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1 Introduction

Gauge-gravity duality with de Sitter (dS) boundary conditions [1–3] has proved to be a

fruitful route to elucidate the status of de Sitter space in string theory and to put cosmology

on firm theoretical ground. In its most ambitious and fundamental form, dS/CFT conjec-

tures that the partition functions of certain deformations of three dimensional Euclidean

CFTs yield a precise formulation of the Hartle-Hawking wave function of the universe [4].

Schematically and in the large three-volume regime the proposed dual form of the wave

function reads

ΨHH [hij , As] = ZQFT[h̃ij , Js] exp(iSst[hij , As]/~) . (1.1)

Here As stands for matter configurations of spin s and hij is the three-geometry of the

spacelike surface Σ on which Ψ is evaluated. In this paper we take the latter to be topolog-

ically a three-sphere. The sources (h̃ij , Js) in (1.1) are conformally related to the arguments

(hij , As) of the wave function, and Sst are the usual surface terms.

It is a central open question what class of deformed CFTs in (1.1) specifies a well-

defined, normalizable wave function. Euclidean AdS/CFT provides a starting point to

study this since its generalization to complex relevant deformations of CFTs implies a

semiclassical realisation of dS/CFT [5–8] that is possibly exact in Vasiliev gravity in dS [9].

It has been suggested indeed that Euclidean AdS and Lorentzian dS, and their duals, can

be viewed as two real domains of a single complexified theory [1, 5, 10–13].
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An interesting point in this respect is that in dS/CFT the Euclidean duals are never

Wick rotated to the Lorentzian. It is therefore misguided to criticize dS/CFT on the

grounds that the duals are not unitary.1 This is an important conceptual difference with

AdS/CFT. Of course, if the wave function is well-behaved then it predicts unitary time

evolution in the bulk at the level of quantum field theory in each of the asymptotically

classical spacetime backgrounds it describes. It is clearly important to better understand

what this entails when it comes to the dual.

The case of higher-spin (HS) gravity provides an interesting toy model to explore

these questions, since the duals are vector models for which the partition functions can

be evaluated explicitly for a range of deformations [14–18]. The Vasiliev HS theory has

massive scalars and an infinite tower of massless gauge fields of increasing spin [19]. The

duals have conserved currents for the same symmetries [20, 21]. Deforming the boundary

theory action with a conserved current Js corresponds to turning on the spin-s field As.

Calculations of the partition function with homogeneous scalar and spin-2 deformations

in the Sp(N) vector model, dual to the minimal Vasiliev theory in dS [9], have provided

some evidence that dS/CFT yields a well-defined wave function and in particular one which

is better behaved than the usual semiclassical Hartle-Hawking wave function in Einstein

gravity.

In recent work [22] we put forward a supersymmetric generalization of these HS du-

alities in dS.2 The bulk theories involved are the supersymmetric extensions of Vasiliev

theory described in [26]. On the boundary side we constructed new N = 2 supersymmetric

extensions of the three-dimensional Sp(N) models. We then related these to the theories

of Sezgin and Sundel, thereby establishing a supersymmetric gauge-gravity duality with de

Sitter boundary conditions. We evaluated the partition function of these supersymmetric

extensions of the free Sp(N) model with homogeneous scalar, vector and spin-2 defor-

mations that preserve supersymmetry. The duality (1.1) conjectures that these partition

functions specify the Hartle-Hawking wave function in a supersymmetric minisuperspace

consisting of anisotropic deformations of de Sitter space with scalar and vector matter.

1One may argue that reflection positivity is the relevant notion for Euclidean theories and that the CFTs

in dS/CFT are not reflection positive. However, reflection positivity is similarly not an interesting property

for a Euclidean theory by itself. A reflection positive theory is usually only reflection positive along a single

preferred direction. Reflection positivity is therefore relevant when one intends to Wick rotate this direction

into a time direction, since this guarantees that the resulting Lorentzian theory will be unitary. But we do

not Wick rotate in dS/CFT, and time can be viewed as emerging holographically in the bulk. Therefore,

there is no natural boundary direction along which one should impose reflection positivity.
2It is often argued that unbroken supersymmetry and dS space do not go together (see e.g. [23–25])

because in dS space there is no positive conserved quantity whereas supersymmetry would allow one to

construct one. However supersymmetric HS gravity theories in de Sitter circumvent this problem since the

Hermitian conjugate in the theories in [26] is an anti-involution [22]. In a similar spirit one may object

that de Sitter space ‘has a temperature’ and therefore cannot be supersymmetric. However, as Gibbons

and Hawking [27] already pointed out, the temperature arises only from an observer’s perspective. The

wave function that dS/CFT computes is a function over global configurations and may itself be a SUSY

invariant pure state. To obtain a physical description relevant to local observers, one should trace over

the degrees of freedom outside their subjective horizon. This produces a SUSY breaking thermal density

matrix. Essentially the same argument has been given in [28] in the context of superconformal field theory

on a de Sitter background.
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We found the wave function is globally peaked at the undeformed de Sitter space with a

low amplitude for strong deformations, indicating that supersymmetric de Sitter space in

higher-spin gravity is stable and has no ghosts.3

In this paper we initiate the study of fermions in dS/CFT. In particular we compute

the contribution from bulk fermions to the Hartle-Hawking ground state wave function

ΨHH in these supersymmetric HS theories. The properties of superpartner fermions are

especially interesting since in higher spin theory, fermionic fields can essentially only arise

as superpartners to bosonic fields. We find that, within the analysis performed so far, the

existence of a stable supersymmetric de Sitter vacuum - our fundamental conclusion in [22]

- remains unchanged with the inclusion of these fermionic fields. As before we perform all

calculations in the conjectured dual and use the duality (1.1) to obtain the Hartle-Hawking

wave function. Purely computationally, the dS/CFT dictionary (1.1) applies directly to

fermionic fields. However, the interpretation of ΨHH in the presence of fermionic fields

requires a certain care as detailed long ago in [31, 32].

The paper is organised as follows. In section 2 we begin with a general discussion of

fermionic bulk fields in the wave function of the universe and in the context of dS/CFT.

This discussion is independent of the specifics of our model and the presence of supersym-

metry. In section 3, we summarise the model of supersymmetric higher spin dS/CFT we

constructed in [22], focussing especially on how the fermionic bulk fields enter. In section 4,

we deform the boundary theory to turn on a spin-1/2 fermion in the bulk, while keeping all

other bulk fields turned off. We study how the bulk wave function and observables respond

to this fermionic field. In section 5, we repeat this process, now simultaneously turning

on both a fermionic and a bosonic bulk field. We consider scalar, pseudoscalar and metric

bulk fields. This allows us to study the interplay between fermionic and bosonic bulk fields.

We see no sign of instability of the bulk vacuum coming from this interplay. In section 6,

we first discuss the behaviour of ΨHH in the presence of bulk fermions in our model and

we then conclude with a more general discussion of dS/CFT in string theory.

2 Bulk fermions and the wave function

As we have described in [22], half-integer spin CFT sources enter into the Hartle-Hawking

wave function and the duality eq. (1.1) in a way that is formally completely analogous

to the bulk bosons. However, on a conceptual level, the interpretation of these fields in

the wave function deserves some extra attention. Here we discuss in general terms how

spinorial bulk de Sitter fields enter into the dS/CFT correspondence, not limiting ourselves

to our particular model.

In the action of a QFT, fermionic fields are often described using Grassmann variables.

But, it is important to remember that, just as quantised bosons are not simply commut-

3As an aside we note that supermultiplets with flipped spin-statistics have also appeared in a different

context in CFTs in [29, 30] where non-unitary 4D theories are related to unitary 2D theories. This gives

an example where an apparently non-unitary theory encapsulates the data of a unitary theory. The non-

unitary theory carries in fact a hidden notion of unitarity, and this with precisely the same ingredients

as the ‘non-unitarity’ theories in dS/CFT, suggesting it is reasonable indeed to expect that bulk unitarity

could arise holographically in dS/CFT.
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ing variables, quantised fermions are not Grassmann variables. The Grassmann variables

simply provide a convenient way to describe the fermions pre-quantisation. Let us briefly

review the canonical quantisation of fermions. Our treatment here will be rather brief and

qualitative. A more detailed discussion of the quantization of a free fermion in de Sitter

space and the properties of the ψ̆A
′

conjugate spinors can be found in appendix A. To keep

our presentation concise, we will sometimes suppress constant factors and indices when not

relevant. A more complete discussion can be found in [31, 32]. Consider the bulk spinor

ψ(x) in four-dimensional de Sitter space at some time-slice. The spatial geometry on this

time-slice is an S3 and the spinors can be expanded in spherical harmonic (commuting)

spinors.4 The three-sphere harmonics are ρnpA , σnpA′ with positive frequencies and their con-

jugates ρnpA′ , σ
np
A with negative frequencies. Here, A is the bulk spinor index, n = 0, 1, 2, . . .

tracks the eigenvalue under the harmonic equation and p = 1, 2, . . . , (n+ 1)(n+ 2) tracks

the degeneracy for given n. Ignoring the degeneracy (which will be broken anyway when

we deform the geometry), one can expand as

ψA ∼
∑
n

(
snρ

n
A + t̆nσ

n
A

)
, (2.1a)

ψ̆A′ ∼
∑
n

(
s̆nρ

n
A′ + tnσ

n
A′
)
. (2.1b)

If one is describing a classical and commuting spinor function; s, t and their breves should

be constant coefficients.5 However, we wish to quantise ψ as a fermion. Then as usual, we

want these coefficients to essentially play the role of creation and annihilation operators.

This means that we should impose the anticommutation relations

{sn, tm} = {sn, t̆m} = {s̆n, tm} = {s̆n, t̆m} = 0 , (2.2a)

{sn, s̆m} = {tn, t̆m} = δnm . (2.2b)

As pointed out in [31–33], one should take the wave function on the future boundary

surface to depend only on the positive frequency modes. This is convenient as the fermionic

dependence of the wave function is then only a dependence on anticommuting Grassmann

variables s and t. If the negative frequency modes had entered as well, we would have got

variables with nontrivial anticommutation relations.

It is then clear how, for example, we should interpret the J1/2 source of the boundary

CFT related to a spin-1/2 bulk field, which enters into the wave function as Grassmann

valued spinors, rather than fully quantised fermionic fields. In the boundary CFT, we can

turn on a separate source term

J1/2 ,nO1/2 (2.3)

for each three-sphere harmonic. In our specific model, J1/2 is related to a background

gaugino field λ in the CFT and O1/2 to a combination of dynamical CFT scalar and

spinor, χϕ and we will adopt this notation from here on for future convenience.

4On a deformed geometry the same line of reasoning goes through, with the harmonics of the deformed

geometry.
5If one wants to describe how ψ evolves in time rather than restricting to one time-slice, these coefficients

would become time-dependent.
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We then have a separate source term

λn(x)χϕ+ χλ̆n(x)ϕ (2.4)

for each three-sphere harmonic. We associate λn in the boundary theory with snρ
n
A (no

Einstein summation) in the bulk wave function and we associate λ̃n with tnσ
n
A′ .6

The purpose of the CFT in dS/CFT is to compute the bulk wave function Ψ. So, our

sources are just Grassmann variables and from the path integral CFT perspective, we need

not concern ourselves with the nontrivial commutation relations (2.2b). Of course, once

we have our bulk wave function, to be able to interpret it and study its properties, we need

a notion of conjugate wave function and a definition of inner product between two wave

functions with fermionic fields. Here, s̃, t̃ and the nontrivial commutation relations (2.2b)

will come into play. The correct description of a second quantised fermionic field in a

wave function formalism has long been known. The classic references are [34, 35] and a

discussion in the context of quantum cosmology can be found in [31, 32]. The point is that

the inner product should be defined such that wave functions with different fermion states

occupied should be orthonormal. This is what one naturally expects and how things also

work in the, for QFT more conventional, description in terms of state vectors in a Hilbert

space. One can then expand the wave function in terms of the Grassmann variables, where

due to their Grassmann nature, each λn, λ̃n can appear only twice at most in one term,

but one can of course have many different λn with different n in one term.7

Ψ = ΨBosonic + Ψ0(λ̃0λ0) +
1

2
Ψ00(λ̃0λ0)2 + Ψ1(λ̃1λ1) + Ψ01(λ̃1λ1) (λ̃0λ0)

+
1

2
Ψ001(λ̃1λ1) (λ̃0λ0)2 + . . . (2.5)

The Ψi1···ik only depend on the bosonic fields and the inner product between two bulk wave

functions is given by

(Ψ,Φ) = (ΨBosonic,ΦBosonic)B + (Ψ0,Φ0)B + (Ψ00,Φ00)B + (Ψ1,Φ1)B

+ (Ψ01,Φ01)B + (Ψ001,Φ001)B + . . . , (2.6)

where ( , )B refers to the inner product over the bosonic bulk fields. For simplicity, we will

only study the constant spinor λ0 harmonic in this paper and will refer to it simply as λ

in the future, but all other harmonics enter in an analogous way.

An interesting quantity to compute is the number operator for the fermion zero mode,

NF . When this operator acts on a state, it gives the number of λ̃λ in that state. So, it

acts as

NFΨ = NF (ΨB + Ψ0 + Ψ00) = 0ΨB + 1Ψ0 + 2Ψ00 (2.7)

6Or the association is the other way, that is arbitrary.
7The wave function could in principle also include terms for instance of the type (λλ). The dynamics

of our specific theory will ensure we only have (λ̃λ) terms appearing. The physical picture here is that λ̃

is associated to particle creation and λ to antiparticle creation. If the dynamics of the theory produces

particles and antiparticles in pairs, one then expects only terms of the form (λ̃λ).

– 5 –
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on a state Ψ. Its expectation value is given by

< NF >=
(Ψ, NFΨ)

(Ψ,Ψ)
=

(Ψ0,Ψ0)B + 2(Ψ00,Ψ00)B
(Ψbosonic,Ψbosonic)B + (Ψ0,Ψ0)B + (Ψ00,Ψ00)B

. (2.8)

This takes a value between zero and two. The denominator in this expression serves to

normalize the state. When its value is low, empty de Sitter space is preferred, for a high

value, a state with bulk fermions present is preferred. For a massless free fermion in de

Sitter space in the Hartle-Hawking state, a bulk computation by [31, 32] has shown that

< NF >= 0. In principle, this is a perfectly valid observable to consider. But, when we

consider a minisuperspace that involves both bosonic and fermionic deformations, we run

into a practical issue. It is in general unclear what the precise definition of the bosonic

inner product ( , )B should be, preventing us from actually evaluating < NF >. To deal

with this, we can instead compute the local value of < NF > at a given boundary value B

of the bosonic bulk fields

< NF > [B] =
Ψ∗0[B]Ψ0[B] + 2Ψ∗00[B]Ψ00[B]

Ψ∗bosonic[B]Ψbosonic[B] + Ψ∗0[B]Ψ0[B] + Ψ∗00[B]Ψ00[B]
, (2.9)

where for the wave functions that depend only on the bosonic fields, the conjugate wave

function is simply the complex conjugate. Note that we have done something unusual in

the denominator of this expression. The denominator serves to normalise our expression

and normally we should normalise against the full value of the wave function (Ψ,Ψ). How-

ever, here we are normalising against the value of the wave function at the given bosonic

deformation B. This means that we effectively consider the wavefunction of a state where

we have already fixed bosonic fields to a certain value. This ensures we have values between

zero and two, which we will see leads to a clearer and more interesting analysis. We should

keep in mind that we are no longer truly computing something which when we integrate

it over B with the correct measure will give us < NF > for the holographic no-boundary

state. Instead, we are saying: suppose we have already imposed that the bosonic bulk

fields take value B on the future boundary. After making this imposition on our state,

how do the fermionic spinor bulk fields respond to the bosonic bulk fields as an imposed

background? Because of this, we need to normalise the wave function at given B. As we

will see, this will lead to an interesting analysis in our model.

Another interesting observable to consider is < λ̃λ >. Clearly, its value is given by

< λ̃λ >= (Ψbosonic,Ψ0)B + (Ψ0,Ψbosonic)B + (Ψ0,Ψ00)B + (Ψ00,Ψ0)B . (2.10)

Again, it would be problematic to evaluate ( , )B in a minisuperspace where we also consider

the bosonic bulk fields. Instead, we can again consider it at a given value of the bosonic

bulk fields B,

< λ̃λ > [B] = Ψ∗bosonic[B]Ψ0[B]+Ψ∗0[B]Ψbosonic[B]+Ψ∗0[B]Ψ00[B]+Ψ∗00[B]Ψ0[B] . (2.11)

Note that in this case we are not imposing normalisation against the wave function at

B. This is because we want to keep the expression in a form where we could in principle

– 6 –
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integrate over B with the correct measure to obtain < λ̃λ > for the holographic no-

boundary state. We will see that in our model, despite not knowing the exact measure

to use, we will still be able to draw some interesting conclusions for < λ̃λ > of the no-

boundary state from the results we obtain. As the wavefunction is not normalized, we can

interpret how < λ̃λ > changes with B, but the actual numerical value of < λ̃λ > cannot

be trusted as there might be a rescaling by a constant factor. In particular, wavefunctions

computed at different N in the CFT might have different normalization rescalings, resulting

in different rescalings of < λ̃λ >.

One can construct other observables related to fermionic bulk fields analogously to the

ones we have discussed. It is clear from the form of eq. (2.5) that e.g. < λ >= 0.

3 Supersymmetric vector models and duality

First, let us review the work done in [22], focussing especially on the specific results we

need here. The simplest bulk de Sitter higher spin theory consists of a conformally massive

scalar of mass m2 = 2/l2 and an infinite tower of massless fields of every even spin starting

at two. The CFT dual to the simplest de Sitter higher spin theory is the free Sp(N) vector

model, consisting of anticommuting scalars [9]. In [22], anN = 2 supersymmetric extension

of the Sp(N) model, which we called the N = 2 U(−N) model, was constructed and argued

to be dual to the N = 2 supersymmetric de Sitter higher spin theory constructed in [26].

The N = 2 supersymmetry extends the spectrum of the bulk higher spin theory such

that there are no longer just even spins present, instead fields of every possible spin arise.

That is, there are a scalar and pseudoscalar, conformally massive m2 = 2/l2, followed by

massless fields of every spin s = 1/2, 1, 3/2, 2, 5/2, . . . ,∞. This entire tower belong to a

representation of the ho(1, 1|4, 1) higher spin symmetry. Restricted to the sector of spin up

to and including two, which we will be especially interested in, this yields an OSp(2|2, 2)

supersymmetry subgroup with eight real supercharges. The exact full bulk spectrum is in

one-to-one correspondence with boundary single trace conserved supercurrents and can in

this way be elegantly captured in the language of 3D N = 2 superfields as described in [22].

The action of the undeformed supersymmetric U(−N) model on a round S3 boundary

sphere of radius l is

S0 =

∫
d3x
√
h

[
∂µϕ̃i∂

µϕi +
3

4l2
ϕ̃iϕ

i + iχ̃i /∇χi − G̃iGi
]

. (3.1)

Here, all fields have had their spin-statistics flipped. That is, ϕi and Gi are anticom-

muting scalars, χi is a commuting spinor, analogously for the “tilde” fields and i = 1, . . . , N .

We follow the same notation as [22], convenient for Euclidean 3D N = 2 supersymmet-

ric theories. Importantly, this means that the “tilde” fields are the “would-be” conjugate

fields. These are fields that are allowed to be taken independent from the fields without

tilde while still preserving supersymmetry. However, were we working in Lorentzian sig-

nature instead, they would be required to be hermitian conjugates to the fields without

tilde. For the dynamical fields appearing in eq. (3.1), we will indeed take the fields with

and without tilde to be independent. On the background field which we will introduce in

– 7 –
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the following and that couple to the higher-spin currents constructed out of the dynamical

fields in (3.1), on the other hand, we will impose additional reality conditions stemming

from the reality conditions of their bulk dual fields. We will comment more on this point

at the end of the section.

The action (3.1) is invariant under the supersymmetry transformations of the matter

chiral multiplet

δϕi =
√

2εχi , (3.2a)

δχi =
√

2εGi −
√

2iγµε̃∂µϕ
i − 1√

2l
ε̃ϕi , (3.2b)

δGi = −
√

2iε̃γµ∇µχi , (3.2c)

and similarly for the “tilde” fields, where (ε, ε̃) and ∇µ are respectively Killing spinors and

covariant derivatives on the three-sphere S3, see e.g. [36] for more detail.8

In [22] we considered a class of scalar deformations of the previous action that arise

from the supersymmetric coupling of the U(−N) model to source spin-zero currents. In

practice, these couplings, that amount to particular mass deformations once one restricts to

constant deformations, arise as a subsector of the U(−N) model coupled to a background

Abelian supersymmetric vector multiplet. The main scope of this paper is to analyse

deformations induced by fermionic sources that typically manifestly break supersymmetry

and the isometries of S3. The simplest of these deformations arise from the coupling of

the spin-1/2 current of the supersymmetric U(−N) model to a background gaugino. Let

us show explicitly how this term arises.

First of all, we remind the reader that an Abelian vector multiplet on the sphere is

described by the following fields: the gauge connection Aµ with field strength Fµν = ∂[µAν];

two gaugini fermionic fields λ and λ̃; a scalar and pseudoscalar fields ς and D. Their

supersymmetry transformations on the sphere are given by

δAµ = −i(εγµλ̃+ ε̃γµλ) , (3.3a)

δς = −ελ̃+ ε̃λ , (3.3b)

δλ =

(
iD − i

2
εµνργρFµν − iγµ∇µς −

1

l
ς

)
ε , (3.3c)

δλ̃ =

(
− iD − i

2
εµνργρFµν + iγµ∇µς +

1

l
ς

)
ε̃ , (3.3d)

δD = εγµ∇µλ̃− ε̃γµ∇µλ+
1

3
(∇µεγµλ̃−∇µε̃γµλ) . (3.3e)

Before continuing it is important to underline that these fields have the standard spin-

statistics.

The coupling of the U(−N) model to a background gauge supermultiplet amounts to

adding to the action (3.1) the following interaction terms

Sgauge−int =

∫
d3x
√
h
[
ϕ̃i(ς

2 +D)ϕi − iςχ̃iχ
i +
√

2i(ϕ̃iλχ
i − χ̃iλ̃ϕi)

]
. (3.4)

8As in [22] we use the notation and conventions of [36] up to name redefinition of the fields of the matter

sector and of the Killing spinors. Note also that, compared to the result of [36], there are some different

signs due to the reversed statistic of the fields in the chiral multiplet of the U(−N) model.
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The action S0 +Sgauge−int is invariant under supersymmetry transformations provided that

the transformation for the matter multiplet is modified to

δϕi =
√

2εχi , (3.5a)

δχi =
√

2εGi −
√

2iγµε̃Dµϕ
i +
√

2iςε̃ϕi − 1√
2l
ε̃ϕi , (3.5b)

δGi = −
√

2iε̃γµDµχ
i −
√

2iςε̃χi + 2iε̃λ̃ϕi , (3.5c)

where the Dµ derivatives are gauge covariant.

In [22] we noticed that an interesting deformation that amount to giving a supersym-

metric mass to the chiral multiplets is based on choosing a constant BPS configuration for

the scalar fields ς and D in the vector multiplet where D = −iς/l = const. Substituting

this condition in (3.4) yields the following mass deformation,

Lmass =
(
ς2 − i

ς

l

)
ϕ̃iϕ

i − iςχ̃iχ
i , (3.6)

where l is the radius of the sphere. Further, we also studied a BPS combination of a

spin-1 and spin-2 deformation in our earlier work. Here, results from supersymmetric

localisation allowed us to compute the partition function exactly. Since we constructed a

supersymmetric dS/CFT correspondence in our earlier work, it seemed natural to study

BPS configurations there; both to show the simplifying power of supersymmetry to our wave

function computations and because we believed that if supersymmetry would introduce an

instability in our theory, supersymmetric deformations would be the most probable culprit.

We found in [22] that our vacuum is stable under BPS deformations.

If we aim at turning on a spin-1/2 source on the boundary we should turn on the

gauginos in the last two terms of (3.4). This will be the main class of deformation we will

study in this paper. Note that such a deformation will generically break all supersymme-

tries. We will compute the partition function and interpret it as the Hartle-Hawking wave

function both for the spin-1/2 source by itself and for the combination of the spin-1/2 with

a number of integer spin sources. Since the spin-1/2 source breaks supersymmetry, there

is no longer a reason to consider the integer spin sources in would-be BPS configurations.

It is also no longer possible to use results from localisation techniques to e.g. compute the

spin-1 + spin-2 ‘BPS’ deformation partition function exactly.

We want to make an important remark about what we (do not) mean by a source

breaking supersymmetry. We mean that the CFT action with that source turned on is

no longer supersymmetric. We do not mean that the bulk Hartle-Hawking state loses its

supersymmetry. In fact, one should expect the full wave function, assuming one hypothet-

ically fully computes it over all possible bulk field configuration, to be a supersymmetric

ground state of the supersymmetric bulk theory. When one evaluates the inner product

of the bulk wave function, one integrates over all bulk field configurations. From the CFT

perspective, one then integrates over all configurations of the sources. These sources are

described by background fields, which enter as supermultiplets. The integration over all

source configurations then becomes a path integral over the ‘background fields’, which have
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now become dynamical9 by this procedure. The background fields for all spins enter in

supermultiplets, which can be described in superspace using techniques of [37, 38] as has

been done in [22], making it manifest that supersymmetry is preserved. So, the full bulk

wave function is manifestly supersymmetric. In practice, it is only possible to compute the

wave function for a subset of all field configurations. The wave function evaluated over this

subset might fail to be supersymmetric but this is merely an unfortunate side effect of re-

stricting to the calculations one can in practice do. When one goes to the full configuration

space, supersymmetry is always restored. This is entirely analogous to how a particular

configuration that enters into the Hartle-Hawking wave function by itself does not pre-

serve diffeomorphisms, but the wave function as a whole has a diffeomorphism-invariant

inner product.

We still need to address the scaling of our sources with N . We can redefine our sources

such that different factors of N appear in front of them. This results in the corresponding

bulk quantities having different scaling with N in their n-point functions. When one

discusses the bulk wave function for bosonic fields, this only results in a different overall

factor of N in the wave function and the issue need not be explicitly addressed. We shall

see that with half-integer bulk fields, there is a qualitatively different behaviour for different

values of N and we need to make a physically sensible choice of scaling with N for our

sources. We demand that the bulk two-point functions produced by our rescaled sources

have unit strength with regard to (do not scale with) N . In higher spin theories, this

is achieved by scaling them such that there is a factor 1/
√

(N) in the boundary action

in front of the source terms [20, 39–41]. This is the scaling we will choose in the rest of

the paper.

Loosely speaking, half-integer spin fields enter into higher spin theories ‘as superpart-

ners’ of the integer spin fields. While it is permissible to have more integer spin fields

than half-integer spin fields, the reverse is not permitted [26]. From the CFT perspective,

this is intuitively clear by combinatorics. Conserved currents whose terms have either two

boundary scalars or two boundary spinors yield integer spin fields in the bulk; whereas con-

served currents whose terms have one boundary scalar and one boundary spinor produce

half-integer spin bulk fields. Then, when there are as many boundary scalars as spinors,

there are as many half-integer conserved currents as integer conserved currents, while in all

other cases there are less half-integer conserved currents. So, our investigation here should

be suggestive for spinors in generic, non necessarily supersymmetric, higher spin theories.

If issues arise in our restricted case, one expects half-integer spin fields in de Sitter higher

spin theories to be generically pathological.

In the following sections, we will consider turning on sources that can be written in

new variables as

S =

∫
d3x
√
hdef

[
χ̃ ϕ̃

] i /∇+ m√
N

−
√

2
N iλ̃√

2
N iλ −∂2 + R

8 + σ√
N

[ χ
ϕ

]
, (3.7)

9In the sense that they enter into the path integral, there are no kinetic terms for these fields in the

action.
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where m and σ must be real, as discussed in [22]. Here, σ sources a scalar bulk field, m a

pseudoscalar bulk field, and we will also consider a squashing hdef of the boundary metric.

Imposing that m and σ must be real imposes in terms of the variables used in (3.4) that

D must be real and ς must be imaginary. This in turn imposes reality conditions on the

other background fields through the supersymmetry variations eq. (3.3a). In particular,

one can see that λ̃λ must be real. When we compute < λ̃λ > later, we shall see that it

is indeed real, consistent with the reality conditions coming from supersymmetry. This is

nontrivial as eq. (2.11) is not by definition real for an arbitrary theory.

4 Spin-1/2 deformation

As discussed in section 3, the spin-1/2 current deformation is given by adding√
2

N
i(ϕ̃iλχ

i − χ̃iλ̃ϕi) (4.1)

to the Lagrangian. Constant spinors10 exist on S3 and in what follows, we will take λ and

λ̃ to be constant as discussed in section 2.

For the spin-1/2 deformation, the path-integral of the partition function is Gaussian,

so an exact calculation of the partition function is in principle possible if we know the

spectrum of the operators whose determinants we need. The action can be schematically

written in the form

S =

∫
d3x
√
h
[
χ̃ ϕ̃

] i /∇ −
√

2
N iλ̃√

2
N iλ −∂2 + 3/4

[ χ
ϕ

]
, (4.2)

where one has supervectors and a supermatrix. Note that we have set l = 1 in our action,

which we will continue to do throughout the rest of the paper. Performing the Gaussian

integral yields the partition function

Z ∝

Sdet
 i /∇ −

√
2
N iλ̃√

2
N iλ −∂2 + 3/4

−N . (4.3)

A convenient property of superdeterminants is that

Sdet

[
A B

C D

]
= det(A−BD−1C)det(D)−1. (4.4)

Using this, the det(−∂2 + 3/4) provides an uninteresting overall factor and we are left with

computing

Z ∝

[
det
(

i /∇−
2
N λ̃λ

−∂2 + 3/4

)]−N
. (4.5)

10Constant in the basis naturally constructed by recalling that S3 is the SU(2) group manifold, as e.g.

in [36].
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Let us calculate the eigenvalues of

i /∇−
2
N λ̃λ

−∂2 + 3/4
. (4.6)

We are looking for eigenspinors χn with eigenvalues ln such that(
i /∇−

2
N λ̃λ

−∂2 + 3/4

)
χn = lnχn . (4.7)

We could write χn in a basis of eigenspinors of the Dirac operator. Instead, let us assume

that χn is simply an eigenspinor of the Dirac operator with eigenvalue Λn and we will

see that this is the correct solution. Note that eigenspinors of the Dirac operator are also

eigenspinors of −∂2 + 3/4 with eigenvalue (Λn)2. One then has

(Λn)3χαn −
2

N
λ̃αλβχ

β
n = ln(Λn)2χαn . (4.8)

Acting with λ̃γλα and then dividing out λβχ
β
n yields

(Λn)3λ̃γ − 2

N
λ̃γλαλ̃

α = ln(Λn)2λ̃γ , (4.9)

which is solved by

ln =
(Λn)3 − 2

N λαλ̃
α

(Λn)2
=

(Λn)3 − 2
N λ̃λ

(Λn)2
. (4.10)

Sensibly, this gives Λn when the deformation is turned off.

One can compute an explicit expression for Z by first treating λ̃λ as a scalar and

computing the free energy as a sum using zeta function regularization and then exponen-

tiating. This yields an impressive-looking expression which when taking into account the

supernumber nature of λ̃λ reduces to

Z = −

(
π4
(
π2 − 10

) (
λ̃λ
)2
− 15N

)
e

9Nζ(3)

8π2

15N
. (4.11)

Using dS/CFT, this is interpreted as the bulk wave function.

The value of NF , which is calculated from (2.9), is given by

NF =
8π8

(
π2 − 10

)2
225N2 + 4π8 (π2 − 10)2 . (4.12)

We see that for very low values of N , fermionic states are highly occupied in the bulk wave

function. With increased N , NF quickly goes to zero. Since, N = (GNΛ)−1, with GN
Newton’s constant and Λ the cosmological constant in the bulk, and we are at constant Λ,

the large N limit corresponds to the free limit. Thus, we find that for a free massless spinor

field in de Sitter space, there is no pair production in the Hartle-Hawking ground state. The

same result was obtained from a bulk computation of the Hartle-Hawking wave function

for a free massless fermion in [31, 32]. This result provides a nontrivial confirmation of the

agreement between bulk and boundary computations of the Hartle-Hawking state. Further,

< λλ̃ >= 0 as there is no first order term in λλ̃ in the wave function.
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5 Interplay between bulk gauginos and bosons

So far, we have looked at the bulk spin-1/2 field as the only source turned on and we have

seen that it behaves sensibly. Now we will look at the impact that the spin-1/2 field has

on a few bosonic bulk deformations. Exact expressions for the eigenvalues of the Laplace

and Dirac operators can still be obtained in this case. The complexity of the expressions

for these grows and in some cases we were unable to analytically compute the partition

function and relied on numerics instead. A subtlety here is that since we need to isolate

each order in λ̃λ of our result, we cannot rely on numerics so long as there still is λ̃λ

dependence present in our expressions.

Consider first the case N = 1. Generically, we will have eigenvalues αn(λ̃λ) and

Z =
∏
n αn[λ̃λ]. First, we rewrite the eigenvalues as αn[λ̃λ] = βn[λ̃λ]γn, where βn[0] = 1.

We obtain Z =
∏
n βn[λ̃λ]

∏
m γm. We define β[λ̃λ] ≡

∏
n βn[λ̃λ] and γ ≡

∏
m γm such

that Z = β[λ̃λ]γ. We now expand βn in powers of λ̃λ as βn = 1 + anλ̃λ + bn(λ̃λ)2. Now

note that

β =
∏
n

βn = 1 +

(∑
n

an

)
λ̃λ+

∑
n

(
bn + an

∑
m

am

)
(λ̃λ)2. (5.1)

Within the approximations made, the properties of Grassmann numbers have turned an

infinite product into an infinite sum, which is easier to evaluate. These sums and the
∏
n γn

can now be evaluated numerically for a given configuration of the bosonic bulk fields. In

what follows we will do this concretely for a few examples

Now, let us use the previous result to obtain a result for arbitrary N in such a way

that we will clearly see the N dependence. Firsly, we should remember to divide all the

sources by factors of
√
N as discussed in section 3. Crucially, this means that all factors of

λ̃λ will be divided by N . Suppose we followed the N = 1 analysis to compute the partition

function Z[sources] for the U(−1) model. The partition function of the U(−N) model is

then given by Z[sources/
√
N ]N . The overall factor

∏
m γm in front of every order of λ̃λ

simply becomes (
∏
m γm)N . However, when considering the βn sector, we should keep the

properties of the Grassmann variables in mind. We see that we get11

(∏
n

βn

)N
= 1+

(∑
n

an

)
λ̃λ+

(
1

N

∑
n

(
bn + an

n−1∑
m

am

)
+

(N2 −N)

N2

(
∑
an)2

2

)
(λ̃λ)2.

(5.2)

We see that there is an interesting transition in the behaviour of the (λ̃λ)2 term between

small and large N . Note that if
∑

n an = 0, the gaugino contribution to the wave function

is supressed at large N . This is precisely what happened when we considered turning on

only the gaugino deformation without any other deformations.

5.1 Bulk pseudoscalar

The simplest deformation to combine with turning on the gauginos consists of giving a

mass to the χ spinors. This corresponds to turning on the pseudoscalar field in the bulk.

11Although we have supressed this dependence, remember that an, bn and γn still depend on the bosonic

sources, as well as that this dependence will pick up factors of 1/
√
N .
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The action for N = 1 is then of the form

S =

∫
d3x
√
h
[
χ̃ ϕ̃

] [ i /∇+m −
√

2iλ̃√
2iλ −∂2 + 3/4

][
χ

ϕ

]
. (5.3)

Proceeding in the same way as the computation with only the gauginos, we see that

the partition function is of the form

Z ∝

[
det

(
i /∇+m− λλ̃

∂2 + 3/4

)]−1

, (5.4)

which means we need to know the eigenvalues of

i /∇+m− λ̃λ

∂2 + 3/4
. (5.5)

By the same procedure as used for just the gauginos in section 4, we find for these eigen-

values

ln =
(Λn)3 +m(Λn)2 − 2λ̃λ

(Λn)2
. (5.6)

Then, Z is given by

Z ∝
∏
n

a−1
n = β γ , β :=

∏
n

(Λn)3 +m(Λn)2

(Λn)3 +m(Λn)2 − 2λ̃λ
, γ :=

∏
n

(Λn)2

(Λn)3 +m (Λn)2
. (5.7)

We evaluated β numerically and obtained the following analytic expression for γ

γ ∝ 4
√

cos(πm) exp

(
iπmLi2

(
−e2iπm

)
− 1

2Li3
(
−e2iπm

)
+ 1

3 iπ3m3 − π2m2 log
(
1+e2iπm

)
π2

)
.

(5.8)

The behaviour of |Ψ|2 can be seen in figures 1 and 2. We see that undeformed de

Sitter space is a local maximum of |Ψ|2, indicating the perturbative stability of the su-

persymmetric de Sitter vacuum. For very large deformations, we see divergences in |Ψ|2.

These divergences do not come as a surprise. They are not a result of the inclusion of

the gauginos, they are already present when one considers the bulk pseudoscalar field by

itself, as we already discussed in [22]. In fact, we should restrict the outermost edge of the

configuration space at which our results can be hoped to be trusted to |m/
√
N | < 3/2 and

we restrict our analysis of observables to this range. We defer the discussion of the reason

for this restriction to section 5.4

In figure 3 the value of < NF > [m] can be seen. We shall interpret its behaviour and

compare it to earlier bulk results in section 5.4.

In figure 4, < λ̃λ > [m] can be seen. We see that it increases as we increase |m|. We also

see that for m/
√
N between −3/2 and 3/2, it is antisymmetric, while |Ψ|2 is symmetric in

m. While we do not know the exact measure against which we should integrate the bosonic

fields in the wave function, it seems reasonable that it should respect such symmetries. If

this is the case, < λ̃λ >= 0 for the holographic no-boundary wave function after integration

over m.
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Figure 1. For a deformation corresponding to turning on a bulk pseudoscalar field, |Ψ2(m)| over

a short and a long range at N = 1. The point m = 0 has been excluded from the short range plot

due to problems with the numerical evaluation of very small numbers.
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Figure 2. For a deformation corresponding to turning on a bulk pseudoscalar field, |Ψ2(m)|.
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Figure 3. For a deformation corresponding to turning on a bulk pseudoscalar field, NF (m).
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Figure 4. For a deformation corresponding to turning on a bulk pseudoscalar field, < λ̃λ > [m].

5.2 Bulk scalar

For a deformation based on turning on a bulk scalar, the action at N = 1 takes the form

S =

∫
d3x
√
h
[
χ̃ ϕ̃

] [ i /∇ −
√

2iλ̃√
2iλ −∂2 + 3/4 + σ

][
χ

ϕ

]
, (5.9)

To compute the partition function

Z∝
∏
n

a−1
n = β γ , β :=

∏
n

(Λn)3 + σΛn

(Λn)3+σΛn−2λ̃λ
, γ := det(−∂2+3/4 + σ)

∏
n

1

(Λn)
,

(5.10)

we proceed in the same way as the previous cases. Note that in this case, the det(D)−1

term in eq. (4.4) is not constant, but depends on σ, so we must take it into account. We

find for N = 1

β = 1−
πsech2(π

√
σ)
(
8πσ3/2+4π

√
σ−(4σ+3) sinh (2π

√
σ) + 2π

√
σ cosh (2π

√
σ)
)

32σ5/2
(2λ̃λ)2 ,

(5.11)

and

γ ∝ exp

{
− 1

24π2

[
π2
(

iπ
(
4σ
√

1− 4σ −
√

1− 4σ + 1
)

+ 6(4σ − 1) log
(

1− e−iπ
√

1−4σ
))

− 12iπ
√

1− 4σLi2

(
e−i
√

1−4σπ
)
− 12Li3

(
e−i
√

1−4σπ
)]}

. (5.12)

We again expand β via the methods described previously. In this case, it was possible to

find β analytically. It is worth noting that
∑

n an = 0. Looking at eq. (5.2), this ensures

that in the large N limit, the parts of the wave function with bulk fermions excited are

supressed and the local fermion excitation number tends to zero. Of course, any actual

divergences introduced by the gauginos remain at any finite N .

Without the gauginos but with only the scalar mass deformation, our deformation

would be essentially equivalent to the scalar deformation considered at the start of [14].

As such, it makes sense to compare this wave function to the one discussed there. For
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Figure 5. For a deformation corresponding to turning on a bulk scalar field, |Ψ2(σ)|.
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Figure 6. For a deformation corresponding to turning on a bulk scalar field, NF (σ).

N = 1, |Ψ|2 can be seen in figure 5. We see that for small deformation, there is a local

maximum for |Ψ|2 at undeformed de Sitter space. For positive deformations, this maximum

is global. For negative deformations, we see large fluctuations, as were also found in [14].

Here the problem seems to be exacerbated. Rather than large finite fluctuations, |Ψ|2

now only diverges for sufficiently large negative deformations, with the first divergency at

σ/
√
N = −9/4. As we shall discuss in section 5.4, we should restrict the configuration

space to σ/
√
N > −3/4.

The fermion number can be seen in figure 6, we postpone its analysis to section 5.4.

We see that < λ̃λ >= 0 as there is no first order term in λ̃λ in the wave function.
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5.3 Squashing

Finally, we combine the spin-1/2 deformation with a squashing of the three-sphere. The

action takes the form

S =

∫
d3x
√
hdef

[
χ̃ ϕ̃

] i /∇ −
√

2
N iλ̃√

2
N iλ −∂2 + R

8

[ χ
ϕ

]
. (5.13)

Turning on the squashing changes the eigenvalues of the Dirac operator and Laplacian. We

consider a squashing preserving SU(2) ×U(1) symmetry described by the metric

ds2
S3
α

= dθ2 + sin2 θdφ2 +
1

1 + α
(dψ̃ + cos θdφ)2 , (5.14)

where θ ∈ [0, π], φ ∈ [0, 2π], ψ̃ ∈ [0, 4π], and the real deformation parameter α is such that

α > −1.

The eigenvalues of the Dirac operator are of the form [42–45]

Λn,q,± =
1

2
√

1 + α
± 2

√
n2(1 + α)

4
− αq(n− q) , (5.15)

with degeneracy n. Here the eigenvalues run over two branches. For the positive branch,

n = 1, . . . ,∞ and q = 0, . . . , n while for the negative branch, n = 2, . . . ,∞ and q =

1, . . . , n− 1. To compute the partition function, the same logic as in the previous sections

applies, except that we use the eigenvalues of the Dirac operator on the squashed three-

sphere. We find for N = 1

β =
∏
n,q

Λ3
n,q

Λ3
n,q − 2λ̃λ

. (5.16)

The gaugino independent part of the partition function, γ, is the partition function for a

free spinor and complex scalar on a squashed three sphere. This was computed numerically

in [42] where a good agreement was found between the numerical result and the following

analytic expression which we will use for γ,

γ = −(−1)23/24 4
√

2e
3ζ(3)

4π2
− π2α2

16(α+1)2 . (5.17)

We compute β numerically, analogously to the previous sections, in this way obtain Z = βγ

and identify it with the wave function under dS/CFT.

The behaviour of |Ψ|2 under squashing can be seen in figure 7. We find an interesting

dependence on N . At small N , |Ψ|2 is peaked for a squashed three-sphere. As N increases,

we see that the peak of |Ψ|2 quickly moves back to te undeformed three-sphere. At large12

N , |Ψ|2 has a global maximum at undeformed de Sitter space, indicating the stability of the

de Sitter vacuum. At small N , the stable vacuum around which one should consider per-

turbation theory seems to be squashed away from the three-sphere. For reasons discussed

in section 5.4, we should restrict the configuration space to α > −3/4

12We see that at, for instance, N = 10, large N effects are totally dominant. The traditional wisdom

that “three is a large number” when it comes to large N expansion seems to apply here too.
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Figure 7. For a squashing, |Ψ(α)|2.
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Figure 8. For a squashing, NF (α).
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Figure 9. For a squashing, < λ̃λ >.

The fermion occupation number, whose properties we will discuss further in section 5.4,

can be seen in figure 8. In figure 9, < λ̃λ > [B] can be seen. We see that it is negative and

reaches an extremum at finite squashing.

5.4 Interpretation and comparison

We have computed the Hartle-Hawking wave function for an asymptotically nearly de

Sitter universe in a ‘minisuperspace’ model consisting of the zero mode of a spin-1/2 field,
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Deformation Effect on wavefunction Studied in

Scalar Perturbatively stable around empty de Sitter [14]

BPS scalar + pseudoscalar Perturbatively stable around empty de Sitter [22]

BPS vector + metric squashing Perturbatively stable around empty de Sitter [22]

Spinor Fermion states occupied at small N , unoccupied at large N section 4

Spinor + pseudoscalar Perturbatively stable around empty de Sitter section 5.1

Spinor + scalar Perturbatively stable, peak shifted from empty dS at small N section 5.2

Spinor + metric squashing Perturbatively stable, peak shifted from empty dS at small N section 5.3

Table 1. Summary of for which bulk fields the wavefunction of the N = 2 supersymmetric higher

spin theory has been computed using dS/CFT. The pseudoscalar field or squashing by itself in the

SUSY model have not been given a detailed discussion, but its behaviour can easily be seen by

setting β = 1 in the relevant section.

a pseudoscalar, a scalar and a metric deformation as excitations around dS space. A

summary of the deformations studied in this paper and the earlier literature can be seen

in table 1. The wave function predicts probabilities for different asymptotic configurations

(or more precisely, different spacetime histories). The figures 1, 2, 5 and 7 show that the

probability distributions exhibit a local maximum for reasonably small deformations in all

directions of the minisuperspace. At small N , this maximum can be shifted somewhat

away from the undeformed dS configuration. At large N , however, it always lies perfectly

at the empty, undeformed de Sitter space. In this semiclassical limit the wave function

becomes increasingly sharply concentrated around this configuration. The presence of a

local maximum at empty dS also indicates that dS is perturbatively stable. The behaviour

of the wave function for small fluctuations around dS describes correlators of fields in dS,

and a maximum ensures these behave correctly.

For integer-spin sources, the fact that the probabilities are peaked at empty undeformed

de Sitter space follows basically from an analytic continuation of the F-theorem [46–49].

This states that for unitary QFTs on S3, the free energy is maximized by a UV CFT

and any deformation — including complex deformations — decreases it. This theorem has

been proven and extended to a variety of CFT deformations, e.g. the extension in [42] is

especially relevant for us. With the spin-1/2 source deformation included, it is at small N

no longer true that the wave function squared is peaked at empty undeformed de Sitter

space. It is also not clear whether the wave function has a meaningful interpretation in

terms of probabilities in this limit. In fact, with a spin-1/2 source, the partition function

is supernumber-valued and there is no longer an unambiguous notion of maximum for

Z. First, Z must be mapped to the real numbers to speak of maximization. The inner

product eq. (2.6) provides such a map, but there is no reason why an F-theorem should

imply maximization at the undeformed CFT with respect to this specific inner product.

Still, there is a notion of Z being extremized with respect to the spin-1/2 deformation at

the undeformed CFT. Clearly the first derivative of eq. (4.11) with respect to λ, λ̃, or both,

is zero at λ = 0 or λ̃ = 0. This implies that < λ̃λ >= 0.

For large scalar or pseudoscalar deformations our results may give the impression

that the probabilities exhibit divergences. However, as we already mentioned in section 5,
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dS/CFT comes with a significant restriction on the configuration space of deformations

which in particular excludes the regime where we find the wave function diverges. These

restrictions are indicated with a transition to dotted lines in the figures above.

For the scalar deformation, we can identify the boundaries of the configuration space

with a good degree of confidence. Here, the completion of dS/CFT of [50] which provides

not just a wave function but also a Hilbert space and an inner product, directly applies to

our model. It implies a measure that restricts the configuration space of the wave function

to deformations with σ/
√
N > −3/4. In [22] we gave an independent argument for the

same bound based on the origin of dS/CFT as a continuation of Euclidean AdS/CFT. At

σ/
√
N = −3/4 one of the eigenvalues of the dynamical CFT scalar becomes zero, and

below this it becomes negative. As a result, the (super)gaussian formula for the partition

function path integral no longer applies. Instead the EAdS dual partition function is

manifestly divergent for σ/
√
N < −3/4 and thus predicts a vanishing wave function in this

domain [8, 17]. Similar arguments apply to the metric deformations we considered; the

dynamical CFT scalar has zero or negative eigenvalues for squashings α ≤ −3/4 leading

to a vanishing wave function in this regime [17].

Finally, for the pseudoscalar deformation, the situation is less clear. The pseudoscalar

deformation only affects the eigenvalues of the dynamical CFT spinor, not those of the

scalar. Spinors always have negative eigenvalues and these do not pose a problem for

the path integral. However, trouble does appear when there are spinor zero eigenmodes

resulting in a divergent wave function. The first of these appear when |m/
√
N | = 3/2 and

thus our results should at most be trusted for |m/
√
N | < 3/2. It would be very interesting

to obtain a better understanding of the measure against which the wave function should

be evaluated for pseudoscalar bulk fields. To give a spark of hope that the zero-eigenmode

divergencies can in due time be dealt with, we point out that an analogous problem appears

in the RNS quantization of the superstring. Here, commuting spinor ghosts β and γ are

introduced [51]. These have a number of zero eigenmodes depending on the genus of the

worldsheet one consider which produce formal divergencies in the computations, but it is

understood how the theory must be modified to resolve these.

For a pseudoscalar bulk deformation, the value of < NF > [m] can be seen in figure 3.

We stress again that, as discussed in section 2, this object has been constructed to compute

the fermion occupation number at a given value of the bulk scalar, with the latter treated

as an external condensate. At large N , we see that NF is zero at m = 0, that it increases

with increasing |m|, saturating at complete occupation at |m/
√
N | = 3/2. This agrees

beautifully with the earlier bulk computations of [31, 32] as follows: we do not know

the bulk action when one integrates out all degrees of freedom, retaining only the bulk

pseudoscalar and spin-1/2 field. Still, generically, the leading coupling between a scalar

and a spinor is of the Yukawa-type. In the presence of a non-dynamical external scalar field,

the Yukawa coupling effectively acts as a mass term for the spinor. We expect the large

N limit in the CFT to correspond to the free limit since N = (GNΛ)−1 and we work at

constant Λ. One then expects that for a boundary source m/
√
N and at large N , the bulk

fermion will effectively behave as a free massive spin-1/2 fermion of mass mF = m/
√
N .

In [31, 32] the Hartle-Hawking wave function, together with < NF > [mF ], was computed
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for a free fermion in Einstein gravity in de Sitter space. For a massless bulk fermion,

they found that NF should be zero. Next, NF should increase with increasing |mF |. For

modes with n + 3/2 � |mF | at l = 1, they found that NF should saturate at maximum

occupation. We are looking at constant spinors with n = 0, so this completely agrees with

our boundary result, within the range of |mF | where our analysis is to be trusted.

The interplay of the spin-1/2 field with the bulk scalar differs from that with the

pseudoscalar, especially in the large N limit. Since
∑

n an = 0, in the scalar case the part

of the wave function with spin-1/2 states excited totally disappears here;13 it appears the

scalar and spin-1/2 field do not interact in the large N limit. This may be a consequence of

the boundary conditions we employ. The deformations of the boundary CFT correspond

to the standard quantisation for the bulk pseudoscalar and to the alternate quantization

for the bulk scalar [22]. It would be interesting to explore whether the interplay between

the bulk bosons and the spin-1/2 field changes for different boundary conditions.

6 Outlook

We have initiated the study of fermionic bulk fields in dS/CFT, working with the dualities

relating N = 2 supersymmetric Euclidean vector models with reversed spin-statistics in

three dimensions to supersymmetric Vasiliev theories in four-dimensional de Sitter space.

Specifically we have holographically evaluated the Hartle - Hawking wave function in the

bulk in a number of homogeneous minisuperspace models consisting of a half-integer spin

field coupled to a scalar, a pseudoscalar or a metric squashing. With a well-motivated

measure we have found the wave function to be normalizable and globally peaked at or

near the supersymmetric de Sitter vacuum, with a low amplitude for large deformations.

A detailed discussion of its behavior and a comparison with earlier bulk computations in

the semiclassical limit is given in section 5.4 above.

We have considered the lowest, homogeneous mode of a spin-1/2 bulk field only. It

would be natural to look at higher modes, and to study bulk fermions of higher spin.

Gravitinos have been studied in a supergravity context in AdS/CFT and in supersymmetric

quantum cosmology [52–56]. Beyond this, higher spin theories have an infinite tower of

fermionic higher spin fields. The expressions for the conserved CFT currents related to

these fields are known exactly [57].14 Since it is relatively straightforward to compute

the wave function for fermionic bulk fields (compared to bosonic fields) one might hope to

compute the wave function for the lowest modes of these fermionic higher spin fields exactly.

We have seen that the fermionic contributions introduce an interesting N -dependence

in the theory. dS/CFT at finite N is largely unexplored territory, but recently the Q-

model [50, 61] has been put forward as a possible completion of higher-spin dS/CFT.

We made use of the measure implied by the Q-model to identify the domain of the wave

function in some of the models we considered in this paper. An interesting avenue for

13Except at points where there is a competing divergence in |Ψ|2, such as at σ/
√
N = −9/4. However

we argued these should be at or beyond the edge of the configuration space.
14We refer to [58–60] for a recent analysis in N = 2 supersymmetric AdS3 which might be Wick-rotated

to supersymmetric S3.
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future research would be to examine whether fermionic bulk fields can be implemented in

the Q-model and to explore how various small N effects play out against each other.

Other possible generalizations in the HS context include the study of fermions in

the causal patch version of dS/CFT, currently formulated in terms of a boundary particle

mechanics [62], and in FLRW-like cosmologies in higher spin theory [63] for which currently

a dual description has yet to be found.

Undoubtedly the most challenging open question concerns the formulation of a precise

dS/CFT duality in string theory. One important difference with HS theory, when it comes

to dS/CFT, is that string theory has towers of fields of arbitrarily high mass whereas HS

theory contains only massless and very light fields. It is well known that light scalar fields

in dS with masses below the dS analogue m2
BF = 9/4H2 of the Breitenlohner - Freedman

(BF) bound behave very differently from more massive fields [3, 64–67]. It is worth noting

in this context that the semiclassical Hartle - Hawking wave function vanishes in dynamical

models of de Sitter gravity coupled to massive scalars with masses m2 > m2
BF , at least

for reasonably small deformations of de Sitter [68]. This suggests that if it computes the

Hartle - Hawking wave function, dS/CFT duality should incorporate a final condition on

such massive scalars that sets these to zero.15 This is effectively what we have seen in the

minisuperspace models we have analysed, as discussed in section 5.4 above, and this would

resolve the tension between dS/CFT and the swampland arguments [69–74], some of which

suggesting dS with m2 > m2
BF scalars is unstable.16

Finally, it is tempting to speculate that our findings are connected to the supersym-

metric dS constructions in exotic string theories [1]. The latter have vector ghosts in their

supergravity limits related to the existence of non-compact R-symmetry groups in their

representation of the algebra. However Hull has argued that the massive string states in

exotic string theories may well render the de Sitter vacua ghost-free and unitary. In [22]

we conjectured that the supersymmetric higher-spin theories in dS that we construct are

related indeed to the tensionless limit of these exotic string theories. It would be very

interesting to explore the extension to dS/CFT of the ABJ triality [75] linking higher spin

theory and string theory in AdS/CFT from a complementary angle and in different regimes.
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A Quantization fermions in de Sitter space

In this appendix we provide some additional details on the quantization of a free massless

spinor in four-dimensional de Sitter space and the definition of ψ̆. None of these results

are new, we merely summarize some results of [31, 32] without derivation, specialized to

the case of a massless two-component spinor and add to this some comments related to

higher spin theory. The interested reader can find a more complete treatment in those

texts, including also the extension to a massive dirac spinor and the inclusion of dynamical

metric and scalar fields. We will consider the metric for a spacetime whose spatial slices

are three-spheres,

ds2 = −dt2 + e2α(t)dΩ2
3 , (A.1)

with dΩ2
3 the metric on the unit three-sphere. We will denote the metric on a spatial slice by

hij(t). When eα(t) ' l cosh(t/l), one is approximately in a de Sitter regime, with de Sitter

radius l. One could demand this behaviour for the entire spacetime or asymptotically at

late times as desired. Our discussion will be valid for generic metrics of the form eq. (A.1).

The standard action for a two-component massless spinor ψA in tertad eaµ and bispinor

for tangent vector a→ AA′ notation has the volume term

IV = − i

2

∫
d4x e ψ̆A

′
eµAA′Dµψ

A . (A.2)

Here ψ̆A
′

is ordinarily the Dirac adjoint ψ
A′

= (ψA)† of ψA (but read on!). We fol-

low [31, 32] in introducing a seperate notation to indicate that for, e.g., the purpose of

varying the action, computing conjugate momenta, canonically quantizing in an Hamiltin-

ioan approach, one treats ψA and ψ̆A
′

as if they were independent. This is the standard

textbook approach, though the notation is nonstandard.

Following this breve notation provides one further advantage in our case. In the su-

persymmetric de Sitter higher spin theory of [26], which forms the bulk side of the specific

dS/CFT duality treated in this paper, there appears a conjugate, which we will denote with

c, which acts as the hermitian conjugate † on bosonic quantities. On fermionic quantities,

however, it has the special property that ((ψA)c)c = −ψA. Conjugate spinors in the higher

spin theory are defined using this c conjugate rather than the hermitian conjugate. Because

we treat ψA and ψ̆A
′

as if they were independent, we can treat the cases ψ̆A
′

= (ψA)† and

ψ̆A
′

= (ψA)c at the same time and the need to distinguish the two will not come up in this

appendix or section 2. We can thus discuss the general framework for including fermions

in dS/CFT in both ordinary gravity + matter theories and higher spin theories at the

same time.
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In the presence of an initial ΣI and/or final ΣF boundary surface, the action also

requires boundary terms17

IB =
i

2

(∫
ΣI

+

∫
ΣF

)
d3xh1/2 ψ̆A

′
nAA′ψA , (A.3)

with nAA
′

the unit timelike vector normal to the surface. The conjugate momentum to ψA

is given by

πA = − i

2
h1/2nAA′ψ̆A

′
. (A.4)

Using this identity, we can and will take the fundamental dynamical variables of the theory

to be ψA and ψ̆A rather than ψA and πA.

One finds the classical Dirac bracket

{h1/4ψA(x) , h1/4ψ̆A
′
(x′)}D = −2inAA

′
δ(x, x′) , (A.5)

and all other Dirac brackets zero. One quantizes by the usual procedure, turning the Dirac

brackets into anticommutators with factor of i~ inserted. One can expand spinor-valued

functions in the background of eq. (A.1) in spatial three-sphere harmonics. We denote

the positive frequency three-sphere harmonics by ρnpA and σnpA′ ; the negative frequency

harmonics by ρnpA′ and σnpA . The indices run over n = 0, 1, 2, . . . and p = 1, 2, . . . , (n +

1)(n+ 2). The expansions of ψA and ψ̆A
′

are then given by18

ψA =
e−3α/2

2π

∑
n

∑
p

(
snp(t)ρ

np
A + t̆np(t)σ

np
A

)
, (A.6a)

ψ̆A′ =
e−3α/2

2π

∑
n

∑
p

(
s̆np(t)ρ

np
A′ + tnp(t)σ

np
A′
)
. (A.6b)

The dynamical coeffecients snp(t), t̆np(t), s̆np(t), tnp(t) are Grassmann-valued for anticom-

muting spinors, as is the case here. The prefactors in front of these expansions could equally

well have been absorbed into the dynamical coefficients. This choice of prefactors is conve-

nient as they counteract the factors of h1/4 appearing in eq. (A.5). This ensures that upon

quantization one obtains eq. (2.2b) without any further factors or metric dependence.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

17When computing the Hartle-Hawking state, there would be only a final surface but no initial one.

Further, the metric would also be dynamical and allowed to take complex values. Here, we discuss the free

fermion generically.
18This expansion is completely general and valid. However, in practical bulk computations it is more

convenient to expand e.g. as αpqn snqρ
n
pA instead of snpρ

np, with the αnpn constant matrices auspiciously

chosen to ensure there are no couplings between different terms with the same value of n when filling these

expansions back into the action. These issues related to the degeneracy are not relevant in our context as

we focus only on one of the two n = 0 modes.
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