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1 Introduction

Soft functions are an essential ingredient of QCD factorisation theorems. They describe

the low-energy contribution to a scattering process, which is usually easier to compute than

the analogous hard process in full QCD. Due to the eikonal form of the soft interactions,

the soft functions can be represented by a vacuum matrix element of Wilson lines that

point along the directions of the energetic, coloured particles in the scattering process.
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As long as the underlying scale of the soft interactions is large enough, the soft functions

can be calculated order-by-order in perturbation theory. At next-to-leading order (NLO)

the calculation involves one-loop virtual and single real-emission contributions, which can

be computed with standard techniques. Starting at NNLO and beyond, the singularity

structure of the individual contributions becomes intricate and the divergences in the phase-

space integrals overlap. The calculation of NNLO soft functions is needed for high-precision

resummations and has attracted considerable attention in the past years [1–24]. Very

recently, first results for N3LO soft functions have been presented [25, 26].

Whereas most of these calculations were performed analytically on a case-by-case basis,

a systematic approach that exploits the universal structure of the soft functions is currently

missing. The purpose of our work is to fill this gap, and as a first step we focus on soft

functions that arise in processes with two massless, coloured, hard partons. The soft

functions for these processes can be written in the form

S(τ, µ) =
1

Nc

∑
i∈X
M(τ ; {ki}) Tr |〈X|T [S†n(0)Sn̄(0)] |0〉|2 , (1.1)

where Sn and Sn̄ are soft Wilson lines, and nµ and n̄µ denote the directions of the hard

partons with n2 = n̄2 = 0. For concreteness, we assume that the hard partons are in a

back-to-back configuration (n · n̄ = 2), and that the Wilson lines are in the fundamental

colour representation. The definition in (1.1) contains a trace over colour indices as well

as a function M(τ, {ki}), which specifies what is measured on the soft radiation X with

parton momenta ki for the observable under consideration. We will also see later that

it is irrelevant whether nµ and n̄µ are incoming or outgoing directions up to the order

we consider, NNLO. Our method therefore equally applies to dijet observables in e+e−

annihilation, single-jet observables in deep-inelastic scattering, and zero-jet observables at

hadron colliders. For convenience, we will refer to all of these cases with two massless,

coloured, hard partons as dijet soft functions in the following.

The key observation of our analysis is that the soft matrix element in the defini-

tion (1.1) is universal, i.e. independent of the considered dijet observable. It is therefore

possible to isolate the implicit divergences in the phase-space integrals with a universal

parametrisation, and to compute the observable-dependent coefficients in an expansion in

the dimensional regulator ε = (4− d)/2 numerically. The dependence of the soft function

on the observable is thus entirely confined to the measurement function M(τ, {ki}), which

acts as a weight factor for the numerical integrations. We will discuss the specific form

we assume for the measurement function in the following section, where we will also learn

that it is crucial to understand its properties in the singular limits of the matrix element.

The goal of our analysis thus consists in devising an algorithm that allows for an auto-

mated calculation of dijet soft functions to NNLO in the perturbative expansion. At NNLO

the double real-emission contribution consists of three colour structures, which are often

referred to as correlated (CFTFnf , CFCA) and uncorrelated (C2
F ) emissions. As the phase-

space parametrisations that are needed to factorise the divergences are different in both

cases, we will concentrate in this work on correlated emissions, leaving the uncorrelated

emissions for a future study [27]. For observables that obey the non-Abelian exponentiation

– 2 –
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(NAE) theorem [28, 29], a dedicated calculation of the uncorrelated-emission contribution

is in fact not needed, and we can therefore present complete NNLO results for a number

of e+e− and hadron-collider soft functions already in this work. This is, however, not true

for observables that violate the NAE theorem, like jet-veto or grooming observables, which

we will address in [27] (preliminary results can be found in [30]).

As explained earlier, we aim at a numerical evaluation of bare dijet soft functions in an

expansion in the dimensional regulator ε. It is, however, well known that the phase-space

integrals for certain soft functions suffer from rapidity divergences that are not regularised

in dimensional regularisation (DR). This typically arises whenever the soft radiation is

constrained to have small transverse momenta. Several prescriptions for the regularisation

of the rapidity divergences have been proposed in the literature (see e.g. [16, 31–34]), and

in this work we will use a variant of the analytic regulator introduced in [32]. Specifically,

this results in a modification of the generic d-dimensional phase-space measure of the form,∫
ddp

(
ν

n · p+ n̄ · p

)α
δ(p2)θ(p0) , (1.2)

where α is the rapidity regulator. The rapidity scale ν is introduced on dimensional

grounds, similar to the renormalisation scale µ in conventional DR. The rapidity diver-

gences then show up as poles in 1/α, and the renormalised soft function S(τ, µ, ν) depends

on two scales µ and ν. In the context of Soft-Collinear Effective Theory (SCET) [35–

38], these soft functions are classified as SCET-2 observables, whereas those functions

S(τ, µ) that are not sensitive to the rapidity scale ν (and are well-defined in DR) refer to

SCET-1 observables.

With the dimensional and the rapidity regulator in place, the bare soft functions can

be evaluated in a double expansion in ε and α. The main result of our analysis is an integral

representation of a generic dijet soft function, in which all divergences are factorised. After

introducing standard plus-distributions, the expansion in the various regulators can be

performed and the coefficients of this expansion can be evaluated numerically. For the

numerical integrations, we developed a new stand-alone program called SoftSERVE, which

uses the Divonne integrator of the Cuba library [39]. The code contains a number of

refinements to improve the convergence of the numerical integrations, which we will not

discuss in detail in this work, but which are explained in the user manual of SoftSERVE.

The SoftSERVE package is publicly available at https://softserve.hepforge.org/.

Although the main objective of our work is the computation of bare dijet soft functions,

we go one step further and extract the ingredients that are needed in practical applica-

tions of resummation within SCET. To this end, we assume that the renormalised soft

function obeys a multiplicative renormalisation group equation (RGE) in Laplace space,

which allows us to define the (non-cusp) soft anomalous dimension γSi for SCET-1 soft

functions and the collinear anomaly exponent di for SCET-2 soft functions. In a previous

study [40], we derived integral representations for these quantities at the two-loop level for

the same class of dijet soft functions we consider in the present work. Using SoftSERVE,

which provides a script for the automated extraction of the resummation ingredients, it is

thus possible to cross check the results of [40], and to in addition obtain the finite (non-
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Accuracy Γcusp
i γSi , di cSi ,W

S
i

NLL 2-loop 1-loop tree

NLL′ 2-loop 1-loop 1-loop

NNLL 3-loop 2-loop 1-loop

NNLL′ 3-loop 2-loop 2-loop

N3LL 4-loop 3-loop 2-loop

Table 1. Resummation ingredients that are needed at different logarithmic orders. The precise

definition of the anomalous dimensions Γcusp
i , γSi , di and the matching corrections cSi ,W

S
i can be

found in section 4.

logarithmic) term cSi of the renormalised soft function for SCET-1 observables and the bare

soft remainder function WS
i for SCET-2 observables (both in Laplace space). According

to the standard counting of logarithms for Sudakov problems (see table 1), the two-loop

expressions of γSi and di are needed at next-to-next-to-leading logarithmic (NNLL) accu-

racy, while the two-loop constants cSi and WS
i enter at the NNLL′ level. SoftSERVE thus

allows for increased logarithmic accuracy of SCET resummations, as was shown for the

e+e− event-shape angularities in [41], where the improvement was from NLL′ to NNLL′

(using preliminary results for the angularity soft function that were published in [42]).

The outline of this paper is as follows: in section 2 we define more precisely which

dijet soft functions are amenable to our algorithm and we define the general properties

as well as the specific form we assume for their measurement functions. In section 3 we

outline the technical aspects of the bare soft function calculation, and in section 4 we

specify the form we assume for the RGEs of both SCET-1 and SCET-2 soft functions. In

section 5 we examine several extensions of our formalism which are relevant, e.g., for multi-

differential observables and soft functions that are defined in Fourier space. In section 6

we briefly discuss the numerical implementation of our algorithm in SoftSERVE, and in

section 7 we present sample results for e+e− and hadron-collider soft functions. All of our

numerical results were generated using SoftSERVE, and the explicit examples we consider

in section 7 illustrate both the versatility and the usage of our code (template files for all

soft functions considered in this work are provided in the SoftSERVE package). Most of

these results are in fact already available in the literature at NNLO accuracy, and they

hence provide strong cross-checks of our code, while also allowing us to study its numerical

performance. Moreover, we obtain new predictions for the C-parameter, as well as thrust-

axis and broadening-axis angularities. We finally conclude in section 8 and provide some

technical details of our analysis in the appendix.

2 Measurement function

2.1 General considerations

We are concerned with soft functions that arise in processes with two massless, coloured,

hard partons. A typical factorisation theorem of a dijet observable takes the form

dσ = H · Jn ⊗ Jn̄ ⊗ S , (2.1)

– 4 –
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where the symbol ⊗ denotes a convolution in some kinematic variables, and H is a hard

function that contains the virtual corrections to the Born process at the large scale Q

of the scattering process. The jet functions Jn and Jn̄ encode the effects from collinear

emissions into the directions nµ and n̄µ of the hard partons, and the soft function S

describes the low-energetic interactions between the two jets (for incoming partons the

collinear functions are often called beam functions). As the soft, long-wavelength partons

cannot resolve the inner structure of the jets, the soft function only sees the directions of the

hard partons as well as their colour charges. This is reflected in the definition (1.1) of the

soft function, where the Wilson lines depend on the direction and the colour representation

of the associated hard partons. For concreteness, we adopt the notion for e+e− dijet

observables in the following, and assume that the Wilson lines are given in the fundamental

colour representation (the notation can be generalised to other processes by means of the

colour-space formalism [43], and we will discuss some examples for hadron-initiated process

below). We further assume that the hard partons are in a back-to-back configuration

(n · n̄ = 2, along with n2 = n̄2 = 0), which is appropriate for both e+e− and hadron-

collider kinematics.

The soft function in the factorisation theorem (2.1) has a double-logarithmic evolution

in the renormalisation scale µ and, possibly, also the rapidity scale ν. In order to make the

associated divergences explicit, we find it convenient to consider an integral transformation,

which turns the convolution in (2.1) into a product. Apart from avoiding distribution-

valued quantities, this considerably simplifies the solution of the associated RGEs. For

many observables this is achieved by a Laplace transformation. Denoting the corresponding

Laplace variable by τ , we write the generic measurement function in the definition (1.1) of

the soft function in the form

M(τ ; {ki}) = exp
(
− τ ω({ki})

)
, (2.2)

where ω({ki}) is a function of the final-state momenta ki that is specific to the observable.

We thus assume that the distributions can be resolved by a single Laplace transformation,

which implies that the soft function is differential in a single kinematic variable. We further

assume that the Laplace variable has dimension 1/mass and that the measurement cannot

distinguish between the two jets, i.e. the function ω({ki}) is supposed to be symmetric

under n ↔ n̄ exchange. In addition, we allow for a non-trivial azimuthal dependence of

the observable around the jet (or beam) axis. In other words, there may exist an external

reference vector vµ that singles out a direction in the plane transverse to the jet (or beam)

direction. We finally impose two technical restrictions on the function ω({ki}), namely

its real part must be positive and it must be independent of the dimensional and rapidity

regulators ε and α.

Before we turn to some examples, let us recapitulate the assumptions that underlie

our approach:

(A1) Dijet factorisation theorem: we assume that the soft function is embedded in a

factorisation theorem of the form (2.1), which refers to a process with two massless,

colour-charged, hard partons. The hard partons can be in the initial or final state,

– 5 –



J
H
E
P
0
7
(
2
0
1
9
)
1
0
1

and they are supposed to be in a back-to-back configuration (n2 = n̄2 = 0, n · n̄ = 2).

The soft function for such dijet observables has a double-logarithmic evolution in the

renormalisation scale µ and, possibly, also the rapidity scale ν.

(A2) Measurement function: we assume that the measurement function can be writ-

ten in the form (2.2). Typically, this is achieved by taking a Laplace (or Fourier)

transform of a momentum-space soft function, with τ being the associated Laplace

(or Fourier) variable. In order to ensure that the phase-space integrals converge, we

require that <
(
ω({ki})

)
> 0. More specifically, the function ω({ki}) is allowed to

vanish only for configurations with zero weight in the phase-space integrations, and

it is furthermore assumed to be independent of the regulators ε and α.

(A3) Mass dimension: we assume that the variable τ has dimension 1/mass, and the

function ω({ki}), which only depends on the final-state momenta ki, must therefore

have the dimension of mass. This requirement could easily be relaxed to any positive

mass dimension in the future, although we have not encountered any example that

requires such a generalisation so far.

(A4) n-n̄ symmetry: we assume that the measurement cannot distinguish between the

two jets, and the function ω({ki}) is therefore symmetric under the exchange of

nµ and n̄µ. This requirement could again easily be relaxed in the future, at the

expense of doubling the number of input functions that need to be provided by the

SoftSERVE user.

(A5) Single-differential observables: we assume that the soft function only depends

on one variable τ apart from the renormalisation and rapidity scales µ and ν. Phys-

ically, this implies that the observable is differential in one kinematic variable. This

requirement is in fact not strictly imposed in our approach (we will discuss multi-

differential observables in section 5), but we find it instructive to develop our formal-

ism for this simplified class of observables first.

(A6) Azimuthal dependence: although we allow for a general azimuthal dependence

of the observable around the jet/beam axis, we point out that the function ω({ki}) is

allowed to depend only on one angle θi per emitted particle in the (d−2)-dimensional

transverse plane. This implies that the measurement is performed with respect to

an external reference vector vµ, and the angle θi is then introduced as the angle

between ~v⊥ and ~k⊥i in the plane transverse to the jet/beam direction.1 In addition,

the function ω({ki}) may depend on relative angles θij between two emissions, which

are defined as the angles between their respective transverse momenta ~k⊥i and ~k⊥j .

Conditions (A1) and (A2) can be viewed as the strongest assumptions of our approach,

although the generalisation to N ≥ 2 jet directions with non-back-to-back kinematics is

1For general N -jet soft functions with non-back-to-back kinematics, it was shown that two angles per

emitted particle are required in the general case [44].

– 6 –
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already in progress [44] (which also requires an extension of (A6)). Whereas the generali-

sation of (A5) will be discussed in section 5, we already mentioned that assumptions (A3)

and (A4) could easily be relaxed in the future. We further point out that our formalism is

not limited to observables that obey the NAE theorem. For observables that violate NAE,

the uncorrelated-emission contribution becomes non-trivial [27, 30], but our method still

allows for the calculation of the correlated-emission contribution, and hence it yields two

out of three NNLO colour structures for NAE-violating observables.

Let us now see which type of observables fall into the considered class of soft functions.

First, there are e+e− event-shape variables that obey a hard-jet-soft factorisation theorem

of the form (2.1) in the dijet limit. As an example we consider the C-parameter distribution,

which was studied within SCET in [45, 46]. In an appropriate normalisation, its Laplace-

space soft function can be written in the form (2.2) with

ωC({ki}) =
∑
i

k+
i k
−
i

k+
i + k−i

, (2.3)

where the plus- and minus-components represent the projections onto the nµ and n̄µ direc-

tions with k+
i = n · ki and k−i = n̄ · ki. This function indeed has the dimension of mass, it

is symmetric under n↔ n̄ exchange, and it does not depend on the regulators ε and α. It

is furthermore strictly positive, except for the trivial configuration with all kµi = 0, which

has zero weight in the phase-space integrations. The C-parameter is a single-differential

observable with a trivial azimuthal dependence since the measurement is performed with

respect to the jet axis itself.

As a second class of observables, we consider threshold resummation at hadron collid-

ers. The classic example is Drell-Yan production, which was factorised in the form (2.1)

using methods from SCET in [47] (the collinear functions are the standard parton dis-

tribution functions in this case). In position space, the corresponding soft function can

be written in the form (1.1) with a weight factor exp(−i x · PX), where PµX is the total

momentum of the soft emissions. The vector xµ thus plays the role of the reference vector

vµ in this case, and in the threshold kinematics it can be expanded as xµ = (x0,~0) in

the centre-of-mass frame of the collision. As its spatial components vanish, the observable

again has a trivial azimuthal dependence around the beam axis. In terms of τ = ix0/2,

the position-space soft function can then be expressed in the form (2.2) with

ωDY ({ki}) =
∑
i

(k+
i + k−i ) , (2.4)

and one easily verifies that assumptions (A1)-(A6) are again satisfied for this observable.

We finally consider another class of hadron-collider soft functions, which arise in the

context of transverse-momentum resummation. Taking again the Drell-Yan process as an

example, the corresponding SCET analysis, which now involves beam functions that de-

scribe the effects from energetic initial-state radiation, can be found in [48]. The respective

position-space soft function can then be written in a similar form as the one for threshold

resummation, except that the reference vector xµ⊥ is now purely transverse to the beam

direction. It therefore induces a non-trivial azimuthal dependence, which is precisely of

– 7 –
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the form we anticipated in (A6). Writing τ = |x⊥|/2, one finds that this soft function can

again be written in the form (2.2) with

ωpT ({ki}) = −2i
∑
i

|k⊥i | cos θi . (2.5)

With the usual exponential damping factor of a Fourier transform in mind, we can then

argue that its real part is positive as required by assumption (A2). The function itself,

however, now vanishes for non-trivial kinematic configurations, which single out a com-

plicated hypersurface in the phase-space integrations. These configurations still have zero

weight in the phase-space measure — as required by (A2) — but we will see later that our

numerical results are less accurate for this observable in comparison with other examples

that do not suffer from this problem. As the function ωpT ({ki}) is purely imaginary, we

will also explain later in section 5 that the numerical implementation of the transverse-

momentum-dependent soft function in SoftSERVE requires special attention. One easily

verifies that the remaining assumptions (A3)-(A5) are fulfilled for this observable.

The above examples should not be understood as an exhaustive list of observables

that can be treated in our formalism; they should rather help to illustrate what kind of

restrictions are imposed by assumptions (A1)-(A6). Other observables relevant e.g. for

jet-veto resummation and jet-grooming observables also fall in the considered class of dijet

soft functions. We will discuss further examples in section 7.

2.2 Specific parametrisations

After these general considerations, we now present the specific form we assume for the

measurement function in our calculation. At NNLO the measurement is performed on

either zero, one, or two emitted partons.

According to (A3), the function ω({ki}) is supposed to have the dimension of mass,

and since it only depends on the final-state momenta ki, it must vanish if there is no

emission. We can therefore write the zero-emission measurement function in the form

M0(τ) = 1 (2.6)

for all observables we consider.

For one emission, we have to find a phase-space parametrisation that allows us to

control the implicit soft and collinear divergences in the phase-space integrations. We

choose the variables

yk =
k+

k−
, kT =

√
k+k− , tk =

1− cos θk
2

, (2.7)

where yk is a measure of the rapidity, kT is the magnitude of the transverse momentum,

and tk parametrises the azimuthal dependence around the jet axis (with θk = ^(~v⊥, ~k⊥)

as described in (A6)). The inverse of this transformation is then given by k− = kT /
√
yk,

k+ =
√
yk kT and cos θk = 1− 2tk.

In terms of these variables, we will see in the following section that the soft divergence

arises in the limit kT → 0. The variable kT is in fact the only dimensionful quantity in this

– 8 –
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parametrisation, and according to (A3) the function ω({k}) = ω(yk, kT , tk) must therefore

be linear in kT . The collinear divergences, on the other hand, emerge in the limits yk → 0

and yk →∞. The n-n̄ symmetry from (A4) then allows us to focus on one of the collinear

limits, of which we choose the former. It turns out that the function ω(yk, kT , tk) may

vanish or diverge as yk → 0, and that we have to control its scaling in this limit to properly

extract the collinear divergence. Taken together, this motivates the following ansatz for

the one-emission measurement function:

M1(τ ; k) = exp
(
− τ kT yn/2k f(yk, tk)

)
, (2.8)

where the power n is fixed by the requirement that the function f(yk, tk) is finite and

non-zero in the limit yk → 0. For one emission, the observable is thus characterised by a

parameter n and a function f(yk, tk) that encodes the angular and rapidity dependence.2

Finding a suitable phase-space parametrisation for the double-emission contribution

is much more involved. On the one hand the divergence structure of the matrix elements

is more complicated, and on the other hand the measurement function must be controlled

in various singular limits (whereas we only had to consider the limit yk → 0 in (2.8)).

Moreover, we find that different parametrisations are needed for correlated and uncorrelated

emissions. In this work we focus on the former, for which we introduce the variables

pT =
√

(k+ + l+)(k− + l−) , y =
k+ + l+
k− + l−

, a =

√
k−l+
k+l−

, b =

√
k+k−
l+l−

,

(2.9a)

along with the angular variables

tk =
1− cos θk

2
, tl =

1− cos θl
2

, tkl =
1− cos θkl

2
. (2.9b)

The variables pT and y are thus functions of the sum of the light-cone momenta, the quan-

tity a is a measure of the rapidity difference of the emitted partons, and b is the ratio of their

transverse momenta.3 In general the measurement function now depends on three angles

since the emitted partons may not only see the reference vector vµ, but they will also see

each other. The angles in (2.9b) are then introduced as θk = ^(~v⊥, ~k⊥), θl = ^(~v⊥,~l⊥), and

θkl = ^(~k⊥,~l⊥), and the inverse transformation is now given by k− = a b pT /(1 + ab)/
√
y,

k+ = b
√
y pT /(a+ b), l− = pT /(1 + ab)/

√
y, l+ = a

√
y pT /(a+ b), and cos θi = 1− 2ti for

i ∈ {k, l, kl}.
After using the symmetries under n ↔ n̄ and k ↔ l exchange, we will see in the

following section that the implicit phase-space divergences now arise in four limits:

• pT → 0, which corresponds to the situation in which both partons become soft;

• y → 0, which reflects the fact that one of the partons becomes collinear to the jet

direction nµ (at fixed transverse momentum);

2It follows from (A2) that <
(
f(yk, tk)

)
> 0 and that f(yk, tk) is assumed to be independent of the

regulators ε and α.
3The variable pT should not be confused with the total transverse momentum of the emitted partons.
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• b → 0, which implies that the parton with momentum kµ becomes soft (compared

to lµ);

• a → 1 and tkl → 0, which means that the emitted partons become collinear to each

other.

The first limit can in fact be treated in analogy to the limit kT → 0 in the one-emission

case; since pT is the only dimensionful variable in the parametrisation (2.9), we know that

the function ω({k, l}) = ω(pT , a, b, y, tk, tl, tkl) must be linear in pT . Yet, we still have to

control the measurement function in the remaining three limits to make sure that we can

properly extract the associated divergences.

What helps us in this situation is the underlying assumption in the factorisation the-

orem (2.1) that the observable is infrared safe. The one- and two-emission measurement

functions are therefore not independent from each other, and we will derive explicit rela-

tions between them in the limit where one of the partons becomes soft (b → 0) or both

partons merge into a single parton (a → 1 and tkl → 0) below. The last two limits from

the above list are thus, as we say, protected by infrared safety, which means that we are

guaranteed that the measurement function does not vanish in these limits since it must

fall back to the one-emission case (which does not vanish for a generic configuration of the

remaining parton). We therefore only have to consider the limit y → 0 explicitly, which

can be treated similarly to the limit yk → 0 in the one-emission case. Our ansatz for the

correlated double-emission measurement function therefore reads

Mcorr
2 (τ ; k, l) = exp

(
− τ pT yn/2 F (a, b, y, tk, tl, tkl)

)
, (2.10)

where the function F (a, b, y, tk, tl, tkl) is supposed to be finite and non-zero in the limit

y → 0. Interestingly, this is achieved by factorising the same power of the variable y as

in the one-emission case — see (2.8). We explain in appendix A why this is so, and we

address the physical meaning of the parameter n in the next section.4

In order to extract the divergences of the bare soft function, we find it convenient to

map the phase-space integrations onto a unit hypercube in the variables (2.7) and (2.9).

While this can easily be achieved by exploiting the n-n̄ symmetry for one emission, we will

see in the following section that this leads to two independent regions in the two-emission

case, which we label by the letters “A” and “B”. Our formulae therefore depend on two

different versions of the two-emission measurement function, which are defined as

FA(a, b, y, tk, tl, tkl) = F (a, b, y, tk, tl, tkl) ,

FB(a, b, y, tk, tl, tkl) =


F (1/a, b, y, tk, tl, tkl) or

F (a, 1/b, y, tk, tl, tkl) or

y−nF (a, b, 1/y, tk, tl, tkl) .

(2.11)

Further explanations about the origin of these regions and the different representations of

the measurement function in region B can be found in section 3.3.

4We again demand that <
(
F (a, b, y, tk, tl, tkl)

)
> 0 and that F (a, b, y, tk, tl, tkl) is independent of any

regulators as required by assumption (A2).
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Observable n f(yk, tk) F (a, b, y, tk, tl, tkl)

C-parameter 1
1

1 + yk

ab

a(a+ b) + (1 + ab)y
+

a

a+ b+ a(1 + ab)y

Threshold resum. −1 1 + yk 1 + y

pT resum. 0 −2i(1− 2tk) −2i

√
a

(1 + ab)(a+ b)

(
b(1− 2tk) + 1− 2tl

)
Table 2. One- and two-emission measurement functions for the e+e− event shape C-parameter,

threshold and transverse-momentum resummation in Drell-Yan production.

Before we come back to the explicit examples that we discussed towards the end of the

last section, we derive the constraints from infrared safety that we mentioned earlier. To

this end, we write the variables pT and y from (2.9) in terms of yk and kT from (2.7) and

the analogous variables yl and lT for the second emitted parton,

pT =

√
k2
T +

(√
yk
yl

+

√
yl
yk

)
kT lT + l2T , y =

√
ykyl

√
yk kT +

√
yl lT√

yl kT +
√
yk lT

. (2.12)

In the limit in which the parton with momentum kµ becomes soft, i.e. kT → 0, we thus

see that pT → lT and y → yl. Infrared safety then tells us that the value of the observable

should not change under infinitesimally soft emissions,

Mcorr
2 (τ ; k, l)

kµ→0−−−−→M1(τ ; l) , (2.13)

which leads to the relation

F (a, 0, yl, tk, tl, tkl) = f(yl, tl) . (2.14)

We can derive a similar relation between the one- and two-emission measurement functions

in the limit in which the two partons with momenta kµ and lµ become collinear to each

other. In this situation, which implies yk → yl and tk → tl, we see that pT → kT + lT and

y → yl. As the value of the observable should again not change under collinear emissions,

Mcorr
2 (τ ; k, l)

kµ ‖ lµ−−−−→M1(τ ; k + l) , (2.15)

we obtain

F (1, b, yl, tl, tl, 0) = f(yl, tl) . (2.16)

Relations (2.14) and (2.16) follow from the fundamental assumption that the observable

that we factorised in (2.1) must be infrared safe. These relations are thus expected to

hold for all observables we consider, and — as argued before — they guarantee that the

measurement function does not vanish in two of the critical limits that we discussed above.
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Starting from the observable definitions in (2.3)–(2.5), we can now easily derive the

measurement functions for the C-parameter, threshold and transverse-momentum resum-

mation in the phase-space parametrisations that we use in our calculation. The result is

shown in table 2, which illustrates that some observables have a non-trivial rapidity de-

pendence, while others are sensitive to the reference vector ~v⊥ and therefore depend on

the angular variables tk and tl. From these expressions, we can verify that the functions

f(yk, tk) and F (a, b, y, tk, tl, tkl) are finite in the limits yk → 0 and y → 0, respectively, as

this was the basis for extracting the corresponding values of the parameter n. We indeed

see that these values can differ among the observables, and we will learn later that the case

n = 0 always corresponds to a SCET-2 observable. While we have so far introduced this

parameter on purely technical grounds, we will see in the following section that it is related

to the power counting of the momentum modes in the effective theory. Moreover, we can

also easily verify that the constraints from infrared safety, (2.14) and (2.16), are satisfied

for the considered class of observables.

2.3 Interpretation of the parameter n

We saw in the previous section that the parameter n is related to the scaling of the ob-

servable in the soft-collinear limit, and we will indeed see later that it controls the double

logarithmic contributions to the renormalised soft function. We also mentioned that the pa-

rameter n allows us to distinguish between SCET-1 and SCET-2 observables, and we would

like to understand why the values for the C-parameter (n = 1) and threshold resummation

(n = −1) are different, given that both observables are defined within SCET-1.

To this end, we go back to the factorisation theorem (2.1), which emerges in an effective

field theory with hard, collinear, anti-collinear, and soft momentum modes. Denoting the

small expansion parameter in the theory by λ, we associate the following power counting

to the momenta pµ = (n̄ · p, n · p, pµ⊥) with

• pµh = Q(1, 1, 1) (hard)

• pµc = Q(1, λ2p, λp) (collinear)

• pµc̄ = Q(λ2p, 1, λp) (anti-collinear)

• pµs = Q(λ, λ, λ) (soft)

where Q is the large scale in the process, and where we have allowed for a generic scaling

of the collinear momenta that is controlled by a parameter p > 0.

The factorisation theorem (2.1) then tells us that collinear, anti-collinear, and soft

modes contribute to the observable at the same power, i.e. the observable ω({ki}) must

have the same scaling in λ in the three regions.5 We know, however, that the observable

scales as ω({ki}) ∼ λ in the soft region, since it has mass dimension one — see (A3) —

and the power counting in the soft region is directly tied to the mass dimension. This can

easily be verified for the examples in (2.3)–(2.5).

5One is often left with additive observables of the form ω({ki}) = ωc{kci }) +ωc̄({kc̄i }) +ωs({ksi }), which

leads to a multiplicative factorisation theorem in Laplace space.
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Our goal consists in establishing a relation between the parameter n and the power-

counting variable p, and for this purpose it is sufficient to focus on a single emission. In this

case, the parameter n controls the scaling of the observable in the collinear limit yk → 0

in the soft region. In the collinear region, on the other hand, we can exploit the hierarchy

between the light-cone components, k− � k+, to express the observable in the form

ω({k}) = ks+ k
(1−s)
− fc(zk, tk) , (2.17)

where the function fc(zk, tk) encodes an arbitrary dependence on the splitting variable

zk = k−/Q and the angular variable tk = (1 − cos θk)/2, and we have furthermore used

that the observable has mass dimension one. The parameter s then varies among the

observables, and we find s = 1 for the C-parameter, s = 0 for threshold and s = 1/2 for

transverse-momentum resummation.

We argued before that the observable must scale as λ in the collinear region as well,

and since k− ∼ 1 and k+ ∼ λ2p for collinear momenta, we obtain s = 1/(2p). We can

extract further information if we express (2.17) in terms of the variables from (2.7) and if

we consider the soft limit zk → 0,

ω({k}) =
(√
yk kT

)s( kT√
yk

)(1−s)
fc(0, tk) = kT y

s−1/2
k fc(0, tk) , (2.18)

which must match the expression in (2.8) in the collinear limit yk → 0. In particular,

we see that the parameter s controls the scaling of the observable with the rapidity-like

variable yk, which brings us to the desired relation,

n = 2s− 1 =
1

p
− 1 . (2.19)

We thus see that the parameter n is directly related to the power counting of the modes in

the effective theory via pµc = Q(1, λ2p, λp), when the soft scaling is fixed to pµs = Q(λ, λ, λ).

For the C-parameter, for instance, the collinear modes scale as pµc = Q(1, λ,
√
λ) [45],

which implies that p = 1/2 and hence n = 1, which is in line with what we have found in

table 2. For transverse-momentum resummation, on the other hand, the relevant soft and

collinear modes have the same virtuality, and so p = 1 which translates into n = 0 for a

SCET-2 observable. However, the third example from our list appears to be peculiar, since

n = −1 requires that p → ∞, and the relevant collinear modes should therefore scale as

pµc = Q(1, λ2p, λp)→ Q(1, 0, 0). We recall, though, that the collinear functions for threshold

resummation are the standard parton distribution functions, and the power counting of

the collinear modes is therefore not related to the threshold parameter λ = 1 − M2/ŝ,

but rather to the non-perturbative scale ΛQCD in this case. In other words, the relevant

collinear modes scale as pµc = Q(1, ε2, ε) with ε = ΛQCD/Q for this observable, and since

ε� λ this is indeed consistent with pµc → Q(1, 0, 0).

3 Calculation of the bare soft function

The definition (1.1) of what we call a generic dijet soft function depends on a measurement

function M(τ ; {ki}), whose explicit form we discussed extensively in the previous section,
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as well as a matrix element of soft Wilson lines. The Wilson line associated e.g. with an

incoming quark that travels in the nµ direction is defined as

Sn(x) = P exp

(
igs

∫ 0

−∞
ds n ·As(x+ sn)

)
, (3.1)

where P is the path-ordering symbol, Aµs (x) = Aµ,As (x)TA is the soft gluon field and TA

are the generators of SU(3) in the fundamental representation. The Wilson line associated

with an outgoing quark has a similar representation, except that the integration now runs

from 0 to +∞. This subtle difference leads to the opposite sign in the iε-prescription of

the associated eikonal propagators, which — to the considered order in the perturbative

expansion — is only relevant for the NNLO real-virtual interference. However, as we will

see later, it turns out that the corresponding squared matrix element does not depend on

the sign of this prescription, and our formulae therefore equally apply to soft functions with

incoming and outgoing light-like directions. The Wilson lines associated with anti-quarks,

moreover, are anti-path-ordered and their definition can be found e.g. in [49].

At leading order in the perturbative expansion, the soft matrix element in the def-

inition (1.1) is trivial. Together with the form (2.6) of the zero-emission measurement

function, this implies that the soft function is normalised to one at leading order. At

higher orders, the bare soft function is subject to various divergences, which we control by

a dimensional regulator ε = (4 − d)/2 and a rapidity regulator α that is needed only for

SCET-2 observables. The latter is introduced on the level of the phase-space integrals as∫
ddp

(
ν

n · p+ n̄ · p

)α
δ(p2)θ(p0) , (3.2)

which is in the spirit of [32], except that our version respects the n-n̄ symmetry that we

assume on the level of the observable, see (A4). In this regularisation, the purely virtual

corrections are scaleless and vanish at every order in perturbation theory. We are thus left

with a single real-emission contribution at NLO, and with mixed real-virtual and double

real-emission corrections at NNLO. The bare soft function can hence be written in the

generic form

S0(τ, ν) = 1 +

(
Zααs

4π

)
(µ2τ̄2)ε (ντ̄)α SR(ε, α)

+

(
Zααs

4π

)2

(µ2τ̄2)2ε

{
(ντ̄)α SRV (ε, α) + (ντ̄)2α SRR(ε, α)

}
+O(α3

s) , (3.3)

where αs is the renormalised strong coupling constant in the MS scheme, which is related

to the bare coupling α0
s via Zααs µ

2ε = e−εγE (4π)εα0
s with Zα = 1 − β0αs/(4πε) and

β0 = 11/3CA − 4/3TFnf . We furthermore introduced the rescaled variable τ̄ = τeγE for

convenience.

In the following we in turn address the computation of the single real-emission correc-

tion SR(ε, α), the mixed real-virtual interference SRV (ε, α), and the double real-emission

contribution SRR(ε, α) for a generic dijet soft function.

– 14 –



J
H
E
P
0
7
(
2
0
1
9
)
1
0
1

Figure 1. Diagrams that contribute to the NLO calculation of dijet soft functions.

3.1 Single real emission

In the normalisation (3.3), the single real-emission correction takes the form

SR(ε, α) =
(4πeγEτ2)−ε τ̄−α

(2π)d−1

∫
ddk δ(k2) θ(k0)

|AR(k)|2

(n · k + n̄ · k)α
M1(τ ; k) , (3.4)

where |AR(k)|2 denotes the corresponding soft matrix element and M1(τ ; k) is the one-

emission measurement function. At NLO the matrix element receives contributions from

the four cut diagrams in figure 1, where the double lines represent eikonal propagators

associated with the nµ and n̄µ Wilson lines. We find that the first two diagrams yield

equal contributions, while the latter two vanish because they are proportional to n2 = 0 or

n̄2 = 0. The NLO squared matrix element is then given by

|AR(k)|2 =
64π2CF
n · k n̄ · k

, (3.5)

where we suppressed the iε-prescription of the eikonal propagators since it is irrelevant at

this order.

We next decompose the gluon momentum in terms of light-cone coordinates

kµ = k−
nµ

2
+ k+

n̄µ

2
+ kµ⊥ , (3.6)

with k− = n̄ · k, k+ = n · k, and n · k⊥ = n̄ · k⊥ = 0, along with k2
⊥ = −~k2

⊥. As the

one-emission measurement function only depends on one angle in the (d− 2)-dimensional

transverse space, see (A6), the phase-space measure can be simplified as∫
ddk δ(k2) θ(k0) (3.7)

=
π1/2−ε

Γ(1/2− ε)

∫ ∞
0
d|~k⊥| dk+ dk− |~k⊥|1−2ε δ(k+k− − |~k⊥|2)

∫ 1

−1
d cos θk sin−1−2ε θk ,

where θk = ^(~v⊥, ~k⊥) is measured with respect to the external reference vector vµ. We

switch to the parametrisation (2.7) and use the explicit form (2.8) of the one-emission

measurement function to obtain

SR(ε, α) =
8CF e

−γE(ε+α)

√
π

τ−2ε−α

Γ(1/2− ε)

∫ ∞
0
dkT k

−1−2ε−α
T

∫ ∞
0
dyk

y
−1+α/2
k

(1 + yk)α

×
∫ 1

0
dtk (4tk t̄k)

−1/2−ε exp
(
− τ kT yn/2k f(yk, tk)

)
(3.8)
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with t̄k = 1− tk. As the kT -dependence is universal among the considered class of observ-

ables, this integration can also be performed explicitly. We further use the n-n̄ symmetry

of the observable, which implies yk → 1/yk in the given parametrisation, to map the yk-

integration over the interval [1,∞] to an integral over [0, 1]. We then arrive at the following

master formula for the computation of the single real-emission correction:

SR(ε, α) =
16CF e

−γE(ε+α)

√
π

Γ(−2ε− α)

Γ(1/2− ε)

∫ 1

0
dyk

y
−1+nε+(n+1)α/2
k

(1 + yk)α

×
∫ 1

0
dtk (4tk t̄k)

−1/2−ε f(yk, tk)
2ε+α , (3.9)

which is valid for arbitrary dijet soft functions that fall into the considered class of observ-

ables and which are characterised by the parameter n and the function f(yk, tk).

Upon expanding in the regulators α and ε, the result exposes divergences, whose origin

can be more clearly identified in (3.8). First, there is a soft singularity that arises in the

limit kT → 0 and gives rise to the factor Γ(−2ε − α). Second, the yk-integral in (3.8)

diverges in the collinear limits yk → 0 and yk →∞, i.e. when the gluon is emitted into the

nµ or n̄µ directions. Due to the n-n̄ symmetry, we can focus on one of these limits, and

from (3.9) we finally read off that the collinear divergence is not regularised in dimensional

regularisation for n = 0, which is precisely the SCET-2 case we identified in section 2.3.

For n 6= 0, on the other hand, the rapidity regulator α can be set to zero, and the

expansion of the SCET-1 soft function starts with a 1/ε2 pole, whose coefficient is controlled

by the parameter n. This can be seen explicitly if we rewrite the divergent rapidity factor

in terms of distributions according to

y−1+nε
k =

δ(yk)

nε
+

[
1

yk

]
+

+ nε

[
ln yk
yk

]
+

+ . . . (3.10)

As the function f(yk, tk) is by construction finite and non-zero in the limit yk → 0, the

remaining integrations in the expansion of (3.9) are well-defined and suited for a numerical

integration. We in fact already presented the SCET-1 NLO master formula in [42], and

an earlier derivation along similar lines — although less general — was given in [45]. A

similar NLO formula, valid also for non-back-to-back configurations, was presented in [50].

For SCET-2 soft functions with n = 0, it is evident from (3.9) that the yk-integration

produces a 1/α pole. It is in this case important that the α-expansion is performed before

the ε-expansion, since the α-regulator is supposed to regularise rapidity divergences only.

The expansion of the factor Γ(−2ε−α) therefore generates 1/ε and α/ε2 terms, which yield

1/(αε) and 1/ε2 poles on the level of the bare SCET-2 soft function, whose coefficients are

related since they descend from the same Gamma function.

3.2 Real-virtual interference

The mixed real-virtual contribution is structurally identical to the single real-emission term.

We now start from

SRV (ε, α) =
(4πeγEτ2)−ε τ̄−α

(2π)d−1

∫
ddk δ(k2) θ(k0)

|ARV (k)|2

(n · k + n̄ · k)α
M1(τ ; k) , (3.11)
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Figure 2. Diagrams that contribute to the NNLO calculation of dijet soft functions. The first

diagram represents the mixed real-virtual contribution, and the other diagrams contribute to the

double real-emission correction. The shaded circle in the last two diagrams represents the one-loop

gluon self-energy corrections.

where the only difference is the soft matrix element |ARV (k)|2, which can be calculated

from the first diagram in figure 2. Interestingly, the one-loop correction now depends on

the iε-prescription of the eikonal propagators on the amplitude level, but this dependence

drops out in the interference with the Born diagram (see also [51, 52]). One finds

|ARV (k)|2 = − 64π4CACF e
−γEε τ−2ε

(n · k)1+ε (n̄ · k)1+ε

Γ(−ε) cot(πε)

Γ(−2ε) sin(πε)
, (3.12)

which again resembles the NLO matrix element (3.5), except that its expansion now starts

with a 1/ε2 pole, which is to be multiplied with the 1/(αε) and 1/ε2 poles of the subsequent

phase-space integrations. The very fact that the matrix element (3.12) does not depend

on the rapidity regulator α — which is implemented only on the level of the phase-space

integrals in (3.11) — is a key advantage of the regularisation prescription from [32].

The subsequent calculation then follows along the same lines outlined in the previous

section, and the master formula for the computation of the real-virtual interference becomes

SRV (ε, α) = −16CACF e
−γE(2ε+α) π3/2 Γ(−ε) Γ(−4ε− α) cot(πε)

Γ(−2ε) Γ(1/2− ε) sin(πε)

×
∫ 1

0
dyk

y
−1+2nε+(n+1)α/2
k

(1 + yk)α

∫ 1

0
dtk (4tk t̄k)

−1/2−ε f(yk, tk)
4ε+α , (3.13)

which we again already presented in the SCET-1 case in [42].

3.3 Double real emissions

For the double real-emission contribution, we start from

SRR(ε, α) =
(4πeγEτ2)−2ε τ̄−2α

(2π)2d−2

∫
ddk δ(k2) θ(k0)

∫
ddl δ(l2) θ(l0)

× |ARR(k, l)|2

(n · k + n̄ · k)α (n · l + n̄ · l)α
M2(τ ; k, l) , (3.14)
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where M2(τ ; k, l) is the two-emission measurement function. The respective soft matrix

element now follows from the two-particle cut diagrams in figure 2, which give rise to three

colour structures — C2
F , CFCA and CFTFnf — of which the latter two are covered in this

paper. The corresponding squared matrix elements are given by

|A(nf )
RR (k, l)|2 = 2048π4CFTFnf

2k · l (k− + l−) (k+ + l+)− (k−l+ − k+l−)2

(k− + l−)2 (k+ + l+)2 (2k · l)2
, (3.15)

|A(CA)
RR (k, l)|2 = 512π4CFCA

{
k2
−l+(2k+ + l+) + 2k−l−(k2

+ − k+l+ + l2+) + k+l
2
−(k+ + 2l+)

k−k+l−l+(k− + l−)(k+ + l+)(2k · l)

− k−(2k+ + l+) + l−(k+ + 2l+)

k−k+l−l+(k− + l−)(k+ + l+)
+

2(1− ε)(k+l− − l+k−)2

(k− + l−)2(k+ + l+)2(2k · l)2

}
,

where we again suppressed the iε-prescription of the propagators since it is irrelevant for

the subsequent calculation. In comparison to (3.5) and (3.12), we observe that the singular-

ity structure of the double real-emission contribution is much more complicated, and that

it gives rise to overlapping divergences that are encoded e.g. in (k− + l−). The propagator

2k · l = k−l+ + k+l− − 2|~k⊥| |~l⊥| cos θkl, moreover, depends on the angle θkl between the

two emissions in the transverse plane. Nevertheless, our basic strategy for the evaluation

of the double real-emission correction is the same as before: we switch to the parametrisa-

tion (2.9), use the explicit form (2.10) of the two-emission measurement function, perform

the observable-independent integrations and use symmetry arguments to map the integra-

tion domain onto a unit hypercube. However, the last two steps require us to find a suitable

parametrisation for the angular integrations and to understand the implications of the n-n̄

and k-l symmetries, which we will address in the next two sections, before we present the

master formula for the computation of the double real-emission contribution.

3.3.1 Angular parametrisation

According to assumption (A6), the two-emission measurement function in general depends

on three angles, θk = ^(~v⊥, ~k⊥), θl = ^(~v⊥,~l⊥), and θkl = ^(~k⊥,~l⊥), and we would like

to perform the integration over the remaining angles in the (d− 2)-dimensional transverse

space explicitly. This is similar in spirit to (3.7), where we retained the dependence on θk,

the only angle that arises in the one-emission measurement function.

To do so, we parametrise the vectors in the transverse space as

~l⊥ = |~l⊥|
(
1, 0, 0, . . . , 0

)
,

~k⊥ = |~k⊥|
(

cos θkl, sin θkl, 0, . . . , 0
)
,

~v⊥ = |~v⊥|
(

cos θl, sin θl cos θ5, sin θl sin θ5, 0, . . . , 0
)
, (3.16)

which is illustrated in figure 3 (for convenience we show unit vectors k̂⊥, l̂⊥, and v̂⊥ that

point into the ~k⊥, ~l⊥, and ~v⊥ directions, respectively). In this parametrisation, the angular
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v̂⊥

l̂⊥

θ5

θkl
θl

Figure 3. The angular parametrisation of the transverse space.

part of the phase-space measure becomes∫
dΩ

(k)
d−2 dΩ

(l)
d−2 =

4π1/2−2ε

Γ(−ε) Γ(1/2− ε)

∫ 1

−1
d cos θkl

∫ 1

−1
d cos θl

∫ 1

−1
d cos θ5

× sin−1−2ε θkl sin−1−2ε θl sin−2−2ε θ5 . (3.17)

We thus have singled out a three-dimensional subspace spanned by the angles {θkl, θl, θ5},
in which the angle θk is given by

cos θk = cos θkl cos θl + sin θkl sin θl cos θ5 . (3.18)

This choice is of course arbitrary, but it is convenient since the matrix element depends on

the angle θkl through the propagator 2k ·l. In order to resolve the corresponding divergence,

we want to keep the expression of said propagator simple, and θkl should therefore be one

of the integration variables. The angles θk and θl, on the other hand, only enter the

calculation through the measurement function, which at the end of the day represents a

weight factor for the numerical integrations. We therefore do not mind that the analytic

expression of the measurement function becomes complicated once we express θk in terms

of the integration variables through (3.18).

We next map the integration domain onto the unit hypercube by substituting as usual

cos θi = 1− 2ti for i ∈ {k, l, kl, 5}. In terms of t̄i = 1− ti, we then have

tk = tl + tkl − 2tltkl − 2
√
tl t̄ltkl t̄kl (1− 2t5) , (3.19)

and we arrive at∫
dΩ

(k)
d−2 dΩ

(l)
d−2 =

32π1/2−2ε

Γ(−ε) Γ(1/2− ε)

∫ 1

0
dtkl

∫ 1

0
dtl

∫ 1

0
dt5

× (4tkl t̄kl)
−1/2−ε (4tl t̄l)

−1/2−ε (4t5t̄5)−1−ε , (3.20)

which is almost the final expression, except that the t5-integration suffers from spurious

divergences that arise in the limits t5 → 0 and t5 → 1. These divergences are clearly
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unphysical, and they indeed cancel once they are combined with the prefactor 1/Γ(−ε).
They simply arise because we are resolving more angles than exist in four space-time

dimensions.

Yet the t5-divergences forbid a naive ε-expansion on the integrand level, and we must

therefore treat them in our formalism as if they were regular divergences. To this end, we

first disentangle the two divergences by splitting the integration domain at t5 = 1/2, and

we subsequently rescale the two contributions as t5 → t′5/2 and t5 → 1− t′5/2, respectively.

This yields for both cases∫
dΩ

(k)
d−2 dΩ

(l)
d−2 →

16π1/2−2ε

Γ(−ε) Γ(1/2− ε)

∫ 1

0
dtkl

∫ 1

0
dtl

∫ 1

0
dt′5

×
(
4tkl t̄kl

)−1/2−ε (
4tl t̄l

)−1/2−ε (
t′5(2− t′5)

)−1−ε
, (3.21)

where we now have to pay attention that we integrate over two copies of the actual inte-

grand, one with the substitution t5 → t′5/2 and the second one with t5 → 1 − t′5/2. But

the integrand only depends implicitly on the variable t5 through relation (3.19), and we

therefore simply have to sum over two contributions in which the angle θk, and hence the

variable tk = (1− cos θk)/2, is resolved as6

t±k = tl + tkl − 2tltkl ± 2
√
tl t̄ltkl t̄kl (1− t′5) . (3.22)

3.3.2 Symmetry considerations

We find it convenient to further map the entire integration domain onto the unit hy-

percube, and one can see in (3.21) that this has already been achieved for the angular

integrations. We therefore only have to consider remappings that involve the remaining

variables {pT , y, a, b} in the parametrisation (2.9), which are a priori all defined on the

interval [0,∞].

The idea is again similar in spirit to what we have seen in the single-emission case.

There we arrived at the representation (3.8), in which the integration over the variables

kT and yk both run from 0 to ∞. After performing the integration over kT analytically,

we used the n-n̄ symmetry to map the yk-integration onto the unit interval. In the present

case, the pT -integration can similarly be performed analytically since the pT -dependence is

universal among the considered class of dijet soft functions — see (2.10). We then split the

integrations over y, a and b at the value one, and substitute y → 1/y, a→ 1/a, and b→ 1/b

to map the [1,∞] intervals onto [0, 1]. Explicitly, this leads to eight different contributions∫ ∞
0
da

∫ ∞
0
db

∫ ∞
0
dy I(a, b, y)

=

∫ 1

0
da

∫ 1

0
db

∫ 1

0
dy

{
I(a, b, y) + I(1/a, b, y) + I(a, 1/b, y) + I(1/a, 1/b, y)

+ I(a, b, 1/y) + I(1/a, b, 1/y) + I(a, 1/b, 1/y) + I(1/a, 1/b, 1/y)
}
, (3.23)

6Notice that this definition of t±k differs from the one we used in [40].
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where I(a, b, y) symbolically represents the integrand (after pT -integration), which

implicitly depends on the angular variables tkl, tl, and t′5 that we introduced in the previ-

ous section. Our goal thus consists in exploiting the symmetries under n ↔ n̄ and k ↔ l

exchange to reduce the number of independent integrations.

We first consider the n-n̄ symmetry, which is satisfied on the level of the observable

because of (A4), and which is also respected by the form (3.2) that we use for the rapidity

regulator. It is easy to see that under n↔ n̄ exchange

a→ 1

a
, b→ b , y → 1

y
, tk → tk , tl → tl , tkl → tkl . (3.24)

Obviously, the measurement cannot distinguish between the two emitted partons, and the

integrand is therefore also symmetric under k ↔ l exchange, which implies

a→ 1

a
, b→ 1

b
, y → y , tk → tl , tl → tk , tkl → tkl . (3.25)

In order to illustrate how we can make use of these symmetry considerations, let us

for the moment focus on observables which do not depend on the angles θk and θl. As the

matrix element (3.15) does not depend on these angles either, the integrand in (3.23) is

of the form I(a, b, y, tkl).
7 We can then exploit the n-n̄ and k-l symmetries to reduce the

integration to two regions with∫ ∞
0
da

∫ ∞
0
db

∫ ∞
0
dy I(a, b, y, tkl)

= 4

∫ 1

0
da

∫ 1

0
db

∫ 1

0
dy

{
I(a, b, y, tkl) + I(1/a, b, y, tkl)

}
, (3.26)

where the form of the second term is not unique, as we show now. This reduction is

illustrated in figure 4, where the effect of the symmetry transformations is shown for

selected regions of the integration domain in figures (a) and (b). If plotted as eight stacked

cubes in the three-dimensional {a, b, y}-space, the two symmetries ultimately enforce that

the result of the integration in each of the four cubes marked in blue in figure (c) is the

same. The eight cubes thus fall into two groups of four each, and the integration reduces to

the form shown in (3.26), where the first term corresponds to the blue cube that is marked

with dashes in figure (c). The second term, on the other hand, represents one of the three

white cubes adjacent to this cube, and we see that it can be recovered by inverting one of

the variables a, b, or y, each corresponding to one of the adjacent white cubes.

Up to this point we have assumed that the measurement function does not depend on

the angles θk and θl. In the general case, the preceding discussion still caries through, except

that the k-l symmetry now also exchanges the angles θk and θl. We may therefore expect

that we end up with four different regions in this case, since the symmetry transformation

in figure (b) exchanges the role of the angular integrations. We are, however, always free to

rename θk ↔ θl in the transformed regions, which brings us back to (3.26). We should also

point out that the symmetry considerations shall be exploited on the level of the full solid

7Recall that I(a, b, y) is a short-hand notation for I(a, b, y, tkl, tl, t
′
5) in (3.23).
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1
∞1

∞ 1

∞

0

a

b

y

(a) n ↔ n̄ exchange

1
∞1

∞ 1

∞

0

a

b

y

(b) k ↔ l exchange

1
∞1

∞ 1

∞

0

a

b

y

(c) Reduced integration region

Figure 4. Cubes of the same colour in (a) and (b) will yield the same result in the integration

because of the stated symmetries. Concatenating these symmetries then allows the reduction of the

integration domain to two unit cubes, one of which is highlighted in (c), whereas the second one

emerges from it by inversion of one of the variables a, b, or y.

angle measure dΩ
(k)
d−2 dΩ

(l)
d−2, i.e. before we choose which angle will be expressed through

the integration variables (see the discussion in the previous section). In our setup, we

essentially define the angle θk as the one we want to express in terms of the integration

variables via (3.22).

In conclusion we find that the integration domain in the variables a, b, and y can be

mapped onto the unit hypercube, and in doing so we obtain two contributions which we

denote by the letters “A” and “B”. Region A corresponds to the blue cube in figure 4(c)

that is highlighted by the dashed lines, and the corresponding integrand in (3.26) is just the

original integrand I(a, b, y, tkl, tl, t′5). Region B refers to any of the adjacent white cubes in

figure 4(c), which can also be mapped onto the unit hypercube by inverting either of the

variables a, b, or y.

3.3.3 Master formula

We have now assembled all ingredients necessary to derive the master formula for the

double real-emission correction. Starting from the representation (3.14), we first introduce

light-cone coordinates and switch to the parametrisation (2.9). After inserting the explicit

form (2.10) of the two-emission measurement function, we may then perform the integration

over the dimensionful variable pT explicitly. We further use the symmetry arguments

that we discussed in the previous section to map the integration domain onto the unit

hypercube, and we resolve the angular phase-space measure as described in section 3.3.1.

We then obtain

S
(X)
RR (ε, α) = − 2C(X) e−2γE(ε+α) Γ(−4ε− 2α)

π3/2 Γ(−ε) Γ(1/2− ε)

∫ 1

0
da

∫ 1

0
db

∫ 1

0
dy

∫ 1

0
dtkl

∫ 1

0
dtl

∫ 1

0
dt′5

× a−2ε b−2ε−α y−1+2nε+(n+1)α (a+ b)2ε+2α (1 + ab)2ε+2α(
a+ b+ a(1 + ab)y

)α (
a(a+ b) + (1 + ab)y

)α k(X)(a, b, tkl)

×
(
4tkl t̄kl

)−1/2−ε (
4tl t̄l

)−1/2−ε (
t′5(2− t′5)

)−1−ε

×
{
FA(a, b, y, t

+
k , tl, tkl)

4ε+2α + FB(a, b, y, t
+
k , tl, tkl)

4ε+2α + (t+k → t−k )
}
,

(3.27)
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with t±k from (3.22) and the colour factor is given by C(nf ) = CFTFnf or C(CA) = CFCA.

The integration kernels read

k(nf )(a, b, tkl) =
128a

(a+ b)2(1 + ab)2

{
b(1− a2)2

[(1− a)2 + 4atkl]2
− (a+ b)(1 + ab)

(1− a)2 + 4atkl

}
, (3.28)

k(CA)(a, b, tkl) = − 32

ab(a+ b)2(1 + ab)2

{
2(1− ε)a2b2(1− a2)2

[(1− a)2 + 4atkl]2
− (a+ b)(1 + ab)

×
[
b(1 + a2) + 2a(1 + b2)− b(1− a2)2 + 2a(1 + a2)(1 + b2)

(1− a)2 + 4atkl

]}
.

As explained in the previous section, the master formula of the double real-emission cor-

rection consists of two contributions with measurement function

FA(a, b, y, tk, tl, tkl) = F (a, b, y, tk, tl, tkl) (3.29)

in region A, whereas the one in region B is obtained by inverting either of the variables a,

b, or y with

FB(a, b, y, tk, tl, tkl) =


F (1/a, b, y, tk, tl, tkl) or

F (a, 1/b, y, tk, tl, tkl) or

y−nF (a, b, 1/y, tk, tl, tkl) .

(3.30)

We stress that the three representations of this function need not be identical, since the

symmetry arguments only guarantee that their integrals in (3.27) are equal, but not nec-

essarily the integrands. One is therefore free to derive the measurement function in region

B using any of the expressions on the right-hand side of (3.30).

From (3.27) we can analyse the divergence structure of the double real-emission correc-

tion. First, we find an explicit divergence that is encoded in the factor Γ(−4ε− 2α), which

is associated with the limit pT → 0, i.e. the configuration where both emitted partons be-

come soft. Second, we observe that the y-integral diverges in the limit y → 0, which reflects

the fact that one of the partons becomes collinear to the jet direction nµ. Similar to the

single-emission case, this divergence yields a 1/α pole for SCET-2 observables with n = 0.

Third, we identify an overlapping divergence in the limit in which the two emitted partons

become collinear to each other, i.e. a → 1 and tkl → 0. Fourth, the CFCA contribution

displays an additional divergence in the limit b → 0, which implies that the parton with

momentum kµ becomes soft (due to the k-l symmetry, the configuration with lµ → 0 is

mapped onto the same constraint). Finally, we observe that the expression diverges in the

limit t′5 → 0, which is an unphysical divergence that is cancelled by the prefactor 1/Γ(−ε).
For n 6= 0, the expansion of the CFTFnf structure thus starts with a 1/ε3 divergence,

whereas the CFCA term has a 1/ε4 pole because of the additional b→ 0 singularity. Except

for the overlapping divergence, the singularities are in fact already factorised and can easily

be isolated using an expansion in terms of plus-distributions in analogy to (3.10). As we

explained in detail in section 2.2, the functions FA/B(a, b, y, tk, tl, tkl) are by construction
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finite and non-zero in the singular limits,8 and the remaining integrations are therefore

well-defined upon an expansion in the dimensional regulator ε. For SCET-2 soft functions

with n = 0, on the other hand, the y-integration generates a 1/α pole which leads to

additional 1/(αε2) divergences for the CFTFnf and 1/(αε3) divergences for the CFCA
colour structures.

In order to isolate the overlapping divergence, one could apply a standard sector de-

composition strategy [53], but we prefer to resolve it by means of an additional substitution,

a = 1− u(1− v) , tkl =
u2v

1− u(1− v)
. (3.31)

This change of variables matches a unit hypercube in the variables (a, tkl) onto another

unit hypercube in the new variables (u, v), and it maps the overlapping divergence that

arises in the limit a → 1 and tkl → 0 onto the line u → 0. The critical propagator then

takes a particularly simple form

1

(1− a)2 + 4atkl
=

1

u2(1 + v)2
(3.32)

and it turns out that the singularity from the limit u→ 0 is completely factorised, at the

expense of increasing the complexity of the integrand. This is, however, a minor price to

pay since the integrations are eventually performed numerically, and the above substitution

does not worsen the convergence of the numerical integrations (see section 6 for further

refinements we implement to improve the numerical convergence).

4 Renormalisation

While the main objective of our work is the computation of bare dijet soft functions,

we also extract the anomalous dimensions and matching corrections that are needed for

resummations within SCET. This requires us to make some additional assumptions about

the structure of the underlying RG equations. For many observables — including all

examples that we discuss in section 7 — the soft function renormalises multiplicatively in

Laplace (or Fourier) space. We therefore focus on this particular class of observables in this

section, leaving other soft functions that renormalise directly in momentum (or cumulant)

space — like certain jet-veto observables — for a future study [27].

4.1 SCET-1 observables

For SCET-1 observables with n 6= 0, we can set the additional regulator α = 0, and the

expansion of the bare soft function takes the generic form

S0(τ) = 1 +

(
Zααs

4π

)
(µ2τ̄2)ε

{
x2

ε2
+
x1

ε
+ x0 + x−1 ε+ x−2 ε

2 +O(ε3)

}
+

(
Zααs

4π

)2

(µ2τ̄2)2ε

{
y4

ε4
+
y3

ε3
+
y2

ε2
+
y1

ε
+ y0 +O(ε)

}
+O(α3

s) , (4.1)

8We note that the limit t′5 → 0 is indirectly protected by infrared safety, which can be seen as follows.

The two-emission measurement function reduces to the one-emission function in the limit b→ 0 — see (2.14)

— and it is therefore finite and independent of the angle θ5 in this limit. If, for finite values of b, the limit

t′5 → 0 were to cause the observable to vanish or diverge, it would mean that the combined limit t′5 → 0 and

b→ 0 was discontinuous. This is, however, not allowed because it would enable us to infer the presence of

an infinitesimally soft second emission.
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where xi and yi are the NLO and NNLO coefficients at order 1/εi, respectively. The former

are obtained by expanding the master formula (3.9) of the single real-emission contribution,

while the latter are given by the sum of the real-virtual interference (3.13) and the double

real-emission correction (3.27). It should be understood that the coefficients carry colour

factors; these are given by CF in the case of the xi, while the yi are sums of three different

numbers multiplying the colour factors C2
F , CFTFnf , and CFCA. The correlated emission

formulae provided in this paper yield the CFTFnf and CFCA contributions, whereas the

calculation of the C2
F correction is not covered in this work. For soft functions that obey

the NAE theorem, this contribution is however proportional to the square of the one-

loop correction and our results in section 7 are therefore complete for this particular class

of observables.

We now assume that the soft function renormalises multiplicatively in Laplace space,

S = ZSS0, and that the renormalised soft function fulfils the RGE

d

d lnµ
S(τ, µ) = − 1

n

[
4 Γcusp(αs) ln(µτ̄)− 2γS(αs)

]
S(τ, µ) , (4.2)

where Γcusp(αs) is the cusp anomalous dimension and γS(αs) denotes the (non-cusp) soft

anomalous dimension. The parameter n 6= 0 in the RGE is related to the power counting

of the modes in the effective theory, as we explained in detail in section 2.3. We find it

convenient to define the non-cusp anomalous dimensions with a prefactor 2/n, similar to

the conventions we used in [40]. Expanding the anomalous dimensions as

Γcusp(αs) =

∞∑
m=0

(αs
4π

)m+1
Γm , γS(αs) =

∞∑
m=0

(αs
4π

)m+1
γSm , (4.3)

and using Zα = 1− β0αs/(4πε) +O(α2
s), one can show that the RGE is solved to two-loop

order by

S(τ, µ) = 1 +
(αs

4π

){
−2Γ0

n
L2 +

2γS0
n

L+ cS1

}
+
(αs

4π

)2
{

2Γ2
0

n2
L4 − 4Γ0

(
γS0
n2

+
β0

3n

)
L3

− 2

(
Γ1

n
− (γS0 )2

n2
− β0γ

S
0

n
+

Γ0c
S
1

n

)
L2 + 2

(
γS1
n

+
γS0 c

S
1

n
+ β0c

S
1

)
L+ cS2

}
(4.4)

with L = ln(µτ̄). The Z-factor ZS satisfies the same RGE (4.2), and its explicit solution

to two-loop order is given by

ZS = 1 +
(αs

4π

)[Γ0

n

1

ε2
+

2Γ0L−γS0
n

1

ε

]
+
(αs

4π

)2
[

Γ2
0

2n2

1

ε4
+ Γ0

(
2Γ0

n2
L− γS0

n2
− 3β0

4n

)
1

ε3

+

(
2Γ2

0

n2
L2 − Γ0

(2γS0
n2

+
β0

n

)
L+

Γ1

4n
+

(γS0 )2

2n2
+
β0γ

S
0

2n

)
1

ε2
+

2Γ1L− γS1
2n

1

ε

]
. (4.5)

The universal expansion coefficients appearing in (4.4) and (4.5) read

Γ0 = 4CF , Γ1 = 4CF

{(
67

9
− π2

3

)
CA −

20

9
TFnf

}
, β0 =

11

3
CA −

4

3
TFnf . (4.6)
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Equipped with this knowledge, we can extract the non-cusp soft anomalous dimension

directly from the 1/ε coefficients of the bare soft function using the relations

γS0 = nx1 ,

γS1 = 2n
(
y1 − x2 x−1 − x0 (x1 + β0)

)
, (4.7)

while the non-logarithmic coefficients of the renormalised soft function follow from the

finite terms via

cS1 = x0 ,

cS2 = y0 − (x1 + β0)x−1 − x2 x−2 . (4.8)

A strong check of our calculation is provided by the requirement that the higher poles 1/εj

with j = 2, 3, 4 must vanish in the product of the Z-factor and the bare soft function.

As pointed out above, the yi contain a two-loop contribution proportional to C2
F that

is not provided by the calculations presented in this paper. While the formulae in this

section are valid for generic observables, we have consistently dropped all C2
F terms in our

analysis (the missing contribution will be addressed in a future publication [27]).

4.2 SCET-2 observables

The SCET-2 case is slightly more complicated, owing to the double expansion in the

regulators α and ε. Starting from (3.3), the expansion of a bare SCET-2 soft function

takes the generic form

S0(τ, ν) = 1 +

(
Zααs

4π

)
(µ2τ̄2)ε (ντ̄)α

[
1

α

(
x1

1

ε
+ x1

0 + x1
−1 ε+ x1

−2 ε
2

)
(4.9)

+
x0

2

ε2
+
x0

1

ε
+ x0

0 + x0
−1 ε+ α

(
x−1

3

ε3
+
x−1

2

ε2
+
x−1

1

ε
+ x−1

0

)
+O

(ε3
α
, ε2, αε, α2

)]
+

(
Zααs

4π

)2

(µ2τ̄2)2ε

[
(ντ̄)2α

[
1

α2

(
y2

2

ε2
+
y2

1

ε
+ y2

0

)
+

1

α

(
y1

3

ε3
+
y1

2

ε2
+
y1

1

ε
+ y1

0

)
+
y0

4

ε4
+
y0

3

ε3
+
y0

2

ε2
+
y0

1

ε
+ y0

0 +O
( ε

α2
,
ε

α
, ε, α

)]
+ (ντ̄)α

[
1

α

(
z1

3

ε3
+
z1

2

ε2
+
z1

1

ε
+ z1

0

)
+
z0

4

ε4
+
z0

3

ε3
+
z0

2

ε2
+
z0

1

ε
+ z0

0 +O
( ε
α
, ε, α

)]]
,

where xij , y
i
j , and zij label the 1/(αiεj) coefficients of the single real-emission, double real-

emission, and real-virtual interference term, respectively. We recall that the rapidity regu-

lator is implemented on the level of the phase-space integrals, which explains the different

powers of (ντ̄) in the NNLO correction. The coefficients again carry colour factors given

by CF for the xij , CFCA for the zij , and with yij containing three contributions proportional

to C2
F , CFTFnf , and CFCA, of which the latter two are covered in this paper. The C2

F

contribution is, on the other hand, again proportional to the square of the NLO correction

for soft functions that obey the NAE theorem.
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In the following we adopt the notation of the collinear anomaly approach [48, 54] to

extract the relevant quantities for resummations in SCET-2. The formalism is equivalent

to the rapidity renormalisation group (RRG) advocated in [33], and we briefly comment

on the translation into the RRG framework — including some subtleties about the choice

of the rapidity regulator — at the end of this section.

In the collinear anomaly language, the bare soft function can be written in the form

S0(τ, ν) = (ν2τ̄2)−F0(τ) WS
0 (τ) , (4.10)

where we made the ν-dependence explicit and we suppressed the terms divergent in α, which

cancel between the soft and collinear functions. The bare collinear anomaly exponent F0(τ)

controls the logarithmic dependence on the rapidity scale ν, and the bare soft remainder

function WS
0 (τ) collects the terms that are not associated with the rapidity divergences.

The latter is in fact meaningless in the collinear anomaly framework without knowledge

about the corresponding collinear remainder function WC
0 (τ), since only their product

obeys a well-defined RG equation in the MS scheme [54]. As the collinear remainder

function is not known in the chosen regularisation scheme for most of the observables we

consider in section 7, we disregard the soft remainder function WS
0 (τ) and focus on the

collinear anomaly exponent F0(τ) in the following.

Following the procedure described in [10], we can extract the bare anomaly exponent

from the bare SCET-2 soft function S0(τ, ν). This extraction is in fact subtle since the

anomaly exponent is related to the coefficient of the logarithm ln(ν2τ̄2) — see (4.10) —

rather than the associated 1/α divergences [10]. In terms of the expansion coefficients of

the bare soft function from (4.9), we find that the bare anomaly exponent takes the form

F0(τ) = − 1

2

(
Zααs

4π

)
(µ2τ̄2)ε

{
x1

1

ε
+ x1

0 + x1
−1 ε+ x1

−2 ε
2 +O(ε3)

}
−
(
Zααs

4π

)2

(µ2τ̄2)2ε

{(
y1

3 +
z1

3

2
− x0

2x
1
1

)
1

ε3
+

(
y1

2 +
z1

2

2
− x0

2x
1
0 − x0

1x
1
1

)
1

ε2

+

(
y1

1 +
z1

1

2
− x0

2x
1
−1 − x0

1x
1
0 − x0

0x
1
1

)
1

ε
+ y1

0 +
z1

0

2

− x0
2x

1
−2 − x0

1x
1
−1 − x0

0x
1
0 − x0

−1x
1
1 +O(ε)

}
. (4.11)

Owing to its place in the exponent, the anomaly coefficient renormalises additively in

Laplace space, F0 = F + ZF , and the renormalised anomaly exponent satisfies the RGE

d

d lnµ
F(τ, µ) = 2 Γcusp(αs) , (4.12)

which to two-loop order is solved by

F(τ, µ) =
(αs

4π

){
2Γ0 L+ d1

}
+
(αs

4π

)2 {
2β0Γ0 L

2 + 2 (Γ1 + β0d1)L+ d2

}
, (4.13)

where again L = ln(µτ̄) and the expansion coefficients of the cusp anomalous dimension

and the beta function can be found in (4.6). The Z-factor ZF satisfies a similar RGE as

– 27 –



J
H
E
P
0
7
(
2
0
1
9
)
1
0
1

the anomaly coefficient, and its explicit form to two-loop order reads

ZF =
(αs

4π

){Γ0

ε

}
+
(αs

4π

)2
{
− β0Γ0

2ε2
+

Γ1

2ε

}
. (4.14)

We can then extract the non-logarithmic terms of the renormalised anomaly coeffi-

cient (4.13) using the relations

d1 = −x
1
0

2
,

d2 = −y1
0 −

z1
0

2
+ x0

−1x
1
1 + x0

0x
1
0 + x0

1x
1
−1 + x0

2x
1
−2 +

β0x
1
−1

2
. (4.15)

The cancellation of 1/εj divergences with j = 1, 2, 3 in the renormalised anomaly exponent

then provides another strong check of our calculation. As before, the C2
F contributions are

disregarded in the following.

We finally translate our findings into the RRG framework from [33]. Here the renor-

malisation is implemented directly on the level of the soft function rather than the anomaly

exponent, S = ZSS0, and the Z-factor ZS absorbs both 1/ε and 1/α divergences according

to a modified MS prescription. Furthermore, the renormalised soft function satisfies the

RRG equation

d

d ln ν
S(τ, µ, ν) =

[
4AΓ(µs, µ)− 2γν(µs)

]
S(τ, µ, ν) , (4.16)

where

AΓ(µ1, µ2) = −
∫ αs(µ2)

αs(µ1)
dα

Γcusp(α)

β(α)
, (4.17)

which is solved by

S(τ, µ, ν) =

(
ν

νs

)4AΓ(µs,µ)−2γν(µs)

S(τ, µ, νs) . (4.18)

The solution can be compared to (4.10) in the collinear anomaly approach, bearing in

mind that a similar relation holds among the renormalised quantities in this case. With

the all-order solution to the RGE (4.12),

F(τ, µ) = −2AΓ(µs, µ) + F(τ, µs), (4.19)

we can then identify the ν-anomalous dimension in the RRG approach with the collinear

anomaly exponent,

γν(µs) = F(τ, µs) . (4.20)

The comparison between (4.10) and (4.18) in addition allows us to express the renormalised

soft remainder function as WS(τ, µ) = S(τ, µ, νs = 1/τ̄). Interestingly, the latter has a

well-defined µ-evolution in the RRG framework that is governed by the RGE

d

d lnµ
S(τ, µ, νs = 1/τ̄) =

[
4 Γcusp(αs) ln(µτ̄)− 2γS(αs)

]
S(τ, µ, νs = 1/τ̄) , (4.21)
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whereas the soft remainder function does not obey a simple RGE in the collinear anomaly

approach (only the product of the soft and collinear remainder functions does so). More-

over, we find that the RGE (4.21) is not satisfied by our solution for SCET-2 soft functions,

and the problem can be traced back to the way we have implemented the rapidity regu-

lator. In other words, the RRG approach intrinsically makes specific assumptions about

the form of the rapidity regulator, which in particular must be implemented on the level of

connected webs [33].9 We are not aware that this difference between the collinear anomaly

and the RRG approach has been made so clearly in the literature before.

To summarise, for SCET-2 observables we determine the collinear anomaly exponent

F(τ, µ) in (4.13) or, equivalently, the ν-anomalous dimension γν(µs) in (4.20) using the

relations in (4.15). As our calculation yields the full bare soft function in (4.9), it also

determines the bare soft remainder function WS
0 (τ), which is a useful input in the collinear

anomaly approach if the corresponding collinear remainder function WC
0 (τ) is known in the

same regularisation scheme. Our results for the soft remainder function are, on the other

hand, not consistent with the RRG framework since we did not implement the rapidity

regulator on the level of connected webs.

5 Revisiting our assumptions

Having established the theoretical framework for the calculation of the correlated-emission

contribution to dijet soft functions, we now return to the list of assumptions that we

outlined in section 2. In particular, we can now better understand why these assumptions

were made and how some of them could possibly be relaxed in the future. In this section,

we in fact already introduce two extensions of our formalism that are valid for multi-

differential and Fourier-space soft functions. We now address each of the assumptions from

section 2 in turn.

(A1) Beyond dijet factorisation. The soft functions we consider in this work are

defined in terms of two light-like Wilson lines, and they are supposed to be embedded in

a dijet factorisation theorem of the form (2.1). The soft function is, moreover, assumed

to have a double-logarithmic evolution in the scales µ and, possibly, ν. Soft functions

that are blind to the jet directions only have a single-logarithmic evolution and thus they

cannot be computed directly in the current formalism.10 This can clearly be seen from (2.8)

and (2.10), where it is not possible to extract a value for the parameter n if the observable

is exactly zero in the collinear limit. As the parameter n controls the double-logarithmic

terms in the RGE (4.2), the current formalism cannot be applied to problems with single

logarithms per loop order.

We further assumed that the two hard, massless partons are in a back-to-back configu-

ration, i.e. n · n̄ = 2. Although the generalisation to arbitrary kinematical configurations is

9To be clear, this is a requirement rapidity regulators must fulfill in order to be compatible with the

RRG framework. There are cases, however, in which the regulator has not intentionally been implemented

on the level of connected webs, but whose functional form is nevertheless the same if implemented on webs

or individual emissions. One such example is the exponential regulator proposed in [34], which is therefore

fully consistent with the RRG framework.
10In some cases it may be possible to write such soft functions as a difference of two dijet soft functions.
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relatively straight-forward, we plan to relax this assumption only in the context of general

N -jet soft functions [44]. It would also be interesting to extend the formalism to processes

with massive hard partons (n2 6= 0), which is relevant for top-quark related processes.

(A2) Loosening the constraints on the ω({ki}) measure. Core to our approach

is the structure of the function ω({ki}) appearing in the exponent of the measurement

function (2.2), and whose explicit one-emission and two-emission parametrisations were

given in (2.8) and (2.10), respectively. While we required that <
(
ω({ki})

)
> 0, we already

mentioned in (A2) that the observables are allowed to vanish for configurations with zero

weight in the phase-space integrations. We now address this caveat more carefully, and we

further elaborate on both the treatment of complex numbers and the regulator dependence

of the measurement function.

Integrable divergences. According to the master formulae (3.9), (3.13), and (3.27), the

functions f(yk, tk) and FA,B(a, b, y, tk, tl, tkl) enter our formulae for the numerical integra-

tions — after expansion in the various regulators — in terms of logarithms. It is therefore

crucial that these functions do not vanish in the singular limits of the matrix elements, since

otherwise the delta function associated with the divergence would put the argument of the

logarithm to zero. The functions may, however, vanish for non-singular configurations with

zero weight in the phase-space integrals, since the logarithms only constitute integrable di-

vergences in this case. Of course, the logarithmic divergences may still pose a challenge

for the numerical integrations, but for all examples we consider in section 7 the integrable

divergence seem to be under control. If, on the other hand, the functions f(yk, tk) and

FA,B(a, b, y, tk, tl, tkl) vanish over wide ranges of phase space (with non-zero weight), the

logarithmic divergence is no longer integrable and these situations are therefore excluded

by assumption (A2).

Fourier transforms and complex numbers. Whereas our formalism assumes that

<
(
ω({ki})

)
> 0, the SoftSERVE implementation requires that ω({ki})

)
is strictly real and

non-negative. Whenever the soft function is defined in Fourier rather than Laplace space,

the one-emission measurement function will appear as [if̃(yk, tk)]
2ε+α in the NLO master

formula (3.9) with a real-valued function f̃(yk, tk) (and similarly for the NNLO master

formulae). In some cases like the one for threshold resummation in Drell-Yan production —

see section 2 — we can absorb the imaginary unit into the definition of the Laplace variable

τ , which brings the soft function into the standard form we assume in our framework. In

other cases, such as the one for transverse-momentum resummation, this would leave us,

however, with a real-valued function f̃(yk, tk) that can take on both positive and negative

values, which is not allowed for the SoftSERVE implementation. We can nevertheless use

our framework to calculate the real part of such soft functions by carefully treating the

imaginary unit in the master formulae as a phase. A detailed description of this method

is given in appendix B, and as an example that exploits the Fourier-space extension we

compute the soft function for transverse-momentum resummation in section 7.

Regulator dependence. According to (A2), the function ω({ki}) is assumed to be

independent of the rapidity regulator α and the dimensional regulator ε. While this is, of
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course, always fulfilled for a physical observable, this restricts the set of transformations

that one may use to bring the soft function into the form (2.2). In particular, we are

currently aware of a single observable that gives rise to an ε-dependent ω({ki}) measure:

the e+e− event shape jet broadening. Due to soft recoil effects, the broadening soft function

requires a (d − 2)-dimensional Fourier transform on top of the Laplace transformation to

resolve all distributions [54], which brings the soft function into the form (2.2) with an

ε-dependent function ω({ki}; ε).
The main effect of the regulator dependence shows up in the expansion of the Laurent

series in ε, where different orders of the function f(yk, tk; ε) would contribute at different

orders of the Laurent series. As the entire framework hinges on a precise understanding of

the behaviour of the input functions in the singular limits, the discussion of the implica-

tions of infrared safety would have to be extended to the different orders in the function

f(yk, tk; ε) itself. This could then lead to additional restrictions on the form of the regulator

dependence. Such a discussion lies outside the scope of the present paper, and will only be

revisited in the future if the specific need arises.

(A3) Mass dimension 6= 1. Relaxing our assumption about the mass dimension of

the ω({ki}) measure is probably the easiest generalisation in our list. According to (2.8),

the mass dimension determines the power of the variable kT in the measurement function,

which is later integrated out analytically in (3.8) (similar arguments hold for the two-

emission measurement function and the variable pT ). However, the latter integration is

perfectly convergent and well-behaved for any positive, non-zero mass dimension, and the

only changes manifest in different numerical constants in some places, like the argument

of the Gamma functions or certain exponents.

Switching to different mass dimensions would therefore only result in slightly modified

master formulae in our approach. While this could easily be implemented, we have not yet

encountered any observable which would require such a tune.

(A4) Broken n-n̄ symmetry. In its current form we assume that the ω({ki}) measure

is symmetric under n ↔ n̄ exchange, which is not necessarily the case for all observables.

In section 7 we consider e.g. the hemisphere soft function, which depends on two invariant

masses ML and MR that are not invariant, but rather mapped onto each other, under

n↔ n̄ exchange.

Relaxing the n-n̄ symmetry is again possible at the expense of doubling the number

of input functions that need to be provided by the SoftSERVE user. The required input

currently includes the measurement functions FA and FB and the parameter n (the function

f is internally determined using the infrared-safety constraints). If the n-n̄ symmetry is

given up, four functions FA through FD and two parameters n(A,B) and n(C,D) would be

required instead. The latter reflects the fact that the rapidity scaling of the observable may

differ between the two light-like directions if the n-n̄ symmetry is broken. The extension

from two to four input functions can also easily be seen from the symmetry considerations

in section 3.3.

In practice, a broken n-n̄ symmetry can already be emulated with the current version

of SoftSERVE by averaging separate results for the {FA, FB} and {FC , FD} sets, similar
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to a procedure we use for the hemisphere soft function in section 7 (with special attention

required to get the angular dependence correct). The substitutions to generate the relevant

input functions are then y → 1/y to derive FC from FA, and a→ 1/a or b→ 1/b to derive

both FB from FA, and FD from FC .11

(A5) Multi-differential observables. Soft functions for exclusive observables typically

depend on more than one kinematic variable, requiring multiple Laplace transformations

to resolve all distributions. We can in such cases choose the first Laplace variable τ1 to

have dimension 1/mass, and keep the remaining variables τi for i ≥ 2 dimensionless. This

generalises our ansatz (2.2) for the measurement function to

M(τ1, τ2, . . . ; {ki}) = exp
(
− τ1 ω({ki}; τ2, . . .)

)
, (5.1)

from which one can derive the one- and two-emission measurement functions

f(yk, tk; τ2, . . .) and F (a, b, y, tk, tl, tkl; τ2, . . .) via the usual procedure. In essence, multi-

differential soft function can thus be computed by treating the Laplace variables τi for i ≥ 2

as parameters, which need to be sampled over. We demonstrate this strategy in section 7

by calculating two double-differential soft functions: the hemisphere soft function in e+e−

collisions and the soft function for exclusive Drell-Yan production.

(A6) Extended angular dependence. Finally, we note that the angular parametri-

sation of our integrals, which we presented in detail in section 3.3.1, is made under the

assumption of a back-to-back kinematic setup for the soft Wilson lines. For dijet observ-

ables where this is not the case, the angular parametrisation is not sufficient, since more

dynamic angles can be resolved by the measurement function. Our master formulae there-

fore need to be revisited for non-back-to-back dijet observables, and we in fact already

implemented such a generalisation in the N -jet extension of our formalism [44].

6 Numerical implementation

The master formulae we derived in the preceding sections are in principle complete as they

render the sources of all singularities manifest and allow for a numerical evaluation across

a wide field of observables with only a few required properties. In fact, the master formulae

can already be used to derive semi-analytic expressions for the anomalous dimensions and

collinear anomaly exponents [40], although the matching corrections seem to be a bit out

of reach in such an approach due to their complexity. Solving the equations analytically

is nevertheless possible in some isolated cases, in particular in the absence of a non-trivial

angular dependence (see the C-parameter in section 7).

Still, the master formulae are not yet ideally suited for a numerical implementation

because of the presence of an overlapping divergence in the variables a and tkl. The

overlapping divergence could in principle be resolved by multiple sector decomposition

steps (it produces three sectors due to the square in (1−a)2) before the subtraction and the

numerical evaluation. This is precisely what the programs SecDec [55–57] and its successor

11In figure 4 regions C and D build up the upper layer of four cubes.

– 32 –



J
H
E
P
0
7
(
2
0
1
9
)
1
0
1

pySecDec [58] were designed to do, and we can indeed evaluate the master formulae with

these programs.12 However, there are a few ways to improve on (py)SecDec as regards

our purposes, chiefly because there are simplifications possible that (py)SecDec — as a

program designed with a larger scope of applications in mind — cannot easily exploit.

The core insight that motivates our tailored numerical approach is the substitu-

tion (3.31), which removes the overlapping divergence in favour of a monomial divergence

u−1−2ε, at the cost of increasing the complexity of the integrand. Disentangling the di-

vergence between a and tkl means that all divergences are now present in monomial form,

which makes a subtraction and expansion procedure trivial. It should be noted that using

this substitution can also speed up (py)SecDec runs, as the sector decomposition steps are

of course no longer needed in this case either anymore.

The program we subsequently wrote is called SoftSERVE, and it is publicly available

at https://softserve.hepforge.org. SoftSERVE mainly implements the master formulae from

this paper in C++ syntax, and integrates them using the Cuba library [39]. It is therefore

subject to the same assumptions and capabilities of the formalism we developed in this pa-

per, with one additional constraint: it is limited to strictly real measurement functions.13

Below, we will lay out the main reasons for forgoing (py)SecDec and writing a dedicated

program, while delegating the technical details of the C++ implementation and the ul-

timate structure of the program to the SoftSERVE manual, which is provided alongside

the program.

The single most important motivation for writing a dedicated program is the problem

of rounding errors in conjunction with plus-distributions. The rather technical details of

this problem can be found in the SoftSERVE manual although, put succinctly, problems can

arise if plus-distributions are integrated against functions that involve large cancellations

in the limit originating from the plus-distribution. In such cases the plus-distribution

can artificially inflate rounding errors. As this problem arises from rounding errors due

to cancellations large enough to exhaust a typical double type variable’s width (i.e. the

number of stored digits), the solution is of course to use data types storing more digits. For

our approach the problem can only appear in the measurement function, as all other factors

appearing are free of large cancellations. The best and most efficient solution is therefore to

write a program that can use (slow) multi-precision arithmetic for the calculations related

to the measurement functions (and only if told to do so), and that evaluates everything

else using (fast) double precision floating-point arithmetic.

Having written a dedicated wrapper for the master formulae, a vanilla run of our

program (or a vanilla run of (py)SecDec using the master formulae) reveals problems

with numerical convergence that can be traced back to the appearance of square-root and

logarithmic divergences. While these are analytically integrable divergences, a numerical

approach that relies on sampling the integrand function runs into problems, particularly if

the numerical integration involves adaptive variance-reduction techniques. Creative sub-

stitutions are again the solution to this problem. In particular, we can remove integrable

12We in fact extensively used (py)SecDec to cross-check our SoftSERVE numbers.
13The case of Fourier-space soft functions is special, and will be revisited at the end of this section and

in appendix B.
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divergences at both ends of a given integration over a variable x ∈ [0, 1] by substituting

x = 1−
(
1− ξi

)j
(6.1)

with suitably chosen parameters i, j ≥ 1. Values of i = 2, 4, . . . then remove logarithmic,

square-root, . . . divergences at x = 0 while j does so at x = 1. As an example, consider∫ 1

0
dx

ln(1− x) + lnx√
1− x

=

∫ 1

0
dξ 8ξ(1− ξ2)

(
4 ln(1− ξ2) + ln

(
1− (1− ξ2)4

))
, (6.2)

where we used i = 2 and j = 4. The expression on the right-hand side is thus no longer

divergent at either endpoint of the integration domain after the substitution.

This performance improvement comes at a minor cost: in addition to the functions

FA,B and the parameter n, a second parameter m is needed that can easily be derived from

the functions FA,B. As its significance is purely performance-related, we explain this in

more detail in the SoftSERVE manual.

Applying these substitutions obscures the original definition of the observable and

what ultimately serves as input into the program. We therefore inject a wrapping layer

of substitutions between the user input and the numerics, to allow a user to input the

relevant data using the physical parametrisation of the measurement function in terms of

the variables a, b, y, tk, tl and tkl, which have physical meaning and allow more thorough

checking of the input for consistency. In addition, it is easy to derive the one-loop input

from the two-loop input in this form using the infrared-safety constraints (2.14) and (2.16),

which we also exploit and implement.

An important boost in performance furthermore arises due to the fact that all diver-

gences giving rise to a pole are sourced from monomials like y−1+nε,

y−1+nε =
δ(y)

nε
+

[
1

y

]
+

+ nε

[
ln y

y

]
+

+ . . . (6.3)

This feature means that the leading pole coefficients need only to be integrated over do-

mains with reduced dimensionality, as the delta distributions render some variables spu-

rious. The full integrands appearing at each order are thus sums over expressions that

depend on a reduced set of variables. That sum then again depends on all variables,14 and

in SoftSERVE we simply relabel those variables to reduce the dimensionality, which can

speed up the integrations significantly.

Finally, since we know exactly what SoftSERVE will be used for, we can supply it with

scripts to facilitate the computations:

• execsftsrv runs the set of all colour structures for a given observable,

• sftsrvres sums different contributions to the same colour structure,

• laprenorm automates the renormalisation procedure outlined in section 4,

• fourierconvert allows us to treat Fourier-space soft functions.

14As a pedagogical example, consider a function f(x, y) = g(x) + h(y) that depends on two variables,

although its summands g(x) and h(y) depend only on one.
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All scripts are supplied in the initial SoftSERVE 0.9 release in a version without sup-

port for explicit calculation of the C2
F contribution, i.e. a version designed for observables

obeying NAE. These scripts are therefore indexed by a suffix NAE. Following an upcom-

ing publication dealing with uncorrelated emissions [27] and the subsequent release of

SoftSERVE 1.0, unsuffixed scripts that run the calculations for all colour structures will

be supplied as well.

It is crucial to note, however, that we are not limited in scope to observables obeying

NAE. The CFTFnf and CFCA colour structures for NAE-breaking observables can still be

computed using the initial release of SoftSERVE, and the scripts above can still be used

for this purpose. The C2
F piece must then, however, be calculated by some other means,

as the results for C2
F presented by the SoftSERVE 0.9 release (or by using the NAE scripts

in any released version) will simply not be correct — they are merely proportional to the

square of the one-loop result.

The SoftSERVE package also comes supplied with a range of template observables

serving as examples for an inexperienced user. Their salient features are described in the

manual, and they include the observables presented in section 7. Additionally, two sets of

integrator settings are supplied, the standard and precision settings. For almost all cases

the standard settings will provide sufficient accuracy; they represent the recommended

choice of settings. The precision settings are designed to increase the achieved accuracy by

roughly one order of magnitude, but operate at the edge of SoftSERVE’s capabilities. They

are therefore more prone to unexpected errors and more sensitive to suboptimal coding.

The user is of course free to choose his/her own custom settings, as the input files provide

access to the relevant flags and options of the Cuba integrators.

As a final comment, the fourierconvert script allows us to calculate real parts of

Fourier-space soft functions. As referenced in section 2, we can treat observables with

positive real part, which includes purely imaginary Fourier-space soft functions, where we

assume an infinitesimal positive real part to make the analytic integration convergent.

The numerical implementation is, on the other hand, limited to strictly real measurement

functions, which would exclude the purely imaginary Fourier-space soft functions. The

precise nature of these problems and the analytic workaround are delegated to appendix B,

where we find that the real part of a Fourier-space soft function can be calculated from the

absolute value of the Fourier-space measurement function, after a reshuffling of the Laurent

series. The fourierconvert script performs this reshuffle, taking the correct propagation

of uncertainties into account.

7 Results

In this section we collect our results for multiple dijet soft functions that have been cal-

culated using our novel algorithm and its implementation in SoftSERVE. The relevant

resummation ingredients for SCET-1 soft functions were defined in section 4.1, and we

present our results in the form

γS0 = γCF0 CF ,

γS1 = γCA1 CFCA + γ
nf
1 CFTFnf + γCF1 C2

F ,
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cS1 = cCF1 CF ,

cS2 = cCA2 CFCA + c
nf
2 CFTFnf + cCF2 C2

F . (7.1)

As all soft functions we consider in this section obey the NAE theorem, we have γCF1 = 0,

cCF2 = 1/2(cCF1 )2, and the missing NNLO coefficients can thus entirely be determined from

the correlated-emission contribution.

For SCET-2 soft functions we similarly decompose the collinear anomaly exponent

d1 = dCF1 CF ,

d2 = dCA2 CFCA + d
nf
2 CFTFnf + dCF2 C2

F , (7.2)

and we again have dCF2 = 0 for soft functions that obey the NAE theorem. As explained

in section 4.2, we also obtain results for the bare soft remainder function WS
0 (τ), which

is however meaningless without its collinear counterpart WC
0 (τ) in the collinear anomaly

framework. We therefore restrict our attention to the collinear anomaly exponent for

SCET-2 observables in the following.

The numbers we present in this section can be reproduced using the template files that

are provided in the SoftSERVE distribution (bearing in mind that Monte Carlo integrations

yield statistical predictions). Whenever we quote numbers, we used the precision setting

for the numerical integrations unless mentioned otherwise. For the plots we used the

standard setting, since the uncertainties are anyway not visible on the scale of the plots.

The standard setting yields runtimes of a few minutes on a single 8-core machine, and it

usually produces results with percent accuracy. Calculations using the precision setting, on

the other hand, typically run for a few hours and they yield numbers with per mille accuracy

or better. The Cuba library supports parallelisation, and so these run-time estimates are

highly dependent on the number of available cores. As the SoftSERVE manual contains

instructions about how to set up the corresponding input files, we only present the relevant

input functions along with the numerical results in this section.

For many of the observables we consider in this section, the soft function has been

determined to NNLO before, either by an explicit calculation or via a fit to a fixed-order

code. The available results provide useful cross checks for our code, and they allow us to

assess its numerical performance. For those results that were not available in the literature,

we checked our SoftSERVE numbers with independent (py)SecDec runs. In some cases

the uncertainty estimate provided by the integrator is smaller than the rounding error

introduced by the truncation to six digits, and in these cases we simply give an uncertainty

for the last digit (i.e. an error estimate of 10−6 for a result of 9.8696 will show up as

9.8696(1)).

7.1 e+e− event shapes

The formalism we have developed in this paper applies to soft functions that are defined in

terms of two light-like directions, and e+e− event-shape variables that obey a hard-jet-soft

factorisation theorem in the dijet limit are primary examples that fall into this class. In the

following we present results for popular event shapes like C-parameter, thrust, and total
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jet broadening, but we also study the less known event shape angularities and a particular

example of a double-differential observable.

C-parameter. The C-parameter was one of the observables that we already introduced

in section 2. Starting from the definition

ωC({ki}) =
∑
i

k+
i k
−
i

k+
i + k−i

, (7.3)

the relevant input functions were given in table 2, with n = 1, f(yk, tk) = 1/(1+yk), and15

FA(a, b, y) =
ab

a(a+ b) + (1 + ab)y
+

a

a+ b+ a(1 + ab)y
,

FB(a, b, y) =
ab

1 + ab+ a(a+ b)y
+

a

a(1 + ab) + (a+ b)y
. (7.4)

We then obtain for the C-parameter soft function

γCF0 = 2 · 10−10 ± 10−6 [0] ,

γCA1 = 15.7939(10) [15.7945] ,

γ
nf
1 = 3.90983(14) [3.90981] ,

cCF1 = −3.28987(1) [−3.28987] ,

cCA2 = −57.9814(35) [−58.16(26)] ,

c
nf
2 = 43.8181(4) [43.74(6)] , (7.5)

where the available results from [45] are listed in the square brackets. While the first four

numbers are known analytically, the last two numbers were obtained in [45] via a fit to

the EVENT2 generator. Our numbers confirm these fit values, but they are significantly

more accurate. For the C-parameter, we could actually derive analytic results following

the strategy that we used for the derivation of anomalous dimensions in [40], yielding

cCA2 = −2212

81
− 67π2

54
+

13π4

15
− 770ζ3

9
= −57.9757 ,

c
nf
2 =

224

81
+

10π2

27
+

280ζ3

9
= 43.8182 , (7.6)

which confirms our SoftSERVE numbers at the 2σ level.

Thrust. Thrust is the canonical event shape, which on the level of the soft function is

defined as

ωT ({ki}) =
∑
i

min(k+
i , k

−
i ) . (7.7)

15Throughout this section we suppress the angular variables in the arguments of the two-emission measure-

ment function if the observable does not depend on any of these angles. We also remind the reader that

the expression for the measurement function in region B is in general not unique, due to the freedom in the

definition (3.30).
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Thrust is again a SCET-1 observable with n = 1, f(yk, tk) = 1, and

FA(a, b, y) = θ

(
a(a+ b)

1 + ab
− y
)

+ θ

(
y − a(a+ b)

1 + ab

)(
a

a+ b
+

ab

(1 + ab)y

)
,

FB(a, b, y) = θ

(
a(1 + ab)

a+ b
− y
)

+ θ

(
y − a(1 + ab)

a+ b

)(
ab

1 + ab
+

a

(a+ b)y

)
. (7.8)

For the thrust soft function we find

γCF0 = 2 · 10−12 ± 10−10 [0] ,

γCA1 = 15.7939(11) [15.7945] ,

γ
nf
1 = 3.90987(15) [3.90981] ,

cCF1 = −9.8696(1) [−9.8696] ,

cCA2 = −56.5049(31) [−56.4990] ,

c
nf
2 = 43.3906(4) [43.3905] , (7.9)

which is in agreement with the analytic results from [3, 4].

From the numerical perspective, observables like thrust are more problematic than the

C-parameter because of the 1/y divergence in the second term of (7.8), which is formally

cut off by the step function. As the limit y → 0 is a singular limit of the matrix element,

the contribution from this phase-space region is enhanced and it therefore sources the

numerical instability. As a consequence we find that observables like thrust are more prone

to producing ill-defined results, and their uncertainty estimates are often less trustworthy.

The presence of a plus-distribution in the subtraction also means that this problem cannot

be solved, but merely mitigated, with some ideas laid out in the SoftSERVE manual.

Jet broadening. The first SCET-2 observable in our list is total jet broadening, which

has been studied within SCET in [10, 33, 54]. When the broadening is measured with

respect to the thrust axis, it is well known that soft recoil effects complicate the resumma-

tion, which could be circumvented by choosing a different reference axis [59]. We will come

back to a recoil-free definition of jet broadening later, but for the moment we simply switch

off the recoil effects in the original thrust-axis definition since this allows us to compare

our results to an existing NNLO calculation. We thus start from the definition

ωB({ki}) =
1

2

∑
i

√
k+
i k
−
i , (7.10)

which yields n = 0 as required for a SCET-2 observable, along with f(yk, tk) = 1/2 and

FA(a, b, y) = FB(a, b, y) =

√
a

(1 + ab)(a+ b)

(1 + b)

2
. (7.11)

Using SoftSERVE we then find for the collinear anomaly exponent

dCF1 = −5.5452(1) [−5.5452] ,

dCA2 = 7.03648(85) [7.03605] ,

d
nf
2 = −11.5393(2) [−11.5393] , (7.12)

which is in excellent agreement with the analytic results from [10].
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Angularities. Angularities represent a generalisation of the thrust and broadening event

shapes that depend on a continuous parameter A. According to their standard definition,

the angularities are measured with respect to the thrust axis, and they are defined as

ωA({ki}) =
∑
i

(
θ(k−i − k

+
i )(k+

i )
1−A/2

(k−i )
A/2

+ θ(k+
i − k

−
i )(k+

i )
A/2

(k−i )
1−A/2

)
, (7.13)

which reduces to thrust for A = 0, and is proportional to total broadening for A = 1. For

values of A < 1 considered here, the angularities fall into the SCET-1 class with n = 1−A,

f(yk, tk) = 1, and

FA(a, b, y) = θ

(
a(a+ b)

1 + ab
− y
)
a+ aAb

a+ b

(
a+ b

a(1 + ab)

)A/2
(7.14)

+ θ

(
y − a(a+ b)

1 + ab

)[
a

a+ b

(
a+ b

a(1 + ab)

)A/2
+
ab yA−1

(1 + ab)

(
1 + ab

a(a+ b)

)A/2]
,

FB(a, b, y) = θ

(
a(1 + ab)

a+ b
− y
)
aA + ab

1 + ab

(
1 + ab

a(a+ b)

)A/2
+ θ

(
y − a(1 + ab)

a+ b

)[
ab

1 + ab

(
1 + ab

a(a+ b)

)A/2
+
a yA−1

(a+ b)

(
a+ b

a(1 + ab)

)A/2]
.

One easily verifies that these expressions reduce to those of thrust in the corresponding

limit, A→ 0. The angularity soft function has been computed to NLO in [60], where it was

found that γS0 (A) = 0 and cCF1 (A) = −π2/(1−A). Our SoftSERVE numbers indeed confirm

these expressions and our results for the two-loop soft anomalous dimension and the finite

term of the renormalised soft function are displayed as a function of the parameter A in

figure 5. While our results for the constants cCA2 and c
nf
2 are new (preliminary results

were reported in [42]), we already derived the two-loop soft anomalous dimension in [40].

Our results have in fact already been utilised to resum the angularities distribution to

NNLL accuracy in [61] and to NNLL′ accuracy in [41], and they thus represent the first

phenomenological application of SoftSERVE.

As mentioned in the previous paragraph, the angularities share a numerical instability

with thrust. We therefore find that some SoftSERVE runs using the precision setting

produce ill-defined results, and the error bars are in general also less robust than for

other observables.

Broadening-axis angularities. Similar to the total broadening event shape, the thrust-

axis angularities are subject to soft recoil effects which become increasingly more important

in the limit A → 1. One way of avoiding these complications consists in defining the

angularities with respect to the broadening axis rather than the thrust axis. Following [59],

we then start from

ωBA({ki}) =
∑
i

{(
θ(k−i − k

+
i )(k+

i )
B/2

+ θ(k+
i − k

−
i )(k−i )

B/2
)

(k+
i + k−i )

1−B/2
}
, (7.15)
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Figure 5. Two-loop anomalous dimension and finite term of the renormalised angularity soft

function. Red dots indicate values calculated with SoftSERVE and green dashed lines represent an

interpolation through these numbers. We also highlight the thrust numbers for A = 0, which are

known analytically from [3, 4].

where we omitted a factor 2B−1, which makes the expression for the one-loop soft anomalous

dimension easier.16 Thrust corresponds to B = 2 in this notation, and we are interested

in values B ≤ 2 that extend beyond the broadening limit B = 1. The broadening-axis

angularities are thus characterised by n = B − 1, f(yk, tk) = (1 + yk)
1−B/2, and

FA(a, b, y) = θ1
b
(
a(a+ b) + (1 + ab)y

)1−B/2
+ aB/2

(
a+ b+ a(1 + ab)y

)1−B/2
(a+ b) (1 + ab)1−B/2 (7.16)

+ (1− θ1)

{
aB/2

(
a+ b+ a(1 + ab)y

)1−B/2
(a+ b)(1 + ab)1−B/2 +

aB/2 b
(
a(a+ b) + (1 + ab)y

)1−B/2
yB/2(1 + ab)(a+ b)1−B/2

}
,

FB(a, b, y) = θ2

(
a(1 + ab) + (a+ b)y

)1−B/2
+ aB/2 b

(
1 + ab+ a(a+ b)y

)1−B/2
(1 + ab)(a+ b)1−B/2

+ (1− θ2)

{
aB/2 b

(
1 + ab+ a(a+ b)y

)1−B/2
(1 + ab)(a+ b)1−B/2 +

aB/2
(
a(1 + ab) + (a+ b)y

)1−B/2
yB/2(1 + ab)1−B/2(a+ b)

}
,

16According to (2.2), a change in the normalisation of ω({ki}) always results in a rescaling of the Laplace

parameter τ . This in turn modifies the numerical value of the non-cusp anomalous dimension in the

RGE (4.2) and the di coefficients in (4.13). We are, however, free to turn the argument around and choose

the normalisation of ω({ki}) such that the expression of the one-loop anomalous dimension becomes simple.
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Figure 6. The same as in figure 5, but for angularities defined with respect to the broadening axis

(as opposed to the thrust axis).

where we defined

θ1 = θ

(
a(a+ b)

1 + ab
− y
)
, θ2 = θ

(
a(1 + ab)

a+ b
− y
)
. (7.17)

The considered soft function is known to NLO from [59], and our results confirm these

findings with γS0 (B) = 0 and cCF1 (B) = (B2 − 3B − 1)/(B − 1)π2/3. Our NNLO results,

on the other hand, are new and they are shown in figure 6 as a function of the parameter

B. While we cannot run SoftSERVE in the SCET-1 mode for B = 1, the plots illustrate

that we can compute the anomalous dimension and the matching correction sufficiently

close to the SCET-2 limit — done here using B = 0.99 and B = 1.01 — and we can even

interpolate between those points to convert the soft anomalous dimension into the SCET-2

anomaly exponent using the formulae provided in [40].

Hemisphere masses. We finally consider the hemisphere soft function [3, 5], which

represents our first example of a double-differential observable. In this case, we take two

Laplace transformations with respect to the hemisphere masses ML and MR, and we denote

the respective Laplace variables by τL and τR. We furthermore introduce the variables

τ1 = τL + τR , τ2 =
τL

τL + τR
, (7.18)

such that the dependence on the dimensionful variable τ1 factorises by construction. The

observable, on the other hand, now depends on the second Laplace variable τ2 via

ωMLMR({ki}; τ2) =
1√
τ2τ̄2

∑
i

(
θ(k−i − k

+
i ) τ2 k

+
i + θ(k+

i − k
−
i ) τ̄2 k

−
i

)
(7.19)
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Figure 7. Two-loop finite term of the renormalised hemisphere soft function. Red dots indicate

values calculated with SoftSERVE and the green solid line represents the analytic result of [3].

with τ̄2 = 1−τ2, and we have furthermore adjusted the normalisation for later convenience

— see footnote 16. The observable is thus described by n = 1, f(yk, tk; τ2) =
√
τ2/τ̄2, and

FA(a, b, y; τ2) = θ

(
a(a+ b)

1 + ab
− y
)√

τ2

τ̄2

+ θ

(
y − a(a+ b)

1 + ab

)(
a
√
τ2

(a+ b)
√
τ̄2

+
ab
√
τ̄2

(1 + ab)y
√
τ2

)
,

FB(a, b, y; τ2) = θ

(
a(1 + ab)

a+ b
− y
)√

τ̄2

τ2

+ θ

(
y − a(1 + ab)

a+ b

)(
ab
√
τ̄2

(1 + ab)
√
τ2

+
a
√
τ2

(a+ b)y
√
τ̄2

)
, (7.20)

from which we recover the thrust expressions for τ2 = 1/2. The analysis of the hemisphere

soft function is, moreover, complicated by the fact that the definition in (7.19) is not

symmetric under n-n̄ exchange, since the roles of ML and MR — and hence τ2 and τ̄2 —

are interchanged under this symmetry. This seems to be in conflict with assumption (A4),

but we can simply restore this symmetry by substituting

S0(τ1, τ2)→ 1

2

(
S0(τ1, τ2) + S0(τ1, τ̄2)

)
(7.21)

on the level of the bare soft function.17 As the soft anomalous dimension in (4.7) and

the matching correction in (4.8) depend only linearly on the CFCA and CFTFnf pole

coefficients, the average in (7.21) can actually be directly implemented on the level of these

quantities as well.

Due to the particular normalisation in (7.19), the anomalous dimension of the hemi-

sphere soft function matches the one for thrust, and we display the finite terms of the

two-loop soft function as a function of the Laplace variable τ2 in figure 7 (the interval

τ2 ∈ [0.5, 1] is just a mirror image of τ2 ∈ [0, 0.5] due to the symmetrisation procedure).

In addition, we have Laplace-transformed the analytic expressions from [3], and the result

17This procedure illustrates the comment made in section 5 concerning the emulation of a broken n-n̄-

symmetry, with S0(τ1, τ̄2) effectively representing the contribution from regions C and D.
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is shown in figure 7 by the solid lines. As can be seen from the plots, we observe per-

fect agreement for this double-differential observable, and we of course also confirm the

corresponding one-loop expression with cCF1 (τ2) = −8 artanh2(1− 2τ2)− π2.

As a generalisation of thrust, the hemisphere soft function is prone to numerical insta-

bilities, and for two out of twenty runs that were needed to produce the plots in figure 7, two

resulted in ill-defined expressions for the default setting of the numerical integrator. This

problem could, however, be remedied by increasing the value of the Divonne border pa-

rameter from 10−8 to 10−6. While doing so, we verified that the variation of this parameter

does not introduce systematic uncertainties that are relevant at the quoted accuracy.

7.2 Hadron-collider observables

Another important class of soft functions that fall into the considered ‘dijet’ category

are hadron-collider observables for which central jets are vetoed, either via a kinematical

restriction or an explicit jet algorithm. As the latter are usually not consistent with NAE,

we postpone their discussion to a future study [27], and we focus on soft functions that

are relevant for soft-gluon resummation, transverse-momentum resummation, and hadronic

event shapes in the following. For hadron-collider soft functions, only qq̄-initiated processes

are of the type (1.1), whereas the Wilson lines for other channels refer to different colour

representations. The soft function does, however, obey Casimir scaling to the considered

order, and the results can therefore easily be translated to other channels by rescaling

the expressions in (7.1) and (7.2) with Ci/CF , where Ci is the Casimir operator of the

said channel.

Threshold Drell-Yan production. The production of a lepton pair pp → l1l2X at

threshold represents the simplest hadron-collider soft function we can consider. We already

encountered its definition in section 2, where we found that

ωDY ({ki}) =
∑
i

(k+
i + k−i ) , (7.22)

which yields n = −1, f(yk, tk) = 1 + yk, and

FA(a, b, y) = FB(a, b, y) = 1 + y . (7.23)

Using SoftSERVE, we then find

γCF0 = 8 · 10−10 ± 10−6 [0] ,

γCA1 = 15.7941(10) [15.7945] ,

γ
nf
1 = 3.90983(14) [3.90981] ,

cCF1 = 3.28987(1) [3.28987] ,

cCA2 = 6.81309(280) [6.81287] ,

c
nf
2 = −10.6857(5) [−10.6857] , (7.24)

which nicely agrees with the analytic NNLO results from [1].
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W-production at large transverse momentum. We next consider the soft function

for W -production at large transverse momentum from [8]. Although this is a soft function

that involves more than two Wilson lines, it represents de facto a dijet soft function, since

the gluon attachments to the Wilson line SnJ vanish up to NNLO and we are furthermore

free to choose n1 · n2 = 2 along with n1 · nJ = n2 · nJ = 2 due to rescaling invariance of

the Wilson lines [8]. The vector nµJ now introduces a non-trivial angular dependence with

ωW ({ki}) =
∑
i

nJ · ki =
∑
i

(
k+
i + k−i − 2

√
k+
i k
−
i cos θi

)
, (7.25)

where θi = ^(~n⊥J ,
~k⊥i ). Up to NNLO the soft function is thus characterised by n = −1,

f(yk, tk) = 1 + yk − 2
√
yk(1− 2tk), and

FA(a, b, y, tk, tl, tkl) = FB(a, b, y, tk, tl, tkl)

= 1 + y − 2

√
ay

(1 + ab)(a+ b)

(
b(1− 2tk) + 1− 2tl

)
, (7.26)

and we obtain

γCF0 = 7 · 10−9 ± 2 · 10−6 [0] ,

γCA1 = 15.7943(24) [15.7945] ,

γ
nf
1 = 3.90987(21) [3.90981] ,

cCF1 = 9.8696(1) [9.8696] ,

cCA2 = −2.64371(893) [−2.65010] ,

c
nf
2 = −25.3069(10) [−25.3073] , (7.27)

which is again in agreement with the analytic results from [8].

Exclusive Drell-Yan production. The soft function for exclusive Drell-Yan produc-

tion [6] is another example of a double-differential observable. Due to rescaling invari-

ance of the Wilson lines, the position-space soft function can in this case only depend

on τ1 = i/2
√
x+x− and τ2 =

√
x2
T /x+x−. Whereas the dependence on the dimensionful

variable τ1 factorises, the observable then becomes a non-trivial function of the variable

τ2 with

ωexDY({ki}; τ2) =
∑
i

(
k+
i + k−i − 2τ2

√
k+
i k
−
i cos θi

)
. (7.28)

The soft function thus generalises the two preceding examples, and we recover the threshold

Drell-Yan soft function for τ2 = 0, while the one for W -production at large transverse

momentum corresponds to τ2 = 1. In terms of our parametrisations, we find n = −1,

f(yk, tk; τ2) = 1 + yk − 2τ2
√
yk(1− 2tk), and

FA(a, b, y, tk, tl, tkl; τ2) = FB(a, b, y, tk, tl, tkl; τ2)

= 1 + y − 2τ2

√
ay

(1 + ab)(a+ b)

(
b(1− 2tk) + 1− 2tl

)
. (7.29)
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Figure 8. Two-loop finite term of the exclusive Drell-Yan soft function. Red dots indicate values

calculated with SoftSERVE and the green line represents the analytic result of [6].

It turns out that the respective anomalous dimension is independent of τ2, and it can

therefore be read off from the two previous examples. The finite term of the renormalised

NNLO soft function is, on the other hand, shown in figure 8 together with the numbers

from [6]. We again find perfect agreement with the known analytic results, which is of

course also true for the one-loop constant cCF1 (τ2) = 4 Li2(τ2
2 ) + π2/3.

Transverse-momentum resummation. The soft function for transverse-momentum

resummation in Drell-Yan production was the third example we considered in section 2.

There we saw that

ωpT ({ki}) = −2i
∑
i

|k⊥i | cos θi , (7.30)

where the factor of i reflects a Fourier transformation. The measurement function is thus

purely imaginary in this case and, unlike in the preceding example, we cannot simply factor

out an imaginary unit along with the Laplace variable τ , since ωpT ({ki}) would in this case

not be bounded to be positive, which would contradict assumption (A2). Nevertheless

we argued in section 5 that we can compute Fourier-space soft functions by using the

absolute value of the naive measurement function. The required input functions for the

transverse-momentum soft function are therefore given by n = 0, f(yk, tk) = 2|1−2tk|, and

FA(a, b, y, tk, tl, tkl) = FB(a, b, y, tk, tl, tkl) = 2

√
a

(1 + ab)(a+ b)

∣∣b(1− 2tk) + 1− 2tl
∣∣ .

(7.31)

Further instructions for the computation of Fourier-space soft functions can be found in

appendix B. Applying the fourierconvert script before renormalisation then leads to

dCF1 = −5 · 10−8 ± 4 · 10−7 [0] ,

dCA2 = −3.7572(216) [−3.7317] ,

d
nf
2 = −8.2972(54) [−8.2963] . (7.32)

The slightly reduced accuracy is due to the appearance of integrable logarithmic divergences

in the bulk of the integration region, since the absolute value can vanish for non-trivial
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angular configurations. Nevertheless, the agreement with the known results from [48, 62]

is satisfactory.

Transverse thrust. We finally consider the soft function for the hadronic event shape

transverse thrust [63]. As this example involves four light-like Wilson lines, the computation

of the full NNLO soft function clearly falls outside the scope of the present paper. It was

shown, however, in [64] that the underlying anomalous dimensions can be reconstructed

from the information on dijet soft functions, and we therefore concentrate here on the

computation of the anomalous dimensions for transverse thrust.

To this end, we split the 2 → 2 process into two toy processes for e+e− → qq̄ and

qq̄ → e+e− scattering. We first consider the latter, which according to [63] gives rise to

ωTTqq̄ ({ki}) = 2c0

∑
i

(
|~k⊥i | − |~n⊥ · ~k⊥i |

)
, (7.33)

where c0 = e4G/π depends on Catalan’s constant G ' 0.915966, and the vector ~n⊥ singles

out a direction in the plane transverse to the beam direction. We thus find that the toy

observable is of SCET-2 type with n = 0, f(yk, tk) = 2c0(1− |1− 2tk|), and

FA(a, b, y, tk, tl, tkl) = FB(a, b, y, tk, tl, tkl)

= 2c0

√
a

(1 + ab)(a+ b)

(
b(1− |1− 2tk|) + 1− |1− 2tl|

)
. (7.34)

Using SoftSERVE we then determine the corresponding collinear anomaly exponent,

which yields

dCF1 = 3 · 10−6 ± 3 · 10−7 [0] ,

dCA2 = 208.105(5) [208.0(1)] ,

d
nf
2 = −37.174(1) [−37.191(6)] , (7.35)

where the numerical two-loop results in the square brackets are taken from [64]. Our results

indeed confirm these numbers, but they are again significantly more precise.

The soft function for the second toy process starts from a similar definition [63],

ωTTe+e−({ki}) = 4s
∑
i

(
|~k⊥i | − |~n⊥ · ~k⊥i |

)
, (7.36)

where s = sin θB depends on the angle between the beam and the jet axis. Its decomposition

into light-cone coordinates is, however, significantly more involved, since the components

kµ> transverse to the thrust axis differ from the components kµ⊥ in (7.36) that are transverse

to the beam axis — see [63]. We then find that this soft function is described by n = 1 and

f(yk, tk) =
4s
√
yk

{√
1− c2

k +

(
s

2

(
1
√
yk
−√yk

)
+ c ck

)2

−
∣∣∣∣s2
(

1
√
yk
−√yk

)
+ c ck

∣∣∣∣
}
,

(7.37)
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where c = cos θB and ck = cos θk = 1− 2tk. The expressions for the two-emission measure-

ment functions are rather lengthy with

FA(a, b, y, tk, tl, tkl)

= 4s

{
b

√√√√( as

2(1 + ab)y
+

c ck
√
a√

(a+ b)(1 + ab)y
− s

2(a+ b)

)2

+
a(1− c2

k)

(a+ b)(1 + ab)y

− b

∣∣∣∣∣ as

2(1 + ab)y
+

c ck
√
a√

(a+ b)(1 + ab)y
− s

2(a+ b)

∣∣∣∣∣
+

√√√√( s

2(1 + ab)y
+

c cl
√
a√

(a+ b)(1 + ab)y
− as

2(a+ b)

)2

+
a(1− c2

l )

(a+ b)(1 + ab)y

−

∣∣∣∣∣ s

2(1 + ab)y
+

c cl
√
a√

(a+ b)(1 + ab)y
− as

2(a+ b)

∣∣∣∣∣
}
, (7.38)

and

FB(a, b, y, tk, tl, tkl)

= 4s

{
b

√√√√( s

2(a+ b)y
+

c ck
√
a√

(a+ b)(1 + ab)y
− as

2(1 + ab)

)2

+
a(1− c2

k)

(a+ b)(1 + ab)y

− b

∣∣∣∣∣ s

2(a+ b)y
+

c ck
√
a√

(a+ b)(1 + ab)y
− as

2(1 + ab)

∣∣∣∣∣
+

√√√√( as

2(a+ b)y
+

c cl
√
a√

(a+ b)(1 + ab)y
− s

2(1 + ab)

)2

+
a(1− c2

l )

(a+ b)(1 + ab)y

−

∣∣∣∣∣ as

2(a+ b)y
+

c cl
√
a√

(a+ b)(1 + ab)y
− s

2(1 + ab)

∣∣∣∣∣
}
, (7.39)

where we remind the reader that the last expression is not unique, due to the freedom in

the definition (3.30).

The complicated structure of the measurement functions clearly exhibits that an ana-

lytic calculation is very challenging — if not out of reach — for this class of soft functions.

Yet our numerical approach also suffers from large cancellations between the square roots

and the absolute values for small values of the parameter y. This causes major problems

for the numerical evaluation due to rounding errors in floating point computations. As

this is mostly an implementation issue, we refer the user to the manual of SoftSERVEfor a

detailed discussion. The consequence is that SoftSERVE must be run using multi-precision

variables provided by the boost [65] or GMP/MPFR [66, 67] libraries for this observable. This

significantly slows down the program, and hence our transverse thrust runs used reduced

accuracy settings, as specified in more detail in the SoftSERVE manual.
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Although the measurement functions for this observable depend on the angle θB be-

tween the beam and jet axes, it turns out that the anomalous dimension is independent of

this angle, and we obtain

γCF0 = −2 · 10−6 ± 4 · 10−5 [0] ,

γCA1 = −158.27(6) [−148+20
−30] ,

γ
nf
1 = 19.3942(49) [18+2

−3], (7.40)

where the results of [63] were obtained via a fit to the EVENT2 generator.

As explained at the beginning of this section, the finite terms of the corresponding

soft functions are not useful, as the split into e+e− → qq̄ and qq̄ → e+e− observables is

only justified on the level of the anomalous dimension and the collinear anomaly exponent.

So while the SoftSERVE runs of course produce numbers for the finite terms as well, they

cannot be used for any meaningful interpretation in this case.

8 Conclusions

We have presented a novel formalism that allows for an automated calculation of soft func-

tions that are defined in terms of two light-like Wilson lines. Our method is based on a

universal phase-space parametrisation which we use to isolate the implicit divergences of

the phase-space integrals, and which allows us to perform the expansion in the various reg-

ulators directly on the integrand level. The remaining integrations can then be performed

numerically, and we developed a C++ package called SoftSERVE which precisely performs

these integrations using the Divonne integrator of the Cuba library.

Our method is currently restricted to the correlated-emission contribution, which is

sufficient for the computation of NNLO soft functions that obey the NAE theorem. As

exemplified by the large number of results in section 7, our method is fairly general and it

relies on a handful of assumptions that we discussed in detail in sections 2 and 5. Further

extensions of our formalism that deal with the uncorrelated-emission contribution [30] and

with more than two light-like directions including non-back-to-back kinematics [44] are

currently in progress.

With the publication of the present paper, we release SoftSERVE 0.9, which is publicly

available at https://softserve.hepforge.org/. The current version of SoftSERVE not only

allows for the calculation of bare dijet soft functions, but it also provides scripts for their

renormalisation according to the conventions we introduced in section 4. In this paper we

refrained from presenting the technical aspects of the numerical implementation, which are

explained in detail in the SoftSERVE manual.

Among the plethora of results we obtained in section 7, our NNLO numbers for the

thrust-axis and broadening-axis angularities are new, and we for the first time obtained the

C-parameter soft function in an analytic form. More generally, our results for the two-loop

anomalous dimensions and the two-loop finite terms are required for NNLL and NNLL′

resummations within SCET, respectively. We believe that SoftSERVE can open the path

for high-precision SCET resummations in the future, as has recently been illustrated for

the e+e− event shape angularities in [41].

– 48 –

https://softserve.hepforge.org/


J
H
E
P
0
7
(
2
0
1
9
)
1
0
1

Yet the process of automating resummation within SCET requires many further in-

gredients beyond the automated calculation of soft functions. At present there exists an

automated NLL resummation code that is based on the coherent-branching formalism,

CAESAR [68], which has been extended to NNLL accuracy for e+e− event shapes in [69].

While a combination of the CAESAR approach with methods from SCET is currently under

investigation [70], we believe that an alternative approach that is purely based on effective-

field-theory techniques could be a valuable addition. We think that SoftSERVE could

provide one essential pillar for such an automated resummation code in SCET.
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A Equality of one-emission and two-emission values of n

As mentioned in section 2, the leading scaling in the variables yk and y is the same between

the one-emission and two-emission measurement functions, see (2.8) and (2.10). As we will

show in this appendix, this is a non-trivial finding for generic observables, in particular for

those that violate the NAE theorem.

To this end, we first rewrite the two-emission measurement function in the form

ω({k, l}) = ω({k}) + ω({l}) + ωc({k, l}), (A.1)

where ωc({k, l}) encodes the effects that break NAE. Whenever the emission with mo-

mentum kµ becomes soft, infrared safety implies that the measurement function reduces to

ω({l}), see (2.13), and hence the NAE-violating term must satisfy ωc({0, l}) = 0. Similarly,

we obtain ωc({k, 0}) = 0 when lµ becomes soft, and ωc({k, αk}) = 0 with α > 0, which

arises when the two emissions become collinear to each other.

Since both yk = k+/k− ∼ y and yl = l+/l− ∼ y in the parametrisation (2.9), the lead-

ing scaling in the variable y in the first two terms of (A.1) is equal to the one-emission case.

The question therefore becomes whether the NAE-breaking term ωc({k, l}) can enforce a

different scaling of the observable.

The answer lies in the factorisation theorem (2.1), and the fact that the poles must

cancel between the bare hard, jet and soft functions. As the hard function is the same

for all dijet observables, the crucial cancellation is the one between the collinear and soft

functions. The role of the parameter n is two fold in this context: first, it determines the
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coefficient of the leading pole in the soft function, as the monomial y−1+nε gives rise to

a term δ(y)/nε. And second, the analysis in section 2.3 showed that the parameter n is

related to the power counting of the momentum modes in the effective theory. Following

this analysis, we thus know what the scaling of the three sectors — soft, collinear and anti-

collinear — is for two emissions, as the form of the factorisation theorem implies that no

new modes appear at higher orders. As the power counting of the momentum components

is uniform in the soft sector, the form of the NAE-breaking term ωc({k, l}) is unconstrained,

since consistency demands that its mass dimension is the same as that of the one-emission

terms, which immediately puts the three terms in (A.1) at the same order in the power

counting. This does not hold, however, in the collinear sectors.

We therefore consider the collinear sector with scaling pµc = Q(1, λ2/(n+1), λ1/(n+1))

more closely. As we have seen in (2.17), the measurement function for one collinear emission

scales in the soft limit zk → 0 as

ω({k}) ∼ k
1+n

2
+ k

1−n
2
− . (A.2)

Based on power-counting and dimensional arguments, the collinear analog of the NAE-

breaking term then similarly scales in the soft limit as

ωc({k, l}) ∼ q
1+n′

2
+ q

1−n′
2
− , (A.3)

where q can stand in for both k or l (i.e.
√
k+l− and

√
k+k− both count as

√
q+q− here).

The question then is whether n′ can differ from n. There are three possibilities:

n = n′: the three terms in (A.1) contribute in the soft limit to the jet function, and its

leading poles are determined by the one-emission value of n. To ensure the cancel-

lation of the leading poles, the soft function must follow suit and its two-emission

measurement function must therefore scale as yn/2.

n < n′: in this case the NAE-breaking term is suppressed in the jet function in the soft

limit. As the jet function does not see this term in the soft region, its leading poles

match those of an auxiliary observable (the NAE version of the observable), for which

the leading poles are again determined by the one-emission value of n as described

above.

n > n′: in this case the NAE-breaking term dominates over the one-emission terms in the

soft limit. But the observable would then not be infrared safe, which violates one of

our underlying assumptions.

We therefore conclude that the factorisation theorem (2.1), in particular the absence of

additional momentum modes, enforces the equality of the one-emission and two-emission

values of n.

B Fourier-space soft functions

In section 5 we explained that the numerical evaluation of Fourier-space soft functions using

SoftSERVE may require a workaround, since SoftSERVE assumes that the measurement
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function is strictly real and non-negative. In this appendix we describe the details of this

workaround.

To begin with, we consider a one-emission measurement function of the form

M1(τ ; k) = exp
(
− i τ kT yn/2k f̃(yk, tk)

)
, (B.1)

where the factor of i arises because of the Fourier transformation, τ is the respective

Fourier variable and the function f̃(yk, tk) is assumed to be real-valued. If the latter is

non-negative, the factor of i can simply be factorised alongside τ outside the integral,

and the SoftSERVE implementation proceeds in the standard form (threshold resumma-

tion for Drell-Yan production with τ = ix0/2 is of this type). In general, however, the

function f̃(yk, tk) may well attain also negative values, as is the case e.g. for transverse-

momentum resummation with f̃(yk, tk) = −2(1 − 2tk). As SoftSERVE only accepts non-

negative measurement functions, it seems as if we cannot evaluate such functions with the

existing code. There exists, however, a workaround as long as one is interested only in the

real part of the soft function (which is usually the case).

To this end, we review the analytic steps of our derivation, and we split the calculation

into two parts according to the two possible signs of the measurement function f̃(yk, tk).

In each of these regions, we then factor out either (+i) or (−i) such that the remnant

measurement function is non-negative. As the measurement function enters the master

formula (3.9) as f(yk, tk)
2ε+α, we can write the soft function in the form

SR
[
if̃
]

= (+i)(2ε+α) S+
R

[
|f̃ |
]

+ (−i)(2ε+α) S−R
[
|f̃ |
]

= e+iπ
2

(2ε+α) S+
R

[
|f̃ |
]

+ e−i
π
2

(2ε+α) S−R
[
|f̃ |
]
, (B.2)

where we indicated that SR
[
f
]

in (3.9) depends on the function f(yk, tk) = if̃(yk, tk), while

S±R
[
f
]

depend on the magnitude of f̃(yk, tk). The latter are, moreover, restricted to an

integration domain in which f̃(yk, tk) is either positive (S+
R

[
|f̃ |
]
) or negative (S−R

[
|f̃ |
]
), and

they are not accessible in our formalism, since we always assume that the integrations are

performed over the full domain. But if we decompose the soft function into its real and

imaginary parts, we obtain

SR[if̃ ] = cos

(
π

2
(2ε+ α)

)
SR
[
|f̃ |
]

+ i sin

(
π

2
(2ε+ α)

)(
S+
R

[
|f̃ |
]
− S−R

[
|f̃ |
])
, (B.3)

where we used the fact that S±R
[
|f̃ |
]

are real-valued, and that S+
R

[
|f̃ |
]
+S−R

[
|f̃ |
]

= SR
[
|f̃ |
]
,

i.e. the sum over two complementary integration domains gives back the full integral. We

thus see that the observable-dependent phase-space restrictions drop out in the real part of

the soft function. In other words we simply have to evaluate the soft function with f̃(yk, tk)

replaced by its absolute value, which is yet to be multiplied by a regulator-depend factor.

The same arguments apply to the mixed real-virtual interference SRV
[
f
]

and the

double real-emission contribution SRR
[
F
]
, which depend on different powers of the

measurement functions f(yk, tk)
4ε+α and F (a, b, y, t+k , tl, tkl)

4ε+2α, respectively, see (3.13)
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and (3.27). The real part of a bare Fourier-space soft function then becomes

<
(
S
[
if̃ , iF̃

])
= 1 +

(
Zααs

4π

)(
µ2τ̄2

)ε
(ντ̄)α cos

(π
2

(2ε+ α)
)
SR
[
|f̃ |
]

(B.4)

+

(
Zααs

4π

)2 (
µ2τ̄2

)2ε{
(ντ̄)α cos

(π
2

(4ε+ α)
)
SRV

[
|f̃ |
]

+ (ντ̄)2α cos
(π

2
(4ε+ 2α)

)
SRR

[
|F̃ |
]}

+O(α3
s).

If one is interested in calculating the real part of a Fourier-space soft function, one should

thus run SoftSERVE using the absolute value of the measurement function (which is by

construction real and non-negative). The individual pieces of this calculation then need to

be multiplied with different regulator-dependent factors, which reshuffle the coefficients in

the Laurent expansion. The SoftSERVE package contains a script to perform this Laurent

series reshuffle keeping track of the error bars — its usage is explained in the manual. As

an application of this technique we consider the soft function for transverse-momentum

resummation in section 7.
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[23] F. Dulat, S. Höche and S. Prestel, Leading-color fully differential two-loop soft corrections

to QCD dipole showers, Phys. Rev. D 98 (2018) 074013 [arXiv:1805.03757] [INSPIRE].

[24] R. Angeles-Martinez, M. Czakon and S. Sapeta, NNLO soft function for top quark pair

production at small transverse momentum, JHEP 10 (2018) 201 [arXiv:1809.01459]

[INSPIRE].

[25] Y. Li and H.X. Zhu, Bootstrapping rapidity anomalous dimensions for

transverse-momentum resummation, Phys. Rev. Lett. 118 (2017) 022004

[arXiv:1604.01404] [INSPIRE].

[26] I. Moult and H.X. Zhu, Simplicity from recoil: the three-loop soft function and factorization

for the energy-energy correlation, JHEP 08 (2018) 160 [arXiv:1801.02627] [INSPIRE].

[27] G. Bell, R. Rahn and J. Talbert, Generic dijet soft functions at two-loop order:

uncorrelated emissions, in preparation.

– 53 –

https://doi.org/10.1007/JHEP11(2012)126
https://arxiv.org/abs/1210.0580
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.0580
https://doi.org/10.1007/JHEP03(2014)139
https://arxiv.org/abs/1309.3560
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3560
https://doi.org/10.1007/JHEP01(2014)028
https://arxiv.org/abs/1310.3836
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3836
https://doi.org/10.1016/j.nuclphysb.2013.12.008
https://doi.org/10.1016/j.nuclphysb.2013.12.008
https://arxiv.org/abs/1311.2541
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2541
https://doi.org/10.1103/PhysRevD.92.045034
https://arxiv.org/abs/1408.5134
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5134
https://doi.org/10.1103/PhysRevD.91.094035
https://arxiv.org/abs/1504.02540
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02540
https://doi.org/10.1103/PhysRevD.93.054004
https://arxiv.org/abs/1511.05590
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05590
https://doi.org/10.1007/JHEP03(2016)168
https://arxiv.org/abs/1602.01829
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.01829
https://doi.org/10.1007/JHEP02(2017)026
https://arxiv.org/abs/1608.01999
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.01999
https://doi.org/10.1007/JHEP02(2017)002
https://arxiv.org/abs/1611.02749
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.02749
https://doi.org/10.1140/epjc/s10052-018-5732-1
https://arxiv.org/abs/1711.09984
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.09984
https://doi.org/10.1007/JHEP06(2018)013
https://arxiv.org/abs/1804.05218
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.05218
https://doi.org/10.1016/j.physletb.2018.08.019
https://arxiv.org/abs/1804.06358
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.06358
https://doi.org/10.1103/PhysRevD.98.074013
https://arxiv.org/abs/1805.03757
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.03757
https://doi.org/10.1007/JHEP10(2018)201
https://arxiv.org/abs/1809.01459
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.01459
https://doi.org/10.1103/PhysRevLett.118.022004
https://arxiv.org/abs/1604.01404
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.01404
https://doi.org/10.1007/JHEP08(2018)160
https://arxiv.org/abs/1801.02627
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.02627


J
H
E
P
0
7
(
2
0
1
9
)
1
0
1

[28] J.G.M. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories,

Phys. Lett. B 133 (1983) 90.

[29] J. Frenkel and J.C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984)

231 [INSPIRE].

[30] G. Bell, R. Rahn and J. Talbert, Automated calculation of dijet soft functions in the

presence of jet clustering effects, PoS(RADCOR2017)047 [arXiv:1801.04877] [INSPIRE].

[31] J.-Y. Chiu et al., Soft-collinear factorization and zero-bin subtractions, Phys. Rev. D 79

(2009) 053007 [arXiv:0901.1332] [INSPIRE].

[32] T. Becher and G. Bell, Analytic regularization in soft-collinear effective theory, Phys. Lett.

B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].

[33] J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment

of rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [arXiv:1202.0814]

[INSPIRE].

[34] Y. Li, D. Neill and H.X. Zhu, An exponential regulator for rapidity divergences, submitted

to Phys. Rev. D, arXiv:1604.00392 [INSPIRE].

[35] C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X(sγ) in

effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

[36] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear

and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336]

[INSPIRE].

[37] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory,

Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

[38] M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and

heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431

[hep-ph/0206152] [INSPIRE].

[39] T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys.

Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

[40] G. Bell, R. Rahn and J. Talbert, Two-loop anomalous dimensions of generic dijet soft

functions, Nucl. Phys. B 936 (2018) 520 [arXiv:1805.12414] [INSPIRE].

[41] G. Bell, A. Hornig, C. Lee and J. Talbert, e+e− angularity distributions at NNLL′

accuracy, JHEP 01 (2019) 147 [arXiv:1808.07867] [INSPIRE].

[42] G. Bell, R. Rahn and J. Talbert, Automated calculation of dijet soft functions in

soft-collinear effective theory, PoS(RADCOR2015)052 [arXiv:1512.06100] [INSPIRE].

[43] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO

QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323]

[INSPIRE].

[44] G. Bell, B. Dehnadi, T. Mohrmann and R. Rahn, Automated calculation of N -jet soft

functions, PoS(LL2018)044 [arXiv:1808.07427] [INSPIRE].

[45] A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at

N3LL’ including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633]

[INSPIRE].

[46] A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, Precise determination of αs

from the C-parameter distribution, Phys. Rev. D 91 (2015) 094018 [arXiv:1501.04111]

[INSPIRE].

– 54 –

https://doi.org/10.1016/0370-2693(83)90112-0
https://doi.org/10.1016/0550-3213(84)90294-3
https://doi.org/10.1016/0550-3213(84)90294-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B246,231%22
https://pos.sissa.it/contribution?id=PoS(RADCOR2017)047
https://arxiv.org/abs/1801.04877
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.04877
https://doi.org/10.1103/PhysRevD.79.053007
https://doi.org/10.1103/PhysRevD.79.053007
https://arxiv.org/abs/0901.1332
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1332
https://doi.org/10.1016/j.physletb.2012.05.016
https://doi.org/10.1016/j.physletb.2012.05.016
https://arxiv.org/abs/1112.3907
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3907
https://doi.org/10.1007/JHEP05(2012)084
https://arxiv.org/abs/1202.0814
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.0814
https://arxiv.org/abs/1604.00392
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.00392
https://doi.org/10.1103/PhysRevD.63.014006
https://arxiv.org/abs/hep-ph/0005275
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0005275
https://doi.org/10.1103/PhysRevD.63.114020
https://arxiv.org/abs/hep-ph/0011336
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0011336
https://doi.org/10.1103/PhysRevD.65.054022
https://arxiv.org/abs/hep-ph/0109045
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0109045
https://doi.org/10.1016/S0550-3213(02)00687-9
https://arxiv.org/abs/hep-ph/0206152
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0206152
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010
https://arxiv.org/abs/hep-ph/0404043
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0404043
https://doi.org/10.1016/j.nuclphysb.2018.09.026
https://arxiv.org/abs/1805.12414
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.12414
https://doi.org/10.1007/JHEP01(2019)147
https://arxiv.org/abs/1808.07867
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.07867
https://pos.sissa.it/contribution?id=PoS(RADCOR2015)052
https://arxiv.org/abs/1512.06100
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06100
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9605323
https://pos.sissa.it/contribution?id=PoS(LL2018)044
https://arxiv.org/abs/1808.07427
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.07427
https://doi.org/10.1103/PhysRevD.91.094017
https://arxiv.org/abs/1411.6633
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.6633
https://doi.org/10.1103/PhysRevD.91.094018
https://arxiv.org/abs/1501.04111
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04111


J
H
E
P
0
7
(
2
0
1
9
)
1
0
1

[47] T. Becher, M. Neubert and G. Xu, Dynamical threshold enhancement and resummation in

Drell-Yan production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

[48] T. Becher and M. Neubert, Drell-Yan production at small qT , transverse parton

distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665

[arXiv:1007.4005] [INSPIRE].

[49] J. Chay, C. Kim, Y.G. Kim and J.-P. Lee, Soft Wilson lines in soft-collinear effective

theory, Phys. Rev. D 71 (2005) 056001 [hep-ph/0412110] [INSPIRE].

[50] T. Kasemets, W.J. Waalewijn and L. Zeune, Calculating soft radiation at one loop, JHEP

03 (2016) 153 [arXiv:1512.00857] [INSPIRE].

[51] S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591

(2000) 435 [hep-ph/0007142] [INSPIRE].

[52] D. Kang, O.Z. Labun and C. Lee, Equality of hemisphere soft functions for e+e−, DIS and

pp collisions at O(α2
s), Phys. Lett. B 748 (2015) 45 [arXiv:1504.04006] [INSPIRE].

[53] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent

multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

[54] T. Becher, G. Bell and M. Neubert, Factorization and resummation for jet broadening,

Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].

[55] J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput.

Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].

[56] S. Borowka, J. Carter and G. Heinrich, Numerical evaluation of multi-loop integrals for

arbitrary kinematics with SecDec 2.0, Comput. Phys. Commun. 184 (2013) 396

[arXiv:1204.4152] [INSPIRE].

[57] S. Borowka et al., SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop,

Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].

[58] S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals,

Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].

[59] A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014)

017 [arXiv:1401.2158] [INSPIRE].

[60] A. Hornig, C. Lee and G. Ovanesyan, Effective predictions of event shapes: factorized,

resummed and gapped angularity distributions, JHEP 05 (2009) 122 [arXiv:0901.3780]

[INSPIRE].

[61] M. Procura, W.J. Waalewijn and L. Zeune, Joint resummation of two angularities at

next-to-next-to-leading logarithmic order, JHEP 10 (2018) 098 [arXiv:1806.10622]

[INSPIRE].

[62] T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution

functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451]

[INSPIRE].

[63] T. Becher and X. Garcia i Tormo, Factorization and resummation for transverse thrust,

JHEP 06 (2015) 071 [arXiv:1502.04136] [INSPIRE].

[64] T. Becher, X. Garcia i Tormo and J. Piclum, Next-to-next-to-leading logarithmic

resummation for transverse thrust, Phys. Rev. D 93 (2016) 054038 [Erratum ibid. D 93

(2016) 079905] [arXiv:1512.00022] [INSPIRE].

[65] The boost C++ libraries, https://www.boost.org/.

– 55 –

https://doi.org/10.1088/1126-6708/2008/07/030
https://arxiv.org/abs/0710.0680
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.0680
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://arxiv.org/abs/1007.4005
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4005
https://doi.org/10.1103/PhysRevD.71.056001
https://arxiv.org/abs/hep-ph/0412110
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0412110
https://doi.org/10.1007/JHEP03(2016)153
https://doi.org/10.1007/JHEP03(2016)153
https://arxiv.org/abs/1512.00857
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00857
https://doi.org/10.1016/S0550-3213(00)00572-1
https://doi.org/10.1016/S0550-3213(00)00572-1
https://arxiv.org/abs/hep-ph/0007142
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0007142
https://doi.org/10.1016/j.physletb.2015.06.057
https://arxiv.org/abs/1504.04006
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.04006
https://doi.org/10.1016/S0550-3213(00)00429-6
https://arxiv.org/abs/hep-ph/0004013
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0004013
https://doi.org/10.1016/j.physletb.2011.09.005
https://arxiv.org/abs/1104.4108
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4108
https://doi.org/10.1016/j.cpc.2011.03.026
https://doi.org/10.1016/j.cpc.2011.03.026
https://arxiv.org/abs/1011.5493
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5493
https://doi.org/10.1016/j.cpc.2012.09.020
https://arxiv.org/abs/1204.4152
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4152
https://doi.org/10.1016/j.cpc.2015.05.022
https://arxiv.org/abs/1502.06595
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06595
https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.09692
https://doi.org/10.1007/JHEP04(2014)017
https://doi.org/10.1007/JHEP04(2014)017
https://arxiv.org/abs/1401.2158
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.2158
https://doi.org/10.1088/1126-6708/2009/05/122
https://arxiv.org/abs/0901.3780
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3780
https://doi.org/10.1007/JHEP10(2018)098
https://arxiv.org/abs/1806.10622
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.10622
https://doi.org/10.1007/JHEP06(2014)155
https://arxiv.org/abs/1403.6451
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6451
https://doi.org/10.1007/JHEP06(2015)071
https://arxiv.org/abs/1502.04136
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.04136
https://doi.org/10.1103/PhysRevD.93.054038
https://arxiv.org/abs/1512.00022
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00022
https://www.boost.org/


J
H
E
P
0
7
(
2
0
1
9
)
1
0
1

[66] The GNU Multiple Precision Arithmetic Library, http://gmplib.org/.

[67] The GNU Multiple Precision Floating-Point Reliable Library, https://www.mpfr.org/.

[68] A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and

automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

[69] A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the

resummation of event-shape distributions in e+e− annihilation, JHEP 05 (2015) 102

[arXiv:1412.2126] [INSPIRE].

[70] C.W. Bauer and P.F. Monni, A numerical formulation of resummation in effective field

theory, JHEP 02 (2019) 185 [arXiv:1803.07079] [INSPIRE].

– 56 –

http://gmplib.org/
https://www.mpfr.org/
https://doi.org/10.1088/1126-6708/2005/03/073
https://arxiv.org/abs/hep-ph/0407286
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0407286
https://doi.org/10.1007/JHEP05(2015)102
https://arxiv.org/abs/1412.2126
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.2126
https://doi.org/10.1007/JHEP02(2019)185
https://arxiv.org/abs/1803.07079
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.07079

