initial

TCGA findings, further exploring the utility of lncRNA
expression profiling for finer-grained molecular subtyp-
ing of MIBC.

Methods
Patient populations and expression data
For the present study, we analyzed four MIBC patient
cohorts (Table 1). (1) NAC cohort: We compiled a cohort
of 223 MIBC patients from seven institutions who had re-
ceived neoadjuvant/induction chemotherapy followed by
radical cystectomy (RC) for cT2-4aN0-3M0 urothelial car-
cinoma of the bladder [11]. Whole transcriptome profiling
had previously been performed on formalin-fixed, paraffin-
embedded (FFPE), pre-treatment tissue samples from trans-
urethral bladder tumor resection (TURBT) in a Clinical
Laboratory Improvement Amendments (CLIA)-certified la-
boratory (Decipher Biosciences, Inc., San Diego, CA) [16].
(2) TCGA cohort: RNA-seq data of 405 MIBC patients
treated with RC in the absence of NAC was publicly avail-
able and previously analyzed by The Cancer Genome Atlas
(TCGA) Research Network [12]. (3) PCC cohort: A pro-
spective commercial cohort (PCC) consisting of the de-
identified and anonymized gene expression profiles of 255
MIBC patients from the clinical use of the Decipher
Bladder TURBT test that were available in the Decipher
GRID registry (NCT02609269). Pathological staging and
clinical outcome data were not available for this cohort. (4)
UTSW cohort: The UT Southwestern (UTSW) cohort con-
sisting of 94 MIBC patients from the UT Southwestern
Medical Center who underwent RC without neoadjuvant
therapy [17]. In this cohort, whole transcriptome profiling
was performed on RC tissue samples. The NAC, PCC, and
UTSW cohorts were all profiled on the GeneChip Human
Exon 1.0 ST Array (Thermo Fisher, Carlsbad, CA). The
lymphocyte and normal bladder expression datasets
were downloaded directly from the GTEx Portal
(https://gtexportal.org/).

Unsupervised clustering using lncRNAs
For unsupervised clustering analysis (R package Consen-
susClusterPlus), the normalized gene expression data for
n = 223 samples (NAC cohort) was pre-processed by
multi-analysis distance sampling (R package MADS) to
identify highly variant lncRNA genes. We assessed un-
supervised consensus clustering with sets of between
250 and 1500 variant lncRNAs. After critically evaluating
outputs from ConsensusClusterPlus (tracking plots, delta
plots, CDF plots), we judged that the 750 lncRNA four-
cluster solution was the most appropriate and informative.
The expression clustering analysis was done by a consen-
sus partitioning around medoids (PAM) approach, using
Pearson correlations, and 10,000 iterations with a 0.95
random fraction of lncRNAs in each iteration. We re-
peated this process with log-transformed, RNA-seq gene
expression data (TCGA cohort) for n = 405 samples to see
whether clustering of our de novo selected lncRNA genes
would identify lncRNA clusters that were similar to those
identified by the TCGA analysis [12]. We determined con-
cordance of this cluster solution with the published
lncRNA cluster solution using Cohen’s kappa statistic.

Classification of tumors among molecular mRNA subtypes
We generated a classifier that was based on the published
TCGA 2017 mRNA subtypes [12], to classify tumors from
the NAC, PCC, and UTSW cohorts into basal/squamous,
luminal, luminal-infiltrated, luminal-papillary, and neuronal
mRNA subtypes. We introduced an additional category,
“unknown,” to provide a bin for tumors that did not fit the
aforementioned subtyping structure. Furthermore, we ap-
plied the recently released consensus molecular classifica-
tion by The Bladder Cancer Molecular Taxonomy Group
to classify tumors from all four cohorts into six consensus
mRNA subtypes: basal/squamous, luminal-papillary, lu-
minal non-specified, luminal unstable, stroma-rich, and
neuroendocrine-like [18].

Regulon analysis of lncRNA clusters
Regulon analysis involves calculations that transform a
cohort’s gene expression data into a functional readout
that can inform on biological state [19, 20]. An initial
step reconstructs regulatory units, each of which consists
of a regulator, i.e., a gene whose product induces and/or
represses a set of target genes, which we call a “regulon.”
A second step calculates the activity profile of a regulon
across a cohort. As demonstrated for breast cancer [19],
and in the TCGA MIBC study [12], subsequent steps
may use activity profiles as a molecular covariate to

https://gtexportal.org/


Table 1 Clinicopathological characteristics of all patient cohorts

GC Training Testing Validation

Cohort NAC [11] TCGA [12] UTSW PCC

N 223 405 94 255

Tissue TURBT RC RC TURBT

Expression data Array RNA-seq Array Array

Age, median [IQR] 62 (56–71) 69 (60–76) 70 (63–77) NA

Gender (%)

Female 69 (31%) 106 (26%) 16 (17%) NA

Male 154 (69%) 299 (74%) 78 (83%) NA

Clinical lymph node stage (%)

cN0 140 (63%) NA 94 (100%) NA

cN1–3 83 (37%) NA 0 (0%) NA

cNx 0 (0%) NA 0 (0%) NA

Clinical tumor stage (%)

cTis/Ta 0 (0%) NA 4 (4%) NA

cT1 0 (0%) NA 10 (11%) NA

cT2 90 (40%) NA 66 (70%) NA

cT3 90 (40%) NA 9 (10%) NA

cT4 43 (20%) NA 4 (4%) NA

cTx 0 (0%) NA 1 (1%) NA

Pathological tumor stage (%)

ypT0/Tis/Ta/T1 103 (46%) 0 (0%) 1 (1%) NA

ypT2 42 (19%) 122 (30%) 36 (38%) NA

ypT3 50 (22%) 193 (48%) 42 (45%) NA

ypT4 24 (11%) 57 (14%) 15 (16%) NA

ypTx 4 (2%) 33 (8%) 0 (0%) NA

Pathological lymph node stage (%)

ypN0 138 (62%) 235 (58%) 62 (66%) NA

ypN1–3 48 (21%) 129 (32%) 31 (33%) NA

ypNx 37 (17%) 41 (10%) 1 (1%) NA

FGFR3+ cases by GC (%) 36 (16%) 55 (14%) 10 (11%) 24 (11%)

of which n died during follow-up: 2 9 1 NA
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segregate clinical subtypes. In the work reported here,
regulon activity profiles for both FGFR3 and SHH segre-
gated FGFR3 and TP53 mutations, and the LPL-C3
tumors.
We used R package RTN v2.7.1 to calculate a transcrip-

tional regulatory network from RSEM RNA-seq data for
the TCGA-BLCA discovery cohort, as in Robertson et al.
[12]. We used a set of 26 regulators: the 23 from TCGA
work (AR, EGFR, ERBB2, ERBB3, ESR1, ESR2, FGFR1,
FGFR3, FOXA1, FOXM1, GATA3, GATA6, HIF1A, KLF4,
PGR, PPARG, RARA, RARB, RARG, RXRA, RXRB, STAT3,
and TP63), with RB1, SHH, and TP53 added. For calculat-
ing regulon activity profiles across a cohort, we required a
regulon to have at least 15 positive and 15 negative targets.
We used regulon target genes from the discovery cohort
to calculate regulon activities in the NAC validation co-
hort. For each regulon, we performed enrichment tests
(Fisher’s exact tests) to identify whether lncRNA clusters
were enriched with samples of high or low regulon activ-
ity. We used RTNsurvival v1.6.0 and TCGA-BLCA muta-
tion data [12] to generate oncoprint-like diagrams that
showed, for the TCGA cohort, how regulon activity segre-
gated TP53 and FGFR3 mutations, and LPL-C3 and LPL-
Other samples.

Gene expression analysis
We created heatmaps and boxplots to visualize differences
between tumors from lncRNA and mRNA subtypes, in
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the expression of individual genes, gene signatures [5],
and hallmark gene sets (from the molecular signature
database hallmark gene set collection, MSigDB [21]).
Hedgehog signaling activity was quantified by a signature
based on target genes (SHH, BMP4, BMP5, ID1, ID2, ID3,
ID4) as mentioned by Shin et al. [22]. FGFR3 signaling
was assessed by a gene signature from Sjödahl et al. [5].
Sample purity was calculated by the ABSOLUTE and
ESTIMATE algorithms for the TCGA and NAC cohorts,
respectively [23, 24]. Median fold changes (FC) and p
values (using two-sided Wilcoxon rank-sum tests) were
calculated for differential gene expression analyses. To
identify lncRNAs enriched in immune cells, we filtered
the GTEx datasets for lncRNAs with at least five median
transcripts per million (TPM) higher expression in lym-
phocytes compared to a normal bladder. The candidate
list of lncRNAs was compared to the 750 lncRNAs used
for consensus clustering to generate a candidate list of
immune-associated lncRNAs used for the clustering. The
Immune190 signature score calculations have been previ-
ously described [25].

Statistical analyses
Statistical analyses were performed using R statistical
software (R Foundation for Statistical Computing, Vienna,
Austria). In the NAC and TCGA cohorts, patient and
tumor characteristics were compared between subgroups
by Fisher’s exact tests and two-sided Wilcoxon rank-sum
tests. p values for boxplot figures were determined by
comparing LPL-C3 with LPL-other tumors by Wilcoxon
rank-sum tests. The primary endpoint for the survival
analysis was overall survival (OS). OS was calculated as
the date of the most recent TURBT (NAC and PCC co-
horts) or RC (TCGA and UTSW cohorts) till date of death
from any cause. Patients who were lost to follow-up were
censored at the date of last contact. The Kaplan-Meier
method was used to estimate the statistical significance of
differences between survival curves for patients of differ-
ent molecular subtypes, using the log-rank test. After
checking the proportional hazard assumption based on
Schoenfeld residuals, we used multivariate Cox propor-
tional hazard models to demonstrate the relationship of
the genomic classifier’s predicted subtype with OS, adjust-
ing for clinical variables, including age, sex, and stage.

Discovery and validation of a genomic classifier
The NAC cohort was used to train a genomic classifier
(GC) to predict luminal-papillary MIBC patients that
had favorable prognosis (OS), as identified by the lncRNA
clustering (LPL-C3). To make the model applicable to sev-
eral platforms, we selected genes that were present in both
the Illumina HiSeq platform (TCGA cohort) and Affyme-
trix Human Exon 1.0 ST Array (NAC, PCC, and UTSW
cohorts) as the initial gene list (25,942 genes). Using this
gene list, the selection of genes for the GC was based on
an overlap of gene sets that were created by differential
gene expression analyses (median FC < − 0.06 or > 0.1, p <
0.001), in which we compared lncRNA clusters and
mRNA subtypes. This resulted in a list of 69 candidate
genes. The final gene set included 65 genes after removing
highly abundant mitochondrial transcripts (seven genes)
and adding three genes enriched in LPL-C3, determined
from heatmaps generated in the study (SHH, BMP5, and
FGFR3) (Additional file 1: Table S1). Next, we trained a
10-fold cross-validated, ridge-penalized logistic regression
model (R package glmnet) consisting of 36 coefficients to
predict LPL-C3 MIBC (Additional file 1: Table S1). This
model was applied to RNA-seq data (TCGA) using quan-
tile normalization. For the 65 genes, expression values
from RNA-seq were normalized by quantile-quantile
matching with the expression values in our training cohort
(NAC) as implemented in R package preprocessCore. We
used the R package OptimalCutpoints to select the opti-
mal probability threshold (Pt), corresponding to the max-
imal specificity for identifying LPL-C3 MIBC patients in
both NAC and TCGA cohorts. Finally, we selected a prob-
ability threshold (Pt) of 0.43, corresponding to a 98–68%
specificity-sensitivity combination in the NAC cohort and
a 96–55% specificity-sensitivity combination in TCGA co-
hort. After training and testing of the GC in NAC and
TCGA cohorts, the classifier was locked for further inde-
pendent external validation in the PCC and UTSW
cohorts.

Results
LncRNA expression profiling subdivides the luminal-
papillary mRNA subtype
To explore the lncRNA expression landscape of MIBC,
we downloaded a microarray-based cohort of 223 bladder
cancer TURBT samples treated with NAC and RC (NAC
cohort). Unsupervised consensus clustering of 750 of the
most highly variant lncRNAs resulted in a robust four-
cluster consensus solution (Additional file 2: Figure S1).
Survival analysis of the lncRNA-based consensus clusters
(LC1–4) revealed that LC3 had significantly better prog-
nosis than clusters LC1, LC2, and LC4 (p = 0.01) (Fig. 1a).
To assign the tumors in the NAC cohort to TCGA

2017 mRNA subtypes (luminal-papillary, luminal, luminal-
infiltrated, basal squamous and neuronal), we applied our
single-sample classifier (Methods), which revealed that
these tumors were enriched for basal/squamous (33%) and
luminal-papillary (54%) subtypes (Additional file 2: Figure
S2a). Survival analysis showed that patients with luminal-
papillary tumors had better outcomes than the other sub-
types (Additional file 2: Figure S2b).
Comparing our lncRNA four-cluster solution and the

classifier assigned TCGA subtypes, we found LC2 was
strongly enriched (72%, 39/54) for tumors of the basal/



Fig. 1 Survival analysis for the lncRNA-based clustering solution in the NAC cohort. a KM plot for lncRNA clusters (LC1–4), b intersection of the
lncRNA clusters (LC1–4) with the luminal-papillary mRNA subtype, c KM plot for luminal-papillary mRNA subtype stratified by the lncRNA clusters,
and d KM plot for lncRNA-split luminal-papillary tumors (LPL-C3, LPL-Other)
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squamous subtype, whereas LC1, LC3, and LC4 contained
only 23%, 4%, and 33% basal/squamous tumors, respect-
ively (p < 0.001). Conversely, luminal-papillary tumors
were enriched in LC3 (92%, 47/51) but were also present
in LC1 (63%) and LC4 (51%) clusters (p < 0.001) (Fig. 1b).
Considering only the luminal-papillary subtype (n = 124),
we found patients in LC3 (38%) had favorable outcomes
compared to other luminal-papillary tumors (p = 0.003;
Fig. 1c, d), whereas stratifying the basal-squamous subtype
by lncRNA clusters did not reveal differences in outcome
(p = 0.66; Additional file 2: Figure S3). Given the enrich-
ment of luminal-papillary tumors in LC3, we named this
group of patients “Luminal-Papillary LncRNA Cluster 3
(LPL-C3),” and the other luminal-papillary tumors as
“LPL-Other.”
Next, we repeated the consensus clustering in the

TCGA cohort (n = 405) using the lncRNAs that were
consistent between the array and RNA-seq platforms
(739/750). This resulted in a four-cluster consensus so-
lution that was substantially concordant with the pub-
lished TCGA lncRNA results [12] (κ = 0.77, p < 0.001,
Additional file 1: Table S2). As in the NAC cohort, we
identified a distinct lncRNA cluster (LC3) enriched in
luminal-papillary tumors (74/88 patients, p < 0.001) with
favorable prognosis (p = 0.022) (Additional file 2: Figure
S4a-c and Additional file 1: Table S3).

The biological characteristics of LPL-C3 tumors are
consistent with less-aggressive disease
To investigate the biological differences between the
LPL-C3 and LPL-Other tumors, we generated a heatmap
of genes associated with MIBC subtypes for both the
NAC and TCGA cohorts (Fig. 2a, b). Many luminal
markers (i.e., PPARG, FOXA1, and GATA3) were
expressed at significantly higher levels in LPL-C3 than in
LPL-Other tumors (Additional file 2: Figure S5A-C).



Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Biological characterization of the lncRNA clusters using selected MIBC marker genes in the a NAC and b TCGA cohorts. For the NAC and
TCGA cohorts, both the five TCGA subtypes (luminal-papillary, luminal, luminal-infiltrated, basal squamous, and neuronal, unknown) and the
luminal-papillary subgroups (LPL-C3, LPL-Other and RestSubtypes) are indicated in the covariate tracks. In the TCGA cohort, the 2017 TCGA four-
cluster lncRNA solution, FGFR3, TP53, and RB1 mutation status and FGFR3 fusion status, are also indicated in covariate tracks
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These patterns were less evident in the TCGA cohort,
with only FOXA1 showing significantly increased ex-
pression (p = 0.023) (Additional file 2: Figure S5d-f).
In both cohorts, all luminal-papillary tumors showed
downregulation of basal (i.e., KRT5/6, KRT14) (Fig. 2a,
b and Additional file 2: Figure S6) and immune-
associated genes (i.e., CD274, PDCD1LG2) (Fig. 2a, b
and Additional file 2: Figure S7).
Significant differences in expression of genes associ-

ated with epidermal-to-mesenchymal transition (EMT)
were observed for LPL-C3 versus LPL-Other tumors in
the NAC cohort (Additional file 2: Figure S8a-c). For ex-
ample, VIM and ZEB1 were less abundant and CDH1
was more abundant in LPL-C3, indicating lower EMT
activity in these tumors. Hallmark EMT signature scores
were also significantly lower among the LPL-C3 tumors
in the NAC cohort (Fig. 3a). However, in the TCGA
cohort, EMT activity differences between LPL-C3 and
LPL-Other tumors were not significant (p = 0.5), al-
though both luminal-papillary subsets showed low levels
of both EMT gene expression and EMT hallmark scores
(Fig. 3e and Additional file 2: Figure S8d-f). Moreover,
we found LPL-C3 tumors had the highest median purity
in both cohorts (Additional file 2: Figure S9), suggesting
a general lack of fibroblast infiltration, which may ac-
count for the low EMT scores (Additional file 2: Figure
S10). As differential immune cell infiltration may have
contributed to the lncRNA profiles, we generated a list
of immune-enriched lncRNAs and compared these to
the 750 initially used for clustering. Only 23 were
leukocyte-associated and selected for clustering, al-
though their expression was not limited to the immune-
enriched CC2 (Additional file 2: Figure S11).
Higher expression of SHH and genes associated with

urothelial differentiation (i.e., UPK3A, UPK3B) are fea-
tures of luminal-papillary tumors [12, 22]. In both co-
horts, LPL-C3 tumors had higher expression of SHH
(Additional file 2: Figure S12) and SHH-BMP pathway
activity signature scores (Fig. 3b, f).
Next, we sought to use regulon activities to further ex-

plore the differences in biology between the LPL-C3 tu-
mors, the LPL-Other tumors, and the rest of the cohort
[12, 20], using the TCGA cohort for discovery and the
NAC cohort for validation. Regulon analysis returns a
profile of the activity of a transcription factor (or similar
regulator) across a cohort (Methods). Mean regulon ac-
tivities for LC2 and LC3 subtypes were largely consistent
between cohorts, though only weakly for LC1 (Fig. 4a).
Activated SHH and FGFR3 regulon activity was associ-
ated with LC3 (LPL-C3) tumors and enriched with
FGFR3 mutations (Fig. 4b, c), consistent with the results
of the gene expression analysis.

LPL-C3 tumors are enriched for FGFR3 alterations and
have wild-type p53 activity
We assessed a panel of 59 genes with mutation status re-
ported in the TCGA cohort [12]. After adjusting for false
discovery rate (FDR), we retained FGFR3, TP53, and
RB1, whose rates of mutation differed (p < 0.05) between
LPL-C3 and the rest of the cohort (Fig. 2b and Add-
itional file 1: Table S4).
In the LPL-C3 tumors, the enrichment for FGFR3-mu-

tations (33/74 cases, p < 0.001) correlated with both in-
creased FGFR3 gene expression and signaling activity
(Additional file 2: Figure S13a, b). These tumors were
also enriched for FGFR3 fusions (6/74, p = 0.02; Fig. 2b),
which was the only significant fusion event identified
when comparing LPL-C3 and the rest of the cohort
(Additional file 1: Table S5). Tumors with strongly acti-
vated FGFR3 regulon activity were likewise enriched in
FGFR3 mutations, supporting this observation (Fig. 4c).
Although FGFR3 mutation status was not available for
the NAC cohort, both the FGFR3 gene expression and
gene signature activity were significantly higher in the
LPL-C3 tumors (p < 0.001) (Fig. 3c).
To examine if TP53 mutation correlated with impaired

p53 activity, we first compared expression of the p53 path-
way hallmark scores between TP53 mutated and wild-type
patients within the TCGA cohort (Additional file 2: Figure
S13c, d). The LPL-C3 tumors, which were depleted for
TP53 mutations, showed the highest p53 hallmark scores,
which suggested functional p53 activity (Fig. 2b and
Fig. 3h). Consistent with this, samples with high SHH and
FGFR3 regulon activities were depleted in TP53 mutation
(Fig. 4b, c). Unfortunately, the TP53 regulon had insuffi-
cient (< 15) positive and negative targets and was therefore
too small to support activity calculations. The TP53 regu-
lon was therefore excluded from the analysis. Although
TP53 mutation status was not available for the NAC co-
hort, the LPL-C3 tumors had higher p53 hallmark scores,
suggesting these tumors may also be depleted for TP53
mutations (Fig. 3g).
Although LPL-C3 tumors from the TCGA cohort were

depleted for RB1 mutations, RB1 gene expression dif-
fered only non-significantly between LPL subgroups
(p = 0.054) (Fig. 2b and Additional file 2: Figure S14a). In



Fig. 3 Biological pathways differentially regulated between LPL-C3 and LPL-Other tumors. For the NAC cohort, a EMT hallmark activity, b SHH-
BMP pathway activity, c FGFR3 signature score, and d p53 hallmark activity. The TCGA cohort follows the same order for panels e-h

Fig. 4 Regulon activities of the lncRNA-based consensus clusters. a Mean regulon activities in lncRNA clusters for 16 regulators in the TCGA and
NAC cohorts. Asterisks mark clusters that were significantly enriched (Fisher’s exact test, Benjamin Hochberg adjusted, p < 10−3) with activated or
repressed samples for a regulon. Regulons activities in the TCGA cohort for b SHH and c FGFR3, with TP53, FGFR3, and RB1 mutation status and
LPL-C3 vs. LPL-Other indicated in covariate tracks. A dark black bar indicates a mutation event
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contrast, LPL-C3 tumors from the NAC cohort had signifi-
cantly higher expression of RB1 (p = 5.5 × 10− 4) (Fig. 2a
and Additional file 2: Figure S14b). In contrast to SHH and
FGFR3 regulon activities, tumors with higher RB1 regulon
activity showed only weak depletion for TP53 mutations in
the TCGA cohort (Additional file 2: Figure S14c).
All genes and pathway activities of LPL-C3 tumors sug-

gested that these tumors should be less clinically aggressive.
Therefore, we compared the clinical features of luminal-
papillary patients in the NAC cohort and found higher rates
of organ-confined disease, including significantly lower pT-
stage (p = 0.047) and fewer lymph node metastases (p =
0.0016) for LPL-C3 tumors (Table 2). Notably, LPL-C3
patients with clinical node involvement still had a good
prognosis (Additional file 2: Figure S15). Similar observa-
tions were seen in the TCGA cohort, with lower ypT-stage
(p = 0.0043) and fewer lymph node metastases in LPL-C3
patients (p = 0.002). In the NAC and TCGA cohorts, the
median age of patients with LPL-C3 tumors was signifi-
cantly lower (median age 58 vs. 63 years and 61 vs. 70 years,
respectively; p < 0.01).
Table 2 Clinicopathological characteristics of luminal-papillary MIBC

Luminal-papillary
subset

NAC

LPL-C3 (n = 47) LPL-Other (n = 77)

Age, median [IQR] 58 (51–65) 63 (58–72)

Gender (%)

Female 12 (26%) 19 (25%)

Male 35 (74%) 58 (75%)

Clinical lymph node stage (%)

cN0 36 (77%) 35 (45%)

cN1–3 11 (23%) 42 (55%)

cNx 0 (0%) 0 (0%)

Clinical tumor stage (%)

Tis/Ta/T1

cT2 23 (49%) 33 (43%)

cT3 18 (38%) 29 (38%)

cT4 6 (13%) 15 (19%)

Pathological tumor stage (%)

ypT0/Tis/Ta/T1 28 (59%) 32 (42%)

ypT2 13 (28%) 17 (22%)

ypT3 5 (11%) 20 (26%)

ypT4 1 (2%) 7 (9%)

ypTx 0 (0%) 1 (1%)

Pathological lymph node stage (%)

yN0 39 (83%) 35 (45%)

yN1–3 5 (11%) 24 (31%)

yNx 3 (6%) 18 (23%)
Development of a single-sample classifier to identify
luminal-papillary MIBC patients with good prognosis
To provide utility as a prognostic model, we developed a
single-sample genomic classifier (GC) to identify the
good-prognosis luminal tumors with activated FGFR3
(FGFR3+). To be classified as FGFR3+, the tumor must
also show enhanced SHH activity, higher p53 pathway
activity, and lower EMT, consistent with the data shown
above.
We identified 36/223 (16%) and 55/408 (14%) FGFR3+

cases in the NAC and TCGA cohorts, respectively. The
majority of the FGFR3+ calls in both cohorts were of the
luminal-papillary mRNA subtype (Additional file 1: Table
S6). In both cohorts, patients with FGFR3+ tumors had
better survival than other patients (p = 0.001 and p = 0.003
for NAC and TCGA, respectively) (Fig. 5a, b). As ex-
pected, we found the FGFR3, SHH, and p53 signature
scores were significantly higher among FGFR3+ cases
when comparing them to the other tumors. In the NAC
cohort, EMT hallmark scores were significantly lower
among FGFR3+ cases (p < 0.001), whereas FGFR3+ cases
patients from the NAC and TCGA cohorts

p value TCGA p value

LPL-C3 (n = 74) LPL-Other (n = 68)

0.00098 61 (54–71) 70 (64–77) 0.0034

16 (22%) 14 (21%)

1.00 58 (78%) 54 (79%) 1.00

NA NA

NA NA

0.00075 NA NA NA

NA NA

NA NA

0.64 NA NA NA

0 0

44 (59%) 21 (31%)

16 (22%) 28 (41%)

7 (9.5%) 6 (9%)

0.047 7 (9.5%) 13 (19%) 0.0043

61 (82%) 36 (53%)

6 (8%) 17 (25%)

0.0016 7 (9%) 15 (22%) 0.0020
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from the TCGA cohort showed no significant difference
in EMT activity (Additional file 2: Figure S16A-H). FGFR3
was mutated in 25/55 FGFR3+ cases (45%) compared to
32/350 negative cases (9%) from the TCGA cohort (p <
0.001). The FGFR3+ cases were depleted for TP53 muta-
tions in 15/55 (27%) compared to 180/350 (51%) negative
cases (p < 0.001). Likewise, RB1 mutations were fewer in
FGFR3+ cases, 0/55 (0%) compared to 70/350 (20%) of
negative cases (p < 0.001).
To validate the classifier, we used an independent RC

cohort (UTSW) of 94 patients, identifying 10 (11%)
FGFR3+ cases (all luminal-papillary) with excellent
prognosis (Fig. 5c) and expected biological character
(Additional file 2: Figure S17a-d). Multivariable Cox
regression analysis revealed that the GC was a significant
survival predictor in the NAC TURBT cohort, but not in
the TCGA and UTSW cohorts (Additional file 1: Table
S7). The GC was also validated in a prospectively collected
commercial cohort (PCC, n = 225), resulting in 24/225
(11%) FGFR3+ cases (21 luminal-papillary, 3 luminal) with
genomic characteristics consistent with FGFR3+ cases
from the other cohorts (Additional file 2: Figure S17f-i).
Unfortunately, follow-up data were unavailable for this co-
hort and therefore outcomes could not be determined.
Comparison of the GC single-sample classifier to the
consensus subtyping model
Finally, we also used the recently released consensus mo-
lecular classification of The Bladder Cancer Molecular
Taxonomy Group to assign tumors from all four cohorts
into the six consensus mRNA subtypes (Ba/Sq, LumNS,
LumP, LumU, Stroma-rich, and NE-like). Intersecting the
consensus subtype calls with the results of the GC re-
vealed that our GC identified tumors from all three lu-
minal subtypes (unstable, non-specified, or papillary),
and only rarely the stromal-rich consensus subtype
(Additional file 1: Table S8).
Discussion
Molecular characterization of MIBC by transcriptome
profiling has revealed a range of subtypes with distinct
clinicopathological characteristics, prognosis, and re-
sponse to therapeutic regimens. Significant efforts have
been invested in mRNA-based molecular subtyping of
MIBC; however, mRNA transcripts represent only 1–2%
of the transcriptome, which is dominated by ribosomal
RNA and ncRNAs [26]. In non-muscle-invasive bladder
cancer (NMIBC), lncRNA and mRNA expression appear
to correlate with each other [27], although only TCGA
has explored stratification of MIBC using the non-coding
transcriptome [12].
In the present study, we selected a list of highly vari-

able lncRNAs for consensus clustering and identified a
subset of luminal-papillary MIBC patients with favorable
prognosis (LPL-C3). This lncRNA-mediated subdivision
of the luminal-papillary mRNA subtype was consistent
with, though not identical to, the TCGA lncRNA clus-
tering solution [12]. LncRNA expression has been de-
scribed as highly specific to tissue, cell, or disease state,
compared to mRNAs [28, 29]; these data support the
utility of lncRNA expression in refining mRNA-based
subtyping models. Although we observed differential im-
mune infiltration in our lncRNA clusters, only a handful
of lncRNAs highly expressed in lymphocytes were iden-
tified in our lncRNA set used for clustering, suggesting
these were not major contributors to the signal driving
the clustering solution.
As the current work was an independent analysis using

a panel of de novo selected lncRNAs, these data demon-
strate that the lncRNA transcriptome contains additional
signal for the identification of a biologically distinct
MIBC subgroup with potential clinical utility. This high-
lights a significant advancement over mRNA-based sub-
typing, where the additional granularity in the subtypes
resulted in meaningful survival associations. Notably,
LPL-C3 patients with clinically node-positive disease,
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who would be expected to have worse outcomes, also
were found to have surprisingly good outcomes. Thus,
the identification of a group of patients with superior
prognosis is a major finding that significantly advances
the bladder cancer field.
The LPL-C3 tumors had genomic features consistent

with less-aggressive disease, including wild-type p53 ac-
tivity, FGFR3 activation, and lower EMT. LncRNAs have
been implicated in the p53-regulatory network in colo-
rectal, nasopharyngeal, and prostate cancers [30–32],
where they function as regulators [33, 34]. Some of the
lncRNAs that we used in our unsupervised clustering
may reflect a wild-type p53 network, facilitating the
identification of the LPL-C3 subgroup. Effective cell
cycle/apoptosis regulation by p53 may confer a less-
aggressive tumor and the favorable prognosis seen in pa-
tients with these tumors.
In bladder cancer, TP53 and FGFR3 mutations are re-

ported to be mutually exclusive [35, 36]. In the TCGA
cohort, tumors in the LPL-C3 group, while being de-
pleted for TP53 mutations, had FGFR3 mutation rates
five times higher than in other tumors. These tumors
also showed higher levels of FGFR3 gene expression,
pathway activation, and regulon activity, consistent with
the mutational activation of FGFR3 [37]. Mutations in
FGFR3 have been reported in bladder cancer to be asso-
ciated with a less-aggressive disease, lower-stage tumors,
and improved prognosis, consistent with the data from
our study [36, 38].
Other biological features may also explain the less-

aggressive clinical course of patients with LPL-C3 tu-
mors. In these tumors, we observed higher expression of
SHH and downstream SHH targets, and higher expres-
sion of the SHH gene has been proposed to restrain
bladder cancer progression [22, 39]. Moreover, in the
NAC cohort, the LPL-C3 tumors had lower EMT activ-
ity, a feature known to be associated with less-aggressive
cancer in many tumor types [40]. In the TCGA cohort,
both LPL-C3 and LPL-Other tumors had lower EMT ac-
tivity, suggesting this feature may be a characteristic of
the luminal-papillary subtype.
Collectively, the luminal nature of the LPL-C3 tumors,

the wild-type p53 activity, the high proportion of FGFR3
mutations, SHH-BMP pathway activity, and lower EMT
signature all support a less-aggressive tumor type and
suggest a biological explanation for the favorable prog-
nosis of patients with these tumors. However, the extent
of the LPL-C3/FGFR3+ survival benefit differed between
the NAC and TCGA cohorts, which may be caused by a
different treatment regimen (NAC+RC versus RC only),
as the survival curves of all four lncRNA clusters were
shifted upwards in the NAC cohort. In contrast, FGFR3+
patients from the UTSW (RC only) cohort showed even
better prognosis than FGFR3+ cases from the NAC
cohort, despite having had a different treatment regimen.
Additionally, over half of the tumors in the TCGA
cohort are pT3/T4, which may explain, at least in part,
the less favorable outcomes seen for these patients.
While MIBC has a poor prognosis in general, identify-

ing a subgroup of patients with excellent outcomes
would be a major step in addressing the heterogenous
clinical behavior of this disease. In daily clinical practice,
such patients could be offered a less invasive treatment.
To provide clinical utility for our findings, we developed
a stringent, single-sample classifier that identified FGFR3+
cases with high FGFR3 activity and enrichment for FGFR3
mutations/fusions. Early results from a phase II trial
showed a 40% overall response rate in patients with
FGFR3-mutated, metastatic urothelial cancer after treat-
ment with erdafitinib, an FGFR inhibitor [41]. Conse-
quently, FGFR3+ cases may be candidates for treatment
with FGFR3 inhibitors instead of NAC, as patients with
luminal tumors may benefit less from NAC while still be-
ing exposed to chemotherapy-related toxicity [11].
This retrospective study has several limitations. First,

DNA sequence data was unavailable for the NAC, UTSW,
and PCC cohorts, so we were unable to accurately deter-
mine whether the LPL-C3 (or FGFR3+) cases were
enriched for FGFR3 mutations or depleted for TP53muta-
tions. Although the FGFR3 signature is a reasonable
surrogate, and FGFR3 regulon activities show promise as
a complementary metric, availability of mutation calls for
patients from all cohorts would strengthen the study.
Second, the PCC cohort lacked clinical follow-up, so we
were only able to evaluate the GC model calls based on
genomics.
In the TCGA and UTSW cohorts, the HR, although

not statistically below the p value threshold of 0.05, was
consistently below 0.50 in all datasets tested, suggesting
a protective status for FGFR3+ tumors. For UTSW, the
cohort was small (n = 94) with only 10 FGFR3+ patients,
which may explain why FGFR3+ status did not achieve
significance in multivariable analysis. Given the reported
trends, we anticipate that statistical significance may be
achieved with additional patients. For the TCGA cohort,
sufficient tumor tissue for the many different assays re-
quired by TCGA studies (copy number, RNA-seq, DNA
methylation, etc.) may have resulted in the collection of
larger, more bulky tumors which tend to exhibit a more
aggressive clinical behavior. For our study, the FGFR3+
tumors may therefore be on the more aggressive side of
the spectrum of the LPL-C3 tumors, resulting in a
higher HR than observed in the NAC or UTSW cohort,
and possibly explaining the lack of a significant p value
in the TCGA survival analysis.
Given these factors, the GC will require additional pro-

spective validation before it can be used clinically as a
single-sample classifier for identifying luminal-papillary
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MIBC patients with enhanced FGFR3 activity and favor-
able prognosis.

Conclusions
In summary, using the lncRNA transcriptome, we identi-
fied a subgroup of luminal-papillary MIBC patients that
have very good outcomes. We characterized these tu-
mors genomically, and biologically, and characterized
the patients clinically. Further, we developed a single-
sample genomic classifier to identify such tumors and
validated it in two independent cohorts.
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