
Probabilistic Consensus of the Blockchain
Protocol
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Abstract. We introduce a temporal epistemic logic with probabilities as
an extension of temporal epistemic logic. This extension enables us to rea-
son about properties that characterize the uncertain nature of knowledge,
like “agent a will with high probability know after time s same fact”. To
define semantics for the logic we enrich temporal epistemic Kripke mod-
els with probability functions defined on sets of possible worlds. We use
this framework to model and reason about probabilistic properties of the
blockchain protocol, which is in essence probabilistic since ledgers are im-
mutable with high probabilities. We prove the probabilistic convergence
for reaching the consensus of the protocol.

Keywords: multi-agent systems · blockchain · temporal epistemic logic
with probabilities · formal model · specification/verification

1 Introduction

Time, knowledge and uncertainty are fundamental properties of distributed
systems. In order to be able to deal with these properties we need to represent
them and reason about them. Reasoning about time and knowledge started,
if not earlier, in the 1950s, 1960s with [9,15]. Since then, epistemic temporal
logic has been applied in many fields. Particularly, it has been proven useful
in analyzing message-passing based protocols in distributed computer networks
[4,6,7], where a suitable semantics was proposed, and modal operators are used to
express both agents’ knowledge and temporal properties of actions in distributed
systems. The idea of extending the epistemic logic with probability operators
which enable reasoning about uncertainty seems natural and it is not new, see
for example [5,16].

In this paper, we extend reasoning about temporal and epistemic properties
of agents [10] with probability properties. Agents are not rigid, i.e. one agent
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participate as active or passive in the system. This property of agents implies that
knowledge does not satisfy that everything which is known is true (and in that
sense it might be also called belief [4]). Knowledge of an agent a is represented
using the modal operator Ka, that is interpreted with an accessibility relation
in Kripke models. The temporal part of the logic is discrete linear time (future)
LTL logic, where the flow of time is isomorphic to the natural numbers, and
the corresponding part of the formal language contains the operators Next (©)
and Until (U). Probabilistic part is modeled by introducing probability operators
of the form Pa,>s, with the meaning that according to agent a some fact holds
with the probability greater then or equal to s. Then both Ka and Pa,>s, in
Ka(Pa,>sφ), express together probabilistic knowledge i.e. that agent a will with
probability at most s know some fact φ. We also introduce probabilistic common
knowledge operators of the form Cs, with the meaning that common knowledge
of the probability of formula holds is at least s.

Nowadays, one of the most popular distributed protocols is the blockchain
protocol [13], which is used, for example, to synchronize copies of the public
ledger in the bitcoin cryptocurrency. By its nature blockchain is the probabilis-
tic protocol [11] and every agent has its own knowledge which evaluates during
the time [10]. In the formal language of our logic we formulate a theory which
describes the blockchain. We illustrate expressiveness of the logic by reason-
ing about probabilistic consensus of agents participating in an execution of the
blockchain protocol.

A blockchain is a decentralized, distributed and public digital ledger. The
ledger is also immutable and ordered. It is used to record transactions across
many computers with the property that transactions can be added only at the
end of the ledger and a record cannot be altered retroactively, without the alter-
ation of all subsequent blocks and the consensus of the network. All participants
have a large common prefix of the ledger. A blockchain database is managed
autonomously, without third authority, using a peer-to-peer network and a dis-
tributed time-stamping server. At any point of the protocol execution (round),
each participant attempts to increase the length of its own chain by mining for
a new block: upon receiving some record m, it picks a random string and checks
whether string is a valid proof-of-work (PoW) with respect to m and a pointer
to the last block of its current chain. If so, it extends its own local chain and
broadcasts it to the all the other participants. Whenever a participant receives
a chain that is longer than its own local chain, it replaces its own chain with the
longer one [3,14]. It is possible, in the run of the protocol, that two transactions
arrive approximately simultaneously. In that case, each participant chooses one
transaction and works on it (approximately half choose the first one, and the
other half the second one), keeping the other transaction. This situation is called
fork. Fork is resolved in some of the next round when the next unique PoW is
found and one branch becomes longer; the nodes that were working on the other
branch will then switch to the longer one.

In essence the blockchain protocol is probabilistic since the ledgers change
with high probabilities. Probabilistic temporal epistemic logic enables us to
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model and reason about probabilistic characteristics of the blockchain proto-
col: we are able to prove existence of the probabilistic common knowledge of
agents about consensus on the common prefix of the ledger.

The paper [8] analyzes probabilistic conditions to achieve consensus on a
public ledger, and presents a model theoretic approach with probabilistic con-
straints on runs that guarantee that (so called ∆−2) common knowledge about
the ledger is obtained. On the other hand, in this paper a theory which describes
the blockchain is used as the starting point to prove existence of probabilistic
common knowledge about the ledger. Other related papers are: [2] describes how
an agent’s knowledge is changed when a new block that might be added to the
blockchain arrives; [10] develops a logic to analyze properties of the protocol in
terms of knowledge of agents; [3,14] using cryptographic techniques prove that
with the high probability honest agents have the same common prefix of the
ledger.

The rest of the paper is organized as follows. In Section 2 we describe syntax
and semantics for the considered temporal epistemic logic with probabilities.
Section 3 describes the blockchain protocol as a theory (a set of proper axioms)
of the presented logic. We prove important properties of the protocol in this
section. Section 4 contains concluding remarks and directions for further work.

2 Temporal Epistemic Logic with Probabilities

2.1 Syntax

Let N be the set of nonnegative integers, V ar a nonempty at most countable
set of propositional letters, and A = {a1, . . . , am}, where m ∈ N, a set of agents.
Also, we introduce the set of propositional letters Aa = {Aa|a ∈ A}. The
intuitive meaning of propositional letter Aa is that “agent a is active”. The set
For of all formulas is the smallest superset of V ar ∪Aa which is closed under
the following formation rules:

– ψ 7→ ∗ψ where ∗ ∈ {¬,©, Ka, C, Pa,>s, Cs}, where a ∈ A, s ∈ [0, 1]Q
– 〈φ, ψ〉 7→ φ ∗ ψ where ∗ ∈ {∧, U}.

The operators © and U are standard temporal operators Next and Until. We
read the formula©ψ “ψ will hold in the next moment”, and the formula ϕUψ “ ϕ
will hold until ψ becomes true. The remaining Boolean and temporal connectives
∨, Y, →, ↔, F (“sometimes”), and G (“always”) are defined in the usual way.
The formula Kaψ denotes that the agent a knows ψ. The knowledge operator
E, which we read “everybody knows”, is introduced as Eψ =def

∧
a∈A Kaψ. The

operator C expresses common knowledge, i.e., the meaning of the formula Cψ
is “that everyone knows that everyone knows that everyone knows. . . that ψ is
true”. The formula Pa,>sψ represents that the probability of the formula ψ ,
according to agent a, is at least s. The probabilistic variants of the operators Ka
and E are defined as abbreviations, in the following way:

– Ksaψ =def Ka(Pa,>sψ), and
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– Esψ =def

∧
a∈A Ksaψ,

while Cs is the operator for probabilistic common knowledge (i.e., common knowl-
edge is that the probability of a formula is at least s). Theories are sets of
formulas.

2.2 Semantics

In this paper we will consider time flow which is isomorphic to the set N.
Our models are propositional Kripke structures with possible worlds, similar as
the interpreted systems from [4,16].

Definition 1. A model M is any tuple 〈W,R, π,A,K,P〉 such that

– W is the set of possible worlds,
– R is the set of runs, where:
• every run r is a countably infinite sequence of possible worlds r0, r1, r2,

. . . , and
• every possible world belongs to only one run.

– π = {πr
i : r ∈ R , i ∈ N} is the set of valuations:

• πr
i (q) ∈ {>,⊥}, for q ∈ V ar, associates truth values to propositional

letters of the possible world ri,
– A associates a set of active agents to each possible worlds,
– K = {Ka

i : a ∈ A} is the set of binary accessibility relations on R, such that
• if a 6∈ A(ri), then rKa

i r
′ is false for all r′ ∈ R.

– P associates a probability space P(ri, a) = (Ra
ri , ξ

a
ri , µ

a
ri) to every possible

world ri and every agent a, such that
• Ra

ri is a non-empty subset of R,
• ξari is an algebra of subsets of Ra

ri whose elements are called measurable
sets, and

• µa
ri : ξari → [0, 1] is a finitely-additive probability measure.

We denote the class of all models by Mod.

Note that in Definition 1 we consider the general case and did not introduce
any restrictions on Ka

i , except introduction of “dead end worlds” in the situations
when agents are not active. In order to reason about agents’ knowledge, we will
consider the case when Ka

i are equivalence relations for the active agents.

2.3 Satisfiability relation

The satisfiability relation |= is recursively defined as follows:

Definition 2. Let M = 〈R, π,A,K,P〉 be an Mod model. The satisfiability re-
lation |= satisfies:

1. ri |= q iff πr
i (q) = >, for q ∈ V ar ∪Aa,

2. ri |= Aa iff a ∈ A(ri),
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3. ri |= β1 ∧ β2 iff ri |= β1 and ri |= β2,
4. ri |= ¬β iff not ri |= β (ri 6|= β),
5. ri |=©β iff ri+1 |= β,
6. ri |= β1Uβ2 iff there is an j > 0 such that ri+j |= β2, and for every k, such

that 0 6 k < j, ri+k |= β1,
7. ri |= Kaβ iff r′i |= β for all r′ such that rKa

i r
′,

8. ri |= Cψ iff for every n > 0, ri |= Enψ,
9. ri |= Pa,>sβ iff µa

ri({r
′ ∈ R | r′i |= β}) > s, and

10. ri |= Crβ iff for every n > 0, ri |= Enr β.
�

Our semantic definition of probabilistic common knowledge is taken from the
paper [12], where the operator Cr is introduced for a the first time, as reflexive
and transitive closure of Er.5

A set of formulas is satisfiable if there is a possible world ri of a run r in
a model M such that every formula from the set holds in ri. A formula α is
satisfiable if the set {α} is satisfiable. A formula is valid in a model, if it holds
in every world of the model. α is valid (|= α), if it is valid in each model. A
formula α is a semantic consequence of a set of formulas F (F |= α) if for every
model M in which all formulas from the set F are valid, M |= α.

In order to keep the satisfiability relation well-defined, in this work we con-
sider only so-called measurable models. A measurable model is a model in which
each set {r′ ∈ R | r′i |= β} belongs to ξari for every possible world ri and every
agent a. The class of all measurable models is denoted by ModMeas.

We consider models with non rigid sets of active atoms. We can assume
that non-active agent (i.e. a 6∈ A(ri)) knows everything (i.e. ri |= Kaβ, for every
formula β). However, since satisfiability of knowledge of a group is represented as
a conjunction of knowledge of agents from the group, knowledge of a non-active
agents do not affect the knowledge of the group of active agents.

3 Blockchain Protocol

The blockchain protocol is used in the process of obtaining the consensus among
the agents in distributed environment. The most known used version of the
blockchain protocol is the bitcoin and some other cryptocurrencies. In this sec-
tion we will describe the blockchain protocol [1,3,13,14] and provide the proof
that the consensus is achieved with the high probability.

The following properties particularly contribute to the popularity of the
blockchain protocol:

– It is managed autonomously, without third authority.
– It solves the long-standing problem of double spending.
– It provides a record that compels offer and acceptance, since the fact that

all the transactions are kept in the public ledger.
5 In [5], a slightly different definition is presented, and it is pointed out that both def-

initions are valid probabilistic generalizations of common knowledge. For the details
we refer the reader to [5].
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3.1 Overview of the Blockchain Protocol

In the blockchain environment transactions, that record chaining the ownership
of goods between the agents in the distributed network, are kept permanently
and publicly available. A transaction with the corresponding data (time stamp,
identifiers of agents and value of property) are recorded in the blocks that are
parts of a digital public ledger. The agents follow certain set of rules how to add
and accept new blocks, add them to the ledger and achieve consensus among
them. The most known version of such set of rules is so called PoW, i.e. all the
agents try to solve unique cryptographic puzzle and all the agents have to accept
the first valid solution. Since the fact that the hash function is used, one block
in the ledger cannot be replace without the replacement of the whole section of
all subsequent blocks.

The blockchain protocol was introduced in the following way (quotation from
[13]):

1. New transactions are broadcast to all nodes.
2. Each node collects new transactions into a block.
3. Each node works on finding a difficult PoW for its block.
4. When a node finds a PoW, it broadcasts the block to all nodes.
5. Nodes accept the block only if all transactions in it are valid and not

already spent.
6. Nodes express their acceptance of the block by working on creating

the next block in the chain, using the hash of the accepted block as
the previous hash.

Nodes always consider the longest chain, i.e., the one containing the
most proofs-of-work, to be the correct one and will keep working on
extending it. If two nodes broadcast different versions of the next block
simultaneously, some nodes may receive one or the other first. In that
case, they work on the first one they received, but save the other branch
in case it becomes longer. The tie will be broken when the next PoW is
found and one branch becomes longer; the nodes that were working on
the other branch will then switch to the longer one.

A round is described with the above described steps (1 – 6). Each node
tries to increase the length of its own chain by “mining” the new block: find
the string that will produce the hash value of the whole block that satisfies the
certain property. If several blocks are produced approximately simultaneously
every node can choose which branch will try to extend. This situation is called
fork. Forks are resolved in later rounds, when all the nodes will accept the longest
branch.

We consider the blockchain protocol that runs in a synchronous setting (the
time needed to solve a puzzle for one round is much greater than the time to
exchange that information among the agents). We do not consider cryptographic
properties of the protocol, and we assume that all nodes in the network are
perfectly honest and reasonable, and that there are no dishonest nodes trying to
exploit cryptographic vulnerabilities of the protocol to gain benefits.
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3.2 Modeling of the Blockchain Protocol

The logic presented in this paper extends the temporal epistemic logic with a
non-rigid set of agents from [10] to allow probabilistic reasoning. In [10] a theory
(set of formulas) in the corresponding language is formulated to describe a sim-
plified version of the blockchain protocol. The simplification concerns avoiding
probabilistic behavior which characterizes the blockchain, and there is an axiom
which says that forks will be resolved after a fixed number of rounds. Here we
overcome this constraint since we can express explicit probabilities. We replace
the mentioned axiom of the temporal epistemic logic with a new one ([AB11])
which determines the probability that after z rounds all agents have the same
prefix of the ledger. As a consequence, we can consider more realistic (proba-
bilistic) executions of the blockchain and formulate and prove a statement about
probabilistic common knowledge among agents.

We define V ar as V ar ⊇ POW ∪ACC, where:

– POW = {powa,i|a ∈ A, i ∈ N} is a set of atomic propositions, with the
intended meaning of powa,i that the agent a produces a PoW for round i,
and

– ACC = {acca,b,i|a, b ∈ A, i ∈ N} is a set of atomic propositions, with the
intended meaning of acca,b,i that the agent a accepts the PoW produced for
round i by the agent b.

We set
ea,i :=

∧
b∈A

(Ab → accb,a,i)

The formulas ea,i mean that every active agent accepts the PoW produced for
round i by agent a.

Further we set
echb,i :=

∨
a∈A

accb,a,i

The formula echb,i means that agent b accepts some PoW produced for round i.
We will use pf ∈ (0, 1) to denote the probability that a fork occurs in a

particular round.
Our theory of blockchain, denoted with BCT, consists of the following proper

axioms (let a, b and c denote agents from A):

AB1
∨

aAa

AB2 accb,a,i → powa,i

AB3 accb,a,i → Kbaccb,a,i
AB4 accb,a,i → ¬accb,c,i, for each c 6= a
AB5 acca,c,j ∧©accb,a,i →©accb,c,j ,

for j < i

AB6 Ab ∧
∨

a powa,i → echb,i
AB7 echa,i → Aa

AB8 echa,i+1 → echa,i
AB9 echb,i →©

∨
a powa,i+1

AB10 ¬echa,i → ¬© powa,i+1

AB11 echa,i+z ∧ acca,b,i → Pa,>(1−pfz)eb,i

Let us briefly discuss the meaning of the above axioms.

AB1 There is always at least one agent active.
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AB2 One can only accept PoW that has been produced.
AB3 The agents know if they accept some PoW.
AB4 An agent accepts at most one PoW for a given round.
AB5 If a accepts c’s proof of work for round j and (in the next step) b accepts a’s

PoW for a later round, then b must also accept c’s PoW for round j. This
essentially means that if b accepts a’s PoW, then b accepts the whole history
of a.

AB6 If proofs-of-work for some round are produced, then each active agent must
accept one of them. Note that we do not have any assumption on how an
agent accepts a proof.

AB7 Only active agents can accept proofs-of-work.
AB8 If an agent accepts some PoW for round i + 1, then the agent also accepts

some PoW for round i.
AB9 If an agent accepts some PoW for round i, then in the next round a PoW

for round i+ 1 must be available.
AB10 Only an agent that has accepted a PoW for round i can create (in the next

step) a PoW for round i + 1. This models the fact that a PoW depends on
the previously accepted history.

AB11 This states how the probability that PoW remains in the common history
depends on how deep it is in the ledger. Note that we do not have any
assumption on how this consensus is achieved. This formalizes the common
prefix property from [3].

Let us now briefly discuss the relationship between time instants (from the
linear time logic part) and rounds (referenced in the atomic propositions in
POW and ACC).

We start at time instant t and assume that agent b accepts some proof of
work for round i, that means agent b accepts a blockchain of lenght i. Because
of [AB9], at time instant t+ 1 some agent a will produce a PoW for round i+ 1.
By [AB1] at least one agent, say agent c, will be active at time instant t + 1.
By [AB6] agent c at time instant t + 1 accepts some proof of work for round
i + 1, that means a blockchain of length i + 1. Hence with every time instant,
the accepted blockchain grows by one block.

However, we do not require that all PoW for round i+ 1 is generated at time
instant t+ 1. It is possible that some PoW for round i+ 1 is produced at a later
time instant.

The following lemmas will be used to prove the statement in Theorem 1.

Lemma 1. The set of Blockchain Axioms is satisfiable.

Lemma 2. The following holds:

RPN: if BCT |= β then BCT |= Pa,>1β
RICP: if BCT |= Eisβ, for all i > 0, then BCT |= Csβ

A trivial consequence of [AB4] is that there cannot be an agreement of ac-
ceptance of two different proofs-of-work.



Probabilistic Consensus of the Blockchain Protocol 9

Lemma 3. The following holds BCT |= ea,i → ¬eb,i for b 6= a.

Now we show that the common history persists, i.e., agreements cannot be
undone.

Lemma 4. We have BCT |= ea,i →©ea,i.

The following lemma says that if an agent accepts the choice of an another
agent for a round then it accepts the whole history of that other agent.

Lemma 5. We have BCT |= Ab ∧ echa,i → echb,i.

For the proof of Theorem 1 we need to prove the following lemma.

Lemma 6. If BCT |= α→ Esα, then BCT |= α→ (Es)
kα for any k ∈ N.

Proof.

Suppose BCT |= α→ Esα (1)

By [RPN] BCT |= Pa,=1(α→ Esα) for some agent a ∈ A

And also BCT |= E1(α→ Esα) (2)

Further from probabilistic logic we have

BCT |= Pa,=1(β → γ)→ (Pa,>sβ → Pa,>sγ)

for some agent a ∈ A

Thus we get: BCT |= E1(β → γ)→ (Esβ → Esγ) (3)

Thus 2 and 3 together (with β = α and γ = Esα ) yield Esα→ EsEsα

together with 1 we obtain BCT |= α→ EsEsα

We can iterate this to obtain BCT |= α→ (Es)
kα for any natural number k.2

As a result of Theorem 1 we get the estimation of the probability of the
consensus of an agent:

Theorem 1. We have BCT |= echa,i+z ∧ acca,b,i → C1−pfzeb,i.

Proof.

For an arbitrary agent c by [AB3]: BCT |= accc,b,i → Kcaccc,b,i. (4)

Also, BCT |= accc,d,i+z → Kcaccc,d,i+z, and: BCT |=
∨
d∈A

accc,d,i+z →
∨
d∈A

Kcaccc,d,i+z,

BCT |=
∨
d∈A

accc,d,i+z → Kc
∨
d∈A

accc,d,i+z,

which give us: BCT |= echc,i+z → Kcechc,i+z. (5)

By 4 and 5: BCT |= echc,i+z ∧ accc,b,i → Kcechc,i+z ∧ Kcaccc,b,i
and BCT |= echc,i+z ∧ accc,b,i → Kc(echc,i+z ∧ accc,b,i). (6)

By [AB11]: BCT |= echc,i+z ∧ accc,b,i → Pa,>(1−pfz)eb,i,

so by 6: BCT |= echc,i+z ∧ accc,b,i → K1−pf
z

c eb,i.
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Using Lemma 5 we get BCT |= Ac ∧ echa,i+z ∧ accc,b,i → K1−pf
z

c eb,i.

We have that BCT |= Ac ∧ eb,s → accc,b,s.

Thus we obtain BCT |= Ac ∧ echa,i+z ∧ eb,i → K1−pf
z

c eb,i.

We have that BCT |= ¬Ac → Kc⊥.
Hence we have BCT |= echa,i+z ∧ eb,i → K1−pf

z

c eb,i.

Since c was arbitrary, this gives us BCT |= echa,i+z ∧ eb,i → E1−pfzeb,i.

Using Lemma 6 and [RICP] we finally conclude

BCT |= echa,i+z ∧ acca,b,i → C1−pfzeb,i.

2
As a corollary we get the following result.

Corollary 1. With high probability the active agents have unique common his-
tory: BCT |= echa,i+z →

∧i
k=0(acca,b,k → C1−pfzeb,k).

Proof. Let 0 ≤ k ≤ i. BCT |= echa,i+z and [AB8] yields BCT |= echa,k+z.
Theorem 1 gives BCT |= acca,b,k → C1−pfzeb,k, which implies the statement. 2

Corollary 1 corresponds to [3, Theorem 15], [8, Theorem 5.2] and [14, Claim
6.2]. This is, so called, persistence property [3]: “a transaction that goes more
than k blocks “deep” into the blockchain of one honest player will be included
in every honest player’s blockchain with overwhelming probability, and it will
be assigned a permanent position in the ledger.” The main difference with the
results given in [8] is that we can express how ledgers are evolving during the
execution of the blockchain protocol, while [8] shows how a consensus between
all agents can be achieved. Also, in [8] they reason about the probabilities to
reach common knowledge, while here we used probabilistic common knowledge.

4 Conclusion

In this paper, we define the semantics of temporal epistemic probabilistic logic.
We employ this framework to study the blockchain protocol. We prove that the
blockchain protocol has the property of achieving probabilistic common knowl-
edge among a set of agents. i.e. of reaching the consensus of the system with the
high probability.

Presented description assumes that the messages are transferred between
the agents much faster then the length of the period for the generation of a new
PoW. We plan to develop an axiomatic system for our logic and to study proof
theoretic properties of the framework. Also, another task could be to use this
approach as a base ground for formal generated proof using the proof assistants
like, e.g., Coq or Isabelle/HOL.
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