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JACOBIAN DETERMINANT INEQUALITY ON CORANK 1 CARNOT
GROUPS WITH APPLICATIONS

ZOLTÁN M. BALOGH, ALEXANDRU KRISTÁLY, AND KINGA SIPOS

Abstract. We establish a weighted pointwise Jacobian determinant inequality on corank 1
Carnot groups related to optimal mass transportation akin to the work of Cordero-Erausquin,
McCann and Schmuckenschläger. In this setting, the presence of abnormal geodesics does not
allow the application of the general sub-Riemannian optimal mass transportation theory de-
veloped by Figalli and Rifford and we need to work with a weaker notion of Jacobian determi-
nant. Nevertheless, our result achieves a transition between Euclidean and sub-Riemannian
structures, corresponding to the mass transportation along abnormal and strictly normal
geodesics, respectively. The weights appearing in our expression are distortion coefficients
that reflect the delicate sub-Riemannian structure of our space. As applications, entropy,
Brunn-Minkowski and Borell-Brascamp-Lieb inequalities are established on Carnot groups.

Keywords: Carnot group; Jacobian determinant inequality; optimal mass transportation;
abnormal and normal geodesics; entropy inequality; Brunn-Minkowski inequality; Borell-
Brascamp-Lieb inequality.

MSC: 53C17, 35R03, 49Q20.

1. Introduction

As a general framework of our results, let (X, d,m) be a suitably regular geodesic metric
measure space with topological dimension N ∈ N where the theory of optimal mass trans-
portation can be successfully developed. Examples for such spaces include Riemannian and
Finsler manifolds, see McCann [16] and Ohta [17], the Heisenberg group Hn, see Ambrosio
and Rigot [3], or even more general sub-Riemannian structures with ’well-behaved’ cut locus,
see Figalli and Rifford [11]. Let µ0 and µ1 be two probability measures on X which are
absolutely continuous w.r.t. the reference measure m, and let µs = (ψs)#µ0, s ∈ [0, 1], be
the unique displacement interpolation measure joining µ0 and µ1 throughout the so-called
s-intermediate optimal transport map ψs : X → X. Roughly speaking, for s ∈ (0, 1) fixed,
the Jacobian determinant inequality reads as

(Jac(ψs)(x))
1
N ≥ τN1−s(θx) + τNs (θx) (Jac(ψ)(x))

1
N for µ0-a.e. x ∈ X. (1.1)

Here, and in the sequel Jac(ψs)(x) and Jac(ψ)(x) are interpreted as densities, or the Radon-
Nikodym derivatives of µs and of µ1 w.r.t. the reference measure m. Note that in case when
X = Rn and ψs is differentiable at x the term Jac(ψs)(x) can be computed as Jac(ψs)(x) =
| detDψs(x)|. On the other hand, the Jacobian determinant in the above sense might exist
as density even in the case when ψs is not differentiable. The expression τNs is the distortion
coefficient which encodes information on the geometric structure of the space X. Expressions
of τNs can be calculated in terms of the Jacobian of the exponential map or estimated in terms
of a curvature condition. The expression θx can be given as a function of d(x, ψ(x)) or its
derivatives.

The Jacobian determinant inequality (1.1) in the above general form has been considered
first in the setting of complete Riemannian manifolds (endowed with the natural Riemani-
ann distance and volume form) in the pioneering work of Cordero-Erausquin, McCann and

Z. M. Balogh was supported by the Swiss National Science Foundation, Grant Nr. 200020 165507. A.
Kristály was supported by the STAR-UBB Advanced Fellowship-Intern, (Project PN II1.2PDI-PFC-C1-PFE-
404). K. Sipos was supported by ERC Marie-Curie Research and Training Network MANET.
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JACOBIAN DETERMINANT INEQUALITY 2

Schmuckenschläger [9]. This result constituted the starting point of an extensive study of the
geometry of metric measure spaces, while relation (1.1) became an equivalent formulation
of the famous curvature-dimension condition CD(K,N), due to Lott and Villani [15], and
Sturm [19, 20], where τNs is replaced by explicit expressions τN,Ks , K being the lower bound
of the Ricci curvatures in the Riemannian setting. Namely, τN,Ks is given by

τK,Ns (θ) =


s

1
N

(
sinh

(√
− K
N−1sθ

)/
sinh

(√
− K
N−1θ

))1− 1
N

if Kθ2 < 0;

s if Kθ2 = 0;

s
1
N

(
sin
(√

K
N−1sθ

)/
sin
(√

K
N−1θ

))1− 1
N

if 0 < Kθ2 < (N − 1)π2;

+∞ if Kθ2 ≥ (N − 1)π2,

and θ = θx is precisely the Riemannian distance d(x, ψ(x)).
Juillet [13] proved that the Lott-Sturm-Villani curvature-dimension condition does not

hold for any pair of parameters (N,K) on the Heisenberg group Hn (endowed with its usual
Carnot-Carathéodory metric dCC and L2n+1-measure), which is the simplest sub-Riemannian
structure. Accordingly, there were strong doubts on the validity of a sub-Riemannian version
of the Jacobian determinant inequality in the sub-Riemannian context. However, by using a
natural Riemannian approximation of the Heisenberg group as in Ambrosio and Rigot [3], the
authors of the present paper proved (1.1) on Hn, see [4, 5], where the Heisenberg distortion
coefficient τ 2n+1

s : [0, 2π]→ [0,∞] is defined by

τ 2n+1
s (θ) =


s

1
2n+1

(
sin θs

2

sin θ
2

) 2n−1
2n+1

(
sin θs

2
− θs

2
cos θs

2

sin θ
2
− θ

2
cos θ

2

) 1
2n+1

if θ ∈ (0, 2π);

s
2n+3
2n+1 if θ = 0;

+∞ if θ = 2π,

(1.2)

and θ = θx is the ’vertical’ derivative of
d2CC(ψ(x),·)

2
at the point x.

In the present paper we prove a Jacobian determinant inequality on corank 1 Carnot
groups where the sub-Riemannian geometry is more complicated than the one of the model
Heisenberg group Hn due to the presence of abnormal geodesics and the ’anisotropic’ structure
of the cut locus. Our method is different from the one in [4, 5] as we obtain the Jacobian
determinant inequality by an intrinsic approach, without using a Riemannian approximation.
As in [4, 5], we apply our Jacobian determinant inequality to establish various functional and
geometric inequalities in the present setting including entropy, Brunn-Minkowski and Borell-
Brascamp-Lieb inequalities. These results should open up the way to considering the above
inequalities in a broader context outside the realm of CD(K,N)-type conditions by replacing
the coefficients τN,Ks by expressions that are suitable for sub-Riemannian geometries. In this
way, our results motivate the so-called ”grande unification” of the three main geometries
(Riemannian, Finslerian and sub-Riemannian), suggested by C. Villani in [23, p. 43].

In order to present our main result, let us fix some notation. We denote by G a k + 1
dimensional corank 1 Carnot group with its Lie algebra g = g1 ⊕ g2, where dimg1 = k ≥ 2
and dimg2 = 1. The operation on g (in exponential coordinates on Rk × R) can be given by

x ◦ y =

(
x1 + y1, ..., xk + yk, xz + yz −

1

2

k∑
i,j=1

Aijxjyi

)
,

where x = (x1, ..., xk, xz), y = (y1, ..., yk, yz), and A = [Aij] is a k × k real skew-symmetric
matrix. Let e = (0Rk , 0) ∈ Rk × R be the neutral element in (G, ◦). The layers g1 and g2 are
generated by the left-invariant vector fields

Xi = ∂xi −
1

2

k∑
j=1

Aijxj∂z, i = 1, ..., k. (1.3)
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Moreover, [Xi, Xj] = Aij∂z. By the spectral theorem for skew-symmetric matrices one can
consider the diagonalized representation of A given by

A =


0k−2d 0α1J

0
. . .

αdJ

 , J =

[
0 1
−1 0

]
, (1.4)

where 0 < α1 ≤ ... ≤ αd, and 0k−2d is the (k − 2d)× (k − 2d) square null-matrix; from now
on, we assume the matrix A has this representation.

For further use, let us introduce the functions d1, d2 : [0, 2π]× (0, 1)→ R given by

d1(t, s) =
sin(ts/2)

s
and d2(t, s) =

sin(ts/2)− ts/2 cos(ts/2)

s
.

To define the distortion coefficient, we introduce the set

D =

{
p = (px, pz) ∈ Rk+1 : |pz| <

2π

αd
and Apx 6= 0Rk

}
⊂ T ∗eG,

where px = (p0
x, p

1
x, ..., p

d
x) ∈ Rk−2d×R2×...×R2, and let D be the closure of D. The distortion

coefficient τ k,αs : D → R on the Carnot group (G, ◦) is defined by

τk,αs (p) =



s


d∑
i=1

‖pix‖2
∏
j 6=i

d2
1(αjpz, s)d1(αipz, s)d2(αipz, s)

d∑
i=1

‖pix‖2
∏
j 6=i

d2
1(αjpz, 1)d1(αipz, 1)d2(αipz, 1)



1
k+1

if p ∈ D & pz 6= 0;

s
k+3
k+1 if p ∈ D & pz = 0;

+∞ if Apx 6= 0Rk & |pz| = 2π
αd

;

s if Apx = 0Rk ,

where p = (px, pz) and α = (α1, ..., αd). The functions d1 and d2 appear explicitly in the
Jacobian of the exponential map, see (2.5) below. In fact, d2 is a typical sub-Riemannian
function appearing once after differentiating the exponential map along the ’vertical’ direc-
tion, while d1 appears on the diagonal of the Jacobian matrix with multiplicity 2d − 1, see
also Rizzi [18].

Let us consider two compactly supported probability measures µ0 and µ1 on G which
are absolutely continuous w.r.t. Lk+1. Since the distribution ∆ = {X1, ..., Xk} on the
corank 1 Carnot group G is two-generating, there exists a unique map realizing the optimal
transportation between the measures µ0 and µ1 w.r.t. the cost function d2

CC/2, see Figalli
and Rifford [11, Proposition 4.2 and Theorem 3.2]; this map can be defined µ0-a.e. through
a d2

CC/2-concave function ϕ : G→ R as

ψ(x) :=

{
expx(−∇ϕ(x)) if x ∈Mϕ ∩ supp(µ0);
x if x ∈ Sϕ ∩ supp(µ0).

(1.5)

Hereafter, dCC is the Carnot-Carathéodory metric on G and the sets Mϕ and Sϕ denote
the moving and static sets of the transportation, respectively; see Section 2 for details. For
s ∈ (0, 1) fixed, we also introduce the s-interpolant optimal transport map as

ψs(x) :=

{
expx(−s∇ϕ(x)) if x ∈Mϕ ∩ supp(µ0);
x if x ∈ Sϕ ∩ supp(µ0).

(1.6)

Our main result reads as follows.

Theorem 1.1. (Jacobian determinant inequality on Carnot groups) Let (G, ◦) be a
k+ 1 dimensional corank 1 Carnot group, and assume that µ0 and µ1 are two compactly sup-
ported Borel probability measures on G, both absolutely continuous w.r.t. Lk+1. Let s ∈ (0, 1)
be fixed, ψ : G→ G be the unique optimal transport map transporting µ0 to µ1 associated to
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the cost function
d2CC

2
and ψs its s-interpolant map. Then the following Jacobian determinant

inequality holds

(Jac(ψs)(x))
1
k+1 ≥ τ k,α1−s(θx) + τ k,αs (θx) (Jac(ψ)(x))

1
k+1 for µ0-a.e. x ∈ G, (1.7)

where θx = (px, pz) ∈ T ∗eG is given by expe(θx) = x−1 ◦ ψ(x).

Let us notice that if p = (px, pz) ∈ D, we have that

lim
pz→0

τ k,αs (p) = s
k+3
k+1 and lim

pz→±2π/αd
τ k,αs (p) = +∞.

Furthermore, monotonicity properties of the functions d1 and d2 (cf. [5, Lemma 2.1]) show
that

τ k,αs (p) ≥ s
k+3
k+1 for all s ∈ (0, 1), p ∈ D. (1.8)

Therefore, the measure contraction property MCP(0, k + 3) proved by Rizzi [18] is formally
a consequence of (1.7). Notice, however that we use Rizzi’s result to prove the absolute
continuity of the interpolant measure µs = (ψs)#µ0 (see Proposition 2.4), needed in the
proof of the Jacobian determinant inequality.

In our next remark we consider the situation when G = Hn is the n-dimensional Heisen-
berg group. In this case we have k = 2n = 2d and αi = 4 for every i ∈ {1, ..., d}. Moreover,
no abnormal geodesics appear in Hn and the Carnot distortion coefficient τ 2n,α

s (px, pz) re-
duces to the Heisenberg distortion coefficient τ 2n+1

s (4pz), which is nothing but relation (1.2)
(introduced in [5]). Thus, most of the results of [5] will be covered in the present work.

Let us notice furthermore, that in general corank 1 Carnot groups, the coefficients τ k,αs

and τ k,α1−s depend not only on the parameter pz (as in the Heisenberg group) but also on
‖pix‖, i ∈ {1, ..., d}, showing a more anisotropic character of the present geometric setting as
compared to the Heisenberg group. As we shall see later, ‖pix‖ and pz can be obtained by

differentiating
d2CC(ψ(x),·)

2
at the point x w.r.t. the horizontal vector fields from the distribution

∆ and the vertical vector field ∂z, respectively (see Lemma 2.2 below).
Our final remark is of technical nature, but the details will be clear by reading the proof of

Theorem 1.1. In this proof, we shall distinguish the cases when the mass is transported along
abnormal and strictly normal geodesics, respectively. On one hand, when the mass transport
is realized along abnormal geodesics, it turns out that the Jacobian determinant inequality
reduces to an Euclidean-type determinant inequality thus the distortion coefficient can be
τ k,αs = s as in the Euclidean framework. We notice that in this case the full Jacobian matrix
of ψs might not exist; however, since the matrix has a triangular structure, the Jacobian can
be reduced to two parts of the diagonal which are well defined and inequality (1.7) makes
sense. Furthermore, the triangular structure of the Jacobi matrix will allow us to perform
the necessary changes of variable in order to provide important applications (see e.g. the
entropy and Borell-Brascamp-Lieb inequalities via a suitable Monge-Ampère equation). On
the other hand, once the mass transport is along strictly normal geodesics, the distortion
coefficient τ k,αs encodes information on the genuine sub-Riemannian character of the Carnot
group obtained by a careful analysis of the Jacobian for the exponential map. It could also
happen that a positive part of the mass is transported along abnormal geodesics while the
complementary mass is transported by strictly normal geodesics, so different formulas for
τ k,αs will be used in the same instance of the mass transportation; such a scenario will be
presented in Example 3.1 (see also Figure 2). In conclusion, our results can be applied also in
the presence of both abnormal and strictly normal geodesics in the so-called non-ideal sub-
Riemannian setting. Similar result in the case of general ideal sub-Riemannian geometries
have been recently obtained by Barilari and Rizzi [6].

The organization of the paper is as follows. The proof of Theorem 1.1 will be provided in
Section 3 after a self-contained presentation of the needed technical details in Section 2, i.e.,
properties of the Carnot-Carathéodory metric dCC , exponential map and its Jacobian, the
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cut locus, and the optimal mass transportation on corank 1 Carnot groups. We emphasize
that the optimal mass transportation developed by Figalli and Rifford [11] for large classes
of sub-Riemannian manifolds cannot be directly applied since the squared distance function
d2
CC is not necessarily locally semiconcave outside of the diagonal of G× G which is crucial

in [11] (e.g. the regularity of optimal mass transport maps ψ and ψs, or the validity of
the Monge-Ampère equation). Section 4 is devoted to applications, i.e., by the Jacobian
determinant inequality we shall derive entropy inequalities, the Brunn-Minkovski inequality
and the Borell-Brascamp-Lieb inequality on corank 1 Carnot groups.

Acknowledgements. We express our gratitude to Luca Rizzi for motivating conversations
about the subject of this paper. A. Kristály is grateful to the Mathematisches Institute of
Bern for the warm hospitality where this work has been developed. We also wish to thank the
anonymous referees for their detailed reports and valuable comments that greatly improved
the presentation of the manuscript.

2. Preliminaries

2.1. Carnot-Carathéodory metric and energy functional on corank 1 Carnot groups.
We shall consider a corank 1 Carnot group (G, ◦), and make use of the notations already
introduced in the previous section. A horizontal curve on (G, ◦) is an absolutely continuous
curve γ : [0, r] → G for which there exist bounded measurable functions uj : [0, r] → R
(j = 1, ..., k) such that

γ̇(s) =
k∑
j=1

uj(s)Xj(γ(s)) a.e. s ∈ [0, r]. (2.1)

In the sequel we denote by γu such a horizontal curve. The length of this curve is given by

l(u) = l(γu) =

r∫
0

‖γ̇u(s)‖ds =

r∫
0

√√√√ k∑
j=1

u2
j(s)ds.

The classical Chow-Rashewsky theorem assures that any two points from the Carnot group
can be joined by a horizontal curve. Thus we can equip the Carnot group G with its natural
Carnot-Carathéodory metric by

dCC(x, y) = inf{l(γ) : γ is a horizontal curve joining x and y},
where x, y ∈ G are arbitrarily fixed.

Let e = (0Rk , 0) ∈ Rk×R be the neutral element in (G, ◦). The left invariance of the vector
fields in the distribution ∆ = {X1, . . . , Xk} is inherited by the distance dCC , thus

dCC(x, y) = dCC(e, x−1 ◦ y) for every x, y ∈ G.
Beside the length function u 7→ l(γu) we also consider the energy functional

J(u) =
1

2

r∫
0

‖γ̇u(s)‖2ds =

r∫
0

k∑
j=1

u2
j(s)ds.

It is well-known that the minimisers of J induce up to a reparametrisation length minimising
horizontal curves with constant speed between two fixed endpoints.

2.2. Geodesics, exponential map and its Jacobian. Geodesics are horizontal curves
that are locally energy minimizers between their endpoints. Let U ⊂ L∞([0, r],Rk) be an
open set and for a fixed x ∈ G, let Ex : U → G be the usual end-point map, Ex(u) = γu(r),
where γu is the unique curve with the property that γu(0) = x and satisfying (2.1) see e.g.
Figalli and Rifford [11, §2.1]. A minimizing geodesic γu for u ∈ U is a solution of the problem

J(v)→ min, Ex(v) = y, v ∈ U .
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According to the Lagrange multipliers rule, there is (λ, µ) ∈ T ∗yG×{0, 1} \ {(0, 0)} such that

λ(DuEx) = µDuJ.

The associated curve γu is normal if µ = 1 and abnormal if µ = 0 (the latter being equivalent
to the fact that u is a critical point of Ex). We notice that on any corank 1 Carnot group
all minimizing geodesics are normal. Following Rizzi [18], the explicit form of such normal
minimal geodesics can be described as follows.

Proposition 2.1. (Rizzi [18]) On a corank 1 Carnot group (G, ◦) the geodesic s 7→ expe(sp) ∈
G starting from e = (0Rk , 0), with initial covector

p = (p0
x, p

1
x, ..., p

d
x︸ ︷︷ ︸

px

, pz) ∈
(
Rk−2d × R2 × ...× R2

)
× R = T ∗eG

has the following equation

expe(sp) :


γ0(s) = p0

xs,

γi(s) =
(

sin(αipzs)
αipz

I + cos(αipzs)−1
αipz

J
)
pix,

γz(s) =
∑d

i=1 ‖pix‖2 αipzs−sin(αipzs)
2αip2z

,

s ∈ [0, 1], (2.2)

when pz 6= 0. When pz = 0, the geodesic is

s 7→ expe(sp) = (p0
xs, p

1
xs, ..., p

d
xs, 0), s ∈ [0, 1]. (2.3)

Hereafter, I denotes the 2× 2 unit matrix and J =

[
0 1
−1 0

]
.

Once A has a non-trivial kernel, every nonzero covector (px, pz) with Apx = 0, corresponds
to an abnormal geodesic; more precisely, for every choice of pz ∈ R one has

s 7→ expe(p
0
xs, 0, ..., 0, pzs) = (p0

xs, 0R2d+1), s ∈ [0, 1]. (2.4)

Note that the image of such a geodesic can be also obtained by (2.3), letting pz = 0 and
p1
x = ... = pdx = 0R2 . These type of geodesics are normal and also abnormal at the same time.

It turns out that all abnormal geodesics have this representation.
We recall from Rizzi [18] that the Jacobian determinant of the exponential map is

Jac(expe)(p) =



22d∏d
i=1 α

2
i p

2d+2
z

d∑
i=1

‖pix‖2
∏
j 6=i

(
sin

αjpz
2

)2

sin
αipz

2
×

×
(
sin αipz

2
− αipz

2
cos αipz

2

)
if pz 6= 0;

1
12

d∑
i=1

‖pix‖2α2
i if pz = 0.

(2.5)

By left-invariance, the minimal geodesics on G starting from an arbitrary point x ∈ G are
represented by s 7→ expx(sp) = x ◦ expe(sp̃), s ∈ [0, 1], where the two covectors p ∈ T ∗xG and
p̃ ∈ T ∗eG can be identified. Moreover, since for every x ∈ G the left-translation Lx(y) = x◦y,
y ∈ G, is a volume-preserving map, it follows that

Jac(expx)(p) = Jac(expe)(p) for every p ∈ T ∗xG. (2.6)

Given x, y ∈ G and assume that x = expy(p) for some p = (px, pz) = (p0
x, p

1
x, ..., p

d
x, pz) ∈

T ∗yG. Then y = expx(p), where p = (p0
x, p

1
x, ..., p

d
x, pz) is given by p0

x = −p0
x;

pix = (− cos(αipz)I + sin(αipz)J) pix, i ∈ {1, ..., d};
pz = −pz.

(2.7)
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We notice that ∆ = {X1, ..., Xk} is not a fat distribution whenever the kernel of A is
non-trivial. Indeed, in this case we have TxG 6= ∆(x) + [Xj,∆](x) for every x ∈ G and
j ∈ {1, ..., k − 2d}. However, ∆ is two-generating, i.e.,

TxG = ∆(x) + [∆,∆](x) for every x ∈ G.
For simplicity of notation, we reorganize the vector fields in TxG as X0 = (X1, ..., Xk−2d);

X i = (Xk−2d+2i−1, Xk−2d+2i), i ∈ {1, ..., d};
Z = ∂z.

(2.8)

We split the distribution ∆ on G into two types of vector fields; namely, ∆0 = {X0} and
∆̃ = {X1, ..., Xd}. This splitting gives the following trivial representation of the distance
function dCC :

Lemma 2.1. (Pythagorean rule) For every (ξ, η, z), (ξ, η, z) ∈ Rk−2d × R2d × R , we have

d2
CC((ξ, η, z), (ξ, η, z)) = d2

Rk−2d(ξ, ξ) + d̃2
CC((η, z), (η, z)),

where dRk−2d is the Euclidean metric in Rk−2d while d̃CC is the Carnot-Carathéodory distance
on R2d×R w.r.t. to the distribution ∆̃ inherited from the original sub-Riemannian structure.

Proof. By the left-invariance of the metric dCC , we have

d2
CC((ξ, η, z), (ξ, η, z)) = d2

CC(e, (−ξ,−η,−z) ◦ (ξ, η, z)).

Let γ = (γ0, γ1, ..., γd, γz) : [0, 1] → G be the geodesic given by (2.2) or (2.3) joining e
and the element (−ξ,−η,−z) ◦ (ξ, η, z), having its initial vector p = (p0

x, p
1
x, ..., p

d
x, pz) ∈

Rk−2d × R2 × · · · × R2×R. We have that d2
CC((ξ, η, z), (ξ, η, z)) =

∑d
i=0 ‖pix‖2. Note that

‖p0
x‖Rk−2d = dRk−2d(ξ, ξ) and

d∑
i=1

‖pix‖2 = d2
CC(e, (0Rk−2d ,−η,−z) ◦ (0Rk−2d , η, z)) = d̃2

CC((η, z), (η, z))

which is realized precisely by the geodesic γ̃ = (γ1, ..., γd, γz), concluding the proof. �

2.3. Cut locus. Let us consider the set

D =

{
p = (px, pz) ∈ Rk+1 : |pz| <

2π

αd
and Apx 6= 0Rk

}
⊂ T ∗eG.

Rizzi [18, Lemma 16] proved that D is precisely the injectivity domain of parameters asso-
ciated to geodesics joining the origin e to almost all points of G. We know that all points
in the corank 1 Carnot group G can be reached by a minimal normal geodesic; namely, for
every x ∈ G there exists a parametrization p in the closure of D, i.e.,

D =

{
p = (px, pz) ∈ Rk+1 : |pz| ≤

2π

αd

}
,

which defines a minimal normal geodesic joining e and x.
The cut locus of the origin e in G is

cutG(e) = expe(D \D) = G \ expe(D)

=
(
Rk−2d × {0R2d+1}

)
∪
{

expe

(
px,±

2π

αd

)
: Apx 6= 0Rk

}
.

The set Rk−2d × {0R2d+1} in the above representation corresponds to the image of abnormal
geodesics while the latter set contains the conjugate points to e, see (2.5). Corank 1 Carnot
groups have negligible cut loci, see Rizzi [18, Section 1.4]; alternatively, due to (2.2), one has
that cutG(e) ⊂ Rk−2 × 0R2 × R , thus Lk+1(cutG(e)) = 0. By left-invariance, the cut locus of
the point x ∈ G is

cutG(x) = Lx(cutG(e)),
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thus cutG(x) is closed and Lk+1(cutG(x)) = 0 for every x ∈ G; moreover, by (2.7) it follows
that y ∈ cutG(x) if and only if x ∈ cutG(y).

The following two results are specifications to the case of corank 1 Carnot groups of the
well-known fact f := 1

2
d2
CC(y, ·) is smooth in a neighborhood of x ∈ G whenever x /∈ cutG(y),

and one can recover the initial covector λx ∈ TxG of the unique geodesic joining x with y by
λx = −∇f(x).

Lemma 2.2. Fix y ∈ G and let x = (x0, x1, ..., xd, z) /∈ cutG(y). If x = expy(p
0
x, p

1
x, ..., p

d
x, pz)

then we have

(i) X0 d
2
CC(y,·)

2

∣∣
x

= p0
x and Z

d2CC(y,·)
2

∣∣
x

= pz;
(ii) for every i ∈ {1, ..., d},

X id
2
CC(y, ·)

2

∣∣
x

= [cos(αipz)I − sin(αipz)J ]pix. (2.9)

Proof. By exploring the left-invariance, it is enough to consider the case when y = e. Let
us introduce the auxiliary functions f, g : (−2π, 2π) \ {0} → R defined by

f(t) =
sin2

(
t
2

)(
t
2

)2 and g(t) =
t− sin(t)

sin2
(
t
2

) , t ∈ (−2π, 2π) \ {0}. (2.10)

We consider the case when pz 6= 0; the case pz = 0 can be obtained by a limiting procedure,
i.e., one must consider the limit pz → 0. Since x /∈ cutG(e) and the cut locus is closed, there
exists a small neighborhood Vx of x such that Vx∩cutG(e) = ∅. Let w = (x0

w, x
1
w, ..., x

d
w, zw) =

expe
(
(pw)0

x, (pw)1
x, ..., (pw)dx, (pw)z

)
∈ Vx be arbitrarily fixed. By (2.2) (for s = 1) we have

that
‖xiw‖2 = ‖(pw)ix‖2f(αi(pw)z), i ∈ {1, ..., d}.

Thus, one has

d2
CC(e, w) =

d∑
i=0

‖(pw)ix‖2 = ‖x0
w‖2 +

d∑
i=1

‖xiw‖2

f(αi(pw)z)
. (2.11)

(i) By (2.11) we directly have that X0(d2
CC(e, ·))

∣∣
x

= 2x0. Furthermore, the last component
in (2.2) can be written as

zw =
d∑
i=1

‖(pw)ix‖2αi(pw)z − sin(αi(pw)z)

2αi((pw)z)
2 =

1

8

d∑
i=1

αi‖xiw‖2g(αi(pw)z). (2.12)

We may differentiate (2.11) and (2.12) w.r.t. the variable zw at the point x, obtaining

Z(d2
CC(e, ·))

∣∣
x

= −
d∑
i=1

αi‖xi‖2 f
′(αipz)

f 2(αipz)

(
Z(pw)z

∣∣
x

)
and 1 =

1

8

d∑
i=1

α2
i ‖xi‖2g′(αipz)

(
Z(pw)z

∣∣
x

)
.

Note that − f ′(t)
f2(t)

= t
4
g′(t); thus, the latter relations give at once that Z(d2

CC(e, ·))
∣∣
x

= 2pz.

(ii) In order to prove relation (2.9) we proceed in a similar way as in (i), by deriving (2.11)
and (2.12) w.r.t. the corresponding variables. �

A direct consequence of Lemma 2.2 is:

Proposition 2.2. Fix x, y ∈ G such that y /∈ cutG(x). If ∇ = (X0, X1, ..., Xd, Z), then

y = expx

(
−∇d

2
CC(y, ·)

2

∣∣
x

)
. (2.13)

Proof. Let x = expy(p) for some p = (px, pz) = (p0
x, p

1
x, ..., p

d
x, pz) ∈ D. According to

Lemma 2.2, we have that

−∇d
2
CC(y, ·)

2

∣∣
x

= (p0
x, p

1
x, ..., p

d
x, pz),
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where  p0
x = −p0

x;
pix = −[cos(αipz)I − sin(αipz)J ]pix, i ∈ {1, ..., d};
pz = −pz.

Thus, by relation (2.7) it follows that

expx

(
−∇d

2
CC(y, ·)

2

∣∣
x

)
= expx(p

0
x, p

1
x, ..., p

d
x, pz) = y,

which concludes the proof. �

2.4. The Jacobian of the exponential map along a reversed geodesic. Let x, y ∈ G
be such that x /∈ cutG(y) and γ : [0, 1] → G be the unique geodesic γ(s) = expx(sp) joining
x and y for some p ∈ D. For every s ∈ (0, 1], let us introduce the Jacobian matrix

Y (s) = d(expx)sp.

According to (2.5), the matrix Y (s) is invertible for every s ∈ (0, 1]. In the sequel, we are
going to consider the reversed geodesic path s 7→ expy((1− s)p), s ∈ [0, 1], where expy p = x
and compute the ’reverse’ of Y , i.e.,

Y (1− s) = d(expy)(1−s)p, s ∈ [0, 1). (2.14)

Here, p ∈ T ∗yG is given by p ∈ T ∗xG similarly as in (2.7). With these notations, we have

Proposition 2.3. Let x, y ∈ G be such that x /∈ cutG(y) and γ : [0, 1] → G be the unique
geodesic γ(s) = expx(sp) joining x and y for some p ∈ T ∗xG. For every s ∈ (0, 1), one has

Y (1− s) =
1

1− s
Y (s)Hx,y(s)Y (1), (2.15)

where

Hx,y(s) = Hess
d2
CC(γ(s), ·)

2

∣∣
x
− sHess

d2
CC(y, ·)

2

∣∣
x
.

In addition, Hx,y(s) is a positive semidefinite, symmetric matrix.

Let us note that in the above statement Hess = ∇2 denotes the (a priori not necessarily
symmetric) Carnot Hessian, i.e.,

Hess =


X1X1 X1X2 ... X1Xk X1Z
X2X1 X2X2 ... X2Xk X2Z

...
... ...

...
...

XkX1 XkX2 ... XkXk XkZ
ZX1 ZX2 ... ZXk ZZ

 .
This notation will be used also later on.

A similar result to Proposition 2.3 has been proved by Cordero-Erausquin, McCann and
Schmuckenschläger [9] on Riemannian manifolds by exploring properties of Jacobi fields.
Since the theory of Jacobi fields in our setting is not (yet) available, we give a direct proof
of Proposition 2.3. To do this, we need the following:

Claim 2.1. Let m ∈ N, c, ηi : [0, 1] → Rm, i ∈ {1, 2}, be some differentiable maps with
η2(0) = 0 and a smooth function F : R2m → Rm in a neighborhood of (c(0), η1(0)) such that
t 7→ F (c(t), η1(t)) is constant near the origin. Then

d

dt
F (c(t), η1(t) + η2(t))|t=0 = D2F (c(0), η1(0))η̇2(0).
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Proof. By assumption, we have near the origin that

0 =
d

dt
F (c(t), η1(t)) = D1F (c(t), η1(t))ċ(t) +D2F (c(t), η1(t))η̇1(t).

By using the latter relation at t = 0 and η2(0) = 0, we obtain

d

dt
F (c(t), η1(t) + η2(t))|t=0 = D1F (c(0), η1(0))ċ(0) +D2F (c(0), η1(0))(η̇1(0) + η̇2(0))

= D2F (c(0), η1(0))η̇2(0),

which completes the proof. �

Proof of Proposition 2.3. We first deal with the properties of the matrix Hx,y(s). By pure
metric arguments, one can check that for every z ∈ G and s ∈ [0, 1] we have the inequality

ms
x,y(z) := d2

CC(γ(s), z)/2− sd2
CC(y, z)/2 + s(1− s)d2

CC(x, y)/2 ≥ 0. (2.16)

In the Riemannian setting this has been established first by Cordero-Erausquin, McCann
and Schmuckenschläger [9, Claim 2.4]. Moreover, in (2.16) equality is realized precisely when
z = x; the same proof works in our setting as well.

Since γ((0, 1]) ∩ cutG(x) = ∅, it follows that z 7→ ms
x,y(z) is twice differentiable at x (see

Proposition 2.2) and its gradient is

∇ms
x,y(·)|x = ∇d

2
CC(γ(s), ·)

2

∣∣
x
− s∇d

2
CC(y, ·)

2

∣∣
x

= 0Rk+1 , (2.17)

while its Carnot Hessian ∇2ms
x,y(·)|x = Hx,y(s) is positive semidefinite.

In order to prove the symmetry of Hx,y(s), we verify that the Lie brackets [W1,W2]ms
x,y(·)|x

vanish for every choice of W1,W2 ∈ ∆ ∪ {Z} = {X1, ..., Xk, Z}. Indeed, the Lie bracket is
either trivial by definition or it is Zms

x,y(·)|x up to a multiplicative constant (depending on
the eigenvalues αi, i ∈ {1, ..., d}); but Zms

x,y(·)|x = 0 due to (2.17).
We now prove relation (2.15). Since x /∈ cutG(y) and cutG(y) is closed, one may fix

a curve c : [0, 1] → G with c(0) = x and ċ(0) = w ∈ TxG arbitrarily fixed such that

c([0, 1]) ∩ cutG(y) = ∅. We notice that s 7→ expc(t)

(
−s∇d2CC(y,·)

2

∣∣
c(t)

)
=: γ(s) is the unique

minimal geodesic joining c(t) and y; indeed, for s = 0 we have c(t), while for s = 1 one has
precisely y due to Proposition 2.2, see Figure 1. Moreover, by construction, it turns out that
γ(s) /∈ cutG(c(t)) for every t, s ∈ [0, 1].

Figure 1. The curve c (starting from x), connected by geodesics with the point y

Let p : [0, 1]→ TyG be a curve such that

expc(t)

(
−s∇d

2
CC(y, ·)

2

∣∣
c(t)

)
= expy((1− s)p(t)). (2.18)
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Let us observe that by (2.18) for s = 0 we have

c(t) = expy(p(t)) for all t ∈ [0, 1].

In particular, for t = 0 we have that x = c(0) = expy(p(0)), i.e., p(0) = p and due to (2.14),

w = ċ(0) = d(expy)p(0)ṗ(0) = d(expy)pṗ(0) = Y (1)ṗ(0). (2.19)

Fix s ∈ (0, 1). Now, we rewrite (2.18) into

expc(t) (η1(t) + η2(t)) = expy((1− s)p(t)), (2.20)

where

ηs1(t) = −∇d
2
CC(γ(s), ·)

2

∣∣
c(t)

and ηs2(t) = ∇d
2
CC(γ(s), ·)

2

∣∣
c(t)
− s∇d

2
CC(y, ·)

2

∣∣
c(t)
.

We are going to verify the assumptions of Claim 2.1 for the latter choices. First, due to
Proposition 2.2, one has t 7→ expc(t)(η

s
1(t)) = γ(s) =constant, and due to (2.17), we also

have ηs2(0) = 0. Since we have ηs1(0) = −∇d2CC(γ(s),·)
2

∣∣
x
, by Proposition 2.2 one has that

expx(η
s
1(0)) = γ(s) which is nothing but γ(s) = expx(sp); thus ηs1(0) = sp. Consequently, by

differentiating relation (2.20) at t = 0 and using Claim 2.1 with F (q1, q2) = expq1(q2) which
is smooth around the point (c(0), ηs1(0)) = (x, sp), we obtain

d(expc(0))ηs1(0)η̇
s
2(0) = (1− s)d(expy)(1−s)p(0)ṗ(0).

Moreover,

η̇s2(0) =

[
Hess

d2
CC(γ(s), ·)

2

∣∣
x
− sHess

d2
CC(y, ·)

2

∣∣
x

]
ċ(0).

Finally, we recall by (2.19) that w = ċ(0) = Y (1)ṗ(0) and due to (2.5), Y (1) is invertible.
Putting together the above computations, we have

Y (s)

[
Hess

d2
CC(γ(s), ·)

2

∣∣
x
− sHess

d2
CC(y, ·)

2

∣∣
x

]
w = (1− s)Y (1− s)Y (1)−1w.

Due to the arbitrariness of w, the claim (2.15) follows. �

2.5. Optimal mass transportation on corank 1 Carnot groups. We first recall some
facts from Figalli and Rifford [11]. A function ϕ : G→ R is c = d2

CC/2−concave if there exist
a nonempty set S ⊂ G and a function ϕc : S → R ∪ {−∞} with ϕc 6≡ −∞ such that

ϕ(x) = inf
y∈S

{
1

2
d2
CC(x, y)− ϕc(y)

}
.

If ϕ is a d2
CC/2−concave function, let

∂cϕ(x) =

{
y ∈ S : ϕ(x) + ϕc(y) =

1

2
d2
CC(x, y)

}
be the c-superdifferential of ϕ at x. For such a function ϕ, let

Mϕ = {x ∈ G : x /∈ ∂cϕ(x)} and Sϕ = {x ∈ G : x ∈ ∂cϕ(x)}
be the moving and static sets, respectively.

Let us fix µ0 and µ1 two compactly supported probability measures on G which are abso-
lutely continuous w.r.t. Lk+1. According to [11, Theorem 2.3], there are two d2

CC/2-concave,
continuous functions ϕ, ϕc : G→ R such that

ϕ(x) = min
y∈supp(µ1)

{
1

2
d2
CC(x, y)− ϕc(y)

}
and ϕc(y) = min

x∈supp(µ0)

{
1

2
d2
CC(x, y)− ϕ(x)

}
(2.21)

and the optimal transport map is concentrated on the c-superdifferential of ϕ. Since the
distribution ∆ on the corank 1 Carnot group G is two-generating, it follows that d2

CC is
locally Lipschitz on G × G, see Agrachev and Lee [2, Corollary 6.2] and Figalli and Rifford
[11, Proposition 4.2, p. 136]. Therefore, applying the version of [11, Theorem 3.2, p. 130]
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with the weaker assumption for d2
CC of being locally Lipschitz, there exists a d2

CC/2-concave
function ϕ : G → R given by (2.21) such that Mϕ is open and ϕ is locally Lipschitz in a
neighborhood of Mϕ ∩ supp(µ0), thus µ0-a.e. differentiable in Mϕ. Furthermore, for µ0-a.e.
x, there exists a unique optimal transport map defined µ0-a.e. by

ψ(x) :=

{
expx(−∇ϕ(x)) if x ∈Mϕ ∩ supp(µ0);
x if x ∈ Sϕ ∩ supp(µ0),

(2.22)

and for µ0-a.e. x there exists a unique minimizing geodesic joining x and ψ(x) (or, equiv-
alently, joining the element e with x−1 ◦ ψ(x)). Hereafter, ∇ = (X0, X1, ..., Xd, Z) is the
Carnot gradient and expx(·) = x ◦ expe(·).

We notice that one cannot apply directly [11, Theorem 3.5, p. 132] of Figalli and Rifford
to deduce the absolute continuity of the Wasserstein geodesic between µ0 and µ1 since in
our case the semiconcavity assumption does not hold; however, we can recall the first part
of their proof to conclude (based on [11, Theorem 3.2, p. 130] and [22, Corollary 7.22]) that
there is a unique Wasserstein geodesic (µs)s∈[0,1] joining µ0 and µ1 given by the push-forward
measure µs = (ψs)#µ0 for s ∈ [0, 1], where

ψs(x) :=

{
expx(−s∇ϕ(x)) if x ∈Mϕ ∩ supp(µ0);
x if x ∈ Sϕ ∩ supp(µ0).

(2.23)

The absolute continuity of the Wasserstein geodesic µs follows by the main result of Cavalletti
and Mondino [8] (valid for essentially non-branching metric measure spaces) which can be
state as follows:

Proposition 2.4. (Cavalletti and Mondino [8]) Let s ∈ (0, 1). Consider the notations in-
troduced above and the assumptions of Theorem 1.1. Under these conditions the interpolant
measure µs = (ψs)#µ0 is absolutely continuous w.r.t. Lk+1.

Before the proof of our main theorem in the next section let us indicate a technical difficulty
that we need to address in the proof. This consists of the fact that in our setting the potential
ϕ generating the optimal transportation map ψ via (2.22) is not locally semiconcave (see
Cannarsa and Sinestrari [7]) but only locally Lipschitz. Due to the lack of semiconcavity we
do not have an Aleksandrov-type second order differentiability for ϕ and consequently, thus
we do not know if ψ is differentiable almost everywhere. This regularity issue appears when
we consider the transport of the mass along abnormal geodesics.

3. Proof of the Jacobian Determinant inequality (Theorem 1.1)

Let s ∈ (0, 1). We shall keep the previous notations. The proof is divided into two main
parts: the static and moving cases, respectively. The latter case is also divided into two parts
depending how the mass is transported, i.e., along abnormal or strictly normal geodesics.

3.1. Static case. We assume the static set Sϕ∩supp(µ0) = {x ∈ supp(µ0) : x = ψ(x)} has a
positive µ0-measure. Note that ψs(x) = x for every x ∈ Sϕ. If we consider the density points
of Sϕ, we have that Jac(ψ)(x) = Jac(ψs)(x) = 1 for µ0-a.e. x ∈ Sϕ. (Here, again Jac(ψ)
and Jac(ψs) denote the densities of ψ]Lk+1 and ψs]Lk+1 w.r.t. Lk+1.) Note that for x ∈ Sϕ,
we have that expe(θx) = x−1 ◦ ψ(x) = e, i.e., θx = (px, pz) = (0Rk , pz) for some pz ∈ R, thus
Apx = 0Rk . Therefore, by the definition of the distortion coefficient, we have τ k,αs (θx) = s

and τ k,α1−s(θx) = 1− s, which concludes the proof of (1.7).

3.2. Moving case. We now assume that the moving set Mϕ ∩ supp(µ0) has a positive µ0-
measure. Due to (2.22), there exists a null Lk+1-measure set C0 ⊂Mϕ ∩ supp(µ0) such that
for every x ∈ S :=Mϕ ∩ supp(µ0) \C0 the function ϕ is differentiable at x, the points x and
ψ(x) can be joined by a unique minimizing geodesic and x−1 ◦ ψ(x) = expe(−∇ϕ(x)), where

∇ϕ(x) = (px, pz),
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with

px = (X0ϕ(x), X1ϕ(x), ..., Xdϕ(x)) and pz = Zϕ(x). (3.1)

Let

S0 = {x ∈ S : Apx = 0Rk , where px is from (3.1)}, (3.2)

and

S1 = S \ S0 = {x ∈ S : Apx 6= 0Rk , where px is from (3.1)}.

We distinguish two cases.

3.2.1. Moving along abnormal geodesics. We assume that µ0(S0) > 0. In terms of vec-
tor fields, the fact that Apx = 0Rk with px = (X0ϕ(x), X1ϕ(x), ..., Xdϕ(x)) implies that
X1ϕ(x) = ... = Xdϕ(x) = 0R2 for a.e. x ∈ S0. According to the explicit form of geodesics,
see (2.3), we have

ψs(x) = x ◦ expe(−s∇ϕ(x)) = x ◦ expe(−sX0ϕ(x), 0R2d , Zϕ(x))

= x ◦ (−sX0ϕ(x), 0R2d+1)

= (x1 − s∂x1ϕ(x), ..., xk−2d − s∂xk−2d
ϕ(x), xk−2d+1, ..., xk, z), (3.3)

for a.e. x = (x1, ..., xk, z) ∈ S0. In a similar way, one has

ψ(x) = (x1 − ∂x1ϕ(x), ..., xk−2d − ∂xk−2d
ϕ(x), xk−2d+1, ..., xk, z), (3.4)

for a.e. x = (x1, ..., xk, z) ∈ S0.
We divide the proof into three steps.
Step 1: ϕ(·, η, z) is d2

Rk−2d/2-concave on Rk−2d for every (η, z) ∈ R2d × R fixed, i.e., for

some set S ⊂ Rk−2d and function φη,z : Rk−2d → R, one has

ϕ(ξ, η, z) = inf
ξ∈S

{
1

2
d2

Rk−2d(ξ, ξ)− φη,z(ξ)
}
.

Since ϕ is d2
CC/2-concave on G, one has by (2.21) that for every (ξ, η, z) ∈ Rk−2d × R2d × R,

ϕ(ξ, η, z) = min
(ξ,η,z)∈supp(µ1)

{
1

2
d2
CC((ξ, η, z), (ξ, η, z))− ϕc(ξ, η, z)

}
.

Let π1 : Rk−2d×R2d×R→ Rk−2d be the projection π1(ξ, η, z) = ξ. For every ξ ∈ π1(supp(µ1)),
let us introduce the compact set

Πξ = {(η, z) ∈ R2d × R : (ξ, η, z) ∈ supp(µ1)}.

Let us fix (η, z) ∈ R2d × R. We notice that the function φη,z : π1(supp(µ1)) → R ∪ {−∞}
defined by

φη,z(ξ) = max
(η,z)∈Πξ

{
ϕc(ξ, η, z)− 1

2
d̃2
CC((η, z), (η, z))

}
is well defined and φη,z 6≡ −∞. Since

supp(µ1) =
⋃

ξ∈π1(supp(µ1))

(ξ,Πξ),
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by the Pythagorean rule (see Lemma 2.1) we have that for every ξ ∈ Rk−2d,

ϕ(ξ, η, z) = min
ξ∈π1(supp(µ1))

min
(η,z)∈Πξ

{
1

2
d2
CC((ξ, η, z), (ξ, η, z))− ϕc(ξ, η, z)

}
= min

ξ∈π1(supp(µ1))
min

(η,z)∈Πξ

{
1

2
d2

Rk−2d(ξ, ξ) +
1

2
d̃2
CC((η, z), (η, z))− ϕc(ξ, η, z)

}
= min

ξ∈π1(supp(µ1))

{
1

2
d2

Rk−2d(ξ, ξ) + min
(η,z)∈Πξ

{
1

2
d̃2
CC((η, z), (η, z))− ϕc(ξ, η, z)

}}

= min
ξ∈π1(supp(µ1))

{
1

2
d2

Rk−2d(ξ, ξ)− φη,z(ξ)
}
,

which concludes the claim.
Step 2: For a.e. x = (ξ, η, z) ∈ S0 one can identify the Jacobian determinants Jac(ψs)(x)

and Jac(ψ)(x) with det[Ik−2d−sHessξ(ϕ)(x)] and det[Ik−2d−Hessξ(ϕ)(x)], respectively, where
Ik−2d is the (k−2d)×(k−2d) unit matrix and Hessξ(ϕ)(ξ, η, z) is the usual Euclidean Hessian
of the function ϕ(·, η, z) at the point ξ.

By Step 1, the d2
Rk−2d/2-concavity of ϕ(·, η, z) is equivalent to the convexity of ξ 7→

‖ξ‖2
Rk−2d

2
−

ϕ(ξ, η, z) on Rk−2d. In particular, by the Aleksandrov’s second differentiability theorem, the
latter function is twice differentiable a.e., and its Hessian Ik−2d−Hessξ(ϕ)(ξ, η, z) is positive
semidefinite and symmetric for a.e. ξ ∈ Rk−2d; the same is true for Ik−2d− sHessξ(ϕ)(ξ, η, z),
the latter being the convex combination of the positive semidefinite and symmetric matrices
Ik−2d and Ik−2d − Hessξ(ϕ)(ξ, η, z), respectively.

By (3.3) – if it exists– the formal Jacobian of ψs for a.e. x = (ξ, η, z) ∈ S0 has the structure[
As(x) Bs(x)

0 I2d+1

]
,

where As(x) = Ik−2d − sHessξ(ϕ)(ξ, η, z). Note however that Bs(x) might not exist since we
have no information on the differentiability of ∂iϕ(ξ, ·, ·), i ∈ {1, ..., k− 2d}. We shall explain
below that the existence of Bs(x) is not relevant as far as existence of the global Jacobi
determinant as density is concerned.

Observe first that due to Proposition 2.4, the interpolant measure µs = (ψs)#µ0 is abso-
lutely continuous w.r.t. Lk+1; let ρs be its density function. Since the corank 1 Carnot group
(G, dCC ,Lk+1) is a nonbranching metric measure space, both ψ and ψs are injective maps
on a set of full measure of supp(µ0). Thus, the push-forward measures µs = (ψs)#µ0 and
µ1 = ψ#µ0 and standard changes of variable should provide the Monge-Ampère equations

ρ0(x) = ρs(ψs(x))Jac(ψs)(x) and ρ0(x) = ρ1(ψ(x))Jac(ψ)(x) for µ0-a.e. x ∈ S0. (3.5)

However, as we pointed out, the differentials Dψ and Dψs may not exist on a set S ⊂ S0 of
positive measure, which requires a reinterpretation of the Monge-Ampère equations in (3.5);
we shall consider only the first term since the other one works similarly.

First of all, µs = (ψs)#µ0 implies∫
G

h(y)dµs(y) =

∫
G

h(ψs(x))dµ0(x) (3.6)

for every Borel function h : G→ [0,∞). In particular, for every measurable set S̃ ⊂ S0 with
positive measure and Borel function h with supp(h) ⊆ ψs(S̃) we have∫

G

h(y)dµs(y) =

∫
G

h(y)ρs(y)dLk+1(y) =

∫
ψs(S̃)

h(y)ρs(y)dLk+1(y).

Let π2 : Rk−2d × R2d × R → R2d+1 be the projection π2(y) = π2(y1, y2, y3) = (y2, y3) and for
every (y2, y3) ∈ π2(ψs(S̃)), let Π(y2,y3) = {y1 ∈ Rk−2d : (y1, y2, y3) ∈ ψs(S̃)}. It is clear that
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ψs(S̃) = ∪(y2,y3)∈π2(ψs(S̃))(Π(y2,y3), y2, y3); by Fubini’s theorem it follows that∫
ψs(S̃)

h(y)ρs(y)dLk+1(y) =

∫
π2(ψs(S̃))

(∫
Π(y2,y3)

h(y)ρs(y)dLk−2d(y1)

)
dL2d+1(y2, y3).

We consider the change of variables y = (y1, y2, y3) = ψs(x) with x = (ξ, η, z) which shows
through (3.3) that y1 = π1(ψs(x)) and (y2, y3) = (η, z). Thus, dLk−2d(y1) = det[As(x)]dLk−2d(ξ)
and Π(y2,y3) = π1(ψs(S̃η,z, η, z)) where S̃η,z = {ξ ∈ Rk−2d : (ξ, η, z) ∈ S̃}. Moreover, since

π2(ψs(S̃)) = π2(S̃), the latter term in the above relation becomes∫
π2(S̃)

(∫
S̃η,z

h(ψs(x))ρs(ψs(x))det[As(x)]dLk−2d(ξ)

)
dL2d+1(η, z)

which is nothing but ∫
S̃

h(ψs(x))ρs(ψs(x))det[As(x)]dLk+1(x).

The latter expression, relation∫
G

h(ψs(x))dµ0(x) =

∫
S̃

h(ψs(x))ρ0(x)dLk+1(x)

and (3.6) together with the arbitrariness of h and S̃ ⊂ S0 give that

ρ0(x) = ρs(ψs(x))det[As(x)] for µ0-a.e. x ∈ S0.

Consequently, (3.5) enables us to identify

Jac(ψs)(x) := det[As(x)] = det[Ik−2d − sHessξ(ϕ)(ξ, η, z)] for µ0-a.e. x ∈ S0.

Step 3: proof of Theorem 1.1 concluded (abnormal mass transportation). Since

Ik−2d − sHessξ(ϕ)(x) = (1− s)Ik−2d + s(Ik−2d − Hessξ(ϕ)(x)),

we may apply the concavity of det(·)
1

k−2d on the cone of (k−2d)×(k−2d) positive semidefinite
symmetric matrices, obtaining through Step 2 that

[Jac(ψs)(x)]
1

k−2d ≥ 1− s+ s [Jac(ψ)(x)]
1

k−2d a.e. x ∈ S0. (3.7)

Now, the concavity of the function t 7→ t
k−2d
k+1 , t > 0, gives that

[Jac(ψs)(x)]
1
k+1 =

(
[Jac(ψs)(x)]

1
k−2d

) k−2d
k+1

≥
(

1− s+ s [Jac(ψ)(x)]
1

k−2d

) k−2d
k+1

≥ 1− s+ s [Jac(ψ)(x)]
1
k+1 for a.e. x ∈ S0,

which is exactly the required inequality (1.7).

3.2.2. Moving along strictly normal geodesics. We assume that µ0(S1) > 0. The proof will
be divided into four steps.

Step 1: ϕ admits a Hessian for a.e. x ∈ S1.

It is well known that the Euclidean squared distance function d2
Rk−2d is semiconcave on Rk−2d×

Rk−2d, see Cannarsa and Sinestrari [7]. Moreover, since the distribution ∆̃ = {X1, ..., Xd} =
{Xk−2d+1, ..., Xk} is fat on R2d+1, according to Figalli and Rifford [11, Proposition 4.1, pg.

136], the squared distance function d̃2
CC is locally semiconcave on R2d+1×R2d+1 \ D̃, where D̃

denotes the diagonal of the set R2d+1×R2d+1, namely D̃ = {((η, z), (η, z)) : (η, z) ∈ R2d×R}.
Consequently, by the Pythagorean rule (see Lemma 2.1), the squared distance function d2

CC

is locally semiconcave on G×G \ D, where

D = {((ξ, η, z), (ξ′, η, z)) : ξ, ξ′ ∈ Rk−2d, (η, z) ∈ R2d × R}. (3.8)
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In order to conclude the claim, we slightly modify the proof of [11, Theorem 3.2]. Namely,
if x ∈ S1 is arbitrarily fixed, we have that Apx 6= 0Rk with px from (3.1), i.e., (x, ψ(x)) /∈ D.
In particular, if x = (ξx, ηx, zx) and ψ(x) = (ξ′x, η

′
x, z
′
x) then d̃CC((ηx, zx), (η

′
x, z
′
x)) =: rx > 0.

Due to the closeness of ∂cϕ on G × G, there exists an open neighborhood Vx ⊂ Mϕ ∩
supp(µ0) of x such that d̃CC((ηw, zw), (η′w, z

′
w)) > rx

2
for every w = (ξw, ηw, zw) ∈ Vx and

ψ(w) =(ξ′w, η
′
w, z

′
w) ∈ ∂cϕ(w). Let ϕ̃x : G→ R be defined by

ϕ̃x(w) = inf

{
1

2
d2
CC(w, y)− ϕc(y) : y = (ξy, ηy, zy) ∈ supp(µ1), d̃CC((ηw, zw), (ηy, zy)) >

rx
2

}
,

where w = (ξw, ηw, zw). Now, the locally semiconcavity of d2
CC on G×G \ D is inherited by

the d2
CC/2-concave function ϕ̃x on Vx. Moreover, one can observe that ϕ̃x = ϕ on Vx, thus ϕ

is semiconcave on Vx. By the Aleksandrov-Bangert theorem, see [9, Theorem 3.10, pg. 238],
we conclude that ϕ admits a Hessian a.e. on Vx, concluding the claim.

Step 2: ψ(x) /∈ cutG(x) for a.e. x ∈ S1. We know that µ0-a.e. x there exists a unique
minimizing geodesic joining x and ψ(x), thus ψ(x) /∈ cutG(x) for a.e. x ∈ S1.

Step 3: ψs and ψ are differentiable a.e. on S1; moreover, for a.e. x ∈ S1,

dψs(x) = Yx(s)

[
Hess

d2
CC(ψs(x), ·)

2

∣∣
x
− sHessϕ(x)

]
, (3.9)

dψ(x) = Yx(1)

[
Hess

d2
CC(ψ(x), ·)

2

∣∣
x
− Hessϕ(x)

]
, (3.10)

where
Yx(s) = d(expx)−s∇ϕ(x), s ∈ (0, 1].

For the first part, we recall that for every x ∈ S1,

ψ(x) = x ◦ expe(−∇ϕ(x)) and ψs(x) = x ◦ expe(−s∇ϕ(x)),

see (2.22) and (2.23), respectively. Since ψ(x) /∈ cutG(x) for a.e. x ∈ S1 (Step 2), thus
−∇ϕ(x) belongs to the injectivity domain D of expe, and ϕ has a Hessian a.e. on S1 (Step
1), it follows that ψ and ψs are differentiable at a.e. x ∈ S1.

In order to prove (3.9) and (3.10), we need a discrete version of Claim 2.1:

Claim 3.1. Let m ∈ N, F : R2m → Rm be a smooth function in a neighborhood of (x, y) ∈ R2m

and {xn}, {yn}, {zn} ⊂ Rm be three sequences satisfying the following properties:

(a) limn→∞ xn = x and xn 6= x for every n ∈ N;
(b) limn→∞ yn = y and F (xn, yn) = F (x, y) for every n ∈ N;
(c) limn→∞ zn = 0Rm and limn→∞

zn
‖xn−x‖Rm

= v ∈ Rm.

Then

lim
n→∞

F (xn, yn + zn)− F (x, y)

‖xn − x‖Rm
= D2F (x, y)v. (3.11)

The proof of the claim is left as an exercise to the interested reader.
We shall apply the above claim to prove only (3.9) since the proof of (3.10) works in a similar
way. To do this, without loss of generality, we can fix a Lebesgue density point x ∈ S1 in the
differentiability set of ϕ, i.e., where ϕ is twice differentiable (thus both ∇ϕ(x) and Hessϕ(x)
exist).

Since x is a Lebesgue density point of S1, we can find a linearly independent frame {vi :
i = 1, ..., k + 1} at x, such that there exist sequences {xn,i} ⊂ Rk+1 \ cutG(ψs(x)) in the
differentiability set of ϕ such that for every i ∈ {1, ..., k + 1}:

lim
n→∞

xn,i = x, xn,i 6= x for every n ∈ N, and lim
n→∞

xn,i − x
‖xn,i − x‖Rk+1

= vi; (3.12)

lim
n→∞

∇ϕ(xn,i) = ∇ϕ(x); (3.13)
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lim
n→∞

[
∇d2CC(ψs(x),·)

2

∣∣
xn,i
− s∇ϕ(xn,i)

]
−
[
∇d2CC(ψs(x),·)

2

∣∣
x
− s∇ϕ(x)

]
‖xn,i − x‖Rk+1

=

=

[
Hess

d2
CC(ψs(x), ·)

2

∣∣
x
− sHessϕ(x)

]
vi; (3.14)

lim
n→∞

ψs(xn,i)− ψs(x)

‖xn,i − x‖Rk+1

= dψs(x)vi. (3.15)

Fix i ∈ {1, ..., k + 1}. We shall apply Claim 3.1 with the smooth function F (w, q) = expw(q)
in a neighborhood of the point (x, y) := (x,−s∇ϕ(x)) and three sequences xn,i, yn,i :=

−∇d2CC(ψs(x),·)
2

∣∣
xn,i

and zn,i := −yn,i−s∇ϕ(xn,i). We clearly have that ψs(xn,i) = F (xn,i, yn,i+

zn,i). According to Proposition 2.2, we have that F (xn,i, yn,i) = ψs(x) = F (x, y) for every

n ∈ N and limn→∞ yn,i = −∇d2CC(ψs(x),·)
2

∣∣
x

= −s∇ϕ(x) = y. The latter relation and (3.13)
give that limn→∞ zn,i = −y + s∇ϕ(x) = 0Rk+1 , while (3.14) and (3.12) yield that

lim
n→∞

zn,i
‖xn,i − x‖Rk+1

=

[
Hess

d2
CC(ψs(x), ·)

2

∣∣
x
− sHessϕ(x)

]
vi =: v ∈ Rk+1.

Thus, (3.11) together with (3.15) reads as

dψs(x)vi = D2F (x,−s∇ϕ(x))v = d(expx)−s∇ϕ(x)

[
Hess

d2
CC(ψs(x), ·)

2

∣∣
x
− sHessϕ(x)

]
vi.

Since span{v1, ..., vk+1} = Rk+1, the latter relation yields (3.9).
Step 4: proof of Theorem 1.1 concluded (strictly normal mass transportation). We recall

by Proposition 2.3 that the Hessian

Hx,ψ(x)(s) := Hess
d2
CC(ψs(x), ·)

2

∣∣
x
− sHess

d2
CC(ψ(x), ·)

2

∣∣
x

is a (k + 1)× (k + 1) type positive semidefinite, symmetric matrix. Since

∇d
2
CC(ψ(x), ·)

2

∣∣
x
−∇ϕ(x) = 0Rk+1 for a.e. x ∈ S1,

a similar argument as in the first part of the proof of Proposition 2.3 and the d2
CC/2-concavity

of ϕ gives that Hess
d2CC(ψ(x),·)

2

∣∣
x
−Hessϕ(x) is also a positive semidefinite, symmetric matrix

for a.e. x ∈ S1. Thus, by the concavity of det(·)
1
k+1 on the set of (k + 1) × (k + 1) type

positive semidefinite, symmetric matrices one has

(Jac(ψs)(x))
1
k+1 =

= det

(
Yx(s)

[
Hess

d2
CC(ψs(x), ·)

2

∣∣
x
− sHessϕ(x)

]) 1
k+1

= det(Yx(s))
1
k+1 det

[
(1− s)

Hx,ψ(x)(s)

1− s
+ s

(
Hess

d2
CC(ψ(x), ·)

2

∣∣
x
− Hessϕ(x)

)] 1
k+1

≥ det(Yx(s))
1
k+1

(
(1− s) det

[
Hx,ψ(x)(s)

1− s

] 1
k+1

+ s det

(
Hess

d2
CC(ψ(x), ·)

2

∣∣
x
− Hessϕ(x)

) 1
k+1

)
= (1− s) det(Y x(1− s)Y x(1)−1)

1
k+1 + s det(Yx(s)Yx(1)−1)

1
k+1 (Jac(ψ)(x))

1
k+1 ,

where Y x corresponds to Yx via (2.15).
On one hand, by (2.6) we have that

det(Yx(s)Yx(1)−1) =
Jac(expe)(−s∇ϕ(x))

Jac(expe)(−∇ϕ(x))
,
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thus by (2.5),

s det(Yx(s)Yx(1)−1)
1
k+1 = τ k,αs (θx),

where θx = −∇ϕ(x) ∈ D. On the other hand, by the definition of Y x (see (2.14)) and relation
(2.7) we also have

(1− s) det(Y x(1− s)Y x(1)−1)
1
k+1 = τ k,α1−s(θx).

Combining the above facts we obtain the required Jacobian inequality (1.7). �

Remark 3.1. (a) Step 2 is the most fastidious part of the proof whenever the mass trans-
portation is realized along abnormal geodesics, see §3.2.1. Note that reversing the roles
of the metrics d2

Rk−2d and d̃2
CC , a similar argument as in Step 1 shows that ϕ(ξ, ·, ·) is a

d̃2
CC/2−concave function on R2d × R (ξ ∈ Rk−2d is fixed). However, since (x, ψ(x)) ∈ D

for every x ∈ S0 (see (3.2) and (3.8)) and we only know that d̃2
CC is locally semiconcave

on R2d+1 × R2d+1 \ D̃, where D̃ = π2(D), no conclusion can be drawn in general for the
locally semiconcavity of ϕ(ξ, ·, ·) on π2(S0). Thus, no higher regularity is known for ϕ(ξ, ·, ·)
which justifies the block-decomposition of the Jacobian matrix of ψ in order to interpret and
compute its determinant.

(b) If S0 ⊂ G is open and ϕ is smooth enough on S0 (say C1), one can see that X1ϕ(x) =
... = Xdϕ(x) = 0R2 for every x ∈ S0 (see §3.2.1) implies the fact that ϕ does not depend on
the components xk−2d+1, .., xk, z, i.e., the Jacobian of ψ can be calculated in the usual way
on S0; in particular, Example 3.1 below falls into this framework.

We conclude this section by constructing two measures and the optimal transportation
map between them such that a positive mass is transported along abnormal geodesics while
the complementary mass is transported along strictly normal geodesics, respectively.

Example 3.1. Let G = Rm × Hd be the m + 2d + 1 dimensional corank 1 Carnot group
endowed with its natural group operation inherited by the Euclidean space Rm and Heisenberg
group Hd; in our setting, k = m + 2d and αi = 4 for every i ∈ {1, ..., d} in (1.4). Let
a ∈ Rm \ {0Rm} and b ∈ R2d \ {0R2d} and consider the potentials ϕ0, ϕ1 : G→ R defined by

ϕ0(x1, x2) = 〈a, x1〉Rm and ϕ1(x1, x2) = −〈b, zx2〉R2d

for every (x1, x2) = (x1, (zx2 , tx2)) ∈ Rm × Hd, where 〈·, ·〉Rl denotes the usual inner product
in Rl. Moreover, let ϕc0, ϕ

c
1 : G→ R be defined by

ϕc0(y1, y2) = −1

2
‖a‖2

Rm − 〈a, y1〉Rm and ϕc1(y1, y2) = −1

2
‖b‖2

R2d + 〈b, zy2〉R2d

for every (y1, y2) = (y1, (zy2 , ty2)) ∈ Rm × Hd. If dCC is the Carnot-Carathéodory metric on
G, one has for every (x1, x2) ∈ G that

ϕj(x1, x2) = inf
(y1,y2)∈Rm×Hd

{
1

2
d2
CC((x1, x2), (y1, y2))− ϕcj(y1, y2)

}
, j ∈ {0, 1},

where we exploit Lemma 2.1, and Ambrosio and Rigot [3, Example 5.7, p.287] in the case
j = 1.

Accordingly, ϕj are d2
CC/2-concave functions on G, for j ∈ {0, 1}. If ϕ = min{ϕ0, ϕ1} and

ϕc = max{ϕc0, ϕc1}, we claim that for every (x1, x2) ∈ G,

ϕ(x1, x2) = inf
(y1,y2)∈Rm×Hd

{
1

2
d2
CC((x1, x2), (y1, y2))− ϕc(y1, y2)

}
. (3.16)

To see this, let (x1, x2) 7→ η(x1, x2) be the function at the right hand side of (3.16). First,
we have by definition that ϕcj(y1, y2) ≤ ϕc(y1, y2) for every (y1, y2) ∈ G and j ∈ {0, 1}.
Accordingly, ϕj(x1, x2) ≥ η(x1, x2) for every (x1, x2) ∈ G and j ∈ {0, 1}, i.e., ϕ ≥ η.
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To check the converse inequality, we provide a generic argument, independent from the
Carnot structure. Fix (x1, x2) ∈ G arbitrarily and assume without loss of generality that
ϕ0(x1, x2) ≤ ϕ1(x1, x2). Then for every (y1, y2) ∈ G, we have

ϕ0(x1, x2) ≤ 1

2
d2
CC((x1, x2), (y1, y2))− ϕc0(y1, y2);

ϕ0(x1, x2) ≤ ϕ1(x1, x2) ≤ 1

2
d2
CC((x1, x2), (y1, y2))− ϕc1(y1, y2).

Consequently, for every (y1, y2) ∈ G, one has

ϕ0(x1, x2) ≤ 1

2
d2
CC((x1, x2), (y1, y2)) + min{−ϕc0(y1, y2),−ϕc1(y1, y2)}

=
1

2
d2
CC((x1, x2), (y1, y2))−max{ϕc0(y1, y2), ϕc1(y1, y2)}

=
1

2
d2
CC((x1, x2), (y1, y2))− ϕc(y1, y2).

Taking the infimum on the right w.r.t. (y1, y2) ∈ G, we obtain ϕ0(x1, x2) ≤ η(x1, x2), i.e.,
ϕ(x1, x2) ≤ η(x1, x2), which concludes the proof of (3.16). In particular, (3.16) implies that
ϕ is a d2

CC/2-concave function on G.
Let G0 = {(x1, x2) = (x1, (z2, t)) ∈ Rm×Hd : 〈(a, b), (x1, z2)〉Rm×R2d = 0} be the hyperplane

separating Rm×R2d+1 into two halfspacesG− = {(x1, (z2, t)) ∈ Rm×Hd : 〈(a, b), (x1, z2)〉Rm×R2d ≤
0} and G+ = G \G−. It follows that

ϕ(x1, x2) =

{
ϕ0(x1, x2) if (x1, x2) ∈ G−;
ϕ1(x1, x2) if (x1, x2) ∈ G+,

and ϕ is differentiable on G \ G0. Let ψ : G → G be the optimal transport map generated
by the d2

CC/2-concave function ϕ, see Figalli and Rifford [11]; by Proposition 2.1 we have for
every (x1, x2) ∈ G \G0 that

ψ(x1, x2) = exp(x1,x2)(−∇ϕ(x1, x2)) =

{
ψ0(x1, x2) if (x1, x2) ∈ G− \G0;
ψ1(x1, x2) if (x1, x2) ∈ G+,

where

ψ0(x1, x2) = exp(x1,x2)(−a, 0R2d+1) = (x1 − a, x2)

and

ψ1(x1, x2) = exp(x1,x2)(0Rm , b, 0) = (x1, x2 ∗ (b, 0));

here, ′∗′ denotes the group operation on Hd.
Let µ0 = 1BLm+2d+1, where B ⊂ G is a closed ball centered at 0Rm+2d+1 with Lm+2d+1(B) =

1 and µ1 = ψ#µ0. Note that every element of B belongs to the moving set Mϕ. Moreover, one

can see that supp(µ1) = ψ0(B ∩G− \G0)
⋃
ψ1(B ∩G+), and the sets S0 and S1 appearing

in the proof of Theorem 1.1 correspond to the two half balls B ∩G− and B ∩G+ (up to null
measure sets), respectively. Consequently, the optimal mass transportation map ψ translates
the mass from S0 along abnormal (Euclidean) geodesics into S̃0 = (−a, 0Rm+2d+1) + S0, while
the mass from S1 is transported along strictly normal (Heisenberg) geodesics into a distorted
half ball S̃1 = {(x1, x2 ∗ (b, 0)) : (x1, x2) ∈ B ∩G+}, see Figure 2.
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Figure 2. The half balls S0 and S1 are transported along abnormal and strictly normal
geodesics into the sets S̃0 and S̃1, respectively.

4. Applications

Having the Jacobian determinant inequality (1.7), we can prove several functional and
geometric inequalities on corank 1 Carnot groups.

Let us denote by ρ0, ρ1 and ρs the density functions (w.r.t. Lk+1) of the absolutely
continuous, compactly supported measures µ0, µ1 = ψ#µ0 and µs = (ψs)#µ0, respectively.
In fact, we have the Monge-Ampère equations

ρ0(x) = ρs(ψs(x))Jac(ψs)(x) and ρ0(x) = ρ1(ψ(x))Jac(ψ)(x) for µ0-a.e. x ∈ G. (4.1)

These equations can be deduced in a standard way both in the static case (see §3.1) and
moving case with optimal mass transport along strictly normal geodesics (see §3.2.2), while
in the case of abnormal transportation we provided a proper interpretation of them (see
§3.2.1, Step 2).

Due to (4.1) we may reformulate the Jacobian determinant inequality (1.7) as

(ρs(ψs(x))−
1
k+1 ≥ τ k,α1−s(θx) (ρ0(x))−

1
k+1 + τ k,αs (θx) (ρ1(ψ(x))−

1
k+1 , (4.2)

which holds µ0 a.e. on the restricted set G0 = {x ∈ G : ρ0(x) > 0}. Observe that by
definition G0 is of full measure in supp(µ0). For a fixed s ∈ (0, 1) we restrict G0 to the
injectivity domain of ψ and ψs which will be still of full measure in supp(µ0). Moreover,
we may exclude those points x ∈ S1 from G0 for which x−1 ◦ ψ(x) ∈ cutG(e), see Step 2 in
§3.2.2, still obtaining a full measure set in supp(µ0) which prevents the blow-up of coefficients

τ k,α1−s(θx) and τ k,αs (θx), respectively.

4.1. Entropy inequalities. Let (G, ◦) be a k + 1 dimensional corank 1 Carnot group and
U : [0,∞) → R be a function. The U -entropy of an absolutely continuous measure µ w.r.t.

Lk+1 on G is defined by EntU(µ|Lk+1) =

∫
G

U (ρ(x)) dLk+1(x), where ρ = dµ
dLk+1 is the density

function of µ.
By using the injectivity of ψs and ψ on G0 (with a suitable change of variables), a similar

argument as in [5] provides the following entropy inequality.

Theorem 4.1. (Entropy inequality) Under the same assumptions as in Theorem 1.1, if
U : [0,∞)→ R is a function such that U(0) = 0 and t 7→ tk+1U

(
1

tk+1

)
is non-increasing and
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convex, the following entropy inequality holds:

EntU(µs|Lk+1) ≤ (1− s)
∫
G

(
τ̃ k,α1−s(θx)

)k+1

U

 ρ0(x)(
τ̃ k,α1−s(θx)

)k+1

 dLk+1(x)

+s

∫
G

(
τ̃ k,αs (θψ−1(y))

)k+1
U

 ρ1(y)(
τ̃ k,αs (θψ−1(y))

)k+1

 dLk+1(y),

where τ̃ k,αs = s−1τ k,αs .

Corollary 4.1. Under the same assumptions as in Theorem 4.1, we have the following
uniform entropy inequality:

EntU(µs|Lk+1) ≤ (1− s)3

∫
G

U

(
ρ0(x)

(1− s)2

)
dLk+1(x) + s3

∫
G

U

(
ρ1(y)

s2

)
dLk+1(y).

Proof. Since t 7→ di(t,s)
di(t,1)

is increasing on (0, 2π) for every s ∈ (0, 1), i ∈ {1, 2}, and

limt→0
d1(t,s)
d1(t,1)

= 1, limt→0
d2(t,s)
d2(t,1)

= s2, see [5, Lemma 2.1], we obtain

τ k,αs (θx) ≥ s
k+3
k+1 for all s ∈ (0, 1) and x ∈ G0. (4.3)

Thus, for the weights τ̃ k,αs we obtain(
τ̃ k,αs (θx)

)k+1 ≥ s2 for all s ∈ (0, 1) and x ∈ G0. (4.4)

Since the map t 7→ tk+1U
(

1
tk+1

)
is non-increasing, the desired inequality directly follows from

Theorem 4.1. �

Remark 4.1. As a particular case of Theorem 4.1 and Corollary 4.1, we may choose various
particular entropies for U , as the Rényi-type entropy, Shannon entropy, kinetic-type entropy
or Tsallis entropy.

4.2. Brunn-Minkowski inequalities. Let (G, ◦) be a connected, simply connected nilpo-
tent Lie group of (topological) dimension N , and µ be a Haar measure on G. By extending
a result of Leonardi and Masnou [14] from Heisenberg groups, Tao [21] proved that for every
nonempty and bounded open sets A,B ⊂ G the multiplicative Brunn-Minkowski inequality
holds on (G, ◦):

µ(A ◦B)
1
N ≥ µ(A)

1
N + µ(B)

1
N . (4.5)

In particular, this inequality is also valid on any k+ 1 dimensional corank 1 Carnot group G
with N = k + 1 and µ = Lk+1.

In the sequel, we prove geodesic Brunn-Minkowski inequalities on corank 1 Carnot groups.
To do this, let A,B ⊂ G be two nonempty sets. In the sequel we want to quantify the Carnot
distortion coefficients which characterize the sets A and B. For this reason we introduce the
notations

τ k,αs (A,B) = sup
A0,B0

inf
(x,y)∈A0×B0

{τ k,αs (p) : expe(p) = x−1 ◦ y} (4.6)

and

τ̃ k,αs (A,B) = sup
A0,B0

inf
(x,y)∈A0×B0

{τ̃ k,αs (p) : expe(p) = x−1 ◦ y} = sτ k,αs (A,B), (4.7)
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where A0 and B0 are nonempty, full measure subsets of A and B, respectively. Note that
by taking sets A0, B0 with the above properties we might obtain better coefficients than if
simply take the initial sets A,B; more precisely, one always has

τ̃ k,αs (A,B) ≥ inf
(x,y)∈A×B

{τ̃ k,αs (p) : expe(p) = x−1 ◦ y},

with possibly strict inequality e.g. when some discrete points x ∈ A and y ∈ B are in a
particular position as expe(p) = x−1 ◦ y with p ∈ D and pz = 0. Recalling relation (2.7)
between the parameters of the exponential map joining e to x ∈ G and x−1 ∈ G, respectively,
the following symmetry properties hold:

τ k,αs (x, y) = τ k,αs (y, x) and τ̃ k,αs (x, y) = τ̃ k,αs (y, x) for all x, y ∈ G. (4.8)

For every s ∈ [0, 1] and x, y ∈ G, the set of s-intermediate points between x and y is

Zs(x, y) = {z ∈ G : dCC(x, z) = sdCC(x, y), dCC(z, y) = (1− s)dCC(x, y)}. (4.9)

We clearly have the antisymmetry property

Zs(x, y) = Z1−s(y, x) for all x, y ∈ G and s ∈ [0, 1].

The notion of s-intermediate points can be extended to the nonempty sets A,B ⊂ G as

Zs(A,B) =
⋃

(x,y)∈A×B

Zs(x, y).

Theorem 4.2. (Weighted and non-weighted Brunn-Minkowski inequalities) Let
(G, ◦) be a k + 1 dimensional corank 1 Carnot group, s ∈ (0, 1), and A and B be two
nonempty measurable sets of G. Then the following inequalities hold:

(i) Lk+1(Zs(A,B))
1
k+1 ≥ τ k,α1−s(A,B)Lk+1(A)

1
k+1 + τ k,αs (A,B)Lk+1(B)

1
k+1 ;

(ii) Lk+1(Zs(A,B))
1
k+1 ≥ (1− s)

k+3
k+1Lk+1(A)

1
k+1 + s

k+3
k+1Lk+1(B)

1
k+1 ;

(iii) Lk+1(Zs(A,B))
1
k+3 ≥

(
1

4

) 1
k+3 (

(1− s)Lk+1(A)
1
k+3 + sLk+1(B)

1
k+3

)
.

Proof. First of all, we notice that if Zs(A,B) is not measurable, Lk+1(Zs(A,B)) will denote
the outer Lebesgue measure of Zs(A,B).

(i) We first assume that both A and B have finite Lk+1-measures. If both sets have null
measure, we have nothing to prove; thus, we may assume that max

{
Lk+1(A),Lk+1(B)

}
> 0.

The proof is divided into three steps.
Step 1: one has τ k,αs (A,B) < ∞ and τ k,α1−s(A,B) < ∞. By (4.6), if τ k,αs (A,B) = +∞,

we have in particular that x−1 ◦ y ∈ cutG(e) for a.e. (x, y) ∈ A × B. Therefore, 0 =
Lk+1(cutG(e)) ≥ Lk+1(A−1 ◦ B). Thus, by the multiplicative Brunn-Minkowski inequality
(4.5) it follows that Lk+1(A) = Lk+1(B) = 0, which contradicts our initial assumption.

Step 2: the case Lk+1(A) 6= 0 6= Lk+1(B). Let µ0 = 1A(x)
Lk+1(A)

Lk+1, µ1 = 1B(x)
Lk+1(B)

Lk+1 and

the Rényi entropy U(r) = −r1− 1
k+1 (r ≥ 0) in Theorem 4.1; thus the entropy inequality and

relations (4.6) and (4.7) imply that∫
ψs(A)

ρs(z)1− 1
k+1 dLk+1(z) ≥ τ k,α1−s(A,B)

∫
A

ρ
1− 1

k+1

0 dLk+1 + τ k,αs (A,B)

∫
B

ρ
1− 1

k+1

1 dLk+1

= τ k,α1−s(A,B)Lk+1(A)
1
k+1 + τ k,αs (A,B)Lk+1(B)

1
k+1 .

By Hölder’s inequality one has that∫
ψs(A)

ρs(z)1− 1
k+1 dLk+1(z) ≤

(∫
ψs(A)

ρs(z)dLk+1(z)

)1− 1
k+1
(∫

ψs(A)

dLk+1(z)

) 1
k+1

= Lk+1(ψs(A))
1
k+1 .

Since ψs(A) ⊂ Zs(A,B), the claim follows.
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Step 3: the case Lk+1(A) = 0 6= Lk+1(B) or Lk+1(A) 6= 0 = Lk+1(B). In fact, our claim
reduces to proving that for every x ∈ G, we have

Lk+1(Zs({x}, B)) ≥
(
τ k,αs ({x}, B)

)k+1 Lk+1(B). (4.10)

The latter inequality follows by an approximation argument. In fact, if {εn}n∈N is a decreasing
sequence converging to 0, by Step 2 we have for every n ∈ N that

Lk+1(Zs(B(x, εn), B))
1
k+1 ≥ τ k,α1−s(B(x, εn), B)ε

k+2
k+1
n + τ k,αs (B(x, εn), B)Lk+1(B)

1
k+1 ,

where B(x, r) = {y ∈ G : dCC(x, y) ≤ r}. By using the monotone convergence theorem one
can prove that

lim
n→∞

Lk+1(Zs(B(x, εn), B)) = Lk+1(Zs({x}, B)) and lim
n→∞

τ k,αs (B(x, εn), B) = τ k,αs ({x}, B),

which proves (4.10). If A or B has infinite Lk+1-measure, we apply again an approximation
argument.

(ii) This property follows by (i) combined with the universal lower bound (4.3) for τ k,αs .
(iii) Property (ii) is combined with the p-mean inequality (4.11) below with the choices

a = (1− s)−2, b = s−2, p = 1
2
, q = 1

k+1
and η = 1

k+3
, respectively. �

The main result of Rizzi [18] concerning the measure contraction property on corank 1
Carnot groups is a direct consequence of the Brunn-Minkowski inequality (Theorem 4.2):

Corollary 4.2. (Measure contraction property) Let (G, ◦) be a k+1 dimensional corank
1 Carnot group. Then the measure contraction property MCP(0, k + 3) holds on G, i.e., for
every s ∈ [0, 1], x ∈ G and nonempty measurable set E ⊂ G,

Lk+1(Zs({x}, E)) ≥
(
τ k,αs ({x}, E)

)k+1 Lk+1(E) ≥ sk+3Lk+1(E).

4.3. Borell-Brascamp-Lieb inequalities. In order to formulate our Borell-Brascamp-Lieb
inequalities we introduce the notion of the p-mean, which for two non-negative numbers a, b
and weight s ∈ (0, 1) is defined as

Mp
s (a, b) =

{
((1− s)ap + sbp)1/p if ab 6= 0,
0 if ab = 0,

with the conventions M−∞
s (a, b) = min{a, b}; M0

s (a, b) = a1−sbs; and M+∞
s (a, b) = max{a, b}

if ab 6= 0 and M+∞
s (a, b) = 0 if ab = 0. According to Gardner [12, Lemma 10.1], one has

Mp
s (a, b)M q

s (c, d) ≥Mη
s (ac, bd), (4.11)

for every a, b, c, d ≥ 0, s ∈ (0, 1) and p, q ∈ R such that p+ q ≥ 0 with η = pq
p+q

when p and q

are not both zero, and η = 0 if p = q = 0.
Having the Jacobian determinant inequality (4.2), we can prove Borell-Brascamp-Lieb-

type inequalities on corank 1 Carnot groups. In the sequel we state some of them. We refer
to [5] for similar results with detailed proofs in the setting of the Heisenberg groups:

Theorem 4.3. (Weighted Borell-Brascamp-Lieb inequality) Fix s ∈ (0, 1) and p ≥
− 1
k+1

. Let f, g, h : G→ [0,∞) be Lebesgue integrable functions with the property that for all
(x, y) ∈ G×G, z ∈ Zs(x, y),

h(z) ≥Mp
s

 f(x)(
τ̃ k,α1−s(y, x)

)k+1
,

g(y)(
τ̃ k,αs (x, y)

)k+1

 . (4.12)

Then the following inequality holds:∫
G

h ≥M
p

1+(k+1)p
s

(∫
G

f,

∫
G

g

)
.
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Remark 4.2. Observe that Theorem 4.3 holds as well under weaker conditions, namely, if
inequality (4.12) holds only for those x, y ∈ G for which f(x) > 0 and g(y) > 0.

As a direct consequence of Theorem 4.3, inequality (4.4) and the monotonicity of the
p-mean we can formulate the following weaker Borell-Brascamp-Lieb-type inequality:

Corollary 4.3. (Uniformly weighted Borell-Brascamp-Lieb inequality) Fix s ∈ (0, 1)
and p ≥ − 1

k+1
. Let f, g, h : G→ [0,∞) be Lebesgue integrable functions satisfying

h(z) ≥Mp
s

(
f(x)

(1−s)2 ,
g(y)
s2

)
for all (x, y) ∈ G×G, z ∈ Zs(x, y). (4.13)

Then the following inequality holds:∫
G

h ≥M
p

1+(k+1)p
s

(∫
G

f,

∫
G

g

)
.

Corollary 4.4. (Non-weighted Borell-Brascamp-Lieb inequality) Fix s ∈ (0, 1) and
p ≥ − 1

k+3
. Let f, g, h : G→ [0,∞) be Lebesgue integrable functions satisfying

h(z) ≥Mp
s (f(x), g(y)) for all (x, y) ∈ G×G, z ∈ Zs(x, y). (4.14)

Then the following inequality holds:∫
G

h ≥ 1

4
M

p
1+(k+3)p
s

(∫
G

f,

∫
G

g

)
. (4.15)

Proof. By the p-mean inequality (4.11) and assumption (4.14), we have

4h(z) = Mp
s (f(x), g(y))M

1
2
s

(
1

(1− s)2
,

1

s2

)
≥M

p
2p+1
s

(
f(x)

(1− s)2
,
g(y)

s2

)
, (4.16)

for every x, y ∈ G and z ∈ Zs(x, y). By the assumption p ≥ − 1
k+3

we have p
2p+1

≥ − 1
k+1

, so

we can apply Corollary 4.3 for the setting h̃ = 4h, f̃ = f , g̃ = g and p̃ = p
2p+1

, obtaining the

desired inequality. �

Remark 4.3. (a) All three versions of the Borell-Brascamp-Lieb inequality imply a cor-
responding Prékopa-Leindler-type inequality by setting p = 0 and using the convention
M0

s (a, b) = a1−sbs for all a, b ≥ 0 and s ∈ (0, 1).
(b) The Brunn-Minkowski inequality (i) in Theorem 4.2 can be obtained alternatively from

Theorem 4.3 whenever Lk+1(A) 6= 0 6= Lk+1(B). Indeed, let p = +∞, and choose the func-

tions f(x) =
(
τ̃ k,α1−s(A,B)

)k+1

1A(x), g(y) =
(
τ̃ k,αs (A,B)

)k+1
1B(y) and h(z) = 1Zs(A,B)(z).

With these choices assumption (4.12) holds at the points x, y ∈ G where f(x) > 0 and
g(y) > 0 and due to Remark 4.2(b) we may apply Theorem 4.3, obtaining

Lk+1(Zs(A,B)) ≥ M
1
k+1
s

((
τ̃ k,α1−s(A,B)

)k+1

Lk+1(A),
(
τ̃ k,αs (A,B)

)k+1 Lk+1(B)

)
=

(
τ k,α1−s(A,B)Lk+1(A)

1
k+1 + τ k,αs (A,B)Lk+1(B)

1
k+1

)k+1

,

which concludes the proof. In a similar way, properties from (ii) and (iii) from Theorem 4.2
can be obtained by Corollaries 4.3 and 4.4, respectively.
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