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ABSTRACT

Interest in the biological roles of long noncoding
RNAs (lncRNAs) has resulted in growing numbers of
studies that produce large sets of candidate genes,
for example, differentially expressed between two
conditions. For sets of protein-coding genes, on-
tology and pathway analyses are powerful tools
for generating new insights from statistical enrich-
ment of gene features. Here we present the LnCom-
pare web server, an equivalent resource for study-
ing the properties of lncRNA gene sets. The Gene
Set Feature Comparison mode tests for enrichment
amongst a panel of quantitative and categorical fea-
tures, spanning gene structure, evolutionary conser-
vation, expression, subcellular localization, repeti-
tive sequences and disease association. Moreover, in
Similar Gene Identification mode, users may identify
other lncRNAs by similarity across a defined range
of features. Comprehensive results may be down-
loaded in tabular and graphical formats, in addition
to the entire feature resource. LnCompare will em-
power researchers to extract useful hypotheses and
candidates from lncRNA gene sets.

INTRODUCTION

Long non-coding RNAs (lncRNAs) are a numerous yet
poorly understood class of genes with growing biological
and biomedical interest. Their regulatory roles (1) and tis-
sue specificity (2,3) make them promising biomarkers and
therapeutic targets (4,5). High-throughput studies on dis-
ease or biological systems routinely produce sets of tens to
thousands of lncRNA candidates (6). Some examples of
such sets are lncRNAs exhibiting differential expression be-

tween conditions (7), association with a disease (8) or whose
perturbation by CRISPR-Cas9 leads to phenotypic changes
(6,9). Important bottlenecks arise in assessing the quality
of such sets, and generating functional and mechanistic hy-
potheses from them (6,7,10,11).

Controlled ontologies describing gene functions or their
products’ characteristics, most notably Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes (12–14), are
powerful and widely used tools for inspecting sets of
protein-coding genes (PCGs) (15–18). Unfortunately, func-
tional labels have not yet been directly assigned to lncRNAs,
making them inaccessible to ontology analyses. As a result,
lncRNA candidate sets cannot be mined for biological in-
sights to the degree which we have come to expect for PCGs.
In a similar way, there are a range of tools designed to iden-
tify other PCGs with various degrees of similarity to a gene
of interest (19–22), but none are available for lncRNAs. In
summary, there is a need for tools to analyse lncRNA gene
lists and functionally prioritize candidates for further study.

To date, most methods dedicated to revealing functional
insights from lncRNA sets rely on the biological properties
of PCGs with correlated expression across tissues (5). For
example, LncRNA2Function and Co-LncRNA web servers
perform functional enrichment analysis on the co-expressed
coding genes of the input lncRNAs (23,24). Lnc-GFP and
LncRNAs2Pathways (23,25) follow a similar strategy but
introducing more sophisticated graph theory algorithms
on co-expression networks. Finally, FARNA (26) consid-
ers transcription factor (TF)-lncRNA associations to pre-
dict lncRNA functions. However, none of these resources
directly explores the features of lncRNA genes and prod-
ucts.

To address this need, we have developed LnCompare, a
web server that compares lncRNA genes across a range of
features. LnCompare is based on a comprehensive feature
set with more than 100 attributes covering diverse aspects,
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Table 1. Classification and summary of lncRNA features included in LnCompare database

Feature class Description

Genomic I) Gene structure and nucleotide composition of lncRNAs: gene length (i.e. entire gene span
including exons and introns), exonic length (i.e. length of non-redundant merged exons), GC
content and repeat coverage;
II) Gene location with respect to closest protein-coding gene;
III) Evolutionary conservation of exons and promoters of lncRNAs using phastCons
elements (based on multispecies alignment of 100 vertebrates, 20 mammals or 7 vertebrates).

Cellular expression Expression, as estimated from ENCODE RNA-seq:
I) Whole cell, 11 human cell lines;
II) Cytoplasmic fractions, 15 human cell lines;
III) Nuclear fractions, 15 human cell lines.

Subcellular localization Ratio of nuclear to cytoplasmic concentration, 11 human cell lines.
Expression across tissues Aggregate expression across 16 human tissues: maximum, minimum, mean, median,

specificity.
Phenotypic association Previously discovered association with phenotypes or functions, based on:

I) Presence in functional and disease databases;
II) Association with cell proliferation phenotypes in CRISPR-Cas9 screens;
III) Occurrence of GWAS SNPs in their promoters.

Repetitive elements The exonic coverage of the 20 most highly overlapping repetitive element classes from
Repbase (47).

including gene structure, nucleotide composition, evolu-
tionary conservation, cell and tissue expression, subcellu-
lar localization, tissue specificity, repetitive sequence con-
tent and phenotypic association. Based on these features,
LnCompare has two main functionalities. First, Gene Set
Feature Comparison identifies statistically-enriched features
of lncRNA sets, in a similar way as is presently done for
PCGs (17,18,27,28). Second, Similar Gene Discovery func-
tionality seeks to identify other similar genes for a given
gene-of-interest, based on user-defined features.

LnCompare is freely available at http://www.rnanut.net/
lncompare/

MATERIALS AND METHODS

Compilation of lncRNA features

We collected and processed various lncRNA datasets from
public databases and in-house computational analysis. Al-
together these comprise 109 gene/transcript attributes for
the GENCODE v24 human lncRNAs annotation (15 941
genes). These features can be classified into six main classes
(see Table 1):

All data has been compiled at the level of lncRNA genes,
not transcripts. For certain features, we utilized an exonic
projection of all annotated transcripts from each gene, and
estimated the corresponding feature accordingly––for ex-
ample, GC content or phastCons overlap. Detailed infor-
mation on every feature and its source are available in Sup-
plementary Table S1, and provided as additional informa-
tion at the web server. A comprehensive list of features may
be found in Supplementary Table S1, and the entire table of
lncRNA features for the GENCODE v24 annotation can
be downloaded in the ‘Download’ tab in LnCompare.

Statistical analysis

In Gene Set Feature Comparison mode, LnCompare consid-
ers both quantitative and categorical features (Figure 1A).
By default, the background set is defined as the entire GEN-
CODE annotation. The Wilcoxon test is used to compare

quantitative features between the input gene set and the
background set (Figure 1B). For categorical features, the
hypergeometric test is applied, and the detailed formula was
described in our previous work (29) (Figure 1C). By default,
the quantitative features are sorted by the absolute loga-
rithm ratio of the average feature values between the input
versus background, in order to highlight the features where
the input lncRNA list and the background show the most
prominent divergence. Similarly, the odds ratio is used to
rank most enriched categorical features.

In Similar Gene Discovery, LnCompare performs sim-
ilarity calculation between two lncRNAs based on their
features (Figure 2). After comparing several methods (e.g.
Pearson correlation, Euclidian distance etc.), the cosine
similarity was finally adopted:

Similarity = cos (θ ) = A · B
‖ A ‖ ‖ B ‖

where A and B are the feature vectors of two LncRNAs,
with N/A values dropped. By definition, it is the point mul-
tiplication of A and B, divided by the product of the norm
of the two vectors. To enable a flexible similarity calculation,
users can either use all features, or else a defined subset of
features (Supplementary Table S1). Higher cosine similarity
indicates greater similarity.

In addition, for more robust results, we employed mutual
rank, which has been successfully applied to establish gene
co-expression networks (30):

Rank =
√

Rank(Simiarity)A in B · Rank(Similarity)B in A

Where the Rank(Similarity)A in B denotes the rank of sim-
ilarity between A and B among the similarities of B to all
other lncRNAs, and Rank(Similarity)B in A is defined in sim-
ilar fashion. Lower mutual rank values indicate greater sim-
ilarity.

Server implementation

The web server is built on a Linux server using the
Apache+MySQL+PHP framework. All graphical visual-

http://www.rnanut.net/lncompare/
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Figure 1. Gene Set Feature Comparison module workflow. (A) LnCompare is based on a dataset of quantitative and categorical features of lncRNAs. For a
given analysis, LnCompare divides input lncRNAs (yellow) and background lncRNAs (green). (B) For each quantitative feature, the distribution of input
and background lists are compared by Wilcoxon test. Below are shown the results, displayed in the web server as a barplot. Each bar represents a feature,
and length in the x-axis denotes the ratio of the mean input value and the mean background value. (C) For every categorical feature, LnCompare performs
a hypergeometric test (upper panel), which is summarized in a bubble plot (lower panel). Features are distributed across the y-axis, while the x-axis displays
the odds ratio obtained from the hypergeometric test. Circle radius reflects the P-value from the hypergeometric test.

izations are enabled by the open source G2 package (https:
//antv.alipay.com/), whilst the display and download of tab-
ular results was established with the JavaScript plugin vis
(http://visjs.org/).

DESCRIPTION OF WEB SERVER

LnCompare web server performs gene set or single gene
comparisons of lncRNAs based on diverse features. It is
based on the GENCODE version 24 human annotation
(31), and therefore only genes with Ensembl ‘ENSG. . . ’
identifiers belonging to this annotation are assessed. In
cases where a supported non-GENCODE identifiers are
provided, LnCompare will attempt to map it to GEN-
CODE. Supported identifiers comprise Gene symbols, Ref-
Seq IDs and Ensembl transcript IDs, whose mappings to

GENCODE are based on the Ensembl ID mapping file.
When successfully mapped, this gene will be included in
subsequent analyses. When not successful, unrecognized
IDs, including out-of-date Ensembl entries, are ignored in
analyses. The number of successfully found IDs is reported
in the results page.

For all analyses, users can populate forms with three dif-
ferent sets of example data using buttons. These are: the
‘Simple Example’ list of six randomly-selected lncRNAs;
the ‘CLC’ list of 122 cancer-related lncRNAs (32); the ‘Cell
Cycle Example’ of 117 lncRNAs that are differentially ex-
pressed between G1S and G2M cell-cycle stages in HeLa
cells (33).

LnCompare has two modules, described below. A com-
plete tutorial for both modules can be found in the ‘Help’
tab.

https://antv.alipay.com/
http://visjs.org/
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Figure 2. Similar Gene Discovery module workflow. The module compares either one gene or several input genes versus a list of background genes (‘1-to-N’
and ‘M-to-N’, respectively). The yellow box represents the input genes; the green box represents the background genes. Similarity comparisons are based
on the distance between the two gene feature vectors, calculated by two different methods: cosine similarity and mutual rank.

Gene set feature comparison

Gene Set Feature Comparison module aims to identify fea-
tures that characterize a user-provided gene set. This in-
put gene set is compared to a defined background gene set,
across each feature (Figure 1A). By default, background is
the entire GENCODE annotation, although the user can
provide alternative background sets.

The feature-comparison analysis runs differently for
quantitative and categorical features. For quantitative fea-
tures, statistical significance is assessed by Wilcoxon test,
while for categorical features the hypergeometric test is used
(Figure 1B and C). Results are displayed separately.

For quantitative features, LnCompare returns a sum-
mary plot with logarithm ratios of the mean feature val-
ues for the input and the background sets. For categorical
features, equivalent plots display the odds ratio (Figure 1B
and C). In addition, corresponding P-values, Benjamini–
Hochberg false discovery rates (FDR) (34) and a link to a
boxplot (or barplot for categorical features) can be found
in tabular format (for an example see Figure 3). Additional
information on each feature can be accessed from the ‘?’
button in the table. For both quantitative and categori-
cal features, the user can apply several different cutoffs to
the data displayed: the top ten features, ranked by mean
ratio/odds ratio (for quantitative and categorical features,
respectively), features with P < 0.05, features with FDR <
0.05, or all possible comparisons). Graphical and tabular
results can be directly downloaded from the website.

Similar gene discovery

LnCompare offers two approaches to compare similarity of
lncRNA genes using cosine similarity method: (i) 1-to-N
comparison: computes the similarity of one user-provided

lncRNA to all remaining GENCODE lncRNAs; (ii) M-to-
N comparison: computes the similarity of every lncRNA
from list M to every one in list N (Figure 2). The user must
provide two lists of Ensembl gene IDs (up to a maximum
of 100 in each). After specifying the type of analysis desired
(1-to-N or M-to-N) and entering the gene IDs, the user can
choose which subsets of lncRNA features to be used for sim-
ilarity analysis (from the feature classes described above (see
‘Materials and Methods’ section).

For both types of similarity analysis, graphical and tabu-
lar outputs display the top 10, 20 or 50 cosine scores (speci-
fied by the user) together with the corresponding gene IDs.
The table also contains the relative rank the score repre-
sents among the partners for lncRNA1 and lncRNA2 lists,
respectively (i.e. first number indicates the ranking number
for that pair among all possible partners of lncRNA from
lncRNA1 list, and the second number indicates the same for
lncRNA from lncRNA2 list).

When all the feature classes are selected, LnCompare also
provides a mutual rank similarity results section. In this
case, graphical and tabular formats show how reciprocal
the similarity is between the two genes, with a mutual rank
score (see ‘Materials and Methods’ section for more de-
tails). Again, the user can select how many output compar-
isons should be displayed (top 10, 20 or 50 scores). All the
tables from this module are available for download.

EVALUATION OF WEB SERVER; A CASE STUDY US-
ING CANCER-RELATED GENES

We tested the performance of LnCompare using a set of 122
experimentally validated cancer lncRNAs from the Cancer
LncRNA Census (CLC) (32). CLC genes are curated based
on experimentally validated functional roles in tumorige-
nesis or cancer-related cellular phenotypes, and hence is a
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Figure 3. Results from Gene Set Feature Comparison analysis of CLC (A) Graphical results displaying features that are significantly different between CLC
and background lncRNAs (FDR < 0.05). Feature labels are shown on the y-axis and grey boxes on the left summarize their content. The x-axis indicates
the ratio between the mean of CLC genes (input) and background genes for each feature. (B) Table obtained from the same analysis for categorical features.
‘Feature’ and ‘Name’ indicate and describe the feature tested, ‘List’ and ‘background’ show the number of CLC and background genes associated with the
feature, respectively. ‘P-value’, ‘FDR’ and ‘Odds Ratio’ from hypergeometric test are also shown in the table.

useful positive control set of lncRNA genes. The CLC genes
make a good test case, since they are known to be charac-
terized by a range of features such as high expression in tu-
mours, spliced length and evolutionary conservation (32).
Assessing CLC we want to represent two possible scenar-
ios: (i) the user has no prior knowledge of a gene set, and
wishes to assess their potential functionality; (ii) The user is
aware that this is a set of important lncRNAs, and wishes
to study their particular features.

Running the Gene Set Feature Comparison module, we
searched for specific features of CLC genes compared to
background (all other lncRNAs). Using a cutoff of FDR <
0.05, we observe several quantitative and qualitative traits
to be significantly enriched in CLC lncRNAs (Figure 3A).
These include high average expression across numerous hu-
man cell lines and tissues. CLC genes, on average, also show
high exon and promoter conservation across mammals and

vertebrates (Figure 3A). Moreover, the CLC set is signifi-
cantly enriched with lncRNAs from functional and disease
databases (Figure 3B). Together, these attributes are consis-
tent with the input gene set being enriched with bona fide
functional lncRNAs (32), and points to features (e.g. high
expression) that are shared by both cancer-related lncRNAs
and PCGs (35,36).

Interestingly, the Gene Set Feature Comparison also re-
ports CLC genes to be on average closer in genomic dis-
tance to PCGs, and significantly more likely to be diver-
gently transcribed from protein coding genes (Figure 3B).
This may reflect a common molecular mechanism among
CLC lncRNAs to be further studied. In contrast, it may
result from a bias in literature to focus on lncRNAs that
lie close to PCGs. Such ascertainment biases are an impor-
tant confounding factor that should be borne in mind when
interpreting these results. At last, we also observe that the
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CLC set tends to be less tissue specific, more cytoplasmic
(their nuclear/cytoplasmic ratio is significantly lower) (Fig-
ure 3A), and enriched with hits from proliferation CRISPR
screens (Figure 3B).

Similar Gene Discovery ‘M-to-N’ functionality may com-
plement the above analysis to interrogate unknown lists of
genes and help to prioritize candidates based on similarity
to known lncRNAs. For example, to select potential cancer-
associated lncRNAs for experimental validation from a list
of novel candidates, one can assess their similarity to CLC
genes.

In addition, Similar Gene Discovery ‘1-to-N’ functional-
ity makes it possible to search for the most similar genes
to a given lncRNA, in order to discover new, functionally-
related lncRNAs. For example, in searching for lncR-
NAs similar to the X-inactive specific transcript, XIST
(37), LnCompare reports the maternally-expressed gene
8 (MEG8) to be the most similar (cosine similarity 0.9).
Interestingly, both genes are associated with imprinting,
are expressed during early development and have nuclear-
restricted localization (38–40). Moreover, MEG8 has been
reported to interact with chromatin-binding proteins and
repressor complexes (41,42). An important caveat is the fact
that some lncRNAs are present in the functional database
lncRNAdb, and this will influence the similarity analysis re-
sults without necessarily representing biological similarity.
In order to eliminate this possible confounder, we removed
the phenotype-associated feature class and repeated the
analysis. This analysis now identifies ENSG00000272872 as
the most similar to XIST. This lncRNA has been linked to
various cancers in the lncRNADisease v2.0 database (43),
making it an interesting candidate to study.

DISCUSSION

In recent years there has been a dramatic acceleration in
the volumes of lncRNA gene candidates emerging from ge-
nomic studies. However, we remain broadly ignorant about
molecular mechanisms and biological roles of these genes.
Classical methods to describe newly discovered genes or to
assess gene sets are inefficient for lncRNAs. This has created
a need for tools to study the properties of lncRNA sets, in
order to formulate new hypotheses from or gauge the suc-
cess of high-throughput experiments.

To meet this need, we have curated a comprehensive fea-
ture set covering diverge quantitative and categorical as-
pects of lncRNAs from the GENCODE annotation. Using
these features, LnCompare searches for those that are sig-
nificantly over- or under-represented in an input set com-
pared to background. In a set of lncRNAs with known
roles in cancer (35), LnCompare identifies a range of char-
acteristic features, including elevated expression and evolu-
tionary conservation. Moreover, it also identifies other at-
tributes including higher cytoplasmic localization and ubiq-
uitous expression. These features may guide researchers to
focus on potential molecular activities related to cytoplas-
mic processes, in contrast to most studies that concentrate
on lncRNAs’ roles in chromatin regulation (44–46). More-
over, LnCompare assesses similarity between genes, which
can be a powerful strategy to identify new genes playing
similar roles to known examples. Conversely, such similarity

analysis could be used to predict the roles of novel lncRNAs
by similarity to known genes. We anticipate that LnCom-
pare will be useful to the many colleagues who presently
study lncRNAs at the global scale and wish to extract more
biological insights from their data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We acknowledge administrative support from Deborah Re
and Silvia Roesselet (DBMR).

FUNDING

National Natural Science Foundation of China [81672113];
Swiss National Science Foundation through the National
Center of Competence in Research (NCCR) ‘RNA & Dis-
ease’; Medical Faculty of the University and University
Hospital of Bern; Helmut Horten Stiftung. Funding for
open access charge: Core funding.
Conflict of interest statement. None declared.

REFERENCES
1. Marchese,F.P., Raimondi,I. and Huarte,M. (2017) The

multidimensional mechanisms of long noncoding RNA function.
Genome Biol., 18, 206.

2. Derrien,T., Johnson,R., Bussotti,G., Tanzer,A., Djebali,S.,
Tilgner,H., Guernec,G., Martin,D., Merkel,A., Knowles,D.G. et al.
(2012) The GENCODE v7 catalog of human long noncoding RNAs:
analysis of their gene structure, evolution, and expression. Genome
Res., 22, 1775–1789.

3. Mercer,T.R., Dinger,M.E., Sunkin,S.M., Mehler,M.F. and
Mattick,J.S. (2008) Specific expression of long noncoding RNAs in
the mouse brain. Proc. Natl. Acad. Sci. U.S.A., 105, 716–721.

4. Bonetti,A. and Carninci,P. (2017) From bench to bedside: the long
journey of long non-coding RNAs. Curr. Opin. Syst. Biol., 3,
119–124.

5. Sun,M. and Kraus,W.L. (2015) From discovery to function: the
expanding roles of long noncoding RNAs in physiology and disease.
Endocr. Rev., 36, 25–64.

6. Liu,S.J., Horlbeck,M.A., Cho,S.W., Birk,H.S., Malatesta,M., He,D.,
Attenello,F.J., Villalta,J.E., Cho,M.Y., Chen,Y. et al. (2017)
CRISPRi-based genome-scale identification of functional long
noncoding RNA loci in human cells. Science, 355, aah7111.

7. Ounzain,S., Micheletti,R., Beckmann,T., Schroen,B., Alexanian,M.,
Pezzuto,I., Crippa,S., Nemir,M., Sarre,A., Johnson,R. et al. (2015)
Genome-wide profiling of the cardiac transcriptome after myocardial
infarction identifies novel heart-specific long non-coding RNAs. Eur.
Heart J., 36, 353–368.

8. Gao,Y., Wang,P., Wang,Y., Ma,X., Zhi,H., Zhou,D., Li,X., Fang,Y.,
Shen,W., Xu,Y. et al. (2019) Lnc2Cancer v2.0: updated database of
experimentally supported long non-coding RNAs in human cancers.
Nucleic Acids Res., 47, D1028–D1033.

9. Kashi,K., Henderson,L., Bonetti,A. and Carninci,P. (2015) Discovery
and functional analysis of lncRNAs: Methodologies to investigate an
uncharacterized transcriptome. Biochim. Biophys. Acta, 1859, 3–15.

10. Zhu,S., Li,W., Liu,J., Chen,C.-H., Liao,Q., Xu,P., Xu,H., Xiao,T.,
Cao,Z., Peng,J. et al. (2016) Genome-scale deletion screening of
human long non-coding RNAs using a paired-guide RNA
CRISPR–Cas9 library. Nat. Biotechnol., 34, 1279–1286.

11. Ali,M.M., Akhade,V.S., Kosalai,S.T., Subhash,S., Statello,L.,
Meryet-Figuiere,M., Abrahamsson,J., Mondal,T. and Kanduri,C.
(2018) PAN-cancer analysis of S-phase enriched lncRNAs identifies
oncogenic drivers and biomarkers. Nat. Commun., 9, 883.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz410#supplementary-data


Nucleic Acids Research, 2019, Vol. 47, Web Server issue W529

12. Kanehisa,M., Goto,S., Sato,Y., Kawashima,M., Furumichi,M. and
Tanabe,M. (2014) Data, information, knowledge and principle: back
to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205.

13. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al.
(2000) Gene Ontology: tool for the unification of biology. Nat.
Genet., 25, 25–29.

14. The Gene Ontology Consortium (2019) The Gene Ontology
Resource: 20 years and still GOing strong. Nucleic Acids Res., 47,
D330–D338.

15. Mi,H., Huang,X., Muruganujan,A., Tang,H., Mills,C., Kang,D. and
Thomas,P.D. (2017) PANTHER version 11: expanded annotation
data from Gene Ontology and Reactome pathways, and data analysis
tool enhancements. Nucleic Acids Res., 45, D183–D189.

16. Carbon,S., Ireland,A., Mungall,C.J., Shu,S., Marshall,B., Lewis,S.,
Hub,AmiGO and Web Presence Working Group (2009) AmiGO:
online access to ontology and annotation data. Bioinformatics, 25,
288–289.

17. Eden,E., Navon,R., Steinfeld,I., Lipson,D. and Yakhini,Z. (2009)
GOrilla: a tool for discovery and visualization of enriched GO terms
in ranked gene lists. BMC Bioinformatics, 10, 48.

18. Reimand,J., Arak,T., Adler,P., Kolberg,L., Reisberg,S., Peterson,H.
and Vilo,J. (2016) g:Profiler––a web server for functional
interpretation of gene lists (2016 update). Nucleic Acids Res., 44,
W83–W89.

19. Du,Z., Li,L., Chen,C.-F., Yu,P.S. and Wang,J.Z. (2009) G-SESAME:
web tools for GO-term-based gene similarity analysis and knowledge
discovery. Nucleic Acids Res., 37, W345–W349.

20. Pesaranghader,A., Matwin,S., Sokolova,M. and Beiko,R.G. (2016)
simDEF: definition-based semantic similarity measure of gene
ontology terms for functional similarity analysis of genes.
Bioinformatics, 32, 1380–1387.

21. Zhang,P., Zhang,J., Sheng,H., Russo,J.J., Osborne,B. and Buetow,K.
(2006) Gene functional similarity search tool (GFSST). BMC
Bioinformatics, 7, 135.

22. Wang,J.Z., Du,Z., Yu,P.S. and Chen,C.-F. (2007) An Efficient Online
Tool to Search Top-N Genes with Similar Biological Functions in
Gene Ontology Database. In: 2007 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM 2007). IEEE, Fremont, pp.
406–411.

23. Jiang,Q., Ma,R., Wang,J., Wu,X., Jin,S., Peng,J., Tan,R., Zhang,T.,
Li,Y. and Wang,Y. (2015) LncRNA2Function: a comprehensive
resource for functional investigation of human lncRNAs based on
RNA-seq data. BMC Genomics, 16, S2.

24. Zhao,Z., Bai,J., Wu,A., Wang,Y., Zhang,J., Wang,Z., Li,Y., Xu,J. and
Li,X. (2015) Co-LncRNA: investigating the lncRNA combinatorial
effects in GO annotations and KEGG pathways based on human
RNA-Seq data. Database, 2015, bav082.

25. Guo,X., Gao,L., Liao,Q., Xiao,H., Ma,X., Yang,X., Luo,H.,
Zhao,G., Bu,D., Jiao,F. et al. (2013) Long non-coding RNAs
function annotation: a global prediction method based on bi-colored
networks. Nucleic Acids Res., 41, e35.

26. Alam,T., Uludag,M., Essack,M., Salhi,A., Ashoor,H., Hanks,J.B.,
Kapfer,C., Mineta,K., Gojobori,T. and Bajic,V.B. (2017) FARNA:
knowledgebase of inferred functions of non-coding RNA transcripts.
Nucleic Acids Res., 45, 2838–2848.

27. Beißbarth,T., Speed Walter,T.P. and Hall,E. (2004) GOstat: find
statistically overrepresented Gene Ontologies within a group of genes.
Bioinformatics, 20, 1464–1465.

28. Zheng,Q. and Wang,X.-J. (2008) GOEAST: a web-based software
toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res.,
36, W358–W363.

29. Li,J., Han,X., Wan,Y., Zhang,S., Zhao,Y., Fan,R., Cui,Q. and
Zhou,Y. (2018) TAM 2.0: tool for MicroRNA set analysis. Nucleic
Acids Res., 46, W180–W185.

30. Obayashi,T., Kagaya,Y., Aoki,Y., Tadaka,S. and Kinoshita,K. (2019)
COXPRESdb v7: a gene coexpression database for 11 animal species
supported by 23 coexpression platforms for technical evaluation and
evolutionary inference. Nucleic Acids Res., 47, D55–D62.

31. Frankish,A., Diekhans,M., Ferreira,A.-M., Johnson,R., Jungreis,I.,
Loveland,J., Mudge,J.M., Sisu,C., Wright,J., Armstrong,J. et al.
(2019) GENCODE reference annotation for the human and mouse
genomes. Nucleic Acids Res., 47, D766–D773.

32. Carlevaro-Fita,J., Camaioni,A.A.L., Feuerbach,L., Hong,C.,
Mas-Ponte,D., Guigo,R., Pedersen,J.S., Johnson,R. and 2-5-9-14, -
PCAWG Driver Identification Working Group (2017) Unique
genomic features and deeply-conserved functions of long non-coding
RNAs in the Cancer LncRNA Census (CLC). bioRxiv doi:
https://doi.org/10.1101/152769, 25 August 2017, preprint: not peer
reviewed.

33. Murthy,T., Bluemn,T., Gupta,A.K., Reimer,M., Rao,S., Pillai,M.M.
and Minella,A.C. (2018) Cyclin-dependent kinase 1 (CDK1) and
CDK2 have opposing roles in regulating interactions of splicing
factor 3B1 with chromatin. J. Biol. Chem., 293, 10220–10234.

34. Benjamini,Y., Hochberg,Y., Hochberg,Y., Benjamini,Y. and
Benjamin,Y. (1995) Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc B, 50,
289–300.

35. Lanzós,A., Carlevaro-Fita,J., Palumbo,E., Reverter,F., Mularoni,L.,
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