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1 Introduction

Partial breaking of N = 2 global supersymmetry (SUSY) to N = 1 requires a deformation

of supersymmetry transformations [1, 2]. The latter consists in adding arbitrary complex

constants which modifies the transformations of fermions but leaves intact the supersym-

metry algebra of infinitesimal transformations. Some of these constants can be absorbed
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by shifting the auxiliary fields and, thus, do not correspond to genuine deformations. One

therefore expects that a general deformation contains the same number of parameters as

the number of real auxiliary fields in every supersymmetry multiplet, consisting techni-

cally in adding constant imaginary parts. Indeed, this is the case for N = 2 vector and

single-tensor multiplets that can be deformed by adding three or two constant parame-

ters, correspondingly [3]. Partial supersymmetry breaking implies a special relation among

the deformation parameters guaranteeing the existence of a linear combination of the two

supersymmetries under which all fermions of the multiplet transform linearly (without

constants).

In this work, we study the general deformation of supersymmetry for N = 2 vector

multiplets and its effect on two-derivative effective actions involving a generic prepotential,

as well as on the DBI action, where one supersymmetry is non-linearly realised. The general

deformation forms a triplet under the SU(2)R symmetry and consists technically in adding

a constant imaginary part to the triplet of auxiliary fields, formed by the (complex) F- and

(real) D-auxiliary components of the N = 1 chiral and vector multiplet that compose the

N = 2 double chiral vector W = (X,W ). The deformation associated to F is known to

give rise to a magnetic Fayet-Iliopoulos (FI) term proportional to the special coordinate

fX ≡ ∂Xf where f(X) is the holomorphic N = 2 prepotential [1]. Indeed, ordinary

electromagnetic duality exchanges X with fX and, thus, their corresponding coefficients.

Here, we extend this result to the D-auxiliary whose deformation modifies the Bianchi

identity of W and we show that this modification is dual to the ordinary FI parameter

under electromagnetic duality.

We then study the general two-derivative effective action of a deformed N = 2 double

chiral multiplet and show that it exhibits a partial N = 2 → N = 1 breaking at the mini-

mum of the scalar potential for generic values of the parameter space. Special values may

leave N = 2 unbroken or a runaway potential but one can never realize complete breaking

of both supersymmetries, unless trivially in a free theory. This result was expected since

one could obtain it by using a SU(2)R rotation from the cases studied in the literature [1, 3].

The analysis is however useful for unveiling the main properties of the D-deformation that

will be relevant in the context of Dirac-Born-Infeld (DBI) actions. Complete breaking re-

quires at least two vector multiplets. For instance, in the simplest case, one can combine

two independent theories, each one breaking N = 2 → N = 1 in a different direction. An

interesting observation is that the D-deformation described above gives rise to an ordinary

FI D-term proportional to the theta-angle. For a generic prepotential, this term is of course

field dependent, while it becomes constant only in the free theory.

We next extend our analysis to the case of the DBI action where one supersymmetry

is non-linearly realised, describing the effective field theory of a D3-brane in an N = 2 su-

persymmetric bulk [4]. The deformation is now implemented in the nilpotent constrained

deformed superfield [2, 3] and we find essentially the same result as in the previous un-

constrained case of a general prepotential. This time there is no scalar potential but the

parameters of the FI term and the general deformation can be absorbed into a redefini-

tion of the DBI couplings, namely the non-linear supersymmetry breaking scale (or the

brane tension), the U(1) gauge coupling and the theta-angle. We notice again that the
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D-deformation gives rise to an FI D-term through the theta-angle. This time the FI term

is constant and the theory is not free. In principle, one would expect that the presence of

this term would break both supersymmetries but this is not the case. Instead, one N = 1

linear supersymmetry remains but it changes direction. In the string theory context, it

corresponds to rotate the brane in the bulk. As in the previous case, the complete breaking

of supersymmetry can arise only in a system of at least two DBI actions preserving different

linear supersymmetries, corresponding to two branes at angles.

Despite the fact that the FI term induced by the D-deformation via the theta-angle

gives the same bosonic action as adding a standard FI term to the DBI, the fermionic part

of the action appears to be different [5] suggesting that this is yet another way to write a

constant FI term in global supersymmetry, at least forN = 2 with one supersymmetry non-

linearly realised.1 The effective D-brane action was computed up to interaction terms of

dimension-eight, or equivalently second order in the Regge slope α′, and was compared with

the expansion of the supersymmetric DBI action in [7]. It would be interesting to compute

its modification in the presence of an FI D-term induced at the string level, for instance by

internal magnetic fields, and compare with the different effective field theory actions. The

coupling to supergravity is another interesting question, in particular whether it implies

the gauging of the R-symmetry. Indeed, the absence of the extra fermionic contribution

associated to the standard FI term exhibiting the gauging of the R-symmetry [8] suggests

that this gauging may not be necessary for the coupling to supergravity in our case.

The outline of our paper is the following. In section 2, we review the general de-

formation of N = 2 supersymmetry transformations for a chiral-chiral multiplet and the

condition for a partial N = 2 → N = 1 breaking. In section 3, we establish the elec-

tromagnetic duality at fully N = 2 level. Adding deformations is shown to be equivalent

to adding the triplet of FI terms in the dual theory. In section 4, we analyse the general

N = 2 action based on an arbitrary deformed vector superfield; we compute the scalar

potential and show that the only non-trivial minima break partially N = 2 → N = 1. In

section 5, we study the generalization of the DBI action with the D-deformation and show

that it leads to an FI term via the theta-angle. We analyse its bosonic part and show that

the deformation and FI parameters can be absorbed in the independent couplings, leaving

the usual DBI form invariant. We also discuss the fermionic terms and argue that the FI

term induced by the D-deformation is different from the standard FI term added to the

DBI action. Section 6 contains some concluding remarks.

2 General deformations in N = 2

In this section, we investigate the properties of N = 2 vector multiplet. We then consider

the most general deformation of this vector multiplet which can be parameterized by three

real constants. The deformation yields the non-linear realization of one supersymmetry.

2.1 N = 2 vector multiplet: structure, transformation and symmetry

We start with the following chiral-chiral N = 2 multiplet

W(y, θ, θ̃) = X(y, θ) +
√
2iθ̃W (y, θ)− θ̃θ̃G(y, θ), yµ = xµ + iθσµθ̄ + iθ̃σµ ¯̃θ , (2.1)

1Note that the new FI D-term proposed in [6] preserves only N = 1 supersymmetry.
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which is chiral with respect to both supersymmetries:2

D̄W = ¯̃
DW = 0 . (2.3)

The fields transform as follows under the second supersymmetry:3

δ̃X =
√
2iǫW , (2.4)

δ̃W =
√
2σµǭ∂µX +

√
2iǫG , (2.5)

δ̃G = −
√
2∂µWσµǭ . (2.6)

The superfield (2.1) is reducible and describes the degrees of freedom of a N = 2 vector

and tensor multiplet. To reduce them to those of a vector, one requires W to be the field-

strength superfield of a N = 1 vector multiplet, satisfying DW − D̄W̄ = 0. Furthermore,

one can verify explicitly that 1
4D̄

2X̄ transforms in the same way as G in (2.6). Therefore

we can set

G =
1

4
D̄2X̄ (2.7)

without violating the N = 2 supersymmetry.

Since W is chiral with respect to both supersymmetries, we can consider the following

action

LN=2W2+c.c. =
1

4

∫

d2θd2θ̃W2+c.c. =
1

4

∫

d2θ
(

W 2−2XG
)

+c.c. =
1

4

∫

d2θ

(

W 2−1

2
XD̄2X̄

)

+c.c. .

(2.8)

On the other hand, the N = 2 Maxwell theory, in terms of N = 1 language, is described

by a chiral multiplet X and a vector multiplet W with action given by

LN=2 Maxwell=

∫

d2θd2θ̄X̄X+
1

4

∫

d2θW 2+
1

4

∫

d2θW̄ 2=
1

4

∫

d2θ

(

W 2−1

2
XD̄2X̄

)

+c.c. ,

(2.9)

up to a total derivative. We see that the above two actions are equivalent, implying that

the extra constraint imposed on W is correct.

Thus the N = 2 vector multiplet can be described, in term of N = 2 superfield, as

W(y, θ, θ̃) = X(y, θ) +
√
2iθ̃W (y, θ)− 1

4
θ̃θ̃D̄2X̄(y, θ) , (2.10)

where X,W are N = 1 chiral and vector multiplets, respectively. Their component

forms read:

Wα = −iλα + θαD− i(σµνθ)αFµν + θθ(σµ∂µλ̄)α , (2.11)

X = x+
√
2θχ− θθF , (2.12)

1

4
D̄2X̄ = F̄−

√
2iθσµ∂µχ̄− θθηµν∂µ∂ν x̄ . (2.13)

2We follow the conventions in [9], so the superspace covariant derivatives, in terms of the chiral coordi-

nate, are given by

Dα =
∂

∂θα
+ 2iσµ

αα̇θ̄
α̇ ∂

∂yµ
, D̄α̇ = − ∂

∂θ̄α̇
(2.2)

and similarly for D̃α,
¯̃
Dα.

3The first supersymmetry refers to the supersymmetry associated with θ, while the second supersym-

metry refers to the one associated with θ̃.
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Alternatively, theN = 2 vector multiplet (2.10) can be obtained from (2.1) by imposing

the following irreducibility conditions:

DiDjW = ǫi
kǫj

lD̄kD̄lW̄ , i, j, k, l = 1, 2 . (2.14)

Here D1 = D,D2 = D̃ correspond to the super-covariant derivatives of the first and second

supersymmetry. The antisymmetric symbol is defined as ǫ1
1 = ǫ2

2 = 0, ǫ1
2 = −ǫ2

1 =

1. From (2.10), we can read the transformation rules of X and W under the second

supersymmetry

δ̃X =
√
2iǫ̃W , (2.15)

δ̃Wα =
√
2i

(

1

4
ǫ̃αD̄

2X̄ − i(σµ¯̃ǫ)α∂µX

)

. (2.16)

We are especially interested in the auxiliary field part of the SUSY transformation

rules of fermions. Under the second supersymmetry, the fermions transform as

δ̃λα = −
√
2F̄ǫ̃α ,

δ̃χα = iDǫ̃α , (2.17)

while under the first supersymmetry, they transform as

δλα = iDǫα ,

δχα = −
√
2Fǫα . (2.18)

The full SUSY transformation of the fermions can then be written as

δsusy

(

χα

λα

)

=

(

−
√
2F iD

iD −
√
2F̄

)(

ǫα

ǫ̃α

)

. (2.19)

The N = 2 vector multiplet W has SU(2)R invariance. To see this symmetry, we define

the following SU(2)R doublets

ϑ1 = θ , ϑ2 = θ̃ , η1 = χ , η2 = λ . (2.20)

The vector multiplet can be expanded in components as

W(y, θ, θ̃) = x+
√
2(θχ+θ̃λ)−θθF−θ̃θ̃F̃+i

√
2θθ̃D+. . . = x+

√
2ϑiηi−ϑiϑjYij+. . . , (2.21)

where

Yij = Yji =
(

Y · σσ2
)

ij
, (2.22)

with σ = (σ1, σ2, σ3) the standard Pauli matrices. More explicitly,

Y11 = F , Y22 = F̄ , Y12 = − i√
2
D, Y =

(

ImF,ReF,
D√
2

)

. (2.23)
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For convenience, we also construct the following triplet of fermionic coordinates trans-

forming in the adjoint representation of SU(2)R

Θ =
(

θ θ̃
)

σσ2

(

θ

θ̃

)

=
(

i(θθ − θ̃θ̃), (θθ + θ̃θ̃),−2iθθ̃
)

. (2.24)

It can be used to form the quantity:

Θ · Y = θθF+ θ̃θ̃F̄−
√
2iθθ̃D = ϑiϑjYij . (2.25)

Note that the SU(2)R symmetry can also be seen from the SU(2)R invariant reality condi-

tions:

Y ∗
ij = ǫi

kǫj
lYkl . (2.26)

2.2 General deformation

We are going to modify Y by adding a constant deformation Ydef. The real part of Ydef

can be absorbed to a trivial shift of the auxiliary fields in Y . Hence we only need to focus

on a pure imaginary Ydef [3]. Using the SU(2)R symmetry, we can rotate the vector Ydef

to any specific direction. As we will see, this just indicates that the model always has

N = 1 residual supersymmetry after deformation. However, the direction of the residual

supersymmetry depends on the deformation parameters which is important for the purpose

of total supersymmetry breaking. Therefore we don’t rotate the deformation vector Ydef

and consider the following generic deformation:

Ydef =

(

i
1

4κ
cosφ, i

1

4κ
sinφ, i

γ√
2

)

, γ, φ, κ ∈ R . (2.27)

It contains three deformation parameters. As we said earlier the real part of the deformation

vector has no physical effects, thus we can equivalently choose

Ydef =

(

i

4κ
eiφ,

1

4κ
eiφ, i

γ√
2

)

. (2.28)

In the remainder of the paper, we will study the general deformation in the form of (2.28).

The deformation Ydef induces a deformation Wdef of the superfield W. It reads

Wdef = −Θ · Ydef = − 1

2κ
eiφθ̃θ̃ −

√
2γθθ̃ , (2.29)

and modifies the irreducibility condition (2.14) to4

DiDjW − ǫi
kǫj

lD̄kD̄lW̄ = iγij , γij ∈ R , (2.30)

where

γij = 8
(

Im(Y ) · σσ2
)

ij
. (2.31)

4Similar modification was obtained in [10] through EM duality transformation which will be discussed

in the next section.
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In particular, this implies the following equation5

DW − D̄W̄ = −4iγ , (2.32)

which modifies the standard Bianchi identity of N = 1 vector multiplets. The deformed

vector multiplet can be solved and expressed in components as

Wα = −iλα + θαD− i(σµνθ)αFµν + θθ(σµ∂µλ̄)α , (2.33)

where

D = d+ iγ, d, γ ∈ R . (2.34)

Here γ is a constant and d is the auxiliary field that should be eliminated through its

equation of motion.

2.3 Deformed supersymmetric transformation and supersymmetry breaking

In order to discuss supersymmetry transformations and supersymmetry breaking, one

should take into account both the deformations and the dynamical parts sourced by the

auxiliary fields. It is convenient to introduce the following quantities

Y = Ydef + Ydynamic =

(

ImF+
i

4κ
eiφ,ReF+

1

4κ
eiφ,

d+ iγ√
2

)

, (2.35)

Wauxiliary = −Θ · Y = Wdef +Wdynamic , (2.36)

where Ydynamic refers to the auxiliary fields vacuum expectation values (VEV) in (2.23).

The deformed transformations of the second supersymmetry are given by

δ̃X =
√
2iǫ̃α (Wα + iγθα) , (2.37)

δ̃Wα =
√
2i

(

1

2κ
eiφǫ̃α+

1

4
ǫ̃αD̄

2X̄ − i(σµ¯̃ǫ)α∂µX

)

. (2.38)

One can check that the N = 2 SUSY algebra is not affected by these constant deformations.

In the presence of deformations, the fermion transformation rules (2.19) get modified as

δsusy

(

χα

λα

)

=

(

−
√
2F i(d+ iγ)

i(d+ iγ) −
√
2
(

F̄+ 1
2κe

iφ
)

)(

ǫα

ǫ̃α

)

= −
√
2

(

Y2 + iY1 −iY3

−iY3 Y2 − iY1

)(

ǫα

ǫ̃α

)

,

(2.39)

with Y = (Y1, Y2, Y3) given in (2.35).

We also introduce the following parametrization of Y [3]:

Y ≡
(

i

2
(A2 −B2),−1

2
(A2 +B2),−iΓ

)

, (2.40)

so that

Wauxiliary = −Θ · Y = A2θθ +B2θ̃θ̃ + 2Γθθ̃ . (2.41)

5This modification appeared before in [11].
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If Γ = ±AB (or equivalently Y · Y = 0), Wauxiliary can be diagonalized and becomes a

complete square

Wauxiliary = (Aθ ±Bθ̃)2 . (2.42)

This means that there is a combination of two supersymmetries which is left intact and

unbroken. It is related to the partial supersymmetry breaking we are switching to.

Supersymmetry is preserved (at least partially), if there exists a linear combination of

the fermions which is invariant under the supersymmetry transformation:

δsusy(c1χα + c2λα) = 0 . (2.43)

This is possible if the transformation matrix is not invertible, namely

det

(

−
√
2F i(d+ iγ)

i(d+ iγ) −
√
2
(

F̄+ 1
2κe

iφ
)

)

= 2F

(

F̄+
1

2κ
eiφ
)

+ (d+ iγ)2 = 0 . (2.44)

It is easy to see that this is also equivalent to Y ·Y = 0 with Y given by (2.35). In this case,

we always have a residual N = 1 supersymmetry, therefore realizing partial supersymmetry

breaking N = 2 → N = 1.

The residual supersymmetry can be found as follows. The coefficients in (2.43) can be

solved yielding:

r ≡ c2

c1
=

iY3

Y2 − iY1
=

Y2 + iY1

iY3
. (2.45)

Then the unbroken supercharge is the linear combination:

S = c1Q+ c2Q̃ . (2.46)

Indeed from the supersymmetry algebra of Q, Q̃

{Qα, Q̄α̇} = 2iσm
αα̇∂m, {Q̃α,

¯̃
Qα̇} = 2iσm

αα̇∂m, {Qα, Q̃α} = {Q̄α, Q̃α} = 0 (2.47)

one can easily find that S satisfies the N = 1 algebra

{Sα, S̄α̇} = 2iσm
αα̇∂m , (2.48)

provided that |c1|2 + |c2|2 = 1. This condition can always be realized by a trivial rescaling

of c1, c2. One can also explicitly verify that

δSǫ λ = ǫSλ = ǫ(c1Q+ c2Q̃)λ =
(

c1(Y2 + iY1) + c2(−iY3)
)

ǫ = 0 , (2.49)

and similarly δSǫ χ = 0.

To conclude, Y · Y = 0 provides the criteria for a residual N = 1 supersymmetry.

3 N = 2 duality

In this section, we will show the electromagnetic (EM) duality fully at N = 2 level.6 The

strategy is to make full use of various “long”/“short”, chiral/antichiral superfields [3]. With

this formalism, we can explicitly see that our deformations are dual to the triplet of FI

parameters for (ReF, ImF, D√
2
). So the deformations can be regarded as the magnetic FI

terms.
6We would like to thank E. Ivanov for drawing our attention to ref. [10] where some points in this section

were made using different language.
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3.1 “Long” and “short” multiplets

We begin with the following N = 2 “long” chiral-chiral superfield [3]:

Ẑ = Y +
√
2θ̃χ− θ̃θ̃

(

1

4
D̄2Ȳ +

i

2
Φ

)

, (3.1)

where Y, χα,Φ are N = 1 chiral supefields. We can then define the N = 2 “short”

antichiral-chiral superfield:

Z = − i

2

(

D̃2Ẑ − D̄2 ¯̂Z
)

. (3.2)

In components, it reads

Z = Φ−
√
2i
¯̃
θD̄L− 1

4
¯̃
θ2D̄2Φ̄ , (3.3)

where

L = Dχ+ D̄χ̄ (3.4)

is a real linear superfield.

Similarly, we could begin with the N = 2 “long” chiral-antichiral superfield:

Ŵ = X +
√
2
¯̃
θΩ̄− ¯̃

θ2
(

1

4
D̄2Ū +

i

2
X

)

, (3.5)

where U, Ω̄α̇, X are chiral: they are annihilated by D̄β̇ . In particular, Ω̄ can be written as

Ω̄α̇ = D̄α̇L with L a complex linear superfield satisfying D̄2
L = 0. One can then define the

N = 2 “short” chiral-chiral superfield:

W = − i

2

(

¯̃
D2Ŵ − D̄2 ¯̂W

)

. (3.6)

In components, it reads

W = X +
√
2iθ̃W − 1

4
θ̃2D̄2X̄ , (3.7)

where

Wα = D̄α̇

(

1

2
D̄α̇Ωα −DαΩ̄

α̇

)

=
1

2
D̄2Dα(L+ L̄) . (3.8)

This especially implies that W satisfies the standard supersymmetric Bianchi identity

DW = D̄W̄ , which in turn enables us to define the potential associated to W , a real

superfield V such that Wα = −1
4D̄

2DαV with V = −2(L+ L̄).

Since both Ŵ and Z are chiral-antichiral, we can consider the following supersymmetric

invariant action
∫

d2θd2
¯̃
θ ZŴ . (3.9)

Similarly we can also construct the following action from two chiral-chiral superfields Ẑ,W:

∫

d2θd2θ̃ WẐ . (3.10)
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Actually, one can show that the two actions above with imaginary couplings are equal:

i

∫

d2θd2
¯̃
θŴZ + c.c. =

1

2

∫

d2θd2
¯̃
θŴ
(

D̃2Ẑ − D̄2 ¯̂Z
)

+ c.c.

=
1

2

(

−1

4

)
∫

d2θd2θ̃d2
¯̃
θŴẐ − 1

2

(

−1

4

)
∫

d2θd2θ̄d2θ̃
¯̂WẐ + c.c.

=
1

2

∫

d2θd2θ̃
(

¯̃
D2Ŵ − D̄2 ¯̂W

)

Ẑ + c.c.

= i

∫

d2θd2θ̃ẐW + c.c. . (3.11)

3.2 Without deformation

To establish the EM duality, we consider the following action:

S =

∫

d2θd2θ̃F(Ẑ) + i

∫

d2θd2
¯̃
θ ZŴ + c.c. , (3.12)

where the prepotential F is a holomorphic function. The duality in N = 2 theories can be

shown by eliminating different set of variables.

3.2.1 Electric side

We first consider the electric side of the theory by integrating out Ŵ. The equation of

motion of Ŵ leads to

Z = 0, ⇒ Φ = 0, L = const. . (3.13)

Actually one can further show that L = 0 due to the Bianchi identity DW = D̄W̄ in Ŵ.7

Then we redefine the field χ = iZ such that

DZ − D̄Z̄ = −iL = 0 . (3.15)

The chirality and the above standard supersymmetric Bianchi identity dictates that Z is

the field strength superfield of a standard vector multiplet. Ẑ becomes then the standard

(short) N = 2 chiral-chiral superfield describing a vector multiplet.

The original action after integrating out Ŵ, which will be called electric one, now

becomes

Se =

∫

d2θd2θ̃F(Ẑ) + c.c. =

∫

d2θ

(

F ′
(

−1

4
D̄2Ȳ

)

− 1

2
F ′′χ2

)

+ c.c.

=

∫

d2θd2θ̄ Ȳ FY +
1

2

∫

d2θ F ′′Z2 + c.c. , (3.16)

where FY ≡ F ′(Y ). It is then the standard N = 2 action of a vector multiplet with

prepotential F .

7 This can be shown as follows:

i

∫

d
2
θd

2 ¯̃
θŴZ + c.c. = i

∫

d
2
θd

2
θ̃ẐW + c.c. ⊃

∫

d
2
θχW + c.c. =

∫

d
2
θχ

α

(

−1

4
D̄

2
DαV

)

+ c.c.

= −
∫

d
2
θd

2
θ̄V (Dχ+ D̄χ̄) . (3.14)

The equation of motion of V gives rise to L = 0.
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3.2.2 Magnetic side

The action (3.12) can also be written as

S =

∫

d2θd2θ̃F(Ẑ) + i

∫

d2θd2θ̃ WẐ + c.c. , (3.17)

thanks to the relation (3.11). Now, we would like to integrate out Ẑ, whose equation of

motion yields

W = iF ′(Ẑ) . (3.18)

Then the action takes the form

S =

∫

d2θd2θ̃
(

F(Ẑ)− ẐF ′
)

. (3.19)

The integrand is nothing but the Legendre transformation of F .

From (3.18), one could find its inverse function

Ẑ = −iH′(W) , (3.20)

such that

F(Ẑ)− ẐF ′ = H(W) . (3.21)

The construction is reminiscent of the relation of Lagrangian and Hamiltonian formulation

in classical mechanics once we make the analogy: −iW ↔ p, Ẑ ↔ ẋ,F ↔ L,−H ↔ H. So

the dual magnetic theory now becomes

Sm =

∫

d2θd2θ̃H(W) + c.c. . (3.22)

For clarity, we would also like to write the magnetic theory in terms of components.

We expand the action (3.17) in terms of N = 1 superfields:

∫

d2θd2θ̃F(Ẑ)+i

∫

d2θd2θ̃ WẐ+c.c. =

∫

d2θ

(

(F ′+iX)

(

−1

4
D̄2Ȳ− i

2
Φ

)

− i

4
Y D̄2X̄−1

2
F ′′χ2+χW

)

.

(3.23)

We integrate out Φ, χ:

δΦ : X = iF ′(Y ) , (3.24)

δχ : χα =
Wα

F ′′(Y )
. (3.25)

Substituting them back into the action, we obtain the magnetic action

Sm =

∫

d2θd2θ̃F(Ẑ) + i

∫

d2θd2
¯̃
θ WẐ + c.c. =

∫

d2θ

(

− i

4
Y D̄2X̄ − 1

2
F ′′χ2 + χW

)

=

∫

d2θd2θ̄ Ȳ FY +
1

2

∫

d2θ
W 2

F ′′ + c.c. . (3.26)

We now define a new function H such that

X = iF ′(Y ) , H′(X) = iY . (3.27)
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Then it is obvious to see

F ′′H′′ =
dF ′

dY

dH′

dX
=

idX

dY

−idY

dX
= 1 . (3.28)

This enables us to rewrite the magnetic action as

Sm =

∫

d2θd2θ̃H(W) + c.c. =

∫

d2θd2θ̄ X̄HX +
1

2

∫

d2θH′′W 2 + c.c. . (3.29)

The form Sm matches exactly with the form of the original electric theory Se. Thus, the

electric theory with chiral scalar Y and prepotential derivative iFY (Y ) is dual/equivalent

to the magnetic theory with chiral scalar Y D = X = iFY (Y ) and prepotential derivative

iFD
Y D(Y

D) = iHX(X) = −Y . This establishes the EM duality at fully N = 2 level.

3.3 With deformation

We now turn to adding the deformations and consider the modified actions as follows

S =

∫

d2θd2θ̃F(Ẑ −
√
2θθ̃γ) + i

∫

d2θd2
¯̃
θ

(

Z +
i

κ
eiφ
)

Ŵ + c.c. . (3.30)

The dual of the deformations can be found in a similar fashion as above.

Electric theory. We can first integrate out Ŵ:

Z +
i

κ
eiφ = 0, ⇒ Φ = − i

κ
eiφ, L = const. ∈ R . (3.31)

Using the same argument as in footnote 7, one further finds that L = 0. Defining χα =

i(Zα − iθαγ), we have

Ẑ −
√
2θθ̃γ = Y +

√
2iθ̃Z − θ̃θ̃

(

1

4
D̄2Ȳ +

i

2
Φ

)

, (3.32)

where Z satisfies the constraint:

DZ − D̄Z̄ = −4iγ . (3.33)

This is the modified Bianchi identity of Z. Note that Z is not affected by γ.

One can now obtain the electric action as

Se =

∫

d2θd2θ̃F(Ẑ−
√
2θθ̃γ)+c.c. =

∫

d2θ

(

F ′

(

−1

4
D̄2Ȳ− i

2
Φ

)

+
1

2
F ′′Z2

)

+c.c.

=

∫

d2θd2θ̄ Ȳ FY +
1

2

∫

d2θ F ′′Z2− 1

2κ
eiφ
∫

d2θFY +c.c. ,

(3.34)

where Z satisfies the generalized Bianchi identity (3.33).
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Magnetic theory. Using the identity (3.11), the deformed action (3.30) can be written as

S =

∫

d2θd2θ̃F(Ẑ −
√
2θθ̃γ) + i

∫

d2θd2θ̃ WẐ − 1

κ
eiφ
∫

d2θd2
¯̃
θ Ŵ + c.c.

=

∫

d2θd2θ̃F(Ẑ ′) + i

∫

d2θd2θ̃ WẐ ′ + i

∫

d2θd2θ̃
√
2θθ̃γW − 1

κ
eiφ
∫

d2θd2
¯̃
θ Ŵ + c.c. ,

(3.35)

where we have trivially shifted the argument of F . The first two terms can be treated as

before and we arrive at the magnetic theory:

Sm =

∫

d2θd2θ̄ Ȳ FY +
1

2

∫

d2θ
W 2

F ′′ + γ

∫

d2θd2θ̄ θ2θ̃2D+
i

2κ
eiφ
∫

d2θX + c.c.

=

∫

d2θd2θ̄ X̄HX +
1

2

∫

d2θH′′W 2 + 2γ

∫

d2θd2θ̄ V +
i

2κ
eiφ
∫

d2θX + c.c. .

(3.36)

Therefore the magnetic theory now contains a triplet of FI terms:

2γ

∫

d2θd2θ̄ V +
i

2κ
eiφ
∫

d2θX + c.c. = 2γD+
1

κ
sinφReF+

1

κ
cosφ ImF = −4iY · Ydef .

(3.37)

Comparing the two actions (3.34) and (3.36), we clearly see the duality between de-

formations and triplet of FI couplings: X ↔ FY and modification of Bianchi identity

DZ − D̄Z̄ = −4iγ ↔ FI D-term γD.8

4 Generalized APT model

In this section, we discuss the Antoniadis-Partouche-Taylor (APT) model and its general-

izations with all deformations we introduced above. We will analyse the general N = 2

action based on an arbitrary deformed vector superfield. By computing the scalar po-

tential, we find that the only non-trivial minima break supersymmetry partially from

N = 2 → N = 1.

4.1 APT model

In this subsection, we will review the APT model [1] which describes the partial supersym-

metry breaking N = 2 → N = 1.

The starting point is an N = 2 chiral-chiral superfield introduced in section 2:

Wnew = W − 1

2κ
eiφθ̃θ̃ −

√
2γθθ̃ = X +

√
2iθ̃W − 1

4
θ̃θ̃
(

D̄2X̄ + 4m
)

, m ≡ 1

2κ
eiφ , (4.1)

X = x+
√
2θχ− θθF . (4.2)

8More details of this deformed vector multiplet will be discussed elsewhere [12].
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In this subsection, we only consider the deformation κ and set all others to zero γ = φ = 0.

The action of APT model realizing the partial breaking is given by

L = −i

[
∫

d2θd2θ̃ F(Wnew)−e

∫

d2θX

]

−
√
2ξ

∫

d4θV+c.c. (4.3)

= −i

[
∫

d2θ

(

−1

4
F ′(X)(D̄2X̄+4m)+

1

2
F ′′(X)W 2

)

−e

∫

d2θX

]

−
√
2ξ

∫

d4θV+c.c.

= −i

[
∫

d2θd2θ̄ X̄F ′(X)−
∫

d2θ

(

eX+mF ′(X)−1

2
F ′′(X)W 2

)]

−
√
2ξ

∫

d4θV+c.c. .

(4.4)

where the holomorphic function F is the prepotential and m, e, ξ ∈ R. As we discussed in

the previous section, eX and mF ′ are dual to each other. We add them simultaneously

into the action which is crucial for partial supersymmetry breaking. The action can be

further rewritten in a compact form as

L =

∫

d4θK (X, X̄) +

∫

d2θW (X) +

∫

d2θ̄W̄ (X̄) (4.5)

+

(
∫

d2θ
F ′′(X)

2
W 2 + c.c.

)

+ 2
√
2ξ

∫

d4θV , (4.6)

where the Kahler potential and superpotential are

K (X, X̄) = −iX̄F ′(X) + iXF̄ ′(X̄), W (X) = i(eX +mF ′(X)) . (4.7)

We now study the scalar potential in order to find the vacuum of the theory. Let us

first recall the auxiliary fields of various superfields

W 2 = θθD2+ . . . , D̄2X̄ = 4F̄+ . . . , X = x−θθF+ . . . , V =
1

2
θθθ̄θ̄D+ . . .

(4.8)

Focusing on the auxiliary field part, the action takes the form

L = −i

[
∫

d2θd2θ̄ X̄XF ′′(x)−
∫

d2θ

(

eX+mXF ′′(x)−1

2
F ′′(x)W 2

)]

−
√
2ξ

∫

d4θV+c.c.+. . .

= −i

[

τFF̄+F(e+mτ)+
1

2
τD2

]

−
√
2

2
ξD+c.c.+. . . (4.9)

where the dots represent terms which do not contain any auxiliary fields and F ′′(x) ≡
τ(x) = τ1 + iτ2 ∈ C.

Then, the scalar potential arising from the auxiliary field is given by

V (τ(x)) = iτ

(

1

2
D
2 + FF̄

)

+ i(mτ + e)F+

√
2

2
ξD+ c.c.

= −2τ2

(

1

2
D
2 + FF̄

)

+ i(mτ + e)F− i(mτ̄ + e)F̄+
√
2ξD . (4.10)
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The auxiliary fields are solved using their equations of motion

∂V

∂F
=

∂V

∂F̄
=

∂V

∂D
= 0 , (4.11)

with solutions

F =
−i(mτ̄ + e)

2τ2
, F̄ =

i(mτ + e)

2τ2
, D =

ξ√
2τ2

. (4.12)

Substituting them back, one gets the scalar potential9

V =
|mτ + e|2 + ξ2

2τ2
. (4.15)

To find the vacuum, namely the minimum of the scalar potential V (τ(x)), we need

to extremize with respect to the scalar field x. Equivalently, assuming ∂τ(x)
∂x

6= 0, we can

extremize with respect to τ1, τ2 and get the following solutions

τ1 = − e

m
, τ2 = ± ξ

m
. (4.16)

One of them is a discarded by positivity of the kinetic term. The stable vacuum is given by

τ1 = − e

m
, τ2 =

∣

∣

∣

∣

ξ

m

∣

∣

∣

∣

. (4.17)

So the VEV of the auxiliary fields are

F = F̄ = −m

2
, D =

m sgn(mξ)√
2

, (4.18)

and the vacuum potential energy is

V = |mξ| . (4.19)

From previous discussions (2.39), we easily find that the fermions transform in the follow-

ing way:

δ̃λ = −
√
2ǫ̃(F̄+m) = − 1√

2
mǫ̃ , δ̃χ = iǫ̃D = i

m sgn(mξ)√
2

ǫ̃ , (4.20)

δλ = iDǫ = i
m sgn(mξ)√

2
ǫ , δχ = −

√
2Fǫ =

m√
2
ǫ . (4.21)

It is then easy to see that

δsusy(λ+ i sgn(mξ)χ) = 0 , (4.22)

so that a linear combination of two supersymmetries is preserved, and thus the N = 2

supersymmetry is only partially broken.

9The scalar potential can be also obtained directly as follows V = VD + VF :

VF =
∂W

∂X
g
XX̄ ∂W̄

∂X̄
=

|mτ + e|2
2τ2

, (4.13)

VD =
g2

8

(

2
√
2ξ

)2

=
ξ2

2τ2
, (4.14)

where gXX̄ = (gXX̄)−1 = (∂X∂X̄K )−1 and the real part of the gauge coupling 1

g2
= Re(−2iτ) = 2τ2.
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4.2 Generalization of APT model

As we emphasized, the crucial point in APT model is the simultaneous turning on of electric

coupling eX and magnetic coupling mFX . Since in the previous sections we found three

deformation parameters, it is natural to generalize the APT model by adding electric and

magnetic couplings corresponding to the three deformations.

The action is almost the same as before:

L = −i

[
∫

d2θd2θ̃ F(Wnew)−e

∫

d2θX

]

−
√
2ξ

∫

d4θV+c.c.

= −i

[
∫

d2θd2θ̄ X̄F ′(X)−
∫

d2θ

(

eX+mF ′(X)−1

2
F ′′(X)W 2

)]

−
√
2ξ

∫

d4θV+c.c.

(4.23)

but now we allow complex m = mR + imI ,D = d+ iγ with mR,mI , γ, ξ, e ∈ R. Note that

e is taken to be real since its phase can be absorbed by a rescaling of X.

The scalar potential is given by

V = iτ

(

1

2
(d+ iγ)2 + FF̄

)

+ i(mτ + e)F+

√
2

2
ξ(d+ iγ) + c.c.

= −2τ2

(

1

2
(d2 − γ2) + FF̄

)

− 2τ1dγ + i(mτ + e)F− i(m̄τ̄ + e)F̄+
√
2ξd . (4.24)

The auxiliary fields can be solved:

F =
−i(m̄τ̄ + e)

2τ2
, F̄ =

i(mτ + e)

2τ2
, d =

ξ −
√
2γτ1√

2τ2
, (4.25)

leading to the scalar potential

V =
|mτ + e|2 + ξ2 − 2

√
2ξγτ1 + 2γ2(τ21 + τ22 )

2τ2
. (4.26)

The vacuum sits at

τ1 =
−emR +

√
2γξ

|m|2 + 2γ2
, τ2 =

√

(
√
2eγ +mRξ)2 +m2

I(e
2 + ξ2)

|m|2 + 2γ2
, (4.27)

with auxiliary field VEVs

F̄ =
2ieγ2 + i

√
2mγξ + emmI −m

√

(
√
2eγ +mRξ)2 +m2

I(e
2 + ξ2)

2
√

(
√
2eγ +mRξ)2 +m2

I(e
2 + ξ2)

, (4.28)

F = F̄
∗
, (4.29)

d =
2emRγ +

√
2|m|2ξ

2
√

(
√
2eγ +mRξ)2 +m2

I(e
2 + ξ2)

. (4.30)

One can verify that for the auxiliary field VEVs above, the following equality always holds:

Y · Y = 0 . (4.31)

Based on the arguments elaborated in subsection 2.3, this implies that there is always a

residual N = 1 supersymmetry.
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4.3 More U(1)s towards the complete breaking of supersymmetry

As we have just seen, a theory with only one U(1) always has an N = 1 supersymmetric

vacuum, independent of the FI parameters and deformations.10 Hence it seems impossible

to break completely the supersymmetry. However, note that although N = 1 is always

preserved, the residual supersymmetry, as a linear combination of the two original super-

symmetries in N = 2, depends on the deformations and FI parameters. Therefore if the

theory contains two or more U(1)s with different residual supersymmetries, the full system

breaks supersymmetry completely. Of course, the different sectors should communicate

through matter (not necessarily charged) or gravitational interactions.

More specifically, consider the Lagrangian with two decoupled U(1)s

L = L(1) + L(2) . (4.32)

The previous analysis applies individually to these two subsectors.

Y
(1) = Y

(1)
def + Y

(1)
vev , Y

(2) = Y
(2)
def + Y

(2)
vev . (4.33)

The full system is thus characterized by

Y = Y
(1) + Y

(2) . (4.34)

As we have seen in the last subsection, we always have

Y
(1) · Y (1) = Y

(2) · Y (2) = 0 . (4.35)

However, as long as the two vectors are not aligned Y
(2) 6= cY (1),11 we immediately have

Y · Y 6= 0 , (4.36)

meaning that N = 2 supersymmetry is broken completely.

5 Deformed Dirac-Born-Infeld action

In this section, we will impose a nilpotent constraint on the deformed N = 2 vector

multiplet, which renders one supersymmetry non-linearly realized. The resulting action

is a generalized supersymmetric Dirac-Born-Infeld (DBI) action. We will first study the

bosonic part of the action and find that it is almost identical to the standard bosonic

DBI up to some renormalization of coupling constants. This is quite similar to the case

of DBI+FI model where the FI parameter only renormalizes the coupling of the bosonic

DBI [2]. In order to differentiate the deformed DBI from the DBI+FI model, we also study

the fermionic part using the non-linear SUSY formalism [8].

We then study SUSY breaking in our model and find again that there is always a

residual N = 1 supersymmetry independently of the deformation parameters. However,

this unbroken N = 1 supercharge, as a linear combination of N = 2 supercharges, depends

on the deformation parameters.

10We exclude the singular points τ2 = 0 or infinity of runaway behavior and the trivial case of a free

theory with quadratic prepotential.
11This is true generically in the parameter space.
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5.1 Nilpotent constraint on N = 2

The supersymmetric DBI action arises from the partial supersymmetry breaking of N =

2 → N = 1. It was first constructed through the coset method by Bagger and Galperin [4].

In [13], Rocek and Tseytlin found the same action through a nilpotent constraint on the

N = 2 superfield. We will thus follow this elegant nilpotent construction and discuss the

deformed DBI.

5.1.1 Without phase deformation

Following [13], we break N = 2 by assuming the presence of a Lorentz invariant condensate

〈W〉 = Wdef 6= 0, so

W → Wnew = 〈W〉+W = W +Wdef , (5.1)

Wnew = X +
√
2iθ̃W − 1

4
θ̃θ̃

(

D̄2X̄ +
2

κ

)

, (5.2)

where the deformation γ is implicit in W . We then impose the nilpotent constraint to

obtain the non-linearized supersymmetry

Wnew
2 = 0 , (5.3)

which implies
1

κ
X = WW − 1

2
XD̄2X̄ . (5.4)

This constraint can be solved to eliminate X in terms of W [4]:

X = κW 2 − κ3D̄2

[

W 2W̄ 2

1 +A+
√
1 + 2A− B2

]

, (5.5)

where we have introduced

A =
κ2

2
(D2W 2 + D̄2W̄ 2) = A∗, B = i

κ2

2
(D2W 2 − D̄2W̄ 2) = B∗ . (5.6)

and denote their lowest components as

A = A|θ=0, B = B|θ=0 . (5.7)

Before imposing the constraint (5.3), the most general N = 2 supersymmetric two-

derivative action is given in (4.3), depending on a prepotential and implemented by two

(electric) FI-terms which are linear in the N = 1 superfields X and V . After imposing

the nilpotent constraint, the prepotential becomes linear in the N = 2 superfield which

gives vanishing contribution upon integration over the chiral superspace, and one is left

only with the two FI-terms leading to the DBI action and the standard FI-term. The DBI

action arises from the term linear in X:

L =
1

4κg2

(
∫

d2θX +

∫

d2θ̄X̄

)

. (5.8)
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More generally, we can also consider a complex coupling constant

L =
1

8πκ
Im

(

τ

∫

d2θX

)

, (5.9)

where

τ =
4πi

g2
+

θ

2π
. (5.10)

In the absence of θ-angle and γ deformation, the above action gives rise to the standard DBI.

5.1.2 With phase deformation

In the presence of a phase φ, eq. (5.9) is modified to

1

κ
eiφX = WW − 1

2
XD̄2X̄ . (5.11)

Nevertheless we can absorb the phase into X by defining X̃ = eiφX:

1

κ
X̃ =

1

κ
(eiφX) = WW − 1

2
(eiφX)D̄2(e−iφX̄) = WW − 1

2
X̃D̄2 ¯̃

X . (5.12)

The solution is then the same as (5.4) except for the replacement of X with X̃:

X̃ =

(

κW 2 − κ3D̄2

[

W 2W̄ 2

1 +A+
√
1 + 2A− B2

])

. (5.13)

The action is

L =
1

8πκ
Im

(

τ

∫

d2θX

)

=
1

8πκ
Im

(

τ

∫

d2θe−iφX̃

)

=
1

8πκ
Im

(

τ̃

∫

d2θX̃

)

, (5.14)

where τ̃ = e−iφτ . Therefore the effect of a phase deformation in the action is to rotate

the phase of the complex coupling constant. In the following we will consider a general

complex coupling constant which by default has incorporated the phase φ already.

5.2 Bosonic part

In this subsection, we will work out the bosonic part of our deformed DBI action. It turns

out that in spite of the general deformations, the resulting bosonic action still takes the

well-known form of the bosonic DBI action.

To evaluate the action, let us recall the component expression of the deformed vector

multiplet

Wα = −iλα + θαD− i(σµνθ)αFµν + θθ(σµ∂µλ̄)α, D = d+ iγ, d, γ ∈ R , (5.15)

which satisfies the deformed Bianchi identity (2.32). Then we can calculate

W 2 = C + ψθ + θθE , (5.16)

with

C = −λ2 , ψβ = −2iDλβ + 2Fµνσ
µν

β
αλα , E = D

2 − 1

2
(F 2 + iF F̃ )− 2iλσµ∂µλ̄ ,

(5.17)
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where

F 2 ≡ FµνF
µν , F F̃ ≡ FµνF̃

µν =
1

2
ǫµνρσFµνFρσ . (5.18)

In the pure bosonic case λ = λ̄ = 0, we have

W 2 = θθE = θθ

[

D
2 − 1

2
(F 2 + iF F̃ )

]

, W̄ 2 = θ̄θ̄Ē = θ̄θ̄

[

D̄
2 − 1

2
(F 2 − iF F̃ )

]

.

(5.19)

Since in this case W 2, W̄ 2 only have non-vanishing θθ component E, Ē 6= 0, A,B in (5.6)

can only contribute through their lowest components:

A = A|θ=0 = −2κ2(E + Ē) = 2κ2
(

F 2 − 2(d2 − γ2)
)

, (5.20)

B = B|θ=0 = −2iκ2(E − Ē) = −2κ2
(

FF̃ − 4dγ
)

. (5.21)

With these ingredients, we can now calculate

∫

d2θX =

∫

d2θ

(

κW 2 − κ3D̄2

[

W 2W̄ 2

1 +A+
√
1 + 2A− B2

])

= κ

∫

d2θW 2 + 4κ3
∫

d2θd2θ̄
W 2W̄ 2

1 +A+
√
1 + 2A− B2

= κE + 4κ3
EĒ

(

1 +A+
√
1 + 2A−B2

) . (5.22)

We can decompose it into real and imaginary parts

2Re

∫

d2θX = κ(E+Ē)+8κ3
EĒ

(

1+A+
√
1+2A−B2

)
∣

∣

∣

θ=0

=
1

2κ

[

1−
√

1+2A−B2
]

, (5.23)

2 Im

∫

d2θX = −iκ(E−Ē) =
1

2κ
B , (5.24)

and then express the bosonic action as

L =
1

8πκ
Im

(

τ

∫

d2θX

)

=
1

2g2κ
Re

∫

d2θX +
θ

16π2κ
Im

∫

d2θX

=
1

8g2κ2

[

1−
√

1 + 2A− B2
]

+
θ

64π2κ2
B

=
1

8g2κ2

[

1−
√

1 + 4κ2 (F 2 − 2(d2 − γ2))− 4κ4
(

FF̃ − 4dγ
)2
]

− θ

32π2

(

FF̃ − 4dγ
)

.

(5.25)

Note the term θγd which is reminiscent of the standard FI term ξd. This might provide

an alternative realization of supersymmetry breaking via deformation and a non-vanishing

θ-angle.
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Solving the constraint:
∂S

∂d
= 0 , (5.26)

we get the auxiliary field

d =
2γF F̃κ2

8γ2κ2 + 1
−

γg2θ

√

1 + 4κ̃2F 2 − 4κ̃4(FF̃ )2

2
√
2
√

γ2κ2 (g4θ2 + 64π4) + 8π4
, (5.27)

where we introduced a renormalized coupling

κ̃2 =
κ2

1 + 8γ2κ2
. (5.28)

Substituting d back, one gets the final bosonic action

L =
1

8g2κ2
− θF F̃

32π2 (8γ2κ2 + 1)
− 1

8g2κκ̃

√

1 +
θ2g4γ2κ̃2

8π4

√

− det
(

ηµν + 2
√
2κ̃Fµν

)

.

(5.29)

This action takes the form of a standard bosonic DBI action, except for the couplings which

are renormalized by the deformations.

If we set θ = 0, the action simply reads

L =
1

8g2κ2
− 1

8g2κκ̃

√

− det
(

ηµν + 2
√
2κ̃Fµν

)

. (5.30)

If we furthermore set γ = θ = 0, it reduces to the conventional DBI

L =
1

8κ2g2

[

1−
√

− det
(

ηµν + 2
√
2κFµν

)

]

= − 1

4g2
FµνF

µν + . . . . (5.31)

It is worth reminding that in string theory

κ =
πα′
√
2
. (5.32)

5.3 SUSY breaking

We now investigate supersymmetry breaking of our deformed DBI action.

5.3.1 SUSY breaking in standard DBI+FI

For comparison, let us first consider the standard DBI +FI model. We also restrict ourselves

to the bosonic part

L =
1

4κg2

(
∫

d2θX +

∫

d2θ̄X̄

)

+
ξ√
2

∫

d2θd2θ̄V

=
1

8g2κ2

[

1−
√

1 + 4κ2
(

F 2 − 2D2
)

− 4κ4
(

FF̃
)2
]

+
ξ√
8
D . (5.33)
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The auxiliary field can be solved

D = −
g2ξ

√

1 + 4κ2F 2 − 4κ4
(

FF̃
)2

√
8
√

1 + g4κ2ξ2
, (5.34)

whose vacuum expectation value is given by

〈D〉 = − g2ξ√
8
√

1 + g4κ2ξ2
. (5.35)

This leads to the following bosonic action

S =
1

8g2κ2
−
√

1 + g4κ2ξ2

8g2κ2

√

1 + 4κ2F 2 − 4κ4
(

FF̃
)2

. (5.36)

Just like the deformations, the FI parameter ξ also renormalizes the couplings.

The fermion transformation are

δǫλ = ǫQλ =
√
2iY3ǫ = iDǫ ,

δ̃ǫ̃λ = ǫ̃Q̃λ = −
√
2(Y2 − iY1)ǫ̃ = −

√
2

(

F̄+
1

2κ

)

ǫ̃ , (5.37)

where F̄ can be solved from the constraint (5.5) and expressed in terms of 〈D〉. The left-over
supersymmetry has to be a linear combination of the N = 2 supersymmetries:

S = c1Q+ c2Q̃ . (5.38)

The ratio r of the coefficients is given by eq. (2.45)

r ≡ c2

c1
=

iY3

Y2 − iY1
= − ig2κξ

1 +
√

1 + g4κ2ξ2
. (5.39)

Then indeed the supersymmetry transformation S leaves the fermion invariant

δSǫ λ = ǫSλ = 0 . (5.40)

The residual supersymmetry can be more compactly written as

Sα = cosϕQα − i sinϕQ̃α , (5.41)

with

tanϕ =

∣

∣

∣

∣

c2

c1

∣

∣

∣

∣

= |r| = g2κξ

1 +
√

1 + g4κ2ξ2
. (5.42)

Therefore, the FI term does not break the supersymmetry in the DBI action. Instead, it

rotates the supercharge in the N = 2 space.
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5.3.2 SUSY breaking in deformed DBI

Now we study the supersymmetry breaking in the deformed DBI action.

From (5.5), we can solve the auxiliary field in X in terms of the auxiliary field in W

− Fe−iφ = κD2 + 4κ3
D
2
D̄
2

1 + a+
√
1 + 2a− b2

, (5.43)

where

D = d+ iγ , D̄ = d− iγ , a = −4κ2(d2 − γ2) , b = 8κ2dγ . (5.44)

More explicitly, the F and F̄ solutions are

F = −e−iφ 1 + 8iκ2dγ −
√

(1− 8d2κ2)(1 + 8κ2γ2)

4κ
, (5.45)

F̄ = −eiφ
1− 8iκ2dγ −

√

(1− 8d2κ2)(1 + 8κ2γ2)

4κ
. (5.46)

This enables us to construct the Y vector

Y =

(

F− F̄

2i
− 1

4iκ
eiφ,

F+ F̄

2
+

1

4κ
eiφ,

d+ iγ√
2

)

=

(

−
√

(1− 8d2κ2)(1 + 8κ2γ2) sinφ+ (i− 8dκ2γ) cosφ

4κ
,

√

(1− 8d2κ2)(1 + 8κ2γ2) cosφ+ (i− 8dκ2γ) sinφ

4κ
,
d+ iγ√

2

)

. (5.47)

One can easily check that

Y · Y = 0 , (5.48)

implying that there is always a residual N = 1 SUSY according to our previous arguments.

However, the following SU(2)R invariant quantity is not zero:

Y · Y ∗ =
1

8κ2
+ γ2 =

1

8κκ̃
. (5.49)

This defines the partial supersymmetry breaking scale of the theory.

The unbroken supersymmetry can also be worked out as before

Sα = cosϕQα + sinϕQ̃α , (5.50)

with

tanϕ = |r| =
∣

∣

∣

∣

iY3

Y2 − iY1

∣

∣

∣

∣

=

√

1 + 8γ2κ2 −
√
1− 8d2κ2

√

1 + 8γ2κ2 +
√
1− 8d2κ2

, (5.51)

where d is the VEV

d = − γg2θ

2
√
2
√

γ2κ2 (g4θ2 + 64π4) + 8π4
. (5.52)
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Note that all the possible phase factors have already been absorbed into the definition of

supercharges.

Thus, we see that we can only partially break the supersymmetry in N = 2. In order

to break the supersymmetry completely, we need to consider multiple DBIs corresponding

to several U(1)s, just like what we discussed in the generalized APT model. In fact, the

situation is similar to D-branes in string theory whose low energy effective action (for a

single D-brane) is the supersymmetric DBI, where half of the bulk supersymmetries bro-

ken by the D-brane are realized non-linearly on the world-volume. When the bulk has

N = 2, for instance in type II superstring compactified on a Calabi-Yau threefold, the

world-volume theory has one linear and one non-linear supersymmetry, as in our case of

study. A constant magnetic field along the internal directions induces an FI term that one

would naively expect to break the linear supersymmetry. However, in the absence of other

branes or orientifolds, the magnetic field just rotates the direction of linear supersymmetry

or equivalently upon T-duality it rotates the brane. In order to realize complete super-

symmetry breaking, one has to consider a system of at least two magnetized branes, or

equivalently branes at angles in the T-dual version [14–16].

5.4 Fermionic part

As we have seen before, the bosonic part of the deformed DBI action takes the standard

form of the bosonic DBI action after eliminating the auxiliary field. The only role of the

deformations is to renormalize the coupling constants. This is quite similar to the standard

DBI+FI model. So purely from the bosonic sector viewpoint, it seems that our deformed

DBI is the same as the standard DBI+FI model. In order to find a possible difference, we

should also analyze the fermionic part of the action.

The most straightforward way to consider the fermionic contributions is to directly

expand the superfields from the (5.9) action [5]. This is quite tedious and may not be

illuminating. Instead, we will follow the non-linear supersymmetry formalism presented

in [8]. Using this formalism, it was found that in the standard DBI+FI model, the FI

parameter generates an extra term besides renormalizing the coupling constants. It is

exactly this extra term that is responsible for the gauging of R-symmetry when coupled

to supergravity [17]. We will use this non-linear supersymmetry formalism to obtain the

fermionic part of the deformed DBI action. A first analysis indicates that the extra term

arising from the FI parameter does not appear and all deformations can be absorbed in

the parameters of the standard DBI, exactly as for the bosonic part. This suggests that if

we couple the deformed DBI action to supergravity, it may not be necessary to gauge the

R-symmetry.

5.4.1 The non-linear supersymmetry formalism

Before discussing the fermionic part, let us first review the non-linear supersymmetry

formalism elaborated in [8].

Consider a Lagrangian of the type

L = FX + F̄ X̄ , (5.53)
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which transforms as

δL = δFX + δF̄ X̄ = −2i∂a(χσ
aǭFX)− 2i∂a(ǫσ

aχ̄F̄ X̄) . (5.54)

Here χα is the goldstino in the chiral basis, transforming in the following way

δχα = ǫα − 2iχσmǭ∂mχα . (5.55)

This “chiral” goldstino χα is related to the Volkov-Akulov (VA) goldstino ψα via a field

redefinition [18].

Then up to boundary terms we can rewrite (5.53) as

L = detAa
m(B + B̄) , (5.56)

where

B = eδǫFX
∣

∣

∣

ǫ=−ψ
, (5.57)

and

Aa
m = δam − i∂mψσaψ̄ + iψσa∂mψ̄ . (5.58)

Note that detA ≡ detAa
m is just Volkov-Akulov action density of goldstino.

5.4.2 Standard DBI+FI

The standard DBI action can be constructed from the nilpotent N = 2 superfield W

L =
1

4κg2

(
∫

d2θX +

∫

d2θ̄X̄

)

, (5.59)

whereX is given by (5.5) withW the standard field strength superfield of a vector multiplet.

As shown in [8, 19], FX = −
(

1
2κ + 1

4D
2X|

)

indeed transforms in the proper way (5.54),

thus we can apply the above formalism. The Lagrangian can be rewritten as

L =
1

4κg2

(

1

κ
+ FX + F̄X

)

=
1

4κg2

(

1

κ
+ detAa

m(B + B̄)
)

, (5.60)

where

B + B̄ = eδ
∗

ǫ (FX + F̄X)
∣

∣

∣

ǫ=−ψ

= eδ
∗

ǫ
[

(FX + F̄X)bosonic
]

∣

∣

∣

ǫ=−ψ

= eδ
∗

ǫ
1

2κ

[

−2 + 1−
√

1 + 4κ2
(

F 2 − 2D2
)

− 4κ4
(

FF̃
)2
]
∣

∣

∣

∣

∣

ǫ=−ψ

=
1

2κ

[

−1−
√

1 + 4κ2 (F2 − 2D2)− 4κ4
(

FF̃
)2
]

. (5.61)
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Note that in the second equality, we used the property that the gaugino λ transforms as

eδ
∗

ǫ λ|ǫ=−ψ = 0. Some rules to implement the operation eδ
∗

ǫ can be found in [8]. We also

introduced the following quantities:

D = eδ
∗

ǫD|ǫ=−ψ, Fab = (A−1)ma (A−1)nb (∂mun − ∂num), um = Aa
meδ

∗

ǫ va|ǫ=−ψ ,

(5.62)

where va is the U(1) gauge field. Here D should be regarded as the new auxiliary field

although it is composite.

Therefore the standard supersymmetric DBI action written in non-linear supersym-

metry formalism is12

SDBI =
1

8g2κ2

∫

d4x

[

2− detA

[

1 +

√

1 + 4κ2 (F2 − 2D2)− 4κ4
(

FF̃
)2
]]

. (5.63)

We can further add the FI term in the DBI action

LFI =
ξ√
2

∫

d4θV . (5.64)

The non-linear supersymmetry formalism can also be applied to rewrite the FI-term but in

a more involved way than the DBI action. Indeed, upon decomposing the real superfield V

into several constrained superfields and making use of their properties, it was shown in [8]

that the FI term can be rewritten as:

LFI =
1

2
√
2
ξ detA · D − i√

2
ξ detA · ǫabcd[(A−1)a

n∂nψ]σb[(A
−1)c

k∂kψ̄](A
−1)d

mum . (5.65)

Eliminating the auxiliary field D, we get

SDBI+FI =
1

8g2κ2

∫

d4x

[

2− detA

(

1 +
√

1 + g4κ2ξ2

√

1 + 4κ2F2 − 4κ4
(

FF̃
)2
)]

− i√
2
ξ

∫

d4x detA · ǫabcd[(A−1)a
n∂nψ]σb[(A

−1)c
k∂kψ̄](A

−1)d
mum . (5.66)

The second line is responsible for R-symmetry gauging when coupled to supergravity [8]:

when lifting to supergravity, (A−1)a
m∂mψα → D̂aψ

α = ea
mDmψα − 1

2MP
Ψα

a + . . . ,13 and

thus the second line generates the coupling − i

4
√
2

ξ

M2

P

ǫklmnΨkσlΨ̄mvn, indicating the R-

symmetry gauging in supergravity that makes the gravitino charged under the U(1) of

gauge potential vn. A direct derivation of the above action by expanding the DBI, as well

as the deformed one in the next subsection is under way [5].

12Note the constant term proportional to detA, in agreement with ref. [20] and an updated version of

ref. [8]. We have checked eq. (5.63) by a direct computation of the DBI action expanded up to terms of

dimension eight [5].
13Unfortunately we have a clash of notation here. For clarity we use ψ to denote the goldstino and Ψ to

denote the gravitino.
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5.4.3 Deformed DBI

Now we turn to our deformed DBI. We would like to use the non-linear formalism intro-

duced in the previous subsections to rewrite the deformed action (5.9)

L =
1

8πκ
Im

(

τ

∫

d2θX

)

=
τ

16πκi

(

−1

4
D2X|

)

+ c.c. , (5.67)

in terms of the new variables. Assuming that the non-linear supersymmetry formalism

applies also in the presence of the γ-deformation,14 one can show that

FX = − τ

16πκi

(

1

2κ
+

1

4
D2X|

)

(5.68)

also transforms in the way like (5.54).

Hence we can still use the non-linear supersymmetry formalism to rewrite the La-

grangian as

L =
1

4κ2g2
+ FX + F̄X

=
1

4κ2g2
+ detA(B + B̄) , (5.69)

where

B+B̄ = eδ
∗

ǫ (FX+F̄X)
∣

∣

∣

ǫ=−ψ

= eδ
∗

ǫ
[

(FX+F̄X)bosonic
]

∣

∣

∣

ǫ=−ψ

= eδ
∗

ǫ

[

− 1

4κ2g2
+

1

8g2κ2

[

1−
√

1+4κ2 (F 2−2(d2−γ2))−4κ4
(

FF̃−4dγ
)2
]

− θ

32π2

(

FF̃−4dγ
)

] ∣

∣

∣

∣

∣

ǫ=−ψ

=
1

8g2κ2

[

−1−
√

1+4κ2 (F2−2(d2−γ2))−4κ4
(

FF̃−4dγ
)2
]

− θ

32π2

(

FF̃−4dγ
)

.

(5.70)

Here d defined by

d = eδ
∗

ǫ d|ǫ=−ψ , (5.71)

is the new composite auxiliary field. Since γ is a constant number, it does not get modified:

γ = eδ
∗

ǫ γ|ǫ=−ψ . (5.72)

14Although, naively, it seems that this is indeed the case, a more careful analysis is needed that goes

beyond the scope of the present paper. Explicit calculations are ongoing to check this assumption and

clarify the difference between our deformed DBI and the DBI+FI actions [5].
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Then the complete result takes the form

L = detA(B + B̄) + 1

4κ2g2

= detA

(

1

8g2κ2

[

−1−
√

1 + 4κ2 (F2 − 2(d2 − γ2))− 4κ4
(

FF̃ − 4dγ
)2
]

+
θ

8π2
dγ

)

+
1

4κ2g2
− θ

32π2
detA · FF̃ . (5.73)

The last term is a total derivative: using the definition Fab = (A−1)ma (A−1)nb fmn, with

fmn = ∂mun − ∂num the standard field strength of un, one finds

detA · FF̃ = detA · 1
2
ǫabcdFabFcd =

1

2
detA · ǫabcd(A−1)ma (A−1)nb (A

−1)kc (A
−1)ldfmnfkl

=
1

2
detAǫmnkl det(A−1)fmnfkl

=
1

2
ǫmnklfmnfkl = ff̃ . (5.74)

This is a total derivative and thus can be dropped in the spacetime integral.

Eliminating the auxiliary field and dropping the total derivative term FF̃ , we get the

deformed DBI action expressed in the non-linear supersymmetry formalism:

S =
1

8κ2g2

∫

d4x

[

2− detA

(

1 +
κ

κ̃

√

1 +
θ2g4γ2κ̃2

8π4

√

− det
(

ηµν + 2
√
2κ̃Fµν

)

)]

.

(5.75)

Especially we see that the second term in (5.66) does not appear here, suggesting that

there is no need to gauge the R-symmetry in order to couple to supergravity. Thus this

case with deformation seems different from the DBI+FI model.

6 Conclusion

In this paper, we considered the general deformations of N = 2 supersymmetry transfor-

mations for a vector multiplet. We have shown that they are dual to the triplet of FI

parameters under EM duality. We have then studied the effect of the deformations to the

general N = 2 two-derivative action with generic prepotential, as well as to the DBI action

realizing one of the supersymmetries non-linearly. We computed the scalar potential and

showed that for generic FI terms and deformation parameters, the vacuum is always N = 1

supersymmetric. The complete breaking of supersymmetry requires the presence of at least

two U(1)’s in analogy with the situation of branes at angles in string theory.

We also showed that the D-deformation induces an FI term proportional to the theta-

angle. However, after the elimination of the auxiliary field, all deformations can be absorbed

to a redefinition of the DBI parameters (brane tension and coupling constants) at least

within the bosonic sector of the theory. This is also the case of the standard DBI +
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FI action, implying that the FI parameter and deformation are unobservable within the

bosonic sector of the theory. This property is reminiscent of a brane rotation in string

theory. An important difference, however, seems to appear in the fermionic sector, where it

was observed that the FI term leads to an extra contribution to the action written explicitly

in the formalism of non-linear supersymmetry [8]. Applying this formalism in our case,

where the FI term is generated by the deformation via the theta-angle, we do not find any

extra contribution. An explicit computation is currently performed to clarify this point [5].

If such a difference indeed persists, an interesting question is to compare the two theories

with the effective action of D-branes in the presence of induced FI terms, for instance via

internal magnetic fields [14–16]. Note that the extra fermionic contribution appears to be

related to the gauging of R-symmetry when coupled to supergravity, suggesting that its

absence does not require such a gauging for our case. Another interesting question is to

study the effect of the deformation associated to the change of the Bianchi identity at the

N = 1 level and its coupling to supergravity [12].
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