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SUMMARY

Neutrophil granule serine proteases contribute to im-
mune responses through cleavage ofmicrobial toxins
and structural proteins. They induce tissue damage
and modulate inflammation if levels exceed their in-
hibitors. Here, we show that the intracellular protease
inhibitors Serpinb1a and Serpinb6a contribute to
monocyte and neutrophil survival in steady-state
and inflammatory settings by inhibiting cathepsin G
(CatG). Importantly, we found that CatG efficiently
cleaved gasdermin D (GSDMD) to generate the signa-
ture N-terminal domainGSDMD-p30 known to induce
pyroptosis. Yet GSDMD deletion did not rescue
neutrophil survival in Sb1a.Sb6a�/� mice. Further-
more, Sb1a.Sb6a�/� mice released high levels of
pro-inflammatory cytokines upon endotoxin chal-
lenge in vivo in a CatG-dependent manner. Canonical
inflammasome activation in Sb1a.Sb6a�/� macro-
phages showed increased IL-1b release that was
dependent on CatG and GSDMD. Together, our find-
ings demonstrate that cytosolic serpins expressed in
myeloid cells prevent cell death and regulate inflam-
matory responses by inhibiting CatG and alternative
activation of GSDMD.
INTRODUCTION

Regulated forms of cell death are essential for the development

of multicellular organisms and for their immune responses.

Apoptosis, the most studied form of regulated cell death

(RCD), is triggered by intrinsic or extrinsic cues transmitted to

signaling routes converging on the proteolytic activation of

executioner caspases. These apoptotic caspases cleave multi-

ple protein targets in the nucleus, the cytoplasm, and the cyto-

skeleton but do not directly compromise the integrity of the

plasma membrane (Taylor et al., 2008). Apoptosis therefore pro-

ceeds slowly and without alarming neighboring cells; indeed, the
3646 Cell Reports 27, 3646–3656, June 18, 2019 ª 2019 The Author(
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removal of apoptotic bodies by phagocytes induces the release

of anti-inflammatory signals (Ravichandran, 2011). Until recently,

RCD was synonymous with apoptosis, but it is now recognized

that RCD may also involve necrosis resulting from distinct mo-

lecular pathways that have been principally defined as necropto-

sis and pyroptosis (Bliss-Moreau et al., 2017; Wallach et al.,

2016). Such pathways may have evolved to trigger inflammation

in response to potentially concealed infections and cytosolic mi-

crobes (Jorgensen et al., 2017; Miao et al., 2010). Necroptosis

occurs in many cell types and can be triggered by tumor necro-

sis factor-a (TNF-a) as well as other stimuli converging on recep-

tor-interacting protein kinase-3 (RIPK3) (Cho et al., 2009; He

et al., 2009; Zhang et al., 2009), which phosphorylates the

pseudo-kinase mixed-lineage kinase-like protein (MLKL). Phos-

phorylated MLKL oligomerizes, leading to cell death (Murphy

et al., 2013). Pyroptosis has been principally described in mono-

cytes and macrophages and is elicited by inflammatory cas-

pases, caspase-1/4/5/11 (Miao et al., 2010). This form of RCD

is molecularly defined by the specific, limited cleavage of gas-

dermin D (GSDMD) to release its N-terminal domain GSDMD-

p30 (He et al., 2015; Kayagaki et al., 2015; Shi et al., 2015).

GSDMD-p30 assembles to form pores at the plasma membrane

leading to cell lysis (Aglietti et al., 2016; Ding et al., 2016; Liu

et al., 2016).

Neutrophils are major effectors of the immune response to

infection and drive inflammatory reactions. Neutrophil serine

proteases (NSPs) (e.g., neutrophil elastase [NE], cathepsin G

[CatG], proteinase-3 [PR3], and NSP4) contribute to these func-

tions in multiple ways. NSPs are found in specialized secretory

lysosomes that fuse with phagosomes or are released into the

extracellular milieu upon degranulation. NSPs have antimicrobial

functions through defined proteolysis of microbial toxins and

structural proteins (Belaaouaj et al., 2000; Tkalcevic et al.,

2000; Weinrauch et al., 2002). Importantly, NSPs promote

inflammation through cleavage-mediated activation or inhibition

of cytokines, chemokines, opsonins, and receptors (Clancy

et al., 2018; Henry et al., 2016; Kessenbrock et al., 2008; Lefran-

çais et al., 2012; Padrines et al., 1994; Raptis et al., 2005). NSPs

have been associated with neutrophil death, but the mecha-

nisms are not fully elucidated and appear different for each

NSP (Benarafa and Simon, 2017). Most notably, heterozygous
s).
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mutations in the gene for NE, ELANE, are the most common

cause of severe congenital neutropenia and the only known

cause of cyclic neutropenia (Makaryan et al., 2015). NE is ex-

pressed at high levels at the promyelocyte stage andmutant pro-

teins induce cell death and an apparent maturation block at the

promyelocyte stage. How the various NE mutants induce cell

death is not defined, but it may be due to the unfolded protein

response or to mislocalized mutant NE because NE proteolytic

activity is not required (Tidwell et al., 2014). By contrast, CatG

and PR3 can directly activate apoptotic pro-caspase-7 and

pro-caspase-3, respectively (Loison et al., 2014; Zhou and Sal-

vesen, 1997). NSPs are also expressed in a subset of monocytes

(Kargi et al., 1990). Recent evidence suggests that NSP-ex-

pressing monocytes derive from a neutrophil-like common

ancestor (Yanez et al., 2017), but the function of NSPs in mono-

cyte homeostasis is unknown.

Secreted endogenous inhibitors regulate the activity of NSPs

in plasma (e.g., a1-antitrypsin) and mucosal surfaces (e.g.,

secretory leukocyte protease inhibitor [SLPI]). Inhibitors of the

clade B serpin family are cytosolic and expressed inmonocytes

and neutrophils (Remold-O’Donnell et al., 1989; Scott et al.,

1999). Among the latter, Serpinb1 is found at high levels in

the cytosol of neutrophils and monocytes and inhibits all

NSPs except NSP4 (Benarafa et al., 2011; Cooley et al., 2001;

Perera et al., 2012). Mice deficient in the mouse ortholog

Serpinb1a (Sb1a�/�) have reduced neutrophil numbers, show

increased mortality, and produce high levels of inflammatory

cytokines upon lung infection (Benarafa et al., 2007, 2011;

Gong et al., 2011). Serpinb6 is a related clade B serpin, also ex-

pressed in monocytes and neutrophils, which inhibits CatG but

not NE or PR3 (Scott et al., 1999). Notably, deficiency in

the mouse ortholog, Serpinb6a (Sb6a�/�), was not associated

with defects in leukocyte numbers, possibly because

Serpinb1a levels are higher in these animals (Scarff et al.,

2004). In this study, we first investigated the effects of

combined deficiency of Sb1a and Sb6a (Sb1a.Sb6a�/�) on

leukocyte homeostasis and the effect on RCD pathways of

monocytes and neutrophils in vitro. We discovered that the

two serpins collaborate to protect myeloid cells through

blockade of cell-specific, CatG-dependent RCD. We found

that CatG efficiently cleaves GSDMD to generate GSDMD-

p30, but deletion of GSDMD did not rescue CatG-mediated

neutrophil death in vivo and in vitro. In contrast, we demon-

strated that Sb1a.Sb6a�/� mice released more IL-1b, TNF-a,

and IL-6 in a CatG- and GSDMD-dependent manner in in vivo

models of inflammation and following classical inflammasome

activation in macrophages in vitro.

RESULTS

Serpinb1a and Serpinb6a Are Survival Factors for
Neutrophils In Vivo

To address the function of Sb1a andSb6a inmyeloid cell homeo-

stasis, we analyzed the leukocyte subsets from single- and dou-

ble-deficient 6-week-old mice in steady state. Sb1a.Sb6a�/�

mice showed a severe reduction in absolute numbers and pro-

portion of neutrophils in the bone marrow (Figures 1A, S1A,

and S1B). The neutropenia of Sb1a.Sb6a�/� mice was more
severe than that observed in Sb1a�/� mice; and Sb6a�/� mice

had normal proportions and numbers of neutrophils (Figure S1B;

Benarafa et al., 2011; Scarff et al., 2004). Neutrophil counts in

blood were significantly reduced only in Sb1a.Sb6a�/� mice

compared to wild-type (WT) mice (Figure S1C). Sb1a and Sb6a

are both inhibitors of CatG (Benarafa et al., 2002; Scott et al.,

1999), and CatG deletion rescues the neutropenia of Sb1a�/�

mice (Baumann et al., 2013). Thus, we generated mice lacking

both serpins and CatG and found that deletion of CatG was

indeed sufficient to restore normal neutrophil numbers in bone

marrow and blood in steady state (Figures 1A and S1C).

Neutrophils are rapidly mobilized from the bone marrow in

response to infection and have a high phagocytic capacity. To

evaluate the relevance of the neutropenia of Sb1a.Sb6a�/�

mice on neutrophil recruitment and efficient clearance of fungal

particles, we injected opsonized zymosan intraperitoneally. We

observed a reduced number of peritoneal neutrophils in

Sb1a.Sb6a�/� mice 4 h after zymosan injection (Figure 1B).

Furthermore, the removal of zymosan was impaired as extracel-

lular particles were still visible in cytospins of peritoneal washes

of Sb1a.Sb6a�/�mice, there were higher numbers of neutrophils

containing yeast particles, and more zymosan per phagocyte

was observed compared to WT mice (Figure 1C). Defective

neutrophil recruitment and impaired clearance of zymosan parti-

cles were fully rescued in CatG.Sb1a.Sb6a�/� mice (Figures 1B

and 1C). Thus, control of CatG by Sb1a and Sb6a is crucial to

maintain neutrophil survival in steady state and to support effi-

cient innate immune responses.

Apoptotic and Necrotic Pathways in Neutrophils Are
Accelerated by CatG
Loss of granule membrane integrity can result in the cytosolic

release of proteases, which trigger RCD pathways unless

opposed by endogenous protease inhibitors (Baumann et al.,

2013; Bird et al., 1998, 2014; Luke et al., 2007). Cell death of

bone marrow neutrophils was therefore evaluated in vitro

following treatment with the lysosomotropic compound L-

leucyl-L-leucine-methyl-ester (LLME), which is assembled in

membranolytic metabolites by the transferase activity of the

cysteine protease dipeptidyl-peptidase I (DPPI) to release

granule contents into the cytosol (Thiele and Lipsky, 1990). Re-

flecting the in vivo phenotype, Sb1a.Sb6a�/� neutrophils were

highly sensitive to LLME-induced cell death (Figures 2A and

S2A). Sb1a.Sb6a�/� neutrophils died significantly faster than

Sb1a�/� neutrophils (1 h) after LLME treatment, and few neutro-

phils remained alive after 2 and 4 h in both genotypes. Sb6a�/�

neutrophils showed an intermediate phenotype between

Sb1a�/� and WT neutrophils (Figure S2B). Live-cell microscopy

recordings of bone marrow cells treated with LLME indicated

that Sb1a�/� and Sb1a.Sb6a�/� cells initiate an accelerated

death process measurable 30 min after LLME treatment (Figures

S2C and S2D). LLME-induced cell death was not significantly

altered by treatment with the broad caspase inhibitor Q-VD-OPh

alone or in combination with the RIPK1 inhibitor necrostatin-1

(Figure S2B). In contrast, LLME-induced cell death was

fully prevented in CatG.Sb1a.Sb6a�/� neutrophils, where

CatG.Sb1a.Sb6a�/� neutrophils exhibited significantly improved

survival compared to Sb1a.Sb6a�/� (Figures 2A and S2E).
Cell Reports 27, 3646–3656, June 18, 2019 3647
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Figure 1. Sb1a.Sb6a�/� Mice Present a CatG-Dependent Neu-

tropenia in Steady State and Inflammation

(A) Analysis of bonemarrow neutrophils of 6-week-old female mice; n = 10–11/

genotype.

(B) Percentage and absolute counts of neutrophils and macrophages in peri-

toneal lavage fluid 4 h after injection of 0.5 mg of zymosan/mouse; n = 8–16/

genotype of 6-week-old female and male mice.

(A and B) Scatterplots show data for individual mice from 4 independent

experiments; horizontal lines indicate mean ± SEM. Data were analyzed by

Mann-Whitney test (****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns,

p > 0.05).
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Neutrophils have a limited life span in vitro due to sponta-

neous apoptosis mediated principally by the intrinsic mitochon-

drial apoptotic pathway culminating with activation of

apoptotic caspase-3 and -7 (Geering and Simon, 2011).

Apoptotic neutrophils then rapidly proceed to secondary ne-

crosis. Cultured Sb1a.Sb6a�/� neutrophils showed increased

necrosis in the presence of the caspase inhibitor (Figures 2B

and S3A). This defect was dependent on CatG since

CatG.Sb1a.Sb6a�/� neutrophil spontaneous death in vitro

was indistinguishable from that of WT neutrophils. Percentages

of apoptotic cells, measured by annexin V staining, were not

significantly different between cells of different genotypes

(Figures 2B and S3A).

Neutrophils are sensitive to death receptor stimulation, which

leads to apoptosis or necroptosis depending on caspase-8 ac-

tivity and X-linked inhibitor of apoptosis (XIAP) (Wang et al.,

2018; Wicki et al., 2016). Neutrophils were stimulated with

TNF-a for 24 and 48 h leading to amassive induction of cell death

that was indistinguishable between genotypes. Caspase inhibi-

tion with Q-VD-OPh considerably reduced TNF-induced neutro-

phil death in all genotypes. Yet Sb1a.Sb6a�/� neutrophils

showed increased necrosis and reduced apoptosis in a CatG-

dependent manner (Figures 2C and S3B). Necroptosis induced

by TNF-a depends on the interaction of RIPK1 and RIPK3, which

is allowed by RIPK1 autophosphorylation (Cho et al., 2009). Inhi-

bition of RIPK1 with necrostatin-1 in presence of Q-VD-OPh

reduced neutrophil necrosis in all genotypes but did not abro-

gate the increased necrosis observed in Sb1a.Sb6a�/� neutro-

phils (Figures 2C and S3B).

Reactive oxygen species (ROS) produced by the NADPH-

oxidase contribute to neutrophil death in inflammatory condi-

tions (von Gunten et al., 2005). To explore the role of ROS, we

evaluated leukocyte subsets of mice lacking the critical

p47phox subunit of the NADPH oxidase (Huang et al., 2000).

We found that both Ncf1.Sb1a�/� and Sb1a�/� mice presented

similarly reduced neutrophil numbers in the bone marrow

compared to WT and Ncf1.�/� mice in steady state (Figures

S3C and S3D). Granzymes and caspases can induceROS-medi-

ated cell death by cleaving mitochondrial complex I subunit

NDUFS1 (Martinvalet et al., 2008). Scavenging of mitochondrial

ROS with MitoQ did not significantly alter LLME-induced and

TNF-induced neutrophil death (Figures S3E and S3F). We found

that CatG did not cleave the respiratory chain components

NDUFS1andNDUFS3 inSb1a.Sb6a�/� neutrophils (FigureS3G).

Overall, these data indicate that Sb1a and Sb6a inhibit CatG-

mediated apoptotic and necrotic death induced bymultiple stim-

uli such as survival factor withdrawal, death receptor stimulation,

and loss of granule integrity. Yet neutrophil death was partly
(C) Representative cytospins of peritoneal cells; quantification of zymosan-

containing cells and of number of zymosan particles per neutrophil. Data

are from male and female mice; n = 5–9/genotype from 4 independent ex-

periments and analyzed by one-way ANOVA (****p < 0.0001; ***p < 0.001).

Left panel: percentage of zymosan-positive cells for individual mice; bars

indicate mean ± SEM. Right panel: numbers of zymosan particles

per neutrophil (40 neutrophils/mouse from 5–9 mice/genotype) for all mice

per genotype; data are shown as box and whiskers (****p < 0.0001). Scale

bars: 15 mm.

See also Figure S1 and Tables S1 and S2.
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Figure 2. CatG-Dependent Necrosis Is

Executed following Induction of Multiple

RCD Pathways in Sb1a.Sb6a�/� Neutrophils

(A)Survival of neutrophils treatedwith100mMLLME in

the presence or absence of 50 mMQ-VD-OPh for 4 h.

(B) Spontaneous apoptosis and secondary necrosis

of neutrophils cultured in vitro with or without 50 mM

Q-VD-OPh.

(C) Neutrophil survival following stimulation with TNF-

a (100 ng/mL) and actinomycin D (200 ng/mL) with or

without 50 mM Q-VD-OPh and 20 mM necrostatin-1

over 48 h. Viability of neutrophils was assessed by

flow cytometry using Annexin V-APC and 7-AAD.

Cells were from 6- to 12-week-old female and male

mice. Data are shown as mean ± SEM of 4–8 inde-

pendent experiments and were analyzed by two-way

ANOVA. (****p < 0.0001; ***p < 0.001; ns, p > 0.05.)

See also Figures S1–S4.
blocked by caspase inhibition and was independent of RIPK1

and ROS.

Compensatory Effects of Sb1a and Sb6a in Monocyte
Survival
Beyond neutrophils, Sb1a.Sb6a�/� mice presented significantly

reduced monocyte numbers and percentage in bone marrow

(Figures S1A and S4A). The monocyte defect was largely

resolved in the bone marrow of CatG.Sb1a.Sb6a�/� mice, which

showed monocyte numbers and percentage similar to WT and

significantly higher percentage than Sb1a.Sb6a�/� mice.

Sb1a�/� and Sb6a�/� single-knockout mice had normal mono-

cyte numbers and percentage in bone marrow, as previously

reported (Benarafa, 2011; Scarff et al., 2004) (Figure S4A). Differ-

ences in blood monocytes were variable and showed a subtle

downward trend for Sb6a�/� and Sb1a.Sb6a�/� mice (Fig-

ure S4B). No difference between the genotypes was observed

in other major blood leukocyte subsets and erythrocytes (Tables

S1 and S2). Monocytes were generally less sensitive to LLME

than neutrophils, and only Sb1a.Sb6a�/� monocytes showed a

significant increase in necrotic cell death following LLME treat-

ment compared to WT (Figures S4C and S4D). Cell death in

Sb1a�/� and Sb6a�/� monocytes treated with LLME were at in-

termediate levels between WT and Sb1a.Sb6a�/� (Figure S4D).

In Sb1a.Sb6a�/� mice, deletion of CatG only partly corrected

the accelerated monocyte death after LLME treatment
Cell
(Figure S4E). As in neutrophils, the in vivo

and in vitro findings suggest that Sb1a

and Sb6a additively, although modestly,

contribute to monocyte survival.

CatG Directly Cleaves GSDMD into
a Stable N-Terminal Domain
GSDMD-p30
Because CatG induces a regulated form of

necrosis with fast kinetics, we hypothesized

that CatG might process GSDMD to induce

cell lysis. We indeed found that purified hu-

man CatG cleaved both human and mouse
GSDMD to forma stable characteristicGSMD-p30 fragment virtu-

ally indistinguishable from that generated by recombinant mouse

caspase-11 (Figures 3A, 3B, S5A, and S5B). Under the conditions

used, purified human NE and PR3 failed to produce a stable

GSDMD-p30 fragment at low nanomolar concentrations and

had a largely degrading activity on human and mouse GSDMD

at higher concentrations (Figures 3C, 3D, S5C, and S5D). Pre-

treatment of the proteases with the caspase inhibitor Q-VD-OPh

blocked the cleavage of GSDMD by caspase-11 but not by

CatG, ruling out indirect activation of caspases in THP-1 and

transfected HEK cell lysates (Figure S5A). Conversely, CatG inhib-

itor I (CatG-Inh) had no effect on caspase-11 activity, while effec-

tively inhibiting CatG (Figures S5A–S5D). We found that cleavage

of mouse GSDMD by high concentrations of NE was inhibited by

CatG-Inh, suggesting that the observed cleavage may not be

caused by NE but by residual CatG activity in the purified prepa-

ration of NE from human sputum (Figure S5C).

Purified recombinant mouse GSDMD with a C-terminal His-tag

(rGSDMD) and active site titrated CatG were used to determine

the second order rate constant for CatG cleavage of GSDMD

(Figure S5E). The kcat/KM value was 1.09 3 106 M�1,s�1, which

is one or two order of magnitude greater than what we previously

reported for caspase-1 (<105 M�1,s�1) and caspase-11

(<104 M�1,s�1), respectively (Gonzalez Ramirez et al., 2018).

The p20 C-terminal fragment generated by CatG was excised

and subjected to Edman degradation to reveal that CatG cleaved
Reports 27, 3646–3656, June 18, 2019 3649
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Figure 3. CatG Cleaves GSDMD to Generate GSDMD-p30 N-Terminal Fragment

Immunoblots of (A) HEK cells, transfected with mouse Flag-GSDMD plasmid; (B) THP-1 lysates; (C) HEK cells, transfected with mouse Flag-GSDMD plasmid;

and (D) HEK cells, transfected with human Flag-GSDMD plasmid. Cells were lysed without protease inhibitors, incubated (12.5–25 mg total proteins) with

indicated concentrations of proteases (nanomolar) for 1 h at 37�C and were resolved on SDS-PAGE and immunoblotted for GSDMD (B) or Flag (A, C, and D).

See also Figure S5.
GSDMD at Leu-274 (Figures S5E and S5F). Substitution of Leu-

274 for Ala (L274A) or for Gly (L274G) substantially reduced the

cleavageofGSDMDbyCatG (FigureS5G). Incomplete abrogation

of CatG cleavage of the L274 mutants suggests that alternative,

less preferred, cleavage sites for CatG may exist in the linker re-

gion between the N- and C-terminal regions when high protease

concentrations are used (Figure S5F). Together, these findings

demonstrate that GSDMD is a preferred substrate of CatG, which

cleaves GSDMD only two residues upstream of the caspase

cleavage site at Asp-276 (Kayagaki et al., 2015; Shi et al., 2015).

Sb1a.Sb6a�/� Neutropenia Is Not Due to Pyroptosis
Mediated by GSDMD
We then ruled out a role for pyroptotic caspases in the steady-

state neutropenia due to Sb1a deficiency. Deletion of both

mouse inflammatory caspases (Casp1 and Casp11) did not

rescue the bone marrow neutropenia in Casp1/11.Sb1a�/�

mice (Figures S6A and S6B). Furthermore, we observed no dif-

ference in cell death kinetics after granule permeabilization

of Casp1/11.Sb1a�/� neutrophils compared to Sb1a�/� neutro-

phils treated with LLME (Figure S6C). To address whether

Gsdmd is required for neutrophil death in vivo, we generated
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Gsdmd knockout mice by CRISPR/Cas9 targeting in

Sb1a.Sb6a�/� zygotes. Five mutant alleles were identified, and

each was bred to homozygosity (Figure S7). We found that

Gsdmd.Sb1a.Sb6a�/� had reduced neutrophils in the bone

marrow similarly as Sb1a.Sb6a�/� mice, while Gsdmd�/�

neutrophil numbers were the same as in WTmice in steady state

(Figure 4A). Furthermore, granule permeabilization with LLME

induced identical kinetics of necrosis in Gsdmd.Sb1a.Sb6a�/�

as in Sb1a.Sb6a�/� neutrophils (Figures 4B and S8A). Likewise,

spontaneous apoptosis was not altered in neutrophils lacking

Gsdmd in WT or Sb1a.Sb6a�/� backgrounds (Figures 4C and

S8B). We also found that TNF-mediated death pathways

were consistently increased in Gsdmd.Sb1a.Sb6a�/� (as in

Sb1a.Sb6a�/�) compared toGsdmd�/� andWT neutrophils (Fig-

ures 4D and S8C). Deletion of Gsdmd appears to reduce mono-

cyte numbers in the bone marrow compared to WT mice, but no

further decrease in monocyte numbers and percentage was

observed in Gsdmd.Sb1a.Sb6a�/� compared to Sb1a.Sb6a�/�

bone marrow (Figure S8D). Moreover, LLME-induced death

was similarly enhanced in Gsdmd.Sb1a.Sb6a�/� and

Sb1a.Sb6a�/� monocytes, and no difference was observed be-

tween WT and Gsdmd�/� monocytes in this assay (Figure S8E).
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Figure 4. GSDMD Does Not Mediate Neutrophil Death in Sb1a.Sb6a�/� Mice

(A) Leukocyte subset analysis of bonemarrow neutrophils of 6-week-oldmale and femalemice; n = 9–16/genotype from 6 independent experiments. Scatterplots

show data for individual mice; horizontal lines indicate mean ± SEM. Data were analyzed by Mann-Whitney test (****p < 0.0001; ***p < 0.001; ns, p > 0.05).

(B) Survival of neutrophils treated with 100 mM LLME in the presence or absence of 50 mM Q-VD-OPh for 4 h.

(C) Spontaneous apoptosis and secondary necrosis of neutrophils cultured in vitro with or without 50 mM Q-VD-OPh.

(D) Neutrophil survival following stimulation with TNF-a (100 ng/mL) and actinomycin D (200 ng/mL) with or without 50 mM Q-VD-OPh and 20 mM necrostatin-1

over 48 h. Viability was assessed by flow cytometry using Annexin V-APC and 7-AAD. Cells were from 6- to 12-week-old female and male mice.

(B –D) Data are shown as mean ± SEM of 3–6 independent experiments and were analyzed by two-way ANOVA (****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05;

ns, p > 0.05).

See also Figures S6–S8.
Neutrophil and monocyte percentage in blood of Gsdmd�/� and

Gsdmd.Sb1a.Sb6a�/� were similar to each other and intermedi-

ate between WT and Sb1a.Sb6a�/� (Figure S8F). Higher abso-

lute counts of neutrophils in blood in Gsdmd.Sb1a.Sb6a�/�

andGsdmd�/� compared toSb1a.Sb6a�/�mice does not reflect

a specific rescue but is rather due to elevated total white

blood counts (WBCs) in Gsdmd�/� and Gsdmd.Sb1a.Sb6a�/�

compared to other genotypes (Figure S8F; Table S2). Overall,

our findings demonstrate that Gsdmd is dispensable for the

death pathways mediated by CatG and regulated by Sb1a and

Sb6a in vivo and in vitro.

Sb1a and Sb6a Regulate Endotoxin-Mediated
Inflammation in aCatG- andGSDMD-DependentManner
Activation of GSDMD by inflammatory caspases and assembly

of GSDMD-p30 at the plasma membrane contribute in part to
the release of mature IL-1b and Gsdmd�/� mice are largely pro-

tected against endotoxemic shock (Kayagaki et al., 2015; Shi

et al., 2015). Conversely, we have previously shown thatSb1a�/�

mice release increased levels of inflammatory cytokines in asso-

ciation with failed clearance of Pseudomonas aeruginosa infec-

tion (Benarafa et al., 2007). To test the physiological relevance

of the cleavage of GSDMD by CatG, we measured the early sys-

temic cytokine response to intraperitoneal injection of a sub-

lethal dose of lipopolysaccharide (LPS). We found that

Sb1a.Sb6a�/� mice had significantly higher levels of TNF-a at

2 h after injection and increased IL-6 and IL-1 b at 6 h compared

to WT mice (Figure 5A). Importantly, increased systemic inflam-

mation was dependent on CatG, as cytokine levels in

CatG.Sb1a.Sb6a�/� mirrored those of WT mice (Figure 5A).

As expected, GSDMD was essential for the detection of IL-1b

but, importantly, deletion of GSDMD also reduced TNF-a levels
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Figure 5. Sb1a.Sb6a�/� Mice Exhibit CatG-Dependent Enhanced Pro-inflammatory Responses upon LPS Challenge

(A) Systemic cytokine release in plasma after intraperitoneal injection of LPS. Data are from male and female 6-week-old mice; n = 5–15/genotype from 7

independent experiments and analyzed by two-way ANOVA (****p < 0.0001; ***p < 0.001; *p < 0.05; ns, p > 0.05).

(B) Local cytokine release in BAL after intranasal LPS instillation. Data are from female 6-week-old mice; n = 5–6/genotype from 3 independent experiments and

analyzed by one-way ANOVA (**p < 0.01; *p < 0.05).

(C) IL-1b released by BMDMs primed with LPS and stimulated with nigericin and ATP for 3 and 18 h. BMDMswere from 6- to 12-week-old female and male mice.

Data are from n = 10–14/genotype from 9 independent experiments and analyzed by one-way ANOVA at each time point (****p < 0.0001; ***p < 0.001; **p < 0.01;

*p < 0.05; ns, p > 0.05). All data are shown as mean ± SEM with individual scatterplots.

See also Figure S8.
(2 h) but not IL-6 levels (6 h) in Gsdmd.Sb1a.Sb6a�/� mice (Fig-

ure 5A). Similarly, in a lung inflammation model induced by intra-

nasal instillation of LPS, Sb1a.Sb6a�/� mice showed a signifi-

cant increase in TNF-a and IL-6 in bronchoalveolar lavage

(BAL) 14 h after instillation, and this increase was dependent

on both CatG and GSDMD (Figure 5B). At this time point, IL-1b

levels in BAL were very low to undetectable in all genotypes.

To evaluate direct effects of the cytosolic serpins on IL-1b

release, we finally investigated the effects of canonical inflamma-

some activation in bonemarrow-derivedmacrophages (BMDMs).

We found that IL-1b release bySb1a.Sb6a�/�BMDMswas signif-

icantly higher thanbyWTprimedBMDMsstimulatedwith nigericin

orATPat3 and18h. Furthermore, this effectwasagain completely

dependentonbothCatGandGSDMD(Figure5C). Inall conditions,

we did not observe any significant difference in cell death (lactate

dehydrogenase [LDH] release) between genotypes (Figure S8G).

Taken together, our data indicate that Sb1a and Sb6a regulate in-

flammatory responses through the regulation of CatG and in part

through prevention of GSDMD processing in macrophages.

DISCUSSION

Serpinb1 and Serpinb6 are ancient clade B serpin genes and are

conserved in all vertebrates (Benarafa and Remold-O’Donnell,
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2005; Kaiserman and Bird, 2005). In this study, we found that

bothmouse orthologs Serpinb1a and Serpinb6a are survival fac-

tors of neutrophils and monocytes. In neutrophils, cell death was

increased in single serpin knockout mice, and it was significantly

more severe in Sb1a.Sb6a�/� neutrophils. In monocytes, each

serpin compensated for the absence of the other, and reduced

survival of monocytes was observed only in double-knockout

Sb1a.Sb6a�/� mice. Both serpins have very fast inhibitory sec-

ond order rate constants for CatG, 107 mol/L�1,s�1 for Serpinb6

and 23 106 mol/L�1,s�1 for Serpinb1 (Cooley et al., 2001; Scott

et al., 1999). Since CatG deletion rescues the neutrophil defect of

Sb1a�/� neutrophils (Baumann et al., 2013), we anticipated and

demonstrated that CatG is essential in inducing cell death in

Sb1a.Sb6a�/� neutrophils in homeostatic conditions in vivo.

Moreover, granule permeabilization-induced cell death was

reduced in CatG.Sb1a.Sb6a�/� neutrophils, indicating that the

CatG/serpin axis is critical in this neutrophil RCD pathway. In

monocytes, CatG deletion also rescued monocyte numbers in

mice lacking both serpins.

Increased spontaneous death and TNF-induced death of

Sb1a.S6a�/� neutrophils in vitro also highlighted the contribution

of the two serpins in regulating CatG in these RCD pathways.

Spontaneous neutrophil apoptosis is largely driven by the

intrinsic apoptotic pathway and can be significantly delayed by



sustained expression of anti-apoptotic BCL-2 family proteins

such asMcl-1 and A1 and by apoptotic caspase inhibitors (Akgul

et al., 2001). TNF-a induces apoptosis through the activation of

RIPK1, p38 MAPK, PI3K, and generation of ROS by the NADPH

oxidase triggering caspase-3 cleavage (Geering and Simon,

2011). Caspase inhibition shifts the apoptotic pathway to nec-

roptosis (Wallach et al., 2016). Here, caspase and RIPK1

inhibition improved survival of Sb1a.S6a�/� neutrophils in

spontaneous and TNF-induced apoptosis, respectively. Yet

Sb1a.S6a�/� neutrophils showed more necrotic cells at late

time points in the presence of these inhibitors. Therefore, while

apoptotic caspases and RIPK1-RIPK3-MLKL are the principal

drivers of these RCD pathways, CatG significantly and indepen-

dently contributes to the acceleration of the dying process to-

ward necrosis (cell lysis). Indeed, granule/lysosomal permeabili-

zation is a late event during TNF-induced death or after NLRP3

inflammasome activation; and this process is associated with

cleavage of mitochondrial complex 1 proteins and triggered or

enhanced by mitochondrial ROS (Heid et al., 2013; Huai et al.,

2013; Oberle et al., 2010). In neutrophils, the prime source of

ROS is the NADPH oxidase, but we found that deletion of the

essential p47phox subunit in Ncf1.Sb1a�/� mice did not rescue

neutrophil survival in vivo and in vitro. Furthermore, CatG did not

cleave NDUFS1 and NDUFS3, which are essential for the pro-

duction of ROS by mitochondria and were shown to be proteo-

lytically inactivated by caspases and granzymes to induce

apoptosis (Huai et al., 2013; Jacquemin et al., 2015; Martinvalet

et al., 2008). The ROS scavenger MitoQ did not alter cell death

mediated by LLME and TNF-a in neutrophils in vitro, indicating

that CatG-mediated RCD can largely proceed independently

of ROS.

Live-cell imaging experiments demonstrated that LLME-

treated Sb1a�/� and Sb1a.Sb6a�/� neutrophils proceeded

rapidly through necrotic death with cell membrane blebbing,

swelling, and rupture suggestive of pyroptosis (Liu and Lieber-

man, 2017). We found that human CatG directly cleaves human

andmouse GSDMD to generate an N-terminal discreet cleavage

product. The cleavage site of mouse GSDMD was identified at

Leu-274, only two residues upstream of the conserved Asp-

276 cleaved by caspase-1/11. This is reminiscent of the activa-

tion of caspase-7 by CatG, which is also two residues upstream

of the canonical Asp site (Zhou and Salvesen, 1997). Further-

more, the kinetics of cleavage indicates that GSDMD is a

preferred substrate of CatG. A recent study reported that excess

recombinant NE cleaved GSDMD and that this cleavage of

GSDMD induced neutrophil death. They also reported that

Gsdmd�/� mice were less effective in clearing intraperitoneally

injected E. coli (Kambara et al., 2018). In our hands, human pu-

rified NE did not cleave either human or mouse GSDMD into a

stable GSDMD-p30 fragment. CatG inhibitor I inhibited the

cleavage of GSDMD with high NE concentrations, indicating

the presence of residual CatG in the purified NE preparation.

Furthermore, we found that deletion of caspase-1/11 and,

more critically, deletion of GSDMD had no effect on the neutro-

penia of Sb1a�/� and Sb1a.Sb6a�/� mice. In addition, caspase-

1/11 and GSDMD did not directly contribute to cell death

induced by granule permeabilization. We previously showed

that NE-deficient neutrophils were equally sensitive to granule
permeabilization-induced death as WT neutrophils (Baumann

et al., 2013). Serpinb1a also inhibits PR3 (Benarafa et al.,

2002), which was shown to activate caspase-3 leading sponta-

neous apoptosis (Loison et al., 2014). We have shown here

that PR3 can cleave GSDMD but generates several fragments

that are rapidly degraded, and therefore PR3 may disarm

GSDMD-dependent pyroptosis. Release of PR3 together with

CatG may in part explain why GSDMD is not involved in cell

death in neutrophils. Alternatively, similarly to caspase-3, CatG

may havemultiple target proteins leading to cell death in addition

to caspase-7 and GSDMD and only combined disruption of mul-

tiple pathways may restore neutrophil survival in the absence of

Serpinb1 and Serpinb6.

Importantly, our study revealed that cytosolic serpins regulate

inflammatory cytokine responses and this effect was dependent

on CatG and GSDMD. We found increased IL-1b release from

Sb1a.Sb6a�/� activated macrophages and high levels of IL-6

and TNF-a following local and systemic injection of LPS. The

increased cytokine levels in vitro and in vivo were all dependent

on CatG and GSDMD, suggesting that the serpins likely regulate

release of this inflammatory cytokine in part through inhibition of

processing of GSDMD by CatG. Higher levels of IL-1b and

danger signals released from necrotic cells in Sb1a.Sb6a�/�

mice may in turn lead to the sustained production of TNF-a

and IL-6. IL-1b is produced in the cytosol as a biologically inac-

tive pro-form that is activated by cleavage of an N-terminal pro-

peptide. NSPs can process several pro-forms of the IL-1 family

members, including IL-1b, IL-33, IL-36a, IL-36b, and Il-36g

(Clancy et al., 2018; Hazuda et al., 1990; Henry et al., 2016; Le-

français et al., 2012; Macleod et al., 2016). While inflammatory

caspases have a predominant role in IL-1b processing in acti-

vated myeloid cells, NSPs substantially contribute to enhancing

the responses in vivo (Adkison et al., 2002; Kono et al., 2012).

NSPs are thought to contribute to inflammation in part through

processing of IL-1 family members after they are released from

necrotic cells as unprocessed pro-forms. Indeed, the reported

cleavage sites by NSPs on IL-1 cytokines are located N-termi-

nally of the Asp residues cleaved by caspases. Our study sug-

gests an additional pathway where CatG promotes the release

of IL-1b cells via GSDMD activation. Thus, more pro-IL-1b may

be processed and released by activated myeloid cells when

cytosolic serpins are downregulated or overwhelmed by prote-

ases leading to enhanced release via GSDMD processing by

CatG. This may explain in part previous observations of

increased release of IL-1b in lungs of Sb1a�/� mice infected

with Pseudomonas aeruginosa or influenza A virus (Benarafa

et al., 2007; Gong et al., 2011). Whether this process is occurring

with other IL-1 family cytokines and in other cells than macro-

phages is currently under study. As we were resubmitting this

revised manuscript, a study reported a non-covalent interaction

between C-terminal domain of Serpinb1 and the CARD domain

of inflammatory caspases that was proposed to prevent sponta-

neous caspase activation (Choi et al., 2019). They show that

Sb1a�/� mice are more susceptible to a lethal dose of LPS and

to bacterial infection. These data are in agreement with our cur-

rent data and our previous studies showing that clearance of

P. aeruginosa is reduced in Sb1a�/� mice. However, we have

also shown that clearance of P. aeruginosa can be rescued by
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increasing neutrophil numbers following enhancedmyelopoiesis

with granulocyte-colony stimulating factor (G-CSF) treatment

(Basilico et al., 2016). In contrast to the recent report by Choi

et al. (2019), we did not observe increased spontaneous release

of IL-1b when macrophages were incubated with LPS for 5 h in

absence of nigericin or ATP (Figure S8H). Thus, without contra-

dicting a potential direct interaction between caspases and

Sb1a shown by these authors, our data presented here demon-

strate a more conventional and straightforward mechanism

dependent on CatG inhibition by Serpinb1a and Serpinb6a lead-

ing to inflammation via GSDMD processing.

In summary, our findings indicate that Serpinb1a and

Serpinb6a are key survival factors in neutrophils andmonocytes.

They protect neutrophils from multiple death pathways through

inhibition of CatG, which activates both executors of apoptosis

and of pyroptosis: caspase-7 and GSDMD, respectively. Yet

our data indicate that CatG does not rely exclusively on any of

the known RCD pathways. By contrast, GSDMD is a critical

target of CatG-mediated death of monocytes in steady state

in vivo but not after granule permeabilization. Finally, we demon-

strate that Serpinb1a and Serpinb6a critically regulate IL-1b

release and systemic inflammation by regulating myeloid cell ne-

crosis and an alternative activation of GSDMD.
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Antibodies

anti-mouse Ly-6G APC/Cy7 Biolegend Clone 1A8, Cat.#127624; RRID: AB_10640819

anti-mouse CD115 (CSF-1R) PE Biolegend Clone AFS98, Cat.#135506; RRID: AB_1937253

anti-mouse/human CD11b PE/Cy7 Biolegend Clone M1/70, Cat.#101216; RRID: AB_312799

anti-mouse CD11c APC Biolegend Clone N418, Cat.#117310; RRID: AB_313779

anti-mouse CD45R (B220) Pacific Blue Biolegend Clone RA3-6B2, Cat.#103227; RRID: AB_492876

anti-mouse Ly6C Pacific Blue Biolegend Clone HK1.4, Cat.#128014; RRID: AB_1732079

anti-mouse CD3 PE/Cy7 Biolegend Clone 17A2, Cat.#100220; RRID: AB_1732057

anti-mouse CD4 APC Biolegend Clone GK1.5, Cat.#100412; RRID: AB_312697

anti-mouse CD8a APC/Cy7 Biolegend Clone 53-6.7, Cat.#100714; RRID: AB_522312

anti-mouse NK1.1 APC Biolegend Clone PK136, Cat.#108710; RRID: AB_313397

Anti-mouse CD16/CD32 purified Biolegend Clone 2.4G2, Cat.#101302; RRID: AB_312801

anti-mouse Siglec F PE BD Bioscience Clone E50-2440, Cat.#562068; RRID: AB_10896143

anti-mouse CD45 V500 BD Bioscience Clone 30-F11, Cat.#561487; RRID: AB_10697046

Mouse Anti-mouse NDUFS3 Invitrogen Cat.#459130; RRID: AB_2532226

Mouse Anti-mouse NDUFS1 Santa Cruz Clone E-8, Cat.#sc-271510; RRID: AB_10655669

Rabbit anti-mouse Actin Abcam Cat.#ab8227; RRID: AB_2305186

Rabbit anti-human GSDMD Sigma Cat.#G7422; RRID: AB_1850381

Rabbit anti-mouse GSDMD Novus Cat.#NBP2-33244

Mouse anti-Flag M2 Sigma Cat.#F1804; RRID: AB_262044

Chemicals, Peptides, and Recombinant Proteins

Annexin V APC Biolegend Cat.#640941

7-AAD Biolegend Cat.#420404

L-leucyl-L-leucine methyl ester Bachem Cat.#G-2550

Q-VD-OPh hydrate ApexBio Cat.#A1901

Necrostatin-1 Enzo Life Science Cat.#BML-AP309-0100

Mouse TNF-a Promokine Cat.#D-63720

Actinomycin D Promokine Cat.#PK-CA577-1036-5MG

MitoQ In house Provided by Michael Murphy

Recombinant caspase-11 Enzo Life Science Cat.#BML-SE155-5000

Purified human Cathepsin G Athens Research Technologies Cat.#16-14-030107

Purified human Elastase Athens Research Technologies Cat.#16-14-051200

Purified human Proteinase-3 Athens Research Technologies Cat.#16-14-161820

Cathepsin G Inhibitor Calbiochem Cat.#429676-93-7

Suc-AAPF-AMC Bachem Cat. #4012873.0050

Immobilon-P membrane Millipore

Zymosan A from S. cerevisiae Sigma Cat.#ZA250

LPS from P. aeuroginosa Sigma Cat.#L8643

Mouse recombinant M-CSF PeproTech Cat.#315-02

Ultra Pure LPS from E. coli InvivoGen Cat.#tlrl-3pelps

Nigericin InvivoGen Cat.#tlrl-nig

ATP InvivoGen Cat.#tlrl-atpl

Alt-RTM S.p. Cas9 Nuclease 3NLS Integrated DNA Technologies (IDT) Lot.#289717

Alt-RTM CRISPR tracrRNA Integrated DNA Technologies (IDT) Lot.#275957
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Nuclease Free Duplex Buffer Integrated DNA Technologies (IDT) Lot.#271987

RestoreTM Western Blot Stripping Buffer ThermoFisher Scientific Cat. #21059

TurboFect Transfection Reagent ThermoFisher Scientific Cat. #R0531

Commercial Assays

pFlag-CM-4 mouse GSDMD plasmid Addgene; Liu et al., 2016 Cat.#80950; RRID: Addgene_80950

pcDNA3.1 human GSDMD plasmid GenScript, this paper N/A

pET29b(+) Novagen (Sigma) Cat.#71463-M

Mouse IL-1b ELISA Thermo Fisher Scientific (eBioscience) Cat.#88-7013-88; RRID: AB_2574946

Mouse IL-6 ELISA Thermo Fisher Scientific (eBioscience) Cat.#88-7064-88; RRID: AB_2574990

Mouse TNF-a ELISA Thermo Fisher Scientific (eBioscience) Cat.#88-7324-88; RRID: AB_2575080

Differential Quik Stain Kit (modified Giemsa) Electron Microscopy Science Cat.#26096-50

Experimental Models: Cell Lines

Human monocyte THP-1 ATCC Cat.#ATCC TIB-202, gift from Alfred Walz

Human embryonic kidney HEK293 ATCC Cat.#ATCC CRL-1573

Experimental Models: Organisms/Strains

Serpinb1atm1.1Cben Benarafa et al., 2007 RRID: MGI: 5707644

Serpinb6atm1.1Pib Scarff et al., 2003 RRID: MGI: 3720026

Sb1a.Sb6a�/� In house N/A

Ctsgtm1Ley MacIvor et al., 1999 RRID: MGI: 3526662

CatG.Sb1a.Sb6a�/� In house N/A

B6(Cg)-Ncf1m1J/J JAX Labs; Huang et al., 2000 Cat.# 004742; RRID: IMSR_JAX: 004742

B6J.129-Casp1tm1Flv Kuida et al., 1995 RRID: MGI: 3711186

Gsdmdem1, em4, em5, em6 In house N/A

Gsdmd em1, em4, em5, em6.Sb1a.Sb6a�/� In house N/A

Software and Algorithms

Prism 8 (version 8.0) GraphPad Software https://www.graphpad.com/

scientific-software/prism/

Image Studio 4.0 LI-COR https://www.licor.com/bio/image-studio/

Imaris Software Oxford Instruments https://imaris.oxinst.com/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Charaf

Benarafa (charaf.benarafa@vetsuisse.unibe.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse husbandry
All animal studieswere approved by the Cantonal Veterinary Office of Bern and conducted in accordancewith the Swiss federal legis-

lation on animal welfare. Mice were kept in SPF facilities, in individually ventilated cages (Tecniplast, blue line), with 12/12 light/dark

cycle, autoclaved acidified water, autoclaved cages including food, bedding and environmental enrichment. Age and gender of mice

is indicated for each in vivo or ex vivo model described below as well as in figure legends.

Previously described mouse lines
All mice were in C57BL/6J background or backcrossed for at least 10 generations. Sb1a�/� (Serpinb1atm1.1Cben) and Sb6a�/�

(Serpinb6atm1.1Pib) mice were generated previously (Benarafa et al., 2007; Scarff et al., 2003). CatG�/� (Ctsgtm1Ley) mice were pro-

vided by Christine Pham (Washington University, St. Louis) (MacIvor et al., 1999), Ncf1�/� (Ncf1m1J) mice were from The Jackson

Laboratory (Huang et al., 2000). Casp1/11�/� (B6J.129-Casp1tm1Flv) mice (Kuida et al., 1995) were provided by Jens Stein. We

confirmed by PCR and sequencing that the Casp1/11�/� mice (but not any other strain) carried the Casp129 5-nt deletion in

Casp11 described previously (Kayagaki et al., 2011).
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Newly generated mouse lines
Sb1a.Sb6a�/� mice were generated by mating compound heterozygous F1 mice. The two genes are separated by 1.2 Mb (0.25cM)

on mouse chromosome 13 and we observed 5 crossover events from 378 F2 pups, of which only one crossover event had two

deleted alleles on the same chromosome (Sb1a+/�.Sb6a�/�) and the others had two wild-type alleles on the same chromosome

(Sb1a+/�.Sb6a+/+ or Sb1a+/�.Sb6a+/+). Gsdmd�/� mice were generated at the transgenic unit of the Theodor Kocher Institute,

University of Bern by microinjection of wild-type and Sb1a.Sb6a�/� zygotes with ribonucleoprotein (RNP) complexes as described

(Aida et al., 2015) and detailed hereafter. Recombinant Cas9 nuclease, tracrRNA, crRNA and nuclease-free duplex buffer were from

IDT. Target-specific crRNA sequence used was AGCATCCTGGCATTCCGAG, which was previously shown to successfully target

Gsdmd in mouse zygotes (Shi et al., 2015). To prepare RNPs, tracrRNA and crRNA stock solutions were reconstituted at 10 mM con-

centrations in nuclease-free duplex buffer and stored at-20�C. tracrRNA and crRNA were mixed (4.5ml each) and incubated at 95�C
for 2minutes, then cooled down at room temperature for at least 15minutes for annealing of the duplex. EmbryoMax buffer (Millipore)

(20.5ml) was added to the RNA duplex at room temperature, mixed by pipetting twice. Cas9 protein (0.5ml) was added to the RNA

duplex and mixed again by pipetting. The RNP was incubated at 37�C for 20 minutes, centrifuged at 18’000 g for 10 min at 4�C
and placed on ice until microinjection into the male pronucleus of zygotes on the same day. After overnight incubation at 37�C,
live 2-cell stage embryoswere transferred into the infundibulum of pseudopregnant CD1 females using standard protocols. Founders

were positively screened by PCR and T7 endonuclease assay. Mosaic founders were crossed with C57BL/6J or Sb1a.Sb6a�/� and

mutated alleles in F1 mice were identified by DNA sequencing (Figure S7). F1 mice with identical mutations were intercrossed to

generate Gsdmd�/�, Gsdmd.Sb1a.Sb6a�/� mice. F2 progeny of four distinct Gsdmd�/� mouse lines and their littermates were

studied.

Mouse cohorts
For each experimental set up involving in vivo experimentation or isolated cells, gender and age of themice is indicated inMETHODS

DETAILS below and in figure legends. For in vivo experiments and determination of leukocyte numbers in blood and bone marrow,

animals were used at 6 weeks of age and data was pooled and analyzed using mice from both sex, except for the model of lung

instillation of LPS, where only females were used as indicated below. For assays using isolated primary mouse leukocytes, mice

were used between 6-12 weeks of age. Data was pooled from bothmale and femalemice from all genotypes. Figure legends indicate

the numbers of individual mice per genotype (n) and explicitly mention the number of independent experiments that we have

performed.

Cell lines
Human embryonic kidney (HEK293) cells were cultured in DMEM supplemented with 10% heat-inactivated FBS and 1% penicillin/

streptomycin and maintained at 37�C in 5% CO2. Human monocytic cell line THP-1 cells were cultured in RPMI supplemented with

10% heat-inactivated FBS and 1% penicillin/streptomycin and maintained at 37�C in 5% CO2. In cell death assays, primary mouse

bone marrow leukocytes were cultured in DMEM supplemented with 1% FBS and 1% penicillin/streptomycin at 1x106 cells/ml.

Primary mouse bonemarrow-derivedmacrophages (BMDMs) were generated by culturing bonemarrow leukocytes in RPMI supple-

mented with 10% FBS, 1% penicillin/streptomycin and 10ng/ml M-CSF (PeproTech) for 7 days. Each preparation of primary cell

cultures were from 1-2 sex- and age-matched 6-12 week-old male and female mice of each genotype.

METHOD DETAILS

Hematology and flow cytometry
Erythrocyte (RBC), platelet (PLT) and total white blood cell (WBC) counts were determined in whole blood collected in EDTA of

6 week-old female and male mice using a VetABC hematology analyzer. Blood and bone marrow leukocyte subsets percentages

and cell death kinetics of bone marrow cells were determined using a 4-color FACS Calibur (BD Biosciences) using single cell sus-

pensions blocked with anti-CD16/CD32 (clone 2.4G2) and stained for 30-40 min on ice with fluorescently labeled antibodies (1:200;

BioLegend, BD Biosciences) as previously (Benarafa et al., 2011). Analysis was performed using FlowJo gating within nucleated live

CD45+ cells as neutrophils (CD11b+/Ly6G+), monocytes (CD11b+/CD115+), B cells (CD45R/B220+), eosinophils (SSChigh/SiglecF+),

NK cells (NK1.1+/CD3neg) and T cells (CD3+). Apoptosis and necrosis of neutrophils and monocytes in vitro was determined by

Annexin V-allophycocyanin and 7-aminoactinomycin D (7AAD) labeling for 15min at room temperature prior to FACS analysis.

Flow cytometry sorting of neutrophils (CD11b+/Ly6G+) was performed on single-cell suspensions of bone marrow leukocytes using

a FACS Aria II sorter (BD Biosciences) at the flow cytometry core facility of the University of Bern.

Zymosan induced peritonitis model
Groups of 2-3 female or male 6week-oldmice per genotype were injected intraperitoneally with 0.5mg opsonized zymosan (1mg/ml).

The experiment was repeated 4 times. Peritoneal cells were collected with 5ml PBS supplemented with 1% FBS 4 hours after injec-

tion. Cells were counted manually in a Neubauer chamber. Relative percentages of live leukocyte subsets were determined by flow

cytometry, analysis was performed using FlowJo gating within nucleated live CD45+ cells as neutrophils (CD11b+/Ly6G+) and mac-

rophages (CD11b+/CD115+). Phagocytosis of zymosan particles was determined by microscopy analysis of cytospins (Shandon)
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stained with Differential Quik stain (Electron Microscopy Science). One hundred cells/mouse were counted to calculate the percent-

age of zymosan positive cells and 40 zymosan positive neutrophils/mouse were further evaluated for the number of particles per

phagocyte.

Systemic and lung LPS challenge in vivo

Systemic inflammation was induced in groups of male and female mice by intraperitoneal injection of 10mg/g LPS from P. aeruginosa

(Sigma, L8643) diluted in 0.9%NaCl. EDTA plasma was collected 2 or 6 hours after injection. Local lung inflammation was induced in

groups of anesthetized female mice (intraperitoneal ketamine/xylazine 100mg/kg, 10mg/kg, respectively) by intranasal instillation of

LPS (10mg/mouse in 20ml). Bronchoalveolar lavage (BAL) was collected with 3x 1ml PBS supplemented with 1% FBS 14 hours after

injection. TNF-a, IL-6 and IL-1b in plasma and BAL were measured by ELISA (eBioscience).

Cell death assays
In cell death induction assays, leukocytes (1x106 cells/ml) were incubated at indicated concentrations with L-leucyl-L-leucine methyl

ester (LLME) (G-2550; Bachem), Q-VD-OPh (ApexBio), necrostatin-1 (Enzo LifeScience), TNF-a (Promokine) and actinomycin

(PeproTech). MitoQ was a gift from Michael Murphy. Viability was assessed by flow cytometry as described above. Live cell images

were acquired on a Zeiss Axio Observer of total bone marrow cells of female and male 6-12 week-old mice stained for 30-40 min on

ice with fluorescently labeled antibody for neutrophils (Ly6G+) and DAPI to visualize dead cells. Cells were kept at 37�C following

administration of 100 mM LLME. Life cell images were taken every 30sec over a time frame of 120min. Live cell images over time

were analyzed using dot quantification feature of IMARIS quantifying the number of Ly-6G+ neutrophils and DAPI+ dead cells

over time.

IL-1b release by BMDMs
BMDMs (2x106 cells/ml) were primed with 100ng/ml ultra-pure LPS (InvivoGen) for 5 hours followed by stimulation with 5mM ATP or

5 mM nigericin (InvivoGen) for 3 and 18 hours in RPMI supplemented with 10% FBS, 1% penicillin/streptomycin and 10ng/ml M-CSF

(PeproTech). Mature IL-1b in culture medium was measured by ELISA (eBioscience).

Plasmids and transfection
pFlag-CMV-4 containing N-terminal Flag-tagged mouse GSDMD was a gift from Judy Lieberman (Addgene plasmid # 80950) (Liu

et al., 2016). Human GSDMD cDNA was synthetized and cloned into pcDNA3.1(+)-N-DYK (Flag) using BamHI/EcoRI (GenScript).

Alanine substitution mutants were generated using Q5 site-directed mutagenesis kit (NEB). WT and mutant Flag-GSDMD plasmids

were purified (Macherey-Nagel) and verified by DNA sequencing (Microsynth). Transient transfection of HEK cells with Flag-Gsdmd

plasmids was performed using TurboFect (ThermoFisher Scientific) following themanufacturer’s procedure. In brief, 2x105 HEK cells

were seeded in a 6-well plate followed by transfection with 6 mL TurboFect and 4 mg plasmid DNA. HEK cells were grown without

selection pressure until 90% confluency after transfection to allow high protein yield during lysis.

Proteolysis of cell lysates
HEK and THP-1 cells were lysed in 0.1% Triton X-100 lysis buffer without protease inhibitors followed by 2x 30sec sonication

(Soniprep 150 plus, MSE). Lysates were clarified at 10’000 g for 10min at 4�C and supernatant was collected. Total protein concen-

tration in lysates was determined by the BCA assay (ThermoFisher Scientific). Cell lysates (12.5 mgHEK; 25mg THP-1) were incubated

for 1h at 37�C with recombinant caspase-11 (175nM final concentration) (Enzo LifeScience, BML-SE155-5000) or with purified

human CatG, NE or PR3 (Athens Research Technologies) at indicated concentrations ranging from 4-136nM. Where indicated,

Q-VD-OPh (1mM)(ApexBio) or cathepsin G inhibitor I (CatG-Inh)(1mM)(Calbiochem, 429676-93-7) were preincubated for 5 min at

37�C before the protease treatment. Proteolysis was stopped by adding final concentration of 1x Laemmli Buffer with DTT

(25mM) to the reaction and incubated for 5 min at 95�C prior to loading on SDS-PAGE.

Western Blot
Lysates were resolved by SDS-PAGE under reducing conditions using Tris-Glycine buffer. After transfer on nitrocellulose, blocking

was performed using 0.5% skimmed milk and blots were probed with anti-Flag M2 (Sigma, F1804), rabbit anti-GSDMD (Sigma,

G74222 antibodies. Blots were stripped (RestoreWestern Blot Stripping Buffer, ThermoFisher, 21059) and reprobedwith anti-b-actin

antibody (Abcam, ab8227). Cleavage of NDUFS3 and NDUFS1 was performed on sorted bone marrow neutrophils, which were pre-

incubated in PBS with protease inhibitor cocktail (Roche) for 5 min at 37�C before lysis in 1% NP-40 lysis buffer. Blots were probed

with monoclonal mouse anti-NDUFS1 (Santa Cruz, E-8, sc-271510) and monoclonal mouse-anti NDUFS3 (Invitrogen, 459130) anti-

bodies, both gifts from Denis Martinvalet.

Recombinant mouse GSDMD (rGSDMD)
The sequence encoding mouse full length GSDMD was purchased from Integrated DNA Technologies and cloned into pET29b(+)

(Novagen) containing a C-terminal His tag and transformed into BL21 (DE3) competent E. coli. Expression was induced

with 0.2mM isopropyl b-D-1-thiogalactopyranoside (IPTG) for 4 hours at 25�C shaking at 250 RPM. The GSDMD cell pellets were
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resuspended in 50mMHEPES, 100 mM NaCl, pH 8.0 and lysed via sonication. Cell lysates were centrifuged at 4�C for 30 minutes at

29,000 x g, supernatants were filtered through a 0.22mm filter (Millipore) and the soluble fractions were applied to a 1ml Ni-chelating

Sepharose resin (GE Healthcare Life Sciences) in a chromatography column. The rGSDMD-bound resin was washed in 50mM

HEPES, 500mM NaCl, pH 8.0 and then eluted in 50mM HEPES, 100mM NaCl, pH 8.0 with stepwise increments of imidazole from

12.5 – 100 mM. rGSDMD purity was analyzed by 4%–12% Bis-Tris SDS/PAGE gel (Novex Life Technologies) stained with Instant

Blue (Expedeon).

Cleavage of rGSDMD and N-terminal sequencing
To determine the active concentration of CatG (Athens Research Technologies), a serial dilution series of Ac-AAPF-OPh2 was incu-

bated with CatG for 30 minutes at 37�C. The fluorogenic substrate Suc-AAPF-AMC was added to a final concentration of 100mM in

100ml of assay buffer (100mM Tris-HCL pH 7.5 500mM NaCl) and enzymatic activity was measured. Velocities were plotted against

inhibitor concentration allowing the calculation of active enzyme concentration (Denault and Salvesen, 2003). Active site titrated

CatG was subjected to two-fold series dilutions and incubated separately for 30 minutes at 37�C with 2mM of GSDMD in 100mM

Tris-HCL pH 7.5 500mM NaCl in a final assay volume of 20ml. Reactions were terminated by heating at 95�C with 10ml of 3x SDS

loading buffer to give a final concentration of 1x loading buffer. Samples were analyzed on 4%–12% Bis-Tris SDS-PAGE gels by

Instant Blue staining. The gels were then scanned and imported to Image Studio (LI-COR Biosciences) for protein band intensity

quantification. Band intensity values were plotted against enzyme concentration and IC50 values were determined via GraphPad

Prism. Those values were then used to determine kcat/KM using the following equation kcat/KM = ln2/(E1/2 * t).Here, kcat/KM is the sec-

ond order rate constant for substrate hydrolysis, E1/2 is the concentration of protease for which half the substrate is consumed, E is

the concentration of enzyme, and t is the incubation time (Pop et al., 2008). Protein sample was resolved by SDS/PAGE and trans-

ferred to an Immobilon-P membrane (Millipore, Bedford, MA, USA) by electroblotting. The membrane was briefly stained with

Coomassie Brilliant Blue R-250, destained and washed with water. The appropriate band was excised and sequenced by Edman

degradation with a ABI Procise at UC Davis Proteomics Core Facility.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis and graphs were generated using Prism 8.0 (GraphPad, San Diego, CA). As indicated in figure legends, indepen-

dent experiments were performed and data was pooled. Where applicable data was shown for each replicate or mouse using scat-

terplots and horizontal lines or bars showed mean ± SEM. Box and whiskers showed median, interquartile range, 5–95 percentiles

and individual values above 95th percentile. For analysis, non-parametric tests were used to analyze data from in vivo and ex vivo

studies. Experiments were analyzed by Mann-Whitney test, one-way or two-way ANOVA with Tukey post-test as appropriate and

as indicated in figure legends. p < 0.05 was considered statistically significant (****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05).
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