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Abstract We explore the proof theory of the modal µ-calculus with
converse, aka the ‘full µ-calculus’. Building on nested sequent calculi for
tense logics and infinitary proof theory of fixed point logics, a cut-free
sound and complete proof system for full µ-calculus is proposed. As a
corollary of our framework, we also obtain a direct proof of the regular
model property for the logic: every satisfiable formula has a tree model
with finitely many distinct subtrees. To obtain the results we appeal to
the basic theory of well-quasi-orderings in the spirit of Kozen’s proof of
the finite model property for µ-calculus without converse.

1 Introduction

Modal logic provides an effective language for expressing properties of state-
based systems. When equipped with operators that can test for infinite beha-
viour like looping and reachability, the logic becomes a powerful tool for spe-
cifying correctness of nonterminating reactive processes such as communication
protocols and control systems. An elegant example of such a logic is the modal
µ-calculus, an extension of modal logic which captures the essence of inductive
and co-inductive reasoning.

In modal µ-calculus two quantifiers, µ and ν, binding propositional variables,
are added to the syntax of modal logic. The formulæ µxφ and νxφ are inter-
preted over directed graphs as, respectively, the least and greatest fixed points of
the monotone function x 7→ φ(x). The calculus can thus be thought of as a logic
that allows for restricted second-order quantification while still maintaining de-
cidability. Indeed all standard computational problems, such as model-checking
and satisfiability, are decidable for this logic (see e.g. [4, 15]).

Despite its importance, many fundamental questions regarding µ-calculus,
and in particular its intricate proof theory, remain open. There are two notable
proof systems for modal µ-calculus. Kozen [19] proposed extending the axioms
of basic modal logic K with the fixed point axioms

φ(µxφ)→ µxφ(x) φ(ψ)→ ψ ` µxφ(x)→ ψ

asserting that µxφ is a pre-fixed point of φ(x) and that it is the least such.
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µxφ, νxφ
Γ, φ, ψ ∨
Γ, φ ∨ ψ

Γ, φ Γ, ψ ∧
Γ, φ ∧ ψ

Γ, φ
mod

〈a〉Γ, [a]φ

Γ weak
Γ, φ

Γ, φ(x/µxφ)
µ

Γ, µxφ

Γ, φ(x/Γ )
ind

Γ, νxφ

Γ, φ Γ, φ
cut

Γ

〈a〉Γ ··= {〈a〉φ | φ ∈ Γ} Γ ··=
∧
{φ | φ ∈ Γ}

Figure 1. Axioms and rules of Koz.

Completeness for the aconjunctive fragment of the language was established
by Kozen [19], but full completeness of this axiomatisation was not proved un-
til Walukiewicz’ seminal work [31]. Walukiewicz’ proof combines an analysis of
tableaux, games and automata which, it is generally agreed, is highly complex
[3, 9]. A natural sequent representation of Kozen’s axiomatisation, denoted Koz,
is given in Figure 1. The fixed point rule, µ, and the induction rule, ind, capture
the two fixed point axioms above.

The second important axiomatisation for µ-calculus is a cut-free infinitary
system due to Jäger, Kretz and Studer [16]. The system, denoted K+

ω (µ) in [16],
is Koz with the cut and ind rules replaced by the single inference

Γ, ν0xφ Γ, ν1xφ · · ·
νω

Γ, νxφ

The formula νnxφ denotes the finite approximation to the greatest fixed point:
ν0xφ = > and νn+1xφ = φ(νnxφ) for each n < ω. The proof of completeness
for the system K+

ω (µ) is established by adapting the method of canonical model
construction for modal logics to the fixed point extension. To demonstrate sound-
ness of the system, more specifically that of νω-rule, the finite model property
of µ-calculus [18, 29] is invoked.

In this paper we are interested in the proof theory of µ-calculus extended
by converse modalities. The extension, known as the two-way µ-calculus or full
µ-calculus, assumes each action a is associated a “converse” action a and that a
transition system has an a-edge from vertices u to v iff it has an a-edge from v
to u. Axiomatically, one stipulates φ→ [a]〈a〉φ for every formula and action.

Checking satisfiability for µ-calculus with converse was proven to be decid-
able by Vardi in [30] (see also [5]) where he introduces the two-way automata
characterising this extension and shows the emptiness problem is decidable. In
contrast to pure modal µ-calculus, the finite model property fails.

To the best of our knowledge, a sound and complete axiomatisation for full
µ-calculus has not been given. This can seem somehow surprising if one were
to speculate that the presence of converse can simplify completeness results –
such as is the case for the computational tree logic CTL* with past [24, 25].
One can add to Koz suitable converse axioms and ask whether the resulting
system is complete. Walukiewicz’ completeness proof for modal µ-calculus does
not easily lend itself to this question because its machinery, particularly the parts
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based on tableaux, fall short of converse. Similarly, for the alternative proof of
completeness via cyclic proofs given in [1] it is unclear how modalities operating
in both directions can be incorporated.

There is another possibility for obtaining a sound and complete axiomatisa-
tion for full µ-calculus, namely an adaptation of the infinitary system K+

ω (µ)
of [16], which is undertaken in this paper. There are two obstacles to this ap-
proach: accommodating converse in the canonical model construction and recov-
ering any structural properties that remain in the absence of the finite model
property that are needed to show soundness of an infinitary ν-rule.

We overcome the first issue by stepping into the framework of nested sequents
in the style of Kashima’s work for tense logics [17]. The failure of the finite model
property shows the νω-rule is unsound in the presence of converse. We establish
soundness for the infinitary ν-rule with a premise for each approximant below
ωω and prove that the ensuring nested sequent calculus is complete for the full µ-
calculus. Moreover, we observe that this bound is optimal over trees: the greatest
fixed point cannot be identified with its transfinite approximant for any ordinal
below ωω.

Related work The history of modal logic with converse goes back to Prior and
his introduction of tense logics.4 Temporal logics with past have been widely
studied. For example, completeness of converse PDL was first shown in [23],
and a sound and complete axiomatisation of PCTL* (computation tree logic
with past) is given in [24]. More recent work relevant to this paper include the
treatment of tense logics in [14] and the completeness proof for the flat fragment
of µ-calculus [8]. The literature on nested sequents is also rich: they have been
used to establish algorithmic properties on a wide range of logics (e.g. [2, 10, 11,
13, 26]). The explicit use of ordinal approximations in the language of µ-calculus
is a feature that has been used by other authors studying fixed-point logics. Of
particular note is the work of [6] in which they are utilised for the correspondence
between circular proofs and induction.

2 Full µ-calculus

Fix finite sets Act and Var of actions and variables, respectively. The µ-calculus
formulæ are given by the following grammar, where a ranges over actions and
x over variables.

φ ··= x | φ ∧ φ | φ ∨ φ | [a]φ | 〈a〉φ | µxφ | νxφ

The two propositional quantifiers µ and ν are called the least, and greatest,
fixed point quantifier respectively. The syntax above omits both negation
and proposition constants. Constants for ‘true’ and ‘false’ can be defined via
the quantifiers: > = νx. x and ⊥ = µx. x; other (unspecified) propositional
constants can be represented via additional actions. Negation is representable

4 For a comprehensive account see, e.g., [12].
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via De Morgan duality in the usual way; see e.g., [7, chap. 8]. We write φ(x/ψ)
for the result of substituting the formula ψ for every free occurrence of x in φ
subject to the proviso that no free variable of ψ becomes bound.

In the full µ-calculus every action a ∈ Act has an associated converse which
we denote as a. Thus we assume the presence of an involution, · : Act→ Act, on
the set of actions: for every a ∈ Act we have a 6= a, and a = a. If a formula φ
contains at most one of a or a for each a ∈ Act we may call φ pure.

We recall the standard Kripke semantics for the modal µ-calculus.

Definition 1. A labelled frame is a pair (S,E) where S is a non-empty set
of vertices and E ⊆ Act × S × S is a set of (labelled) edges. The symmet-
ric closure of a frame (S,E) is the frame (S,E′) where E′ = E ∪ {(a, v, u) |
(a, u, v) ∈ E}. A frame is symmetric if it is identical to its symmetric closure.

If the labelled frame (S,E) is clear from the context, we write u
a−→ v (or simply

u −→ v) if (a, u, v) ∈ E. Labelled frames provide a semantics for µ-calculus
formulæ via the possible worlds interpretation of the modal connectives:

Definition 2. Let φ be a formula, possibly with free variables, S = (S,E) a
labelled frame, and V ⊆ Var × S. The denotation of φ in S relative to V ,
in symbols ||φ||SV , is the subset of S defined with the standard semantics for
boolean and modal operators (e.g. [7]) and the following equations for fixed point
quantifiers, where

V [x 7→ T ] = {(y, u) ∈ V | y 6= x} ∪ ({x} × T ).

||µxφ||SV =
⋂
{T ⊆ S | ||φ||SV [x 7→T ] ⊆ T}

||νxφ||SV =
⋃
{T ⊆ S | T ⊆ ||φ||SV [x 7→T ]}

We write (S , u) |= φ to express u ∈ ||φ||S∅ . A formula φ is satisfied by S if
(S , u) |= φ for some vertex u and is true in S if (S , u) |= φ for every vertex u.
Given a class of frames C, a formula φ has a model in C if φ is satisfied in some
frame S ∈ C, and is valid over C if φ is true in every frame in C. If mention
of C is omitted we have in mind the class of all countable frames.

Definition 3. Let % be a well-formed formula. The Fischer–Ladner closure
of %, denoted FL(%), is the smallest set of formulæ containing % satisfying the
following conditions.

– If φ ◦ ψ ∈ FL(%) for ◦ ∈ {∧,∨} then {φ, ψ} ⊆ FL(%).
– If 4φ ∈ FL(%) for 4 ∈ {[a], 〈a〉 | a ∈ Act} then φ ∈ FL(%).
– If σxφ ∈ FL(%) for σ ∈ {µ, ν} then φ(x/σxφ) ∈ FL(%).

In what follows we utilise an extended language where the greatest fixed point
quantifier ν spawns an infinite hierarchy of ‘approximation’ quantifiers indexed
by ordinals. Fix an ordinal κ. The κ-formulæ are generated as follows

φ ··= x | φ ∧ φ | φ ∨ φ | [a]φ | 〈a〉φ | µxφ | νxφ | ναxφ (α < κ)



An infinitary treatment of full mu-calculus 5

The intended reading of the quantifier να is of α-times unfolding the matrix,
taking conjunctions at limits with ν0xφ equivalent to >. When κ is fixed it is
convenient to identify the unannotated quantifier ν with νκ. From a κ-formula
φ we derive a µ-calculus formula φ−, called the template of φ, by removing the
approximation of every quantifier.

The class of ω-formulæ corresponds to the language L+
µ of [16]. The following

definition expands the generalisation of the Fischer–Ladner closure in [16] to a
form appropriate for κ-formulæ.

Definition 4. The strong closure of a κ-formula %, denoted SCκ(%), is the
smallest set containing % closed under the formation rules for the Fischer–Ladner
closure and the following clause.

– If ναxφ ∈ SCκ(%) (α ≤ κ) then {φ(x/νβxφ) | β < α} ⊆ SCκ(%).

Semantics for κ-formulæ is obtained by extending the definition for µ-calculus
formulæ to accommodate the approximating quantifiers subject to the equation
(S , u) |= ναxφ iff (S , u) |= φ(x/νβxφ) for every β < α. Standard arguments
on the fixed point semantics show there exists κ s.t. νxφ↔ νκxφ is true in S .

An important concept in µ-calculus is the relation of subsumption between
variables occurring in a given formula, a syntactic constraint that mirrors the
priority of quantifiers implicit in the semantics. In the present article, we take a
pragmatic approach to subsumption, assuming a fixed strict partial order on Var,
called the subsumption order, and constrain considerations to formulæ whose
variables respect this relation, in the sense that if y occurs free in a sub-formula
σxφ then y subsumes x. We call such formulæ well-formed. The subsumption
order must be irreflexive, asymmetric, transitive and for every x ∈ Var the set
of variables subsuming x should be linearly ordered by subsumption.

If φ is well-formed then for a substitution φ(x/ψ) to be ‘correct’ it suffices
that x does not subsume any free variable of ψ. Thus, every formula occurring in
the Fischer–Ladner closure of a well-formed formula is well-formed. It is common
to assume that each quantified formula uniquely determines a variable symbol
that is bound; we call such a formula well-named. Note, however, that, unlike
the notion of well-formed, the Fischer–Ladner closure conditions do not preserve
well-namedness.

Definition 5. Lµ denotes the set of closed formulæ that appear in the Fischer–
Ladner closure of some well-named formula.

We likewise need to isolate a class of κ-formulæ to assist the presentation of
our results. The class of κ-formulæ with templates in Lµ is natural, but there is a
strict sub-class of these formulæ that we should restrict attention to. This turns
out to be the collection of κ-formulæ that arise when evaluating the denotation
of an φ ∈ Lµ subject to the identification of ν with νκ. These formulæ, which
we call well-annotated, satisfy the following three conditions:

1. Their template is well-formed.
2. If ναx and νβx are two quantifiers binding the same variable then α = β.
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3. The set of variable symbols bound by a quantifier να with α < κ is linearly
ordered by the subsumption relation.

The set of well-annotated κ-formulæ is denoted Lκµ. It is a simple exercise
to check that every formula in the strong closure of a well-annotated formula is
well-annotated.5

2.1 Nested sequent calculi

Nested sequents were utilised by Kashima to establish canonical completeness
for tense logics [17]. In the following we adapt Kashima’s approach to Lω1

µ . For
the present section κ is an arbitrary ordinal ≤ ω1.

Definition 6. A sequent is a finite set of closed Lκµ formulæ. The nested
sequents (ns) are defined inductively:

1. every plain sequent is a nested sequent,
2. if Γ is a nested sequent and a is an action then a{Γ} is a ns,
3. if Γ,∆ are ns then so is Γ ∪∆.

As is usual, we use comma to abbreviate the union of two (nested) sequents
and identify singleton sequents with their unique element. Hence, every nested
sequent can be presented in the form

Γ = φ1, . . . , φm, a1{∆1}, . . . , an{∆n} (1)

where φ1, . . . , φn ∈ Lκµ, ∆1, . . . , ∆n are nested sequents and a1, . . . , ak ∈ Act.
The intended interpretation of the nested sequent Γ in (1) is the formula

ι(Γ ) =

m∨
i=1

φi ∨
n∨
i=1

[ai]ι(∆i).

A sequent with context (simply context) is a nested sequent built from
an additional unit [], called the context, which must have exactly one occurrence
within the nested sequent. If Γ is a sequent with context and ∆ is a nested
sequent Γ [∆] is the nested sequent given by substituting ∆ for [] in Γ .

Definition 7. Fix κ ≤ ω1. Kκµ+ is the calculus deriving nested sequents given by
the inferences in Figure 2. Kκµ denotes the subsystem without the inference cona.

A special case of the ν.α inference is when α = 0, whereby the sequent Γ [ν0xφ]
is derivable without premises. Hence, Kκµ ` Γ [>] for any sequent context Γ [].
Clearly, a smaller value of κ makes introducing greatest fixed points easier. The
following properties can be established by induction on the length of derivations.

Lemma 1. 1. If Kαµ+ is complete so is Kβµ+ for every β ≤ α; similarly for Kκµ.

2. For all φ ∈ Lµ and contexts Γ [], Kκµ ` Γ [φ, φ] where φ denotes the De Morgan
dual of φ.

3. If Kκµ+ ` Γ [ναxφ] then Kκµ+ ` Γ [νβxφ] for every β < α; similarly for Kκµ.
5 See Appendix A for precise definitions of the concepts of this section.
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Γ [φ, ψ]
∨

Γ [φ ∨ ψ]

Γ [φ] Γ [ψ]
∧

Γ [φ ∧ ψ]

Γ [φ(x/µxφ)]
µ

Γ [µxφ]

Γ [a{φ}]
[a]

Γ [[a]φ]

Γ [a{∆,φ}]
〈a〉

Γ [a{∆}, 〈a〉φ]

Γ [a{∆}, φ]
cona

Γ [a{∆, 〈a〉φ}]

Γ [φ(x/νβxφ)] for all β < α ≤ κ
ν.α

Γ [ναxφ]

Γ [φ(x/ναxφ)] for all α < κ
νκ

Γ [νxφ]

Figure 2. System Kκ
µ+ ; Kκ

µ is Kκ
µ+ without cona.

3 Completeness: building canonical models

Definition 8. A κ-system (in %) is a tuple (S,E, λ) where (S,E) is a frame
and λ : S → Pow(SCκ(%)) assigns to each vertex of S a set of κ-formulæ from
the strong closure of %. A system (T,E, λ) expands a system (S, F, ρ) if S ⊆ T ,
F ⊆ E, and ρ(u) ⊆ λ(u) for every u ∈ S.

Explicit mention of κ and % will be dropped if they can be inferred from
context and, when there is no cause for confusion, vertices of a system will be
identified with their labels: φ ∈ u in place of φ ∈ λ(u). Recall that edges of a
labelled frame (and so of a system) are labelled by actions and that symmetry
is not assumed. A nested sequent Γ = ∆0, a1{∆1}, . . . , al{∆l} (∆0 ⊆ Lκµ) has a
natural representation as finite κ-system, tree(Γ ), comprising a root with label
∆0 and, for each 0 < i ≤ l, an ai-child with immediate subtree tree(∆i).

For the proof of completeness, starting from an assumption that a sequent
Γ is underivable we will construct a system expanding Γ by saturating the se-
quent through the Kκµ+ rules applied from conclusion to premise. Deconstructing
a modality corresponds to creating, or saturating, other vertices in the system.
This method combines saturation arguments for the (pure) modal µ-calculus [16]
and the tableau-style constructions for tense logic [17]. If we obtain two differ-
ent annotations of the same formula, say ναxφ and νβxφ, then clearly, from
the perspective of non-derivability, the smaller approximation suffices. Thus, to
maintain some control on the κ-formulæ enumerated via the process, we desire
an ordering on Lκµ formulæ based on the ordinal approximations.

Recall a quasi-order is a reflexive, transitive relation. Let v be the quasi-
order on Lκµ determined by φ v ψ iff φ− = ψ− and for every maximal chain
x1, . . . , xn of the ν-quantified variables in φ such that xi subsumes xi+1, we
have (α1, . . . , αn) ≤ (β1, . . . , βn), where αi (βi) is the ordinal assigned to xi in
φ (resp. ψ) and ≤ is the lexicographic ordering on sequences of ordinals.6

Definition 9. A κ-system S is saturated if the following hold for every u ∈
S , φ, ψ ∈ Lκµ, a ∈ Act and α ≤ κ.

a) φ ∧ ψ ∈ u implies φ ∈ u or ψ ∈ u,
b) φ ∨ ψ ∈ u implies φ ∈ u and ψ ∈ u,

6 Cf. Appendix A.
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c) µxφ ∈ u implies φ(x/µxφ) ∈ u,
d) ναxφ ∈ u implies φ(x/νβxφ) ∈ u for some β < α,

e) [a]φ ∈ u implies for some u
a−→ v and ψ ∈ v we have ψ v φ,

f) 〈a〉φ ∈ u and either u
a−→ v or v

a−→ u implies ψ ∈ v for some ψ v φ.

Our notion of saturation combines a number of features from other work. It
is closely related to Kozen’s well-annotations in [18] expanded to cover converse
modalities in the style of Kashima [17]. Note, however, that our quasi-order
differs from Kozen’s. Dropping the two modal clauses e and f yields the definition
of saturation in [16], for κ = ω.

Lemma 2. Let S be a saturated κ-system.

1. The symmetric closure of S is saturated.
2. For every u ∈ S and φ ∈ u, (S , u) 6|= φ (Truth Lemma).

Proof. The first claim is immediate given the formulation of condition f. For 2,
we refer the reader to [18, Lemma 4.2], noting that, like the quasi-order utilised in
[18], denotation is monotone in v: if φ v ψ then (S , u) |= ψ implies (S , u) |= φ
for any u. A more detailed proof of the result, based on the assignment of a rank
to each formula of Lκµ, is given in [16, Lemma 33].7

We establish weak completeness of the calculi Kκµ+ and Kκµ, namely that every
underivable sequent has a counter-model. In view of Lemma 2, it suffices to show
that every underivable sequent expands to a saturated system. In contrast to the
constructions in [16, 17] (for pure µ-calculus and tense logic respectively), we
cannot expect the result to be a finite system (i.e. a nested sequent); in general,
an infinite tree will result.

Lemma 3 (Saturation Lemma). Suppose Kκµ+ 6` Γ . There exists a saturated
κ-system T expanding Γ such that every formula occurring in the label of a
vertex of T is an element of SCκ(%) for some formula %.

Proof. We require an auxiliary notion of saturation. Let us call a κ-system 0-
saturated if the saturation conditions hold with the possible exception of the
clauses for modalities, e and f. Every underivable nested sequent can be expanded
to a 0-saturated nested sequent that remains underivable. The proof of this fact
follows the argument of Lemma 24 in [16].

Suppose Kκµ+ 6` Γ . We define a sequence of nested sequents Γ = Γ0, Γ1, Γ2, . . .
such that Γi+1 expands Γi and Γi is underivable. Given Γi, obtain Γi+1 by

1. expanding Γi to a 0-saturated nested sequent Γ ′i ;
2. expanding Γ ′i to a ns Γi+1 by correcting any failure of conditions e or f:

a. For any v ∈ Γ ′i and formula [a]φ ∈ u for which there is no a-child of u in
Γ ′i containing φ, create a a-child with label {φ};

7 As already remarked, [16] deals only with the case κ = ω. However, their notion of
rank and the proof of the Truth Lemma readily generalises to arbitrary κ.
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b. If v is a a-child of u in Γ ′i , expand the label of u to include {φ | 〈a〉φ ∈ v}
and the label of v to include {φ | 〈a〉φ ∈ u}.

The process of 0-saturation preserves underivability. Moreover, Γ ′i can be derived
from Γi+1 by a sequence of cona, [a] and 〈a〉 inferences, hence Γi+1 is underivable.
Let T be the limit of trees tree(Γi) for i < ω. By construction, T is a saturated
κ-system fulfilling the requirements of the lemma. ut

As a consequence of the Saturation and Truth lemmas we deduce complete-
ness for full µ-calculus. An analogous argument establishes completeness for the
pure fragment.

Theorem 1. Kκµ+ is complete over symmetric frames. Kκµ is complete for arbit-
rary frames.

Proof. Suppose Γ is underivable in Kκµ+ and let S be the symmetric closure of
the κ-system expanding Γ provided by Lemma 3. As a consequence of Lemma 2,
(S , r) 6|= ι(Γ ) where r is the root of S . Hence, Γ is not valid. An analogous
argument establishes completeness for Kκµ.

4 Soundness: refining canonical models

We now turn to soundness theorems for the systems Kκµ+ and Kκµ for certain κ.
It can be easily confirmed that for either system the only inference we need be
concerned with is the introduction rule for the greatest fixed point, νκ.

Some cases of soundness can be inferred from known properties of the µ-
calculus. For instance, the pure µ-calculus (without converse modalities) has
the finite model property: every satisfiable formula has a finite model [18, 29].
On the class of finite models the greatest fixed point coincides with the ω-th
approximation, νω. Thus soundness of Kωµ obtains.

Theorem 2. Kωµ is sound and complete for arbitrary frames.

The above theorem can also be deduced without directly appealing to the
finite model property, by manipulating saturated systems. This argument was
already made by Kozen [18] and will be extended below.

The full µ-calculus lacks the finite model property (there are satisfiable for-
mulæ with no finite models) but every satisfiable formula has a model which is
(the symmetric closure of) a finitely branching tree [30]. As a consequence we
deduce Kκµ+ is unsound for κ ≤ ω but sound for κ ≥ ω1.

Theorem 3. Kω1

µ+ is sound and complete for arbitrary (symmetric) frames.

In the sequel we prove a strengthening of Theorem 3: the calculus Kω
ω

µ+ is
sound and complete for symmetric frames; and observe that, over trees, Kκµ+

is is unsound for every κ < ωω. Our argument relies on a particular property
of the quasi-order v we introduced earlier, which we now state. Given a set
X ⊆ SCκ(%) let KerX = {φ ∈ X | ∀ψ ∈ X ψ 6< φ} be the set of v-minimal
elements of X. Recall, a quasi-order ≤ on a set Q is a well-quasi-order (wqo
for short) if for every function f : ω → Q there exists i < j such that f(i) ≤ f(j).
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Lemma 4. (SCκ(%),v) is a wqo. Moreover, there exists k such that for every
X ⊆ SCκ(%), |KerX| < k.

That v is a well-quasi-order follows from the observation that the ordering
can be expressed as a sum of products of well-orders. Being a wqo we immediately
deduce that KerX is finite for every X ⊆ SCκ(%). The stronger result stated
follows from the constraints we imposed in the definition of Lκµ, namely condition
3 (on page 6).8 Specifically, it is this property that marks the essential difference
between v and the wqo 4 in [18].

We require a lifting of v to sets of κ-formulæ. A natural candidate is the
Smyth powerdomain introduced in [27] and given by X v Y iff for every ψ ∈ Y
there exists φ ∈ X such that φ v ψ. In general, this lifting does not preserve
well-quasi-orders [20] but, rather, the stronger notion of better-quasi-order due
to Nash-Williams [21, 22]; (SCκ(%),v) is readily seen to be a better-quasi-order.

For our strengthening of Theorem 3, however, we depend on a refinement
of the Smyth powerdomain whereby X is bounded by Y if Y can be realised
as the image of X under an endomorphism on (κ,<). This choice is motivated
by the observation that saturation is preserved under any change of annotating
ordinals by a strictly monotone function on κ. The main technical result is to
establish that this notion of boundedness is a well-quasi-order on Pow(SCκ(%))
for every % ∈ Lµ. We begin making the above definitions precise.

Let I(κ) be the set of strictly monotone functions on ordinals ≤κ. Note that
such functions are increasing, so α ≤ f(α) ≤ κ for every α ≤ κ. Each f ∈ I(κ)
induces an operation on Lκµ mapping φ to the result of replacing each annotated

quantifier να by νf(α), which we denote as φf . Similarly, for X ⊆ Lκµ, define

Xf = {φf | φ ∈ X} and for a system T = (S,E, λ) we let T f be the system
(S,E, λf ) where λf : w 7→ λ(w)f . The following is straightforward to verify.

Lemma 5. Let f ∈ I(κ). If X v Y then Xf v Y f . Hence, if T is a saturated
κ-system, so is T f .

We are now in a position to define the quasi-order on Pow(SCκ(%)):

X v∗ Y ··= ∃f ∈ I(κ) s.t. KerY = Ker(Xf )

Since (KerX)f = KerXf for every X ⊆ SCκ(%) and f ∈ I(κ), like the Smyth
powerdomain, v∗ is determined by its restriction to kernels: X v∗ KerX v∗ X.
The fact that kernels are bounded (Lemma 4) is crucial for the following result.

We call κ principal if κ = ωα for some α.

Theorem 4. If κ is principal then (Pow(SCκ(%)),v∗) is a wqo.

Proof. Let Varν(φ) be the set of ν-quantified variables in φ. To each φ ∈ Lκµ we
may associate a function oφ : Varν(φ)→ κ+ 1 such that φ can be obtained from
its template by replacing each quantifier νx in φ− by νoφ(x)x. We consider finite
sequences in FL(%) × Var × (κ + 1), ordered pointwise by (φi, xi, αi)i<m ≤pw

8 See Appendix B for a proof of this fact.
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(ψi, yi, βi)i<n iff m = n and for all i < m, φi = ψi, xi = yi and αi ≤ βi. When
restricted to a set of sequences of bounded length, ≤pw is a wqo. For X ⊆ SCκ(%),
let X∗ = (φi, xi, δi)i<k be a sequence in FL(%)× Var × (κ+ 1) such that

KerX = {φ ∈ SCκ(%) | ∀x ∈ Varν(φ)∃i < k(φi = φ− ∧ xi = x ∧ oφ(x) =
∑
j≤i

δj)}.

Without loss of generality, we assume a total ordering < of FL(%) × Var and
that δi+1 = 0 implies (φi, xi) < (φi+1, xi+1). By Lemma 4, k can be chosen
independent of X. Hence it remains only to observe that for principal κ, X v∗
Y iff X∗ ≤pw Y

∗. ut

Given systems T and T ′, write T v∗ T ′ if T ′ is isomorphic to T f for
some f ∈ I(κ). If T is a tree, Tu denotes the sub-tree rooted at u ∈ T . Suppose
T is a system over a finite tree. We say T is quasi-saturated if:

1. T validates the saturation conditions for all vertices with the exception of
a finite set L of leaves;

2. every l ∈ L may fail the saturation requirements only in condition f;
3. for every l ∈ L there exists a non-leaf vertex u in T such that u v∗ l.

Theorem 5. Let Γ be a nested sequent. TFAE

1. There exists a saturated expansion of Γ .
2. There exists a finite quasi-saturated expansion of Γ .
3. There exists a saturated expansion of Γ , T , which is a tree, and a finite set

U ⊆ T such that for every v ∈ T there exists u ∈ U satisfying Tu v∗ Tv.
4. There exists a saturated expansion of Γ with a regular underlying frame.

Proof. The implications 3⇒ 4 and 4⇒ 1 follow from the definitions. Moreover,
Theorem 4 yields 1 ⇒ 2. We show 2 ⇒ 3. Suppose S = (S,E, λ) is quasi-
saturated and let U = S \ L be the vertices of S that fulfil all the saturation
conditions. Fix a vertex l ∈ L. By assumption there exists u ∈ U with u v∗ l.
Let Su = (Su, Eu, λ|Su) be the sub-tree of S rooted at u, and f ∈ I(κ) be
such that uf = l. Consider the system S ′ = (Su)f = (Su, Eu, λ

′). In particular,
λ′(u) = λ(l). Define T to be the system comprising the disjoint union of S and
S ′ where the leaf l in S is identified with the root u of S ′. We claim T is quasi-
saturated. Let l′ be a leaf in T \S which fails the saturation conditions and let
u′ ∈ U be such that λS (u′) v∗ λS (l′). By construction λT (u′) = λS (u′) and
λT (l′) = λS (l′)f , so λT (u′) v∗ λT (l′) by transitivity. Repeating the method
of unravelling the unsaturated leaves and considering the limit system yields a
saturated system with the desired properties. ut

The following, due to Vardi [30], is an immediate consequence of Theorem 5.

Corollary 1. The full µ-calculus has the regular model property.

We claim the above result enables us to lower the bound on Kω1

µ+ . The idea is
to find a refinement of Theorem 5 that controls the approximations appearing
in a saturated system. This is the role of the next proposition.



12 B. Afshari, G. Jäger and G. E. Leigh

Proposition 1. Let T be a κ-system satisfying condition 3 in Theorem 5. Sup-
pose for every u ∈ U and φ v ψ ∈ u, if (T , u) 6|= φ then φ ∈ u. Then
Keru ⊆ Lωωµ for every u ∈ U .

Proof. Suppose T = (S,E, λ) is as stated. We may assume U is closed down-
wards in the accessibility relation on T . Let T0 be the finite sub-system re-
stricted to vertices in U and their immediate successors. By assumption, T0 is
quasi-saturated. Let L = {l0, . . . , ln−1} be the vertices of T0 not in U . These are
leaves and for each i < n, let ui ∈ U be such that λ(ui) v∗ λ(li). Consider the
κ-system S0 = (S0, E0, λ0) where S0 = U ∪L, E0 = E|S0 and λ0 = (Ker ◦λ)|S0

with | denoting restricting the domain of the function/relation.
We have that λ(u) v∗ λ(v) implies λ0(u) v∗ λ0(v), so S0 is quasi-saturated.

Let O be the set of ordinals occurring in the sets λ0(u) for u ∈ S0, which is
finite, and (αi)i<|O| enumerate the elements in O in increasing order. Define

f : O → ωω by f(αi) = min{αi, ωi}. We claim S f
0 is quasi-saturated. Since f is

strictly monotone it suffices to check, for each i < n, that

λ0(ui)
f v∗ λ0(li)

f . (2)

Fixing i < n, let a0 < · · · < ak be such that αa0 , . . . , αak enumerates the
ordinals in λ0(ui) and let b0 < · · · < bl < |O| be the analogous sequence for
λ0(li). Given λ0(ui) v∗ λ0(li) we must have k = l and aj ≤ bj for each j ≤ k.
By induction on j ≤ k we may define h ∈ I(ωω) such that h(f(αaj )) = f(αbj )

for every j ≤ k. In other words, h witnesses (2). So S f
0 is quasi-saturated.

Moreover, for every vertex u of S0, λ0(u)f v λ0(u) v λ(u) by the choice of f ,
hence λ0(u)f ⊆ λ(u) by the Truth Lemma and the additional assumption on T .
But then Keru ⊆ λ0(u)f ⊆ Lωωµ . ut

Thus we obtain the following theorem.

Theorem 6. Kω
ω

µ+ is sound and complete system over symmetric frames.

Proof. Suppose Γ = ∆[νxφ] is not valid. Applying Theorem 5 we obtain a κ-
system expanding Γ , which can be further expanded to a system S satisfying
the assumptions of Proposition 1 with the additional property that the vertex
u which contains the formula νxφ specified by the context is an element of the
designated finite set U . As a consequence of the proposition, Keru ⊆ Lω

ω

µ . By
saturation, ναxφ′ ∈ u for some α < ωω and φ′ v φ, whence the Truth Lemma
implies Γ [ναxφ] is not valid. Thus the rule νωω is sound. Completeness is given
by Theorem 1. ut

It is not difficult (though rather technical) to show that the ordinal ωω is
optimal for obtaining soundness over trees by leveraging the failure of the finite
model property. For instance, to observe that the inference νω2 is unsound (over
trees), consider the sequent Γ = %, ψ, φ where ψ expresses the existence of a
finite {a, b}-path, % = 〈a〉> ∨ 〈b〉> and

φ = νx([b](x ∧ %) ∧ µy〈b〉(y ∨ x) ∧ µy〈a〉(y ∨ x)).
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This observation can be readily generalised to show νωn is unsound for each n.
Combining with the previous theorem we conclude

Theorem 7. Kκµ+ is unsound over trees for every κ < ωω.

5 Discussion

There is an interesting tradeoff between the difficulty in establishing sound-
ness and completeness for different axiomatisations of µ-calculus. With Kozen’s
axiomatisation the difficulty lies in showing completeness (soundness being reas-
onably straightforward) whereas in the goal-oriented proof system of [28] or the
circular axiomatisations proposed in [1] the proof of soundness is more involved.
The infinitary proof system Kω

ω

µ+ belongs to this second category.
Finally, we wish to remark on one further result contained in Vardi’s seminal

article: the tree languages definable by µ-calculus formulæ with converse modal-
ities are precisely those definable by formulæ without converse. Suppose φ 7→ φ∗

is an effective translation of formulæ into pure formulæ such that φ↔ φ∗ is true
in the symmetric closure of every tree. To re-phrase Vardi’s result, an arbitrary
tree can be endowed with a saturated ωω-system containing φ in the root iff it
can be given a saturated ω-system with root containing φ∗. Since we know that
the ordinals ωω and ω are optimal for the respective languages (over trees), this
leads us to wonder what features of the interpretation give rise to this necessary
collapse (the ‘only if’ direction) and expansion (‘if’ direction) of ordinals. We
cannot say at this stage, but believe questions in this vein demonstrate a clear
gap in our understanding of the proof theory of fixed point logic.
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A Well-annotated formulæ

We begin by making more precise the definition of well-annotated κ-formulæ,
and the properties that this class satisfy.

Fix κ ≤ ω1 and let / denote the subsumption ordering on Var, where x / y
reads as x subsumes y. We assume / is a strict partial order on Var which is
downwards linear. Recall that we consider / fixed and that all formulæ respect
/. Hence, if µyφ is a formula with x free, then x / y.

An κ-assignment is a partial function from Var into ordinals <κ whose
domain is linearly ordered by /. A(κ) is the set of κ-assignments and we let
dom o denote the domain of o ∈ A(κ). It proves convenient to occasionally treat
assignments as total functions o : Var→ κ+1, and set dom o = {x ∈ Var | o(x) <
κ}. Given o ∈ A(κ) and x ∈ Var, o/x denotes the restriction of o to the variables
subsuming x:

o/x(y) =

{
o(y), if y / x,

κ, otherwise.

For φ ∈ Lµ and o ∈ A(κ), φo is the κ-formula generated as follows.

xo = x (φ ∧ ψ)o = φo ∧ ψo ([a]φ)o = [a]φo (µxφ)o = µxφo/x

(φ ∨ ψ)o = φo ∨ ψo (〈a〉φ)o = 〈a〉φo (νxφ)o = νo(x)xφo/x

That is, ν-quantifiers in φo are approximated by their value under o (which
is no approximation if the variable is outside the domain) except for variables
occurring within the scope of a variable lower in the subsumption ordering. The
significance of constraining dom o to be linearly ordered will become apparent
shortly when we consider a quasi-ordering of A(κ).

Example 1. Suppose x / y and o(x) = α and o(y) = β, with α, β < κ. Let φ be
a formula without quantifiers containing both x and y free. Then (νyνxφ)o =
νβyναφ, whereas (νxνyφ)o = ναxνyφ. The requirement that dom o is linear
means that if ((νxφ) ∨ (νzψ))o = (ναxφ′) ∨ (νγzχ′) then either one of α and γ
is κ, or x and z are comparable in /.

Definition 10. The image of a well-formed formula under a κ-assignment is
well-annotated. We let Lκµ be the set of well-annotated κ-formulæ.

Recall that substitution is well-defined for well-formed formulæ.

Lemma 6. If % is well-named then every formula in SCκ(%) is well-annotated.

Proof. Suppose φ = (νxψ)o = ναxψo/x ∈ SCκ(%). Then for each β < α, we have
φ′ = ψo/x(x/νβxψo/x) ∈ SCκ(%) by the closure condition and we require to show
that φ′ is well-annotated. Assume o(x) < κ (otherwise the result is immediate)
and let o′ be the assignment with domain {y ∈ dom o | y /x∨y = x} determined
by o′(y) = o(y) for y / x and o′(x) = β. Given the fact that % is well-named, x
does not appear bound in ψ, whence it is easy to check that φ′ = ψ(x/νxψ)o

′
.

The other closure conditions are straightforward.
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As defined, κ-assignments do not uniquely determine the formulæ in Lκµ. Each
ψ ∈ Lµ determines an obvious equivalence relation on A(κ), given by o ∼ψ o′ iff

ψo = ψo
′
. However, for each φ ∈ Lκµ there exists a unique κ-assignment o with

smallest domain such that φ = ψo, where ψ = φ− is the template of φ. We call
this assignment the ordinal assignment of φ and denote it oφ.

We can thus give the formal definition of the quasi-order v introduced imme-
diately prior to Definition 9. This starts with a quasi-order ≤ on κ-assignments,
defined by o ≤ ô iff dom o ⊆ dom ô and for every maximal chain x0 / x1 /
· · · / xn ∈ dom o the sequence (o(x0), . . . , o(xn)) is lexicographically prior to
(ô(x0), . . . , ô(xn)).

Lemma 7. (A(κ),≤) is a well-quasi-order. Moreover, there exists k such that
for every set X ⊆ A(κ) with |X| ≥ k there exists o, ô ∈ X s.t. o < ô.

Proof. Transitivity of ≤ is established by induction along / in Var. So, ≤ is a
quasi-order. Moreover, this quasi-order is a well-order on sets of κ-assignments
with the same domain since it reduces to the lexicographic ordering on κk for
some k (as domains are linearly ordered by /). Since Var is a finite set, both
claims follow. ut

Definition 11. Fix % ∈ Lµ and for φ, ψ ∈ SCκ(%) define φ v ψ iff φ− = ψ−

and oφ ≤ oψ.

This relation is well-defined because of Lemma 6, which implies that every for-
mula in the strong closure of an Lµ formula is well-annotated and, hence, has a
defined ordinal assignment.

We consider it instructive to note that there is another natural quasi-order
sitting strictly between Kozen’s 4 and our v, obtained by dropping the restric-
tion of linearity of annotated quantifiers but otherwise applying the lexicographic
ordering in v. This too is a wqo, but does not satisfy the second part of Lemma 4.

B Omitted proofs

We now present some missing arguments from the main text. We begin with
Lemma 4 as this result follows directly from our work on ordinal assignments:

Lemma 4. (SCκ(%),v) is a wqo. Moreover, there exists k such that for every
X ⊆ SCκ(%), |KerX| < k.

Proof. We need only remark that the quasi-order (SCκ(%),v) can be expressed
as the disjoint union of finitely many copies of (A(κ),≤), one for each formula
in FL(%), an operation that preserves wqo-ness. The second claim follows from
this fact and Lemma 7.

Lemma 1(2): For all φ ∈ Lµ and contexts Γ [], Kκµ ` Γ [φ, φ].
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Proof. Induction on φ = φ(x1, . . . , xk) shows the inference

Γ [ψ1, χ1] · · · Γ [ψk, χk]

Γ [φ(ψ1, . . . , ψk), φ(χ1, . . . , χk)]

is admissible in Kκµ and Kκµ+ . For the case φ = νyφ0, we have a derivation

of Γ [φ, ν0yφ0] by ν.0, and from Γ [φ, ναyφ0] we derive Γ [φ, να+1yφ0] via the
induction hypothesis and inferences µ and ν.(α+ 1). Thus transfinite induction
shows that Γ [φ, ναyφ0] is derivable for every α < κ, whence Γ [φ, φ] results.

Theorem 4. The proof of this theorem ends with a statement of the following
equivalence:

∀X,Y ⊆ SCκ(%) : X v∗ Y iff X∗ ≤pw Y
∗

On first appearance this result appears non-trivial. However, it is an easy con-
sequence of the following result relating finite sets of ordinals, the verification of
which is straightforward.

Lemma 8. Given a non-empty finite set of ordinals A, let A∗ = (δAi )i<|A| de-
note the unique sequence such that A = {

∑
j≤i δ

A
j | i < |A|}. Fix a principal

ordinal κ and let A,B ⊂ κ be non-empty finite sets of the same cardinality.
There exists f ∈ I(κ) such that B = {f(α) | α ∈ A} iff A∗ ≤pw B

∗.
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18 B. Afshari, G. Jäger and G. E. Leigh

[20] A. Marcone. ‘Fine analysis of the quasi-orderings on the power set’. In:
Order 18.4 (Dec. 2001), pp. 339–347. doi: 10.1023/A:1013952225669.

[21] C. S. J. A. Nash-Williams. ‘On better-quasi-ordering transfinite sequences’.
In: Mathematical Proceedings of the Cambridge Philosophical
Society 64.2 (1968), pp. 273–290. doi: 10.1017/S030500410004281X.

[22] C. S. J. A. Nash-Williams. ‘On well-quasi-ordering transfinite sequences’.
In: Mathematical Proceedings of the Cambridge Philosophical
Society 61.1 (1965), pp. 33–39. doi: 10.1017/S0305004100038603.

[23] R. Parikh. ‘The completeness of propositional dynamic logic’. In: Math-
ematical Foundations of Computer Science 1978. Ed. by J. Winkowski.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1978, pp. 403–415. doi:
10.1007/3-540-08921-7_88.

[24] M. Reynolds. ‘An axiomatization of PCTL*’. In: Information and Com-
putation 201.1 (2005), pp. 72–119. doi: 10.1016/j.ic.2005.03.005.

[25] M. Reynolds. ‘More past glories’. In: 15th Annual IEEE Symposium
on Logic in Computer Science (LICS’00). IEEE Computer Society,
2000, pp. 229–240. doi: 10.1109/LICS.2000.855772.

[26] D. S. Shamkanov. ‘Nested sequents for provability logic GLP’. In: Logic
Journal of the IGPL 23.5 (2015), pp. 789–815. doi: 10.1093/jigpal/
jzv029.

[27] M. B. Smyth. ‘Power domains’. In: Journal of Computer System Sci-
ences 16 (1978), pp. 23–36. doi: 10.1016/0022-0000(78)90048-X.

[28] C. Stirling. ‘A tableau proof system with names for modal mu-calculus’. In:
HOWARD-60: A Festschrift on the Occasion of Howard Barrin-
ger’s 60th Birthday. Ed. by A. Voronkov and M. V. Korovina. Vol. 42.
EPiC Series in Computing. EasyChair, 2014, pp. 306–318.

[29] R. S. Streett and E. A. Emerson. ‘An automata theoretic decision proced-
ure for the propositional mu-calculus’. In: Information and Computa-
tion 81 (1989), pp. 249–264. doi: 10.1016/0890-5401(89)90031-X.

[30] M. Y. Vardi. ‘Reasoning about the past with two-way automata’. In:
Automata, Languages and Programming. Ed. by K. G. Larsen, S.
Skyum and G. Winskel. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998, pp. 628–641. doi: 10.1007/BFb0055090.

[31] I. Walukiewicz. ‘Completeness of Kozen’s axiomatisation of the proposi-
tional mu-calculus’. In: Proceedings, 10th Annual IEEE Symposium
on Logic in Computer Science (LICS’95). IEEE Computer Society,
1995, pp. 14–24. doi: 10.1109/LICS.1995.523240.

https://doi.org/10.1023/A:1013952225669
https://doi.org/10.1017/S030500410004281X
https://doi.org/10.1017/S0305004100038603
https://doi.org/10.1007/3-540-08921-7_88
https://doi.org/10.1016/j.ic.2005.03.005
https://doi.org/10.1109/LICS.2000.855772
https://doi.org/10.1093/jigpal/jzv029
https://doi.org/10.1093/jigpal/jzv029
https://doi.org/10.1016/0022-0000(78)90048-X
https://doi.org/10.1016/0890-5401(89)90031-X
https://doi.org/10.1007/BFb0055090
https://doi.org/10.1109/LICS.1995.523240

