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Differences between arm-based (AB) and contrast-based (CB) models for net-
work meta-analysis (NMA) are controversial. We compare the CB model of Lu
and Ades (2006), the AB model of Hong et al (2016), and two intermediate mod-
els, using hypothetical data and a selected real data set. Differences between
models arise primarily from study intercepts being fixed effects in the Lu-Ades
model but random effects in the Hong model, and we identify four key differ-
ence. (1) If study intercepts are fixed effects then only within-study information
is used, but if they are random effects then between-study information is also
used and can cause important bias. (2) Models with random study intercepts are
suitable for deriving a wider range of estimands, eg, the marginal risk difference,
when underlying risk is derived from the NMA data; but underlying risk is usu-
ally best derived from external data, and then models with fixed intercepts are
equally good. (3) The Hong model allows treatment effects to be related to study
intercepts, but the Lu-Ades model does not. (4) The Hong model is valid under
a more relaxed missing data assumption, that arms (rather than contrasts) are
missing at random, but this does not appear to reduce bias. We also describe an
AB model with fixed study intercepts and a CB model with random study inter-
cepts. We conclude that both AB and CB models are suitable for the analysis of
NMA data, but using random study intercepts requires a strong rationale such
as relating treatment effects to study intercepts.
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1 INTRODUCTION

Network meta-analysis (NMA) aims to synthesize a body of evidence describing comparisons between multiple treat-
ments or interventions for the same condition. It thus combines direct comparisons (where treatments are compared
within a study) with indirect comparisons (where treatments are compared with a common comparator in different
studies). Network meta-analysis is increasingly popular, with 456 NMAs with four or more treatments identified up until
2015.1
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Recent methodological developments in NMA have given rise to a debate about models that focus on arms versus
models that focus on contrasts.2-5 In NMA, arm refers to a single treatment group in a single study, and contrast refers
to a relative treatment effect between arms using a suitable metric. The terms contrast-based (CB) and arm-based (AB)
have been used in different ways to describe NMAs. Salanti et al described a CB NMA as a model for the set of estimated
contrasts, and an AB NMA as a model for the raw arm-level data.6 In this view, CB and AB models describe the data
expressed in different ways, and so we refer to these as a CB likelihood and an AB likelihood.

Hong et al used the terms CB and AB in a different way: they used an AB likelihood and applied modeling assumptions
either to parameters representing contrasts (“CB models”) or to parameters representing arm means (“AB models”).3 Tak-
ing a missing data perspective, with treatments not included in a study regarded as missing data, they argued that the
AB models make better use of the data and reduce bias compared with other methods. Zhang et al focused on the esti-
mands in meta-analysis in the binary data case, and argued that the CB model is limited to specific estimands (quantities
of interest) while the AB model offers a wider range of estimands.2 Other authors have used the terms CB and AB in a
similar way but suggesting different models.7,8

Dias and Ades criticized the work of Hong et al on several grounds, most notably that their AB model compromised
randomization and was thus prone to bias.4 In response, Hong et al argued that the AB model makes a more credible
assumption about the missing data.5

The aim of this article is to understand the differences between CB models and AB models. We do this by defining
clear terminology and notation, which we hope will be used in future papers; discussing what quantity is being estimated
(the estimand); exploring the impact of compromising randomization in these models; and exploring the missing data
assumptions underlying analyses using these models. For simplicity, we consider a single binary outcome using the odds
ratio metric under a consistency assumption (that indirect and direct comparisons estimate the same parameter6). The
models are compared for AB likelihoods, which give greater modeling flexibility. In Section 2, we describe and compare
the models considered, including modeling of heterogeneity variances and use of appropriately informative priors. In
Section 3, we discuss the estimands which can be estimated by each model. In Section 4, we explore the consequences of
compromising randomization, using hypothetical data. In Section 5, we discuss the assumptions made by the different
models from a missing data perspective, again using hypothetical data. In Section 6, we analyze a real network selected
to illustrate the differences between the models. We conclude with a discussion, extensions, and some key messages in
Section 7.

2 CONTRAST-BASED AND ARM-BASED MODELS

2.1 Notation
We follow standard statistical practice in using Greek letters for unknown parameters. Superscripts a and c identify quan-
tities that relate to arms and to contrasts between arms, respectively. N(𝜇, 𝜎2) denotes a Normal distribution with mean 𝜇

and standard deviation 𝜎. The term “fixed effect” denotes a parameter which is to be estimated freely, unlike a “random
effect,” which shares a distribution with other parameters. The “common-effect” model denotes the meta-analysis model
with no heterogeneity.9 Notation involving 𝜇 and 𝜎2 or 𝚺 (defined in detail below) denotes mean and variance across
studies. Vectors and matrices are in bold font.

Let i = 1, … ,n denote study, and k = 1, … ,K denote treatment. Let Ri be the set of treatments in study i, which we call
the study design.10 Let 𝜃a

ik be the parameter of interest in arm k of study i. The parameter 𝜃a
ik describes the data through the

measurement model (Section 2.2) and is in turn described by the structural model (Section 2.3). In our binary outcome
setting, the data are the number of participants nik and the number of successes 𝑦a

ik in arm k of study i, and 𝜃a
ik is the

log odds of success; the natural effect measures are the (log) odds ratios, but it is possible to estimate other summaries
(estimands) such as a risk difference at the population level (Section 3).

2.2 Measurement model: likelihood choices
Salanti et al described CB and AB NMA, which in our terminology are CB and AB likelihoods.6 The AB likelihood uses
the arm-level data 𝑦a

ik whose distribution is binomial with denominator the sample size nik and probability h(𝜃a
ik), where

h(.) is the inverse logit function. An (exact) AB likelihood is based on this binomial distribution. Another possibility, little
used in practice and not pursued here, is a Normal-approximation AB likelihood based on a set of estimates �̂�a

ik and their
variances.
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The CB likelihood implies a two-stage approach to estimation. In the first stage, the estimated log odds ratio 𝑦c
ikk′ com-

paring arms k and k′ of study i is computed, together with its standard error sikk′ , from the arm-level data. (Multiarm
studies provide a vector of outcomes (𝑦c

ikk′ , 𝑦
c
ikk′′ , …) with its variance-covariance matrix). In the second stage, the esti-

mated log odds ratios are analyzed using the Normal-approximation likelihood 𝑦c
ikk′ ∼ N(𝜃a

ik′ − 𝜃a
ik, s2

ikk′ ), where sikk′ is
assumed known. The approximations involved tend to be good in meta-analyses of large studies, when one-stage and
two-stage approaches give very similar answers,11 but the approximations can cause bias with smaller studies.12

2.3 Structural models
We describe a sequence of four models for an AB likelihood, leading in steps from the widely used model of Lu and Ades13

(model 1) to the AB model proposed by Hong et al3(model 4). The intermediate models help to shed light on the important
differences between models 1 and 4. Two of the models have both CB and AB forms.

2.3.1 Model 1: CB model describing observed arms
We start with the CB model of Lu and Ades,13 which requires a study-specific reference treatment bi to be defined in each
study i. This is also the model fitted by Salanti et al: to avoid confusion, we stress that their “AB NMA” in our terminology
is model 1 with an AB likelihood.6 The model is

𝜃a
ik = 𝛼a

ibi
+ 𝛿c

ibik
for k ∈ Ri. (1)

We call 𝛼a
ibi

the study intercept: it is the log odds in arm bi of study i and is a fixed effect. The study-specific treatment
contrast 𝛿c

ibik
compares treatment k with bi, for k ∈ Ri. We set 𝛿c

ibik
= 0 if k = bi, and otherwise, we model

𝛿c
ibik

∼ N
(
𝜇c

1k − 𝜇c
1bi
, 𝜎c2

)
, (2)

which incorporates the consistency assumption.6 The overall mean treatment effects𝜇c
1k for k > 1 compare each treatment

k with the reference treatment 1 and are the key model parameters; we set 𝜇c
11 = 0. 𝜎c2 in Equation (2) is the contrast

heterogeneity variance; note that “c” is a superscript, but “2” is a power. In this model, the contrast heterogeneity variance
is the same for all treatment contrasts. The model can be extended to allow heterogeneity variances to vary between
treatment contrasts, as discussed in Section 2.4.

2.3.2 Model 2: CB model describing all possible arms
We now modify model 1 by describing 𝜃a

ik in all arms, not just the observed arms

𝜃a
ik = 𝛼a

i1 + 𝛿c
i1k (3)

𝜹c
i =

(
𝛿c

i12, … , 𝛿c
i1K

)
∼ N(𝝁c,𝚺c), (4)

where 𝛿c
i11 = 0 and 𝝁c = (𝜇c

12, … , 𝜇c
1K) is the vector of overall mean effects for treatments 2, … , k compared with the

reference treatment 1. The structure of the contrast heterogeneity variance matrix 𝚺c is discussed in Section 2.4. The
off-diagonal elements of 𝚺c are needed to define the heterogeneity variances for contrasts not involving treatment 1; for
example, the k−k′ contrast heterogeneity variance Σc

kk −2Σc
kk′ +Σc

k′k′ . The study intercepts 𝛼a
i1 now all refer to treatment 1,

even if 1 ∉ Ri; if treatment 1 is a control treatment, then the study intercepts describe underlying risk.14 Model 2 embodies
a useful alternative view of consistency, ie, that the treatment effects follow the same model in designs where they are
unobserved as in designs where they are observed.

Modeling all arms, not just the observed arms, has no impact on the model fit. From a statistical point of view, therefore,
there is no difference between models 1 and 2, provided they model heterogeneity variances in the same way: we prove
this for Bayesian estimation in Supplementary Appendix A. In Bayesian computation using Monte Carlo Markov Chain
methods, however, the extra unidentified parameters in model 2 may increase autocorrelation in the Markov Chain and
hence decrease computational efficiency.
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Closely related to model 2 is an AB model that handles the treatments symmetrically,7,15

𝜃a
ik = 𝛼a

i + 𝜇c
k + 𝜂a

ik (5)

𝜼a
i =

(
𝜂a

i1, … , 𝜂a
iK
)
∼ N(𝟎,𝚺a). (6)

In this model, we need one constraint on the fixed parameters, and we choose to set 𝜇c
1 = 0 (which is why we write

the treatment effects 𝜇c
k in model (5) as contrast parameters). We show in Supplementary Appendix A that model (5, 6) is

equivalent to model (3, 4) under Bayesian estimation with flat priors for the study intercepts 𝛼a
i1, 𝛼a

i . This contrasts with
frequentist estimation, where parameter estimates differ between models (3, 4) and (5, 6) and between different choices
of reference treatments in model (3, 4).15 Improved frequentist estimation methods reduce these discrepancies.8

2.3.3 Model 3: CB model with random study intercepts
Study intercepts were fixed effects in models 1 and 2. Model 3 modifies model 2 by making them random effects, so that,
alongside Equations (3) and (4), we have

𝛼a
i1 ∼ N

(
𝜇a

1 , 𝜎
a2) , (7)

where we call 𝜎a2 the arm heterogeneity variance for the reference treatment; again, a is a superscript and 2 is a power.
The extra assumption in model 3 should lead to greater precision. However, this comes at the price of using

“between-study information,” meaning that the treatment effect estimated across the network is informed not only by the
usual differences within studies but also by differences between studies; for example, if participants in studies containing
treatment Y have worse outcomes (on all arms) than participants in studies containing an equally effective treatment Z,
then treatment Y may appear worse than treatment Z.16 We explore this issue further in Section 4.

2.3.4 Model 4: model with random study intercepts related to treatment effects
Model 3 assumes that the treatment effects 𝜹c

i in study i are independent of the study intercepts 𝛼a
i1. Model 4 relaxes this

assumption. We first write model 4 in a CB form, where, alongside Equation (3) and replacing Equations (4) and (7),
we have (

𝛼a
i1, 𝜹

c
i
)
∼ N(𝝁∗,𝚺∗), (8)

where 𝝁∗ = (𝜇a
1 , (𝝁

c)T)T and 𝚺∗ is a K × K variance matrix. Model 3 is the special case of model (8) with Σ∗
1k = Σ∗

k1 = 0 for
all k > 1. In the rest of this paper, we use the AB form of this model, which is the AB model of Hong et al3

𝜽a
i =

(
𝜃a

i1, 𝜃
a
i2, … , 𝜃a

iK
)T ∼ N(𝝁a,𝚺a), (9)

where the arm-specific means 𝝁a = (𝜇a
1 , 𝜇

a
2 , … , 𝜇a

K)
T are fixed effects and the parameters of interest are 𝜇c

k = 𝜇a
k − 𝜇a

1
for k = 2, … ,K. The heterogeneity variance for the k − k′ contrast is Σa

kk − 2Σa
kk′ + Σa

k′k′ . We discuss the structure of the
heterogeneity variance 𝚺a in Section 2.4. In Supplementary Appendix B, we show that models (8) and (9) are equivalent.

2.4 Modeling heterogeneity variances
Model 1 using Equation (2) assumes the same heterogeneity variance 𝜎c2 for all treatment contrasts. We call this the
common heterogeneity (CH) variance model. The remaining models naturally allow non-CH (NCH) variances simply by
imposing no constraints on 𝚺c, 𝚺∗, or 𝚺a.

Model 1 can be extended to allow NCH,17 but we do not use this model since model 2 more conveniently allows NCH. In
particular, the “second-order consistency” assumptions proposed to improve precision of estimation in the NCH version
of model 117 are naturally implied by 𝚺c being positive semidefinite in model 2.

We can assume CH in models 2 and 3 by setting

𝚺c = 𝜎c2PK−1(0.5), (10)

where Pn(𝜌) is the n×n matrix with all diagonal elements equal to 1 and all off-diagonal elements equal to 𝜌.18 Structured
models for NCH are also possible.13,17,19 We can assume CH in the AB version of model 2 by setting

𝚺a = 0.5𝜎c2IK (11)
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and structured models for NCH include diagonal and factor-analytic models.15

Modeling the heterogeneity variance 𝚺a in model 4 requires care, since the matrix involves both arm heterogeneity
and contrast heterogeneity. Common arm heterogeneity means that the Σa

kk terms in model (9) are the same for all k,
while common contrast heterogeneity means that the contrast variance Σa

kk − 2Σa
kk′ + Σa

k′k′ is the same for all k and k′

(1 ≤ k, k′ ≤ K, k′ ≠ k). For model 4 with CH, we therefore propose a compound symmetry structure, allowing separate
parameters for the contrast heterogeneity and the arm heterogeneity:

𝚺a = 𝜎a2PK(𝜌a), (12)

where 𝜌a is an unknown parameter. In this model, the variance for arm heterogeneity is 𝜎a2 and the variance for contrast
heterogeneity is

𝜎c2 = 2𝜎a2(1 − 𝜌a). (13)

It is convenient to write the likelihood in terms of the correlation 𝜌a and the contrast heterogeneity variance 𝜎c2.
In this model, the regression of treatment contrasts (treatment k versus 1) on underlying risk (treatment 1) has slope
𝜌a − 1, so 𝜌a = 1 indicates no association between treatment contrasts and underlying risk. Model 4 with CH therefore
has the disadvantage that it cannot accommodate treatment contrasts being both heterogeneous and uncorrelated with
underlying risk.

Hong et al3 proposed a diagonal form Σa = diag(𝜎a2
1 , 𝜎a2

2 , … , 𝜎a2
K ); a special case has 𝜎a2

k = 𝜎a2 for all k and so Σa =
𝜎a2IK , which is model (12) with 𝜌a = 0. These models imply that the contrast heterogeneities 𝜎a2

k + 𝜎a2
k′ are greater than

the arm heterogeneities 𝜎a2
k , whereas the opposite is likely to be true; hence, we do not pursue the diagonal form.

2.5 Choice of prior
We use Bayesian estimation of the aforementioned models because of its versatility and its ability to incorporate infor-
mative priors. We use evidence-based priors for the contrast heterogeneity variance20; details, including details of how
we make priors comparable across models, are given in Supplementary Appendix C. We use noninformative N(0, 1000)
priors for all other parameters. Other prior choices are of course possible. Stata code for fitting these models is given in
Supplementary Appendix E.

3 ESTIMANDS

An estimand describes what is being estimated and in what population. In mixed-effects logistic regression models, we
distinguish marginal (population-averaged) estimands from conditional (cluster-specific) estimands21; conditional odds
ratios tend to be further from 1 than marginal odds ratios. In NMA, the “cluster” is the study. The parameters 𝜇c

k in models
1 to 4 all represent the relative effect of an intervention on the odds within a single study (a conditional estimand). In
later sections, we therefore compare the methods for estimating the conditional odds ratio. The marginal estimand, on
the other hand, is the relative effect of an intervention across the whole population of studies, and need not be expressed
as an odds ratio.2 The different types of summary have different uses. For example, if a NMA includes studies at different
hospitals in a country, then a policy maker considering introducing a policy at a national level would be more interested in
a marginal estimand, and specifically in the marginal risk difference, while a particular hospital would be more interested
in a hospital-specific (conditional) estimand.

Model 4 also allows estimation of marginal treatment means 𝜋k = E[expit(𝜃a
ik)], where the expectation is across the

heterogeneity distribution in Equation (9). Marginal contrasts g(𝜋k) − g(𝜋1), where g(.) is a logistic or other link function,
may then be obtained. This is straightforwardly implemented in Bayesian computation. A similar calculation may be done
in the other models with random study intercepts. Estimating marginal estimands in models with fixed study intercepts
is harder. We would need to perform a separate meta-analysis to pool the underlying risk, and somehow combine the two
meta-analyses using integration over the heterogeneity terms 𝛿c

ibik
or 𝛿c

i1k. A simpler approach is to apply the estimated
conditional odds ratio to the mean underlying risk, and this is useful to estimate quantities such as the risk difference,
but care must be taken to fully allow for uncertainty and heterogeneity.

The marginal estimands discussed above use the average underlying risk of the studies in the NMA, which is unlikely
to be representative of the target population. External information about clinical populations is therefore valuable for
such an analysis. Dias and Ades4 argued that, while the overall intervention effect is best estimated in the NMA data
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set (because randomization promotes internal validity), the overall outcome prevalence is best estimated from clinical
registries or other observational sources external to the NMA data set. Any of the models can be used in conjunction with
external information to estimate the marginal effect of treatment in a well-defined population.4

4 RESPECTING RANDOMISATION

One consequence of using random study intercepts is that the estimated study intercepts are shrunk toward the over-
all mean, and therefore, the treatment effect estimated within a study is influenced by information outside that study.
In other words, the models allow the use of between-study information. This conflicts with the “principle of concur-
rent control,” that treated individuals should only be compared with randomized controls.16 It can also be described as
“breaking randomization.”4 Here, we call it compromising as opposed to respecting randomization. It is not clear whether
compromising randomization is a problem in practice. Senn16 wrote “I consider that in practice little harm is likely to be
done” and other authors have similarly found little bias (eg, see the work of Achana et al22). We explore the problem of
compromising randomization using hypothetical data designed to produce bias.

4.1 Hypothetical NMA data sets
We construct 10 data sets for a network of three treatments X, Y, and Z, where all studies have an X arm, some studies
compare Y with X, some studies compare Z with X, and no studies compare Z directly with Y. Treatments Y and Z are in
fact identical, and we explore the estimated Z-Y contrast using the various NMA models for a binary event representing
a successful outcome.

The 10 data sets are displayed in L'Abbé plots23 in Figure 1. They are described by a scenario (1 to 5) describing studies'
treatment effects and sample sizes, and a data type (a/b) describing studies' choices of Y or Z (summarized in Table 1).
Scenarios 1 to 3 assess the importance of respecting randomization and are introduced here; scenarios 4 and 5 assess
missing data assumptions and are introduced in Section 5.3. The log odds of an event on treatment X varies systematically
from −2 to 0 across studies, so that the overall event fraction is about 25%. In scenarios 1 and 2, each arm contains 200
patients. The log odds ratio (treatment effect) is 0 in all studies in scenario 1 and 0.5 in all studies in scenario 2. Scenario
3 is like scenario 2 but with the sample size reduced to 50 per arm.

For each scenario, we create two data sets where the between-studies information agrees (data type a) or disagrees (data
type b) with the within-studies information, so that analyses that use the between-studies information, are likely to be
biased only in data type b. In data type a, studies comparing X with Y are similar to studies comparing X with Z: this is
approximated by interleaving a sequence of six Y versus X designs with five Z versus X designs. In data type b, five studies
of Y versus X have low event fraction on X, and five studies of Z versus X have high event fraction on X.

The impact of between-study information, if used, is that the estimated outcomes in the X arms of Y-X studies are
larger than observed in studies with low observed X outcome and smaller than observed in studies with high observed X
outcome. In data type a, Y-X studies have both low and high observed X outcome, so using between-study information
should not cause bias. In data type b, however, Y-X studies have low observed X outcome, so the estimated outcomes in
the X arms of Y-X studies tend to be larger than observed, biasing the overall mean Y-X contrast downwards; a similar
argument suggests upwards bias in the overall Z-X contrast, and hence larger upwards bias in the Z-Y contrast.

For scenarios 1 to 3, the Y-X and Z-X contrasts have the same variance, while there is no evidence about the Z-Y contrast.
Thus models 2 and 3 hold with CH. Similarly, the arm-specific variances are the same for all arms, so model 4 holds
with CH. The models are summarized in Table 2.

4.2 Results for hypothetical NMA data sets
The hypothetical data sets were analyzed using WinBUGS24 with a burn-in of 50 000 updates and a further 200 000
updates, thinned to every 20th update. This yielded autocorrelations below 0.2 for all parameters at lag 2 for models 1 CH
and 4 CH, at lag 4 for model 2 CH and 3 CH, at lag 6 for models 2 NCH and 3 NCH, and at lag 15 for model 4 NCH. Results
for the overall mean treatment effect for Z versus Y are shown in the top six panels of Figure 2. Results for comparisons
with X are in Supplementary Figure S1.

For data 1a, 2a, and 3a, where studies of the two designs are similar and hence there is no potential bias from
between-study information to be drawn, all models give results with posterior median close to the true value, with similar
credible intervals.
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FIGURE 1 Hypothetical data sets used
to compare models. The solid line indicates
points with no treatment effect; points
above this line have better outcomes in arm
Y or Z than in arm X [Colour figure can be
viewed at wileyonlinelibrary.com]

For data 1b, 2b, and 3b, where studies of the two designs differ and hence there is potential bias from between-study
information, models 1 and 2 give results with posterior median close to the true value, while models 3 and 4 give posterior
medians different from the true value. For data 1b and 2b, model 3 differs from the true value by 0.07 to 0.08, and model
4 differs by 0.10 to 0.12. For data 3b, where the studies were smaller, the degree of between-study information was larger,
with the Z-Y contrast being estimated at 0.24 by model 3 and 0.29 to 0.30 by model 4. This corresponds to an odds ratio of
1.35 when the truth is an OR of 1. Thus, bias can be substantial in extreme cases.

Results for the contrast heterogeneity standard deviation are shown in Supplementary Figure S2 and for the arm het-
erogeneity standard deviation in Supplementary Figure S3. For each of data 1 to 3, all models have similar estimates of
these parameters.

We also verified that the priors were similar between models by drawing 10 000 samples from the priors (Supplementary
Figure S4). Priors for overall mean treatment effects were very flat. Priors for heterogeneity variances were broadly similar,
but some differences were seen; although we have matched the prior means and spread of the log heterogeneity variances,
some distributions were more positively skewed than others.

http://wileyonlinelibrary.com
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FIGURE 2 Analysis of hypothetical data sets: estimated treatment
contrasts for Z versus Y, showing posterior median of the log odds ratio with
95% credible interval; vertical line shows the true value of zero. CH =
common heterogeneity (solid lines); NCH = non-common heterogeneity
(dashed lines) [Colour figure can be viewed at wileyonlinelibrary.com]
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5 MISSING DATA

A key claim made for the AB approach is that it can “gain additional information from the incomplete records.”3 Here,
we evaluate this claim from a missing data perspective, considering first the information in the missing data and then the
assumptions made about the missing data. We take the missing data for each study to be the data for the treatment arms
that were not included in that study. We assume that the sizes of these missing treatment arms are known, which is often
reasonable, since most studies have equal sizes for all new treatment arms; we return to this issue in the discussion.

All the analyses considered here make a missing at random (MAR) assumption, because they are fitted to the observed
data without modeling the mechanism by which those data come to be observed.25 The MAR assumption states that the
probability of a particular design being chosen can depend only on the results for the treatments in that design; formally,

p(Ri = r|Yi) = p
(

Ri = r|Y obs(r)
i

)
,

where Ri is as before the design of study i, Yi is the complete data in study i, and Y obs(r)
i is the part of Yi containing the

results for the treatments that are observed if Ri = r. The implications of MAR depend on two model aspects, which we
discuss below: whether we use a CB likelihood or an AB likelihood (hence, whether Yi is the set of contrasts or the set of
arm summaries), and whether the model is correctly specified.

5.1 Nature of MAR assumptions
For a CB likelihood, the MAR assumption is that the probability of a particular design being chosen does not depend
on the unobserved contrasts, given the observed contrasts. We call this the “C-MAR” assumption. For an AB likelihood,
however, the MAR assumption is that the probability of a particular design being chosen does not depend on the unob-
served arm counts, given the observed arm counts. We call this the “A-MAR” assumption. Formal definitions are given in
Supplementary Appendix F.

We next consider what happens if the AB likelihood is misspecified. Models 1 to 3 assume that the outcomes in arm 1
and the contrasts with arm 1 are independent. If arm 1 is always observed, the likelihood factorizes into the likelihood
for arm 1 and the likelihood for the contrasts. In this case, the validity of inference about the contrasts clearly depends

http://wileyonlinelibrary.com
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on the “C-MAR” assumption and not on the “A-MAR assumption.” Even if arm 1 is not always observed, a similar result
seems likely to hold. Thus, under A-MAR and subject to distributional assumptions, likelihood-based techniques validly
estimate model 4, but are unlikely to validly estimate models 1 to 3. We explore this below.

It is sometimes claimed that NMA with a CB likelihood assumes that the data are missing completely at random.26

In Supplementary Appendix G, we show that this is only true in special cases and that often the required assumption is
weaker than missing completely at random.

5.2 When do the differences between C-MAR and A-MAR matter?
The key difference between C-MAR and A-MAR is that A-MAR holds even when choice of design depends on the
arm-specific means and not just the contrasts. As an example of data that may be A-MAR but not C-MAR, consider the
case where all studies include arm X, and studies of more seriously ill patients (with higher event rate) tend to compare
X with Y, while studies of less seriously ill patients (with lower event rate) tend to compare X with Z. These data may be
A-MAR because choice of design depends on data that are observed and included (actual outcome in arm X). Whether
they are C-MAR depends on whether ignoring actual outcome in arm X induces a relationship between choice of design
and the actual contrasts. This happens if the outcome in arm X is related both to the choice of comparator Y or Z (design)
and to the Y-X and Z-X contrasts. In this case, underlying risk is an effect modifier, which differs systematically between
the X-Y studies and X-Z studies. This violates the idea of transitivity, which may be stated as “sets of trials do not differ
with respect to the distribution of effect modifiers”27; in this case, NMA reviewers are explicitly told not to use indirect
comparisons.

In summary, it seems that models 1 to 3 may suffer from missing data bias when data are A-MAR and the outcome in
the reference arm is associated both with study design and with treatment contrasts, while model 4 may be able to handle
this form of violation of transitivity.

5.3 Exploration in hypothetical data
We use two further scenarios where treatment effects are negatively associated (scenario 4) and positively associated
(scenario 5) with arm X risk (Figure 1). In both cases, the data are designed so that the average log odds is −1 on arm
X and −0.5 on arms Y and Z. Here, the CH assumption is true for models 1 to 3 (heterogeneity is the same for Y-X and
Z-X contrasts) but not for model 4 (heterogeneity for arm X differs from that for arms Y and Z). The C-MAR and A-MAR
assumptions are both true for data 1 to 3, 4a, and 5a. However, for data 4b and 5b, A-MAR is true and C-MAR is false.

Results are shown in Figure 2. Data 4a and 5a show the expected correct results for all models. Data 4b and 5b show
the expected missing data bias, ie, estimates are in error by around −0.5 in data 4b, and around +0.5 in data 5b. Model 4
with NCH goes some way toward correcting this missing data bias. Results for data 4b are encouraging because the two
phenomena (using between-study information and correcting missing-data bias) both move the point estimate towards
the true value. However this is not necessarily the case, and results for data 5b show the two effects cancelling out;
consequently, model 4 gives results similar to those from models 1 and 2.

Overall, these results are not encouraging for model 4. When it reduced bias (data 4b), it only removed half the bias
(and only in the NCH case), and part of the bias reduction arose from a second bias (from compromising randomization)
acting in the opposite direction.

6 EXAMPLE: INHALED CORTICOSTEROIDS

From an ongoing empirical investigation,28 we select one network, which shows a large difference between models, in
order to improve our understanding of the differences between the models. The selected network comprises 18 random-
ized trials comparing seven inhaled corticosteroids with placebo in the treatment of chronic asthma.29 The treatments are
coded: 1, placebo; 2, beclomethasone; 3, budesonide; 4, ciclesonide; 5, flunisolide; 6, fluticasone; 7, mometasone; and 8,
triamcinolone. The outcome considered here is elimination of oral corticosteroid use. The data (Table 3) have zero events
in four of the control arms, which is handled by our use of the exact binomial likelihood for the data.

There are no head-to-head comparisons of the inhaled corticosteroids so this is a “star” network (Supplementary
Figure S5). A L'Abbé plot shows that the studies vary widely both in treatment effect (distance from the diagonal line)
and underlying risk (horizontal axis) (Figure 3). Variation in underlying risk is further explored in Figure 4. Underlying
risk is very low for studies of treatment 7, low for studies of treatment 3, and highest for studies of treatments 2 and 8.
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TABLE 3 Inhaled corticosteroids network: data Study Active arm Placebo arm
Treatment Events Patients Treatment Events Patients

1 7 27 84 1 1 38
2 7 34 88 1 0 43
3 3 62 88 1 4 51
4 3 12 65 1 1 30
5 2 48 61 1 21 54
6 2 10 17 1 2 16
7 2 13 15 1 1 12
8 2 18 68 1 1 33
9 2 10 11 1 0 11

10 2 11 13 1 0 12
11 2 2 10 1 0 10
12 6 62 173 1 16 78
13 6 62 76 1 3 33
14 6 50 62 1 1 30
15 8 13 16 1 3 17
16 4 29 92 1 5 44
17 5 11 40 1 4 33
18 5 2 17 1 1 15

FIGURE 3 Inhaled corticosteroids network: L'Abbé plot. Symbol size is
proportional to number of events in study [Colour figure can be viewed at
wileyonlinelibrary.com]
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However, there is large heterogeneity between studies with the same comparator, and some studies of treatment 2 have
very low underlying risk. Because of the small numbers of studies for most contrasts, we fit only CH models to these data.
Numbers of updates were as in Section 4.2, and all autocorrelations were below 0.2 by lag 8 (after thinning).

Results of fitting all models are shown in Figure 5. Models 1 and 2 give very similar results. Compared with models
1 and 2, model 3 gives estimated overall mean treatment effects for treatment 7 versus 1 that are 2 units smaller, corre-
sponding to odds ratios seven to eight times smaller, a huge discrepancy. Smaller discrepancies are seen for contrasts 2
versus 1 (0.7 units smaller), 3 versus 1 (0.5 units smaller), and 8 versus 1 (0.3 units larger). Results for other overall mean
treatment effects compared with treatment 1 differed by less than 0.1. The low result for treatment 7 is easily explained by
the very low underlying risk in studies of treatment 7, noted above: the between-studies information in model 3 shrinks
the underlying risk upwards in these studies and hence reduces the treatment effect. The less dramatic results for treat-
ments 3 and 8 have similar explanations. The result for treatment 2 is harder to explain, given its high underlying risk: it
may be that the small studies of treatment 2 with zero estimated underlying risk (Figure 4) receive greater weight in the
model fitting (which allows for heterogeneity) than in the pooled calculation of underlying risk (which weighted studies
by sample size), and this may decrease the effective underlying risk in studies of treatment 2.

Model 4 gives results similar to model 3 in most cases, and somewhat closer to models 1 and 2 in some cases, with
no difference larger than 0.3 (for treatment 7). One possible explanation for differences between models 4 and 3 is that

http://wileyonlinelibrary.com
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the treatment effect may relate to underlying risk (Section 5). However, results from model 4 suggest little association
between treatment effect and underlying risk, with the parameter 𝜌a in model (12) estimated close to 1 (0.85 with 95%
credible interval 0.72 to 0.94). A more likely explanation lies in the estimate of 𝜎a, which is about 0.5 units larger in model
4 than in model 3 (Figure 5). The treatment effect of 7 versus 1 is strongly associated with 𝜎a, with a regression slope of
0.7 in the posterior for model 4 (results not shown): together, these explain the treatment effect increase in model 4.

7 DISCUSSION

7.1 Main messages
We set out to compare CB and AB models. We found that AB models are mathematically neater, but otherwise very similar
to certain CB models. The important differences lie not between CB and AB models, but between other model features.

There has been debate between one specific CB model (model 1) and one specific AB model (model 4).3,4 The differences
between these models are much greater than between CB and AB models in general, and we used intermediate models
2 and 3 to clarify them. Key differences, summarized in Table 4, were fixed versus random study intercepts, estimands,
whether treatment effects relate to study intercepts, and missing data assumptions.

Compromising randomization through the use of random study intercepts is a feature of models 3 and 4. We found that
this can introduce important bias (Sections 4 and 6). More research is needed to identify any situations where this could

TABLE 4 Summary of model properties, assuming analysis on the odds ratio (OR) scale

Model Main estimand Other estimands Between-study information Missing data assumption
1 and 2 Conditional OR Any marginal, given external data Not used C-MAR

3 Conditional OR Any marginal, given external data Used C-MAR
4 Conditional or marginal OR Any marginal, given external data Used A-MAR

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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be of practical importance, but it must be a concern. Random study intercepts are however useful in solving otherwise
impossible problems such as disconnected networks.30

All models naturally estimate an average study-specific treatment effect such as an odds ratio. Other estimands may be
of interest when (as is usually the case) studies vary in their underlying risk (eg, their control group success fractions).
Models with random study intercepts (as in models 3 and 4) facilitate estimation of a marginal treatment effect, such as an
absolute risk reduction, across the population of studies. However, often external data are used to estimate the underlying
risk in a target population, and then the absolute risk reduction in the target population can be estimated from any of the
models (Section 3).

Model 4 allows the treatment effect to vary with underlying risk. It therefore estimates the treatment effect at the average
level of underlying outcomes, where the average is over the studies in the NMA. If there were evidence that treatment
effect varied with underlying risk, then the data analyst would replace these overall summaries with summaries at specific
levels of underlying risk. In the absence of such evidence, however, it still seems likely that treatment effect may vary
with underlying risk, and in this case, it is not clear what the estimand is for models 1 to 3. Models allowing the treatment
effect to vary with underlying risk have been described previously22; unfortunately, models that respect randomization
by using fixed study intercepts may lead to inconsistent likelihood-based estimation.31

Likelihood-based estimation of CB and AB models under ignorability make different MAR assumptions, C-MAR, and
A-MAR (Section 5). The AB models are theoretically likely to give better answers when underlying risk is related both to
treatment effect and to study design, but we did not find empirical evidence of this.

We also found that choice of prior is not simple in models with NCH, since standard choices of inverse Wishart priors
tend to be quite informative. Choice of prior is also not simple in model 4 with CH, since this involves two different
quantities (arm heterogeneity and contrast heterogeneity) which need separate priors. However, we were able to derive
evidence-based priors and use them systematically across models, so that priors were similar across models (Section 2.4).

7.2 Limitations
We defined the complete data as the results for all possible treatment arms, assuming known sample sizes (Section 5).
We could alternatively consider the sample sizes of the missing arms (1) as missing data or (2) as zero. In case (1), we
would need an additional statistical model for the sample sizes. In case (2), there are no missing data and instead we must
model the observation process. The problem of arm sizes is closely bound up with that of missing data; for example, we
have discussed how bias would arise if a study arm were included or excluded dependent on the results expected in that
study arm, but bias would also arise if a study arm's size was chosen dependent on the results expected in that study arm.
Methods for informative cluster size32 may be useful here.

Zhang et al also tackled missing data issues by implicitly considering the missing arm sizes as known.26 They considered
missing not at random (MNAR) selection models, which allow the probabilities of a particular arm being observed to
depend on the event fraction in that arm. In practice, study design occurs before patient recruitment and therefore is most
unlikely to depend on the actual results that would be observed if a particular design was adopted. Instead, study design
is likely to depend on the underlying parameters 𝜃a

ik. It would be interesting to see future work that relates study design,
size, and allocation ratio to these underlying parameters, ie, that relates Ri and {nik ∶ k ∈ Ri} to {𝜃a

ik ∶ k = 1, … ,K}.
Our analysis focused on specific hypothetical and real data sets. We have only considered star-shaped networks. We

have not repeatedly drawn data from specific models, so we are unable to systematically compare results across models or
to evaluate standard errors and confidence intervals. An empirical comparison is under way28 and future research should
assess the performance of these models using simulation studies.

The models proposed apply for AB likelihoods. With a CB likelihood, the study intercepts are implicitly treated as fixed
effects, so models 3 and 4 are not possible.

7.3 Extensions
We regarded the mean treatment effects as separate parameters. However, it is sometimes possible to gain precision
through modeling assumptions on these parameters. Where some treatments are different doses of the same drug, mod-
eling assumptions may be made across doses.33 Where some treatments are drugs in the same class, related treatments
could be allowed to have related effects.34 Where treatments are combinations of component treatments, as in com-
plex interventions, overall effects could be modeled in terms of the effects of the intervention components (and possibly
interactions).35 These models for the treatment effects could be combined with any of our models.



WHITE ET AL. 15

We have assumed consistency. In the presence of inconsistency, heterogeneity parameters such as 𝜎c represent
heterogeneity plus inconsistency. Any of the models in this paper could be extended to include inconsistency terms.10,18

The models in this paper apply to other metrics for binary data, including the risk ratio and risk difference, and to
other data types, such as count and continuous data, by changing the measurement model; the structural models are
unchanged. Marginal and conditional estimands are similar with continuous data. Binary, count, and continuous data
have the advantage that an exact AB likelihood can be constructed from aggregate data. For time-to-event data, aggre-
gate data allow only a CB likelihood, which allows only models 1 and 2 to be fitted. Individual participant data with a
time-to-event outcome allow all models to be fitted, but Bayesian estimation of such NMA models is complex.36

Jackson et al recently explored seven models for frequentist analysis of pairwise meta-analysis using AB likelihoods.12

Two models had fixed study intercepts and coded treatment as 0/1 (model 2) and −0.5/0.5 (model 4), and substantial
underestimation of the heterogeneity variance was found for model 2 but not for model 4. Three models (3, 5, and 6)
had random study intercepts and performed well, with only minor bias when between-study information disagreed with
randomized information. The models in the present paper can also be applied to pairwise meta-analysis; in this case, our
models 1 to 4 reduce to Jackson et al's models 2, 2, 3, and 6, respectively. The AB expression of our model 2 does not
reduce to any of Jackson et al's models and has been shown to differ subtly from our model 1 in the frequentist setting.8,15

However, the biased estimation of the heterogeneity variance found in frequentist analysis does not appear to extend
to the Bayesian estimation used in this paper. In fact, the methods of supplementary Appendix A can be used to show
that Jackson et al's models 2 and 4 are equivalent under Bayesian estimation with flat priors for the study intercepts.
Future research should explore performance of the different models in a Bayesian setting and explore NMA equivalents
of Jackson et al's models 4 and 5.

Handling multiarm studies is straightforward in models 2 to 4 and has been described for model 1.37 Finally, we have
assumed normal distributions for the random study intercepts, but this can be relaxed to a mixture of normals.38

7.4 Conclusions
The most important difference between models is not whether they are CB or AB, but whether they have random study
intercepts. Models with random study intercepts have both appealing and unappealing properties, but their main weak-
ness is susceptibility to bias when there are systematic differences between trials of different designs, and the evidence does
not at present support their routine use. Models with fixed study intercepts can be recommended and may be implemented
with either a CB or an AB model.
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