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Abstract  1 

Long non-coding RNAs (lncRNAs) that drive tumorigenesis are a growing focus of cancer 2 

genomics studies. To facilitate further discovery, we have created the “Cancer LncRNA 3 

Census” (CLC), a manually-curated and strictly-defined compilation of lncRNAs with 4 

causative roles in cancer. CLC has two principle applications: first, as a resource for training 5 

and benchmarking de novo identification methods; and second, as a dataset for studying the 6 

fundamental properties of these genes. 7 

CLC Version 1 comprises 122 lncRNAs implicated in 29 distinct cancers. LncRNAs are 8 

included based on functional or genetic evidence for causative roles in cancer progression. All 9 

belong to the GENCODE reference annotation, to enable integration across projects and 10 

datasets. For each entry, the evidence type, biological activity (oncogene or tumour suppressor), 11 

source reference and cancer type are recorded. Supporting its usefulness, CLC genes are 12 

significantly enriched amongst de novo predicted driver genes from PCAWG. CLC genes are 13 

distinguished from other lncRNAs by a series of features consistent with biological function, 14 

including gene length, high expression and sequence conservation of both exons and promoters. 15 

We identify a trend for CLC genes to be co-localised with known protein-coding cancer genes 16 

along the human genome. Finally, by integrating data from transposon-mutagenesis functional 17 

screens, we show that mouse orthologues of CLC genes tend also to be cancer genes.  18 

Thus CLC represents a valuable resource for research into long non-coding RNAs in 19 

cancer. Their evolutionary and genomic properties have implications for understanding disease 20 

mechanisms and point to conserved functions across ~80 million years of evolution. 21 

  22 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152769doi: bioRxiv preprint first posted online Jun. 20, 2017; 

http://dx.doi.org/10.1101/152769
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

Introduction  1 

Tumorigenesis is driven by a series of genetic mutations that promote cancer phenotypes and 2 

consequently experience positive selection (Yates & Campbell 2012). The systematic discovery of 3 

such driver mutations, and the genes whose functions they alter, has been made possible by tumour 4 

genome sequencing. By collecting the entirety of such genes for every cancer type, we aim to develop 5 

a comprehensive view of underlying processes and pathways, and thereby formulate effective, 6 

targeted therapeutic strategies. 7 

The cast of genetic elements implicated in tumorigenesis has recently grown as diverse new 8 

classes of non-coding RNAs and regulatory features have been discovered. These include the long 9 

non-coding RNAs (lncRNAs), of which tens of thousands have been catalogued (Guttman et al. 2009; 10 

Jia et al. 2010; Cabili et al. 2011; Derrien et al. 2012). LncRNAs are >200 nt long transcripts with no 11 

protein-coding capacity. Their evolutionary conservation and regulated expression, combined with a 12 

number of well-characterised examples, have together led to the view that lncRNAs are bona fide 13 

functional genes (Grote et al. 2013; Sauvageau et al. 2013; Ulitsky & Bartel 2013; Liu et al. 2017). 14 

Current thinking holds that lncRNAs function by forming complexes with proteins and RNA both 15 

inside and outside the nucleus (Guttman & Rinn 2012; Johnson & Guigó 2014).  16 

LncRNAs have been shown to play important roles in various cancers. For example, MALAT1, 17 

a potent oncogene across numerous cancers, is restricted to the nucleus and plays a housekeeping role 18 

in splicing (Gutschner & Diederichs 2012; Engreitz et al. 2014). MALAT1 is overexpressed in a 19 

variety of cancer types, and its knockdown potently reduces not only proliferation but also metastasis 20 

in vivo (Gutschner et al. 2013). MALAT1 gene is subjected to elevated mutational rates in human 21 

tumours, although it has not yet been established whether these mutations drive tumorigenesis 22 

(Lanzós et al. 2017) (PCAWG Consortium, Manuscript in Preparation). On the other hand, lncRNAs 23 

may also function as tumour suppressors. LincRNA-p21 acts as a downstream effector of p53 24 

regulation through recruitment of the repressor hnRNP-K (Huarte et al. 2010). These and other 25 

examples of lncRNAs linked to cancer, raise the question of how many more remain to be found 26 

amongst the ~99% of lncRNAs that are presently uncharacterised (Derrien et al. 2012; Quek et al. 27 

2015; Iyer et al. 2015).  28 

Recent tumour genome sequencing studies, in step with advanced bioinformatic driver-gene 29 

prediction methods, have yielded hundreds of new candidate protein-coding driver genes (Tamborero 30 

et al. 2013). For economic reasons, these studies initially restricted their attention to “exomes” or the 31 

~2% of the genome covering protein-coding exons (Chang et al. 2013). Unfortunately such a strategy 32 

ignores mutations in the remaining ~98% of genomic sequence, home to the majority of lncRNAs 33 

(Gutschner & Diederichs 2012; Derrien et al. 2012). Driver gene identification methods rely on 34 
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statistical models that make a series of assumptions about and simplifications of complex tumour 1 

mutation patterns (Lawrence et al. 2014). It is critical to test the performance of such methods using 2 

true-positive lists of known cancer driver genes. For protein-coding genes, this role has been fulfilled 3 

by the Cancer Gene Census (CGC) (Futreal et al. 2004), which is collected and regularly updated by 4 

manual annotators. Comparison of driver predictions to CGC genes facilitates further method 5 

refinement and comparison between methods (Sjoblom et al. 2006; Redon et al. 2006; Mularoni et 6 

al. 2016; Tokheim et al. 2016). 7 

In addition to its benchmarking role, the CGC resource has also been useful in identifying unique 8 

biological features of cancer genes. For example, CGC genes tend to be more conserved and longer. 9 

Furthermore, they are enriched for genes with transcription regulator activity and nucleic acid binding 10 

functions (Furney et al. 2006; Furney et al. 2008).  11 

Until very recently, efforts to discover cancer lncRNAs have depended on classical functional 12 

genomics approaches of differential expression using microarrays or RNA sequencing (Huarte et al. 13 

2010; Iyer et al. 2015). While valuable, differential expression per se is not direct evidence for 14 

causative roles in tumour evolution. To more directly identify lncRNAs that drive cancer progression, 15 

a number of methods, including several within the PCAWG Network (PCAWG Consortium, 16 

Manuscript in Preparation), have recently been developed to search for signals of positive selection 17 

using mutation maps of tumour genomes. OncodriveFML utilises nucleotide-level functional impact 18 

scores inferred from predicted changes in RNA secondary structure (Sabarinathan et al. 2013) 19 

together with an empirical significance estimate, to identify lncRNAs with an excess of high-impact 20 

mutations (Mularoni et al. 2016). Another method, ExInAtor, identifies candidates with elevated 21 

mutational load, using trinucleotide-adjusted local background (Lanzós et al. 2017). A clear 22 

impediment in both cases has been the lack of true-positive set of known lncRNA driver genes, 23 

analogous to CGC. Although there do exist databases of cancer lncRNAs, notably LncRNADisease 24 

(Chen et al. 2013) and Lnc2Cancer (Ning et al. 2016), they mix unfiltered data from numerous 25 

sources, resulting in inconsistent criteria for inclusion (including expression changes), and 26 

inconsistent gene identifiers.  27 

To facilitate the future discovery of cancer lncRNAs, and gain insights into their biology, we 28 

have compiled a highly-curated set of cases with roles in cancer processes. Here we present the 29 

Cancer LncRNA Census (CLC), the first compendium of lncRNAs with direct functional or genetic 30 

evidence for cancer roles. We demonstrate the utility of CLC in assessing the performance of driver 31 

lncRNA predictions. Through analysis of this geneset, we demonstrate that cancer lncRNAs have a 32 

unique series of features that may in future be used to assist de novo predictions. Finally, we show 33 
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that CLC genes have conserved cancer roles across the approximately 80 million years of evolution 1 

separating humans and rodents.   2 
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Results 1 

  2 

Definition of cancer related lncRNAs 3 

As part of recent efforts to identify driver lncRNAs by the Drivers and Functional Interpretation 4 

Group (PCAWG-2-5-9-14) within the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes 5 

Network (henceforth PCAWG), we discovered the need for a high-confidence reference set of cancer-6 

related lncRNA genes, which we henceforth refer to as “cancer lncRNAs”. We here present Version 7 

1 of the Cancer LncRNA Census (CLC). 8 

Cancer lncRNAs were identified from the literature using defined and consistent criteria, being 9 

direct experimental or genetic evidence for roles in cancer progression or phenotypes (see Materials 10 

and Methods). Alterations in expression alone were not considered sufficient evidence. Importantly, 11 

only lncRNAs with GENCODE identifiers were included. For every cancer lncRNA, one or more 12 

associated cancer types were collected.  13 

Attesting to the value of this approach, we identified several cases in semi-automatically 14 

annotated cancer lncRNA databases of lncRNAs that were misassigned GENCODE identifiers, 15 

usually with an overlapping protein-coding gene (Chen et al. 2013). We also excluded a number of 16 

published lncRNAs for which we could not find evidence to meet our criteria, for example CONCR, 17 

SRA1 and KCNQ1OT1 (Marchese et al. 2016; Lanz et al. 1999; Higashimoto et al. 2006). 18 

Version 1 of CLC contains 122 lncRNA genes, however, eight of them are annotated as 19 

pseudogenes rather than lncRNAs by GENCODE. The remaining 114 CLC genes correspond to 20 

0.72% of a total of 15,941 lncRNA gene loci annotated in GENCODE v24 (Derrien et al. 2012; 21 

Harrow et al. 2012) (Figure 1). For comparison, the Cancer Gene Census (CGC) (COSMIC v78, 22 

downloaded Oct, 3, 2016) lists 561 or 2.8% of protein-coding genes (Futreal et al. 2004). The entire 23 

remaining set of 15,827 lncRNA loci is henceforth referred to as “nonCLC” (Figure 1). The full CLC 24 

dataset is found in Supplementary Table 1.  25 

The cancer classification terminology used amongst the source literature for CLC was not 26 

uniform. Therefore, using the International Classification of Diseases for Oncology (World Health 27 

Organization 2013), we reassigned the cancer types described in the original research articles to a 28 

reduced set of 29 (Figure 1 and Supplementary Figure 1).  29 

Altogether, CLC contains 333 unique lncRNA-cancer type relationships. Out of 122 genes, 77 30 

(63.1%) were shown to function as oncogenes, 36 (29.5%) as tumour suppressors, and 9 (7.4%) with 31 

evidence for both activities (Figure 1 and Supplementary Figure 1). 32 

The most prolific lncRNAs, with >=16 recorded cancer types, are HOTAIR, MALAT1, MEG3 33 

and H19 (Figure 1 and Supplementary Figure 1). It is not clear whether this reflects their unique pan-34 
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cancer functionality, or is simply a result of their being amongst the most early-discovered and 1 

widely-studied lncRNAs.  2 

In vitro experiments were the most frequent evidence source, usually consisting of RNAi-3 

mediated knockdown in cultured cell lines, coupled to phenotypic assays such as proliferation or 4 

migration (Supplementary Figure 1). Far fewer have been studied in vivo, or have cancer-associated 5 

somatic or germline mutations. 19 lncRNAs had 3 or more independent evidence sources 6 

(Supplementary Figure 1).   7 

 8 

CLC and other databases 9 

There are a number of relevant lncRNA databases presently available: the Lnc2Cancer database 10 

(n= 654) (Ning et al. 2016), the LncRNADisease Database (n=121) (Chen et al. 2013), lncRNAdb 11 

(n=191) (Quek et al. 2015) and the “Cancer Related LncRNAs” set we recently produced (n=45) 12 

(Lanzós et al. 2017). CLC covers between 17% and 31% of these databases (Lnc2Cancer and 13 

LncRNADisease respectively) but none of these resources contain the complete list of genes presented 14 

here (Figure 2A). We sought to use recent unbiased proliferation screen data to independently 15 

compare cancer lncRNA databases (Zhu et al. 2016; Liu et al. 2017). Using only GENCODE-16 

annotated genes, CLC is the resource that overall has the highest fraction of independently-identified 17 

proliferation lncRNAs, although the sparse nature of the data means that this conclusion is not 18 

definitive (Figure 2B).  19 

 20 

CLC for benchmarking lncRNA driver prediction methods 21 

One of the primary motivations for CLC is to develop a true positive set for benchmarking and 22 

comparing methods for identifying driver lncRNAs. In the domain of protein-coding driver gene 23 

predictions, the Cancer Gene Census (CGC) has become such a “gold standard” training set (Futreal 24 

et al. 2004). Typically, the predicted driver genes belonging to CGC are judged to be true positives, 25 

and the fraction of these amongst predictions is used to estimate the Positive Predictive Value (PPV), 26 

or precision. This measure can be calculated for increasing cutoff levels, to assess the optimal cutoff. 27 

First, we used CLC to examine the performance of the lncRNA driver predictor ExInAtor 28 

(Lanzós et al. 2017) in recalling CLC genes using PCAWG tumour mutation data (PCAWG 29 

Consortium, Manuscript In Preparation). A total of 2,687 GENCODE lncRNAs were tested here, of 30 

which 82 (3.1%) belong to CLC. Driver predictions on several cancers at the standard False Discovery 31 

Rate (“q-value”) cutoff of 0.1 are shown for selected cancers in Figure 3A. That panel shows the 32 

CLC-defined precision (y-axis) as a function of predicted driver genes ranked by q-value (x-axis). We 33 

observe rather heterogeneous performance across cancer cohorts. This may reflect a combination of 34 
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intrinsic biological differences and differences in cohort sizes, which differs widely between the 1 

datasets shown. For the merged pan-cancer dataset, ExInAtor predicted three CLC genes amongst its 2 

top ten candidates (q-value < 0.1), a rate far in excess of the background expectation (“Baseline”, 3 

being the fraction all lncRNAs being in CLC). Similar enrichments are observed for other cancer 4 

types. These results support both the predictive value of ExInAtor, and the usefulness of CLC in 5 

assessing lncRNA driver predictors. Comprehensive CLC-based assessments of lncRNA driver 6 

discovery, across all methods and tumour cohorts in PCAWG, may be found in the main PCAWG 7 

driver prediction publication (PCAWG Consortium, Manuscript In Preparation). 8 

Finally, we assessed the precision (i.e. positive predictive value) of PCAWG lncRNA and 9 

protein-coding driver predictions across all cancers and all prediction methods (PCAWG Consortium, 10 

Manuscript In Preparation). Using the same q-value cutoff of 0.1, we found that across all cancer 11 

types and methods, a total of 8 (8.5%) of lncRNA predictions belong to CLC (Figure 3B), while a 12 

total of 139 (23.1%) of protein-coding predictions belong to CGC (Figure 3C). In terms of sensitivity, 13 

9.8% and 25.1% of CLC and CGC genes are predicted as candidates, respectively. Despite the lower 14 

detection of CLC genes in comparison to CGC genes, both sensitivity rates significantly exceed the 15 

prediction rate of nonCLC and nonCGC genes (P=0.007 and P<0.001 Fisher’s exact tests, 16 

respectively), again highlighting the usefulness of the CLC geneset (Figure 3C). 17 

 18 

CLC genes are distinguished by function- and disease-related features 19 

We recently found evidence, using a smaller set of Cancer Related LncRNAs (CRLs), that cancer 20 

lncRNAs are distinguished by various genomic and expression features indicative of biological 21 

function (Lanzós et al. 2017). We here extended these findings using a large series of potential gene 22 

features, to search for those features distinguishing CLC from nonCLC lncRNAs (Figure 4A). 23 

First, associations with expected cancer-related features were tested (Figure 4B). CLC genes are 24 

significantly more likely to have their transcription start site (TSS) within 100 kb of cancer-associated 25 

germline SNPs (“Cancer SNPs 100kb TSS”), and more likely to be either differentially-expressed or 26 

epigenetically-silenced in tumours (Yan et al. 2015) (Figure 4B). Intriguingly, we observed a 27 

tendency for CLC lncRNAs to be more likely to lie within 1 kb of known cancer protein-coding genes 28 

(“CGC 1kb TSS”) – this is explored in more detail below. Furthermore, we found that CLC genes are 29 

also significantly closer to non-cancer, phenotype-associated germline SNPs (“NonCancer SNPs 30 

100kb TSS”) in comparison to nonCLC genes (Figure 4B), supporting the biological functionality of 31 

CLC genes. 32 

We next investigated the properties of the genes themselves. As seen in Figure 4C, and consistent 33 

with our previous findings (Lanzós et al. 2017), CLC genes (“Gene length”) and their spliced products 34 
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(“Exonic length”) are significantly longer than average. No difference was observed in the ratio of 1 

exonic to total length (“Exonic content”), nor overall exon repetitive sequence coverage (“Repeats 2 

coverage”), nor GC content. 3 

CLC genes also tend to have greater evidence of function, as inferred from evolutionary 4 

conservation. Base-level conservation at various evolutionary depths was calculated for lncRNA 5 

exons and promoters (Figure 4D). Across all measures tested, using either average base-level scores 6 

or percent coverage by conserved elements, we found that CLC genes’ exons are significantly more 7 

conserved than other lncRNAs (Figure 4D). The same was observed for conservation of promoter 8 

regions. 9 

High levels of gene expression in normal tissues are known to correlate with lncRNA 10 

conservation, and are hypothesized to be a reflection of functionality (Managadze et al. 2011). 11 

Additionally, genes with oncogenic roles tend to be highly expressed in cancer samples (Furney et al. 12 

2006). We found that CLC has consistently higher steady-state expression levels across PCAWG 13 

tumours (Figure 4E), as well as healthy organs and cultured cell lines (Supplementary Figure 2).  14 

Finally, we investigated whether CLC transcripts might be initiated by any types of Transposable 15 

Elements (TEs) (see Materials and methods). We found that CLC TSSs are enriched for one category, 16 

“Simple repeats” (Supplementary Figure 3). 17 

 18 

Evidence for genomic clustering of non-coding and protein-coding cancer genes 19 

In light of recent evidence for colocalisation and coexpression of disease-related lncRNAs and 20 

protein-coding genes (Tan et al. 2017), we were curious whether such an effect holds for cancer-21 

related lncRNAs and protein-coding genes. We asked, more specifically, whether CLC genes tend to 22 

be closer to CGC genes than expected by chance, and whether this is manifested in a more co-23 

regulated expression. 24 

To this aim, we computed TSS-TSS distances from lncRNAs to protein-coding genes and we 25 

found that CLC genes on average tend to lie moderately closer to protein-coding genes of all types, 26 

compared to nonCLC lncRNAs (Supplementary Figure 4A, B). Since CLC genes are enriched for 27 

functional features (i.e. expression and conservation), we couldn’t rule out the possibility that 28 

proximity to protein-coding genes is a feature of functional lncRNAs rather than cancer lncRNA 29 

genes. In order to further investigate this possibility, we repeated the analysis dividing the nonCLC 30 

set into potentially functional nonCLC genes (PF-nonCLC) (nonCLC genes sampled to match CLC 31 

expression and conservation, N=149, Supplementary Figure 5) and “other nonCLC” (the rest of 32 

nonCLC). Interestingly, when comparing distances to any type of protein-coding genes, both CLC 33 

and PF-nonCLC are significantly closer than the rest of lncRNA (Wilcoxon test, P=0.03, 0.007, 34 
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respectively), being the PF-nonCLC genes the closest ones (median 21.9 kb, 29 kb and 37.8 kb, for 1 

PF-nonCLC, CLC, and other nonCLC, respectively) (Supplementary Figure 4C). However, when 2 

assessing specifically for distance to CGC genes, only CLC set is significantly closer than the rest of 3 

lncRNAs (Wilcoxon test, P=0.0008) and it represents the group with the lowest distance (median 4 

1,122 kb, 1,330kb and 1,607 kb for CLC, PF-nonCLC, and other nonCLC, respectively) (Figure 5A). 5 

Thus, although proximity to protein-coding genes seems to be a feature of potentially functional 6 

lncRNAs, CLC genes are closer to cancer genes compared to other lncRNAs with similar function-7 

like properties. 8 

It has been widely proposed that proximal lncRNA / protein-coding gene pairs are involved in 9 

cis-regulatory relationships, which is reflected in expression correlation (Ponjavic et al. 2009). We 10 

next asked whether proximal CLC-CGC pairs exhibit this behaviour. An important potential 11 

confounding factor, is the known positive correlation between nearby gene pairs (Marques et al. 12 

2013), and this must be controlled for. Using gene expression data across 11 human cell lines, we 13 

observed a positive correlation between CLC-CGC gene pairs for each cell type (Figure 5B). To 14 

control for the effect of proximity on correlation, we next randomly sampled a similar number of non-15 

CLC lncRNAs with matched distances (TSS-TSS) from the same CGC genes, and found that this 16 

correlation was lost (Figure 5B, “nonCLC-CGC”). To further control for a possible correlation arising 17 

from the simple fact that both CGC and CLC genes are involved in cancer, and CLC genes are in 18 

general enriched for conservation and expression, we next randomly shuffled the CLC-CGC pairs 19 

1000 times, again observing no correlation (Figure 5B, “Shuffled CLC-CGC”). Together these results 20 

show that genomically-proximal protein-coding/non-coding gene pairs exhibit an expression 21 

correlation that exceeds that expected by chance, even when controlling for genomic distance. 22 

These results prompted us to further explore the genomic localization of CLC genes relative to 23 

their proximal protein-coding gene and the nature of their neighbouring genes. Next, we observed an 24 

unexpected difference in the genomic organisation of CLC genes: when classified by orientation with 25 

respect to nearest protein-coding gene (Derrien et al. 2012), we found a significant enrichment of 26 

CLC genes immediately downstream and on the same strand as protein-coding genes (“Samestrand, 27 

pc up”, Figure 5C). Moreover, CLC genes are approximately twice as likely to lie in an upstream, 28 

divergent orientation to a protein-coding gene (“Divergent”, Figure 5C). Of these CLC genes, 20% 29 

are divergent to a CGC gene, compared to 5% for nonCLC genes (P=0.018, Fisher’s exact test) 30 

(Figure 5D), and several are divergent to protein-coding genes that have also been linked or defined 31 

to be involved in cancer, despite not being classified as CGCs (Supplementary Table 2).  32 

Given this noteworthy enrichment of CGC genes in a divergent configuration to protein-coding 33 

genes, we next inspected the latters’ function annotation. Examining their Gene Ontology (GO) terms, 34 
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molecular pathways and other gene function related terms, we found this group of genes to be 1 

enriched in GO terms for “sequence-specific DNA binding”, “DNA binding”, “tube development” 2 

and “transcriptional misregulation in cancer” (Figure 5E). These results were confirmed by another, 3 

independent GO-analysis suite (see Materials and Methods). Interestingly, three out of the top four 4 

functional groups were observed previously in a study of protein-coding genes divergent to long 5 

upstream antisense transcripts in primary mouse tissues (Lepoivre et al. 2013).  6 

Thus, CLC genes appear to be non-randomly distributed with respect to protein-coding genes, 7 

and particularly their CGC subset.  8 

 9 

Evidence for anciently conserved cancer roles of lncRNAs 10 

In mouse, numerous studies have employed unbiased forward genetic screens to identify genes 11 

that either inhibit or promote tumorigenesis (Copeland & Jenkins 2010). These studies use 12 

engineered, randomly-integrating transposons carrying bidirectional polyadenylation sites as well as 13 

strong promoters. Insertions, or clusters of insertions, called “common insertion sites” (CIS) that are 14 

identified in sequenced tumour DNA, implicate the overlapping or neighbouring gene locus as either 15 

an oncogene or tumour-suppressor gene. Although these studies have traditionally been focused on 16 

identifying protein-coding genes, they can in principle also identify non-coding RNA driver loci.  17 

We thus reasoned that comparison of mouse CISs to orthologous human regions could yield 18 

independent evidence for the functionality of human cancer lncRNAs (Figure 6A). To test this, we 19 

collected a comprehensive set of CISs in mouse (Abbott et al. 2015), consisting of 2,906 loci from 7 20 

distinct cancer types (Supplementary Table 4). These sites were then mapped to orthologous regions 21 

in the human genome, resulting in 1,309 human CISs, or hCISs. 7.3% of these CISs lie outside of 22 

protein-coding gene boundaries, and were used for the following analyses.  23 

Mapping hCISs to lncRNA annotations, we discovered altogether eight CLC genes (6.6%) 24 

carrying at least one insertion within their gene span: DLEU2, GAS5, MONC, NEAT1, PINT, PVT1, 25 

SLNCR1, XIST (Table 1). In contrast, just 61 (0.4%) nonCLC genes contained hCISs (Figure 6B). A 26 

good example is SLINCR1, shown in Figure 6C, which drives invasiveness of human melanoma cells 27 

(Schmidt et al. 2016), and whose mouse orthologue contains a CIS discovered in pancreatic cancer. 28 

We examined the possibility that hCIS insertions in these CLC genes could in fact be caused by 29 

nearby, protein-coding cancer genes. However, none of these eight CLC genes are within 100 kb of 30 

a CGC gene, with the exception of CCAT1 lncRNA, lying 58 kb from c-MYC oncogene.  31 

This analysis would suggest that CLC genes are enriched for hCISs; however, there remains the 32 

possibility that this is confounded by their greater length. To account for this, we performed two 33 

separate validations. First, sets of nonCLC genes with CLC-matched length were randomly sampled, 34 
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and the number of intersecting hCISs per unit gene length (Mb) was counted (Supplementary Figure 1 

6A). Second, CLC genes were randomly relocated in the genome, and the number of genes 2 

intersecting at least one hCIS was counted (Supplementary Figure 6B). Both analyses showed that 3 

the number of intersecting hCISs per Mb of CLC gene span is far greater than expected. In contrast, 4 

nonCLC genes show a depletion for hCIS sites (Supplementary Figure 6C).  5 

We further compared the enrichment of hCIS in protein-coding genes, lncRNA genes and other 6 

intergenic space. Compared to the genomic space they occupy, there is a clear enrichment of hCIS 7 

elements in both protein-coding CGC genes, as well as CLC lncRNAs (Figure 6D). Expressed as 8 

insertion rate per megabase of gene span, it is clear that CLC genes are targeted more frequently than 9 

background intergenic DNA and non-cancer-related protein-coding genes. Of note are the non-10 

background insertion rates for non-cancer-related protein-coding and lncRNA genes, suggesting that 11 

there remain substantial numbers of undiscovered cancer genes in both groups. 12 

Together these analyses demonstrate that CLC genes are orthologous to mouse cancer-causing 13 

genomic loci at a rate greater than expected by random chance. These identified cases, and possibly 14 

other CLC genes, display cancer functions that have been conserved over tens of millions of years 15 

since human-rodent divergence.   16 
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Discussion 1 

We have presented the Cancer LncRNA Census, the first controlled set of GENCODE-annotated 2 

lncRNAs with demonstrated roles in tumorigenesis or cancer phenotypes.  3 

The present state of knowledge of lncRNAs in cancer, and indeed lncRNAs generally, remains 4 

highly incomplete. Consequently, our aim was to create a geneset with the greatest possible 5 

confidence, by eliminating the relatively large number of published “cancer lncRNAs” with as-yet 6 

unproven causative roles in disease processes. Thus, we used a rather strict definition of cancer 7 

lncRNA, being those having direct experimental or genetic evidence for a causative role in cancer 8 

phenotypes. By this measure, gene expression changes alone do not suffice. By introducing these 9 

well-defined inclusion criteria, we hope to ensure that CLC contains the highest possible proportion 10 

of bona fide cancer genes, giving it maximum utility for de novo predictor benchmarking. In addition, 11 

its basis in GENCODE ensures portability across datasets and projects. Inevitably some well-known 12 

lncRNAs did not meet these criteria (including SRA1, CONCR, KCNQ1OT1) (Marchese et al. 2016; 13 

Lanz et al. 1999; Higashimoto et al. 2006); these may be included in future when more validation 14 

data becomes available. We believe that CLC will complement the established lncRNA databases 15 

such as lncRNAdb, LncRNADisease and Lnc2Cancer, which are more comprehensive, but are likely 16 

to have a higher false-positive rate due to their more relaxed inclusion criteria (Chen et al. 2013; Quek 17 

et al. 2015; Ning et al. 2016).  18 

De novo lncRNA driver gene discovery is likely to become increasingly important as the number 19 

of sequenced tumours grow. The creation and refinement of statistical methods for driver gene 20 

discovery will depend on the available of high-quality true positive genesets such as CLC. It will be 21 

important to continue to maintain and improve the CLC in step with anticipated growth in 22 

publications on validated cancer lncRNAs. Very recently, CRISPR-based screens (Zhu et al. 2016; 23 

Liu et al. 2017) have catalogued large numbers of lncRNAs contributing to proliferation in cancer 24 

cell lines, which will be incorporated in future versions. 25 

We used CLC to estimate the performance of de novo driver lncRNA predictions from the 26 

PCAWG project, made using the ExInAtor pipeline (Lanzós et al. 2017). Supporting the usefulness 27 

of this approach, we found an enrichment for CLC genes amongst the top-ranked driver predictions. 28 

Extending this to the full set of PCAWG driver predictors, approximately ten percent of CLC genes 29 

(9.8%) are called as drivers by at least one method (PCAWG Consortium, Manuscript In Preparation), 30 

which is lower to the rate of CGC genes identified (25.1%).  31 

The low rate of concordance between de novo predictions and CLC genes may be due to 32 

technical or biological factors. Indeed, it is important to state that we do not yet know whether CLC 33 

holds “cancer driver” lncRNAs, and indeed, how many such genes exist. In principle, lncRNAs may 34 
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play two distinct roles in cancer: first, as driver genes, defined as those whose mutations are early and 1 

positively-selected events in tumorigenesis; or second, as “downstream genes”, which do make a 2 

genuine contribution to cancer phenotypes, but through non-genetic alterations in cellular networks 3 

resulting from changes in expression, localisation or molecular interactions. These downstream genes 4 

may not display positively-selected mutational patterns, but would be expected to display cancer-5 

specific alterations in expression. A key question for the future is how lncRNAs break down between 6 

these two categories, and the utility of CLC in benchmarking de novo driver predictions will depend 7 

on this. However, the identification of lncRNAs whose silencing or overexpression is sufficient for 8 

tumour formation in mouse, would seem to suggest that they are true “driver genes”.  9 

 Analysis of the CLC geneset has broadened our understanding of the unique features of 10 

cancer lncRNAs, and generally supports the notion that lncRNAs have intrinsic biological 11 

functionality. Cancer lncRNAs are distinguished by a series of features that are consistent with both 12 

(a) roles in cancer (eg tumour expression changes), and (b) general biological functionality (eg high 13 

expression, evolutionary conservation). Elevated evolutionary conservation in the exons of CLC 14 

genes would appear to support their functionality as a mature RNA transcript, in contrast to the act of 15 

their transcription alone (Latos et al. 2012). Another intriguing observation has been the 16 

colocalisation of cancer lncRNAs with known protein-coding cancer genes: these are genomically 17 

proximal and exhibit elevated expression correlation. This points to a regulatory link between cancer 18 

lncRNAs and protein-coding genes, perhaps through chromatin looping, as described in previous 19 

reports for CCAT1 and MYC, for example (Xiang et al. 2014).  20 

One important caveat for all features discussed here is ascertainment bias: almost all lncRNAs 21 

discussed have been curated from published, single-gene studies. It is entirely possible that selection 22 

of genes for initial studies was highly non-random, and influenced by a number of factors – including 23 

high expression, evolutionary conservation and proximity to known cancer genes – that could bias 24 

our inference of lncRNA features. This may be the explanation for the observed excess of cancer 25 

lncRNAs in divergent configuration to protein-coding genes. However, the general validity of some  26 

of the CLC-specific features described here – including high expression and evolutionary 27 

conservation – were also observed recent unbiased genome-wide screens (Lanzós et al. 2017; Liu et 28 

al. 2017), suggesting that they are genuine. 29 

Despite the relatively low concordance of CLC genes with PCAWG driver predictions, the 30 

results of this study strongly support the value and key cancer role of identified lncRNAs in cancer. 31 

Most notably, the existence of a core set of eight lncRNAs with independently-identified mouse 32 

orthologues with similar cancer functions, is a powerful evidence that these genes are bona fide cancer 33 

genes, whose overexpression or silencing can drive tumour formation. To our knowledge this is the 34 
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most direct demonstration to date of anciently-conserved functions and disease roles for lncRNAs. It 1 

will be intriguing to investigate in future whether more human-mouse orthologous lncRNAs have 2 

been identified in such screens. 3 

  4 
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Materials and Methods 1 

 2 

Manual Curation 3 

All lncRNAs in lncRNAdb and those listed in Schmitt and Chang’s recent review article were 4 

collected (Quek et al. 2015; Schmitt et al. 2016). To these were added all cases from LncRNADisease 5 

and Lnc2Cancer databases (Chen et al. 2013; Ning et al. 2016). This primary list formed the basis for 6 

a manual literature search: all available publications for each gene were identified by keyword search 7 

in Pubmed. If publications were found conforming to at least one of the inclusion criteria (below) and 8 

the gene has a GENCODE ID, then it was added to CLC, with appropriate information on the 9 

associated cancer, biological activity. For the numerous cases where no GENCODE ID was supplied 10 

in the original publication, any available ID, or primer or siRNA sequence was used to identify the 11 

gene using the UCSC Genome Browser Blat tool (Kent et al. 2002).  12 

Inclusion criteria sufficient to define a cancer lncRNA and link it to a cancer type were:  13 

1. Class t: In vitro demonstration that their knockdown and/or overexpression in cultured cancer 14 

cells results in changes to cancer-associated phenotypes. These typically include proliferation rates, 15 

migration, sensitivity to apoptosis, or anchorage-independent growth.  16 

2. Class v: In vivo demonstration that their knockdown and/or overexpression in cancer cells 17 

alters their tumorigenicity when injected into animal models. 18 

3. Class g: Germline mutations or variants that predispose humans to cancer. 19 

4. Class s: Somatic mutations that show evidence for positive selection during tumour 20 

formation. 21 

An additional criteria was allowed to link an lncRNA to a cancer type, only if at least one of the 22 

above criteria was already met for another cancer: 23 

5. Class p: Prognosis: The lncRNAs expression is statistically linked to disease progression or 24 

response to treatment. 25 

If an lncRNA was found to promote tumorigenesis or cancer phenotype, it was defined as 26 

“oncogene” (og). Conversely those found to inhibit such phenotypes were defined as “tumour 27 

suppressor” (tsg). Several lncRNAs were found to have both activities recorded in different cancer 28 

types, and were given both labels (og/tsg). For every lncRNA-cancer association, a single 29 

representative publication is recorded. Finally, it is important to note that no lncRNAs were included 30 

based on evidence from previous driver gene discovery studies of the types represented by 31 

OncodriveFML, ExInAtor, ncdDetect or others described in PCAWG (Mularoni et al. 2016; Lanzós 32 

et al. 2017; Juul et al. 2017) (PCAWG Consortium, Manuscript In Preparation). 33 
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CLC set at this stage relies on GENCODE v24 annotation, and therefore all CLC genes have a 1 

GENCODE v24 ID assigned. However, data relative to GENCODE v24 was not available for all 2 

types of data and analysis used in this study (ie all data relative to PCAWG is based on GENCODE 3 

v19). Thus, for some analysis only genes also present in GENCODE v19 could be used (specified in 4 

the corresponding methods section) and the total number of genes analysed in these cases is slightly 5 

lower (107 instead of 122 CLC genes and 13,503 instead of 15,827 nonCLC).   6 

 7 

LncRNA and protein-coding driver prediction analysis 8 

LncRNA and protein-coding predictions for ExInAtor and the rest of PCAWG methods, as well 9 

as the combined list of drivers, were extracted from the consortium database (PCAWG Consortium, 10 

Manuscript In Preparation). Parameters and details about each individual methods and the combined 11 

list of drivers can be found on the main PCAWG driver publication (PCAWG Consortium, 12 

Manuscript In Preparation) and false discovery rate correction was applied on each individual cancer 13 

type for each individual method in order to define candidates (q-value cutoff of 0.1). This way, we 14 

combined the predicted candidates of each individual method in each individual cancer type 15 

(including pan-cancer). To calculate sensitivity (percentage of true positives that are predicted as 16 

candidates) and precision (percentage of predicted candidates that are true positives) for lncRNA and 17 

protein-coding predictions we used the CLC and CGC (COSMIC v78, downloaded Oct, 3, 2016) sets, 18 

respectively. To assess the statistical significance of sensitivity rates, we used Fisher’s exact test. 19 

 20 

Feature Identification 21 

We compiled several quantitative and qualitative traits of GENCODE lncRNAs and used them 22 

to compare CLC genes to the rest of lncRNAs (referred to as “nonCLC”). Analysis of quantitative 23 

traits were performed using Wilcoxon test while qualitative traits were tested using Fisher' exact test. 24 

These methods principally refer to Figure 4 and 5 as well as Supplementary Figures 2, 3, 4 and 5.  25 

Cancer SNPs: On October, 4, 2016, we collected all 2,192 SNPs related to “cancer”, “tumour” 26 

and “tumor” terms in the NHGRI-EBI Catalog of published genome-wide association studies 27 

(Hindorff et al. 2009; Welter et al. 2014) (https://www.ebi.ac.uk/gwas/home). Then we calculated the 28 

closest SNP to each lncRNA TSS using closest function from Bedtools v2.19 (Quinlan & Hall 2010) 29 

(GENCODE v24). 30 

NonCancer SNPs: On July, 31, 2017, we collected all 29,813 SNPs not related to “cancer”, 31 

“tumour” and “tumor” terms in the NHGRI-EBI Catalog of published genome-wide association 32 

studies (Hindorff et al. 2009; Welter et al. 2014) (https://www.ebi.ac.uk/gwas/home). Then we 33 
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calculated the closest SNP to each lncRNA TSS using closest function from Bedtools v2.19 (Quinlan 1 

& Hall 2010)(GENCODE v24).  2 

Epigenetically-silenced lncRNAs: We obtained a published list of 203 cancer-associated 3 

epigenetically-silenced lncRNA genes present in GENCODE v24 (Yan et al. 2015). These candidates 4 

were identified due to DNA methylation alterations in their promoter regions affecting their 5 

expression in several cancer types.  6 

Differentially expressed in cancer: We collected a list of 3,533 differentially-expressed lncRNAs 7 

in cancer compared to normal samples (Yan et al. 2015) (GENCODE v24). 8 

Sequence / gene properties: Exonic positions of each gene were defined as the projection of the 9 

union of exons from all its transcripts. Introns were defined as all remaining non-exonic nucleotides 10 

within the gene span. Repeats coverage refers to the percent of exonic nucleotides of a given gene 11 

overlapping repeats and low complexity DNA sequence regions obtained from RepeatMasker data 12 

housed in the UCSC Genome Browser (Tyner et al. 2017). Exonic content refers to the fraction of 13 

total gene span covered by exons. For this section we used GENCODE v19. 14 

Evolutionary conservation: Two types of PhastCons conservation data were used: base-level 15 

scores and conserved elements. These data for different multispecies alignments (GRCh38/hg38) 16 

were downloaded from UCSC genome browser (Tyner et al. 2017). Mean scores and percent overlap 17 

by elements were calculated for exons and promoter regions (GENCODE v24). Promoters were 18 

defined as the 200nt region centred on the annotated gene start.  19 

Expression: We used polyA+ RNA-seq data from 10 human cell lines produced by ENCODE 20 

(Djebali et al. 2012; ENCODE Project Consortium et al. 2012), from various human tissues by the 21 

Illumina Human Body Map Project (HBM) (www.illumina.com; ArrayExpress ID: E-MTAB-513), 22 

and from cancer samples from PCAWG RNAseq expression data (PCAWG Consortium, Manuscript 23 

In Preparation). In this last case, for each cancer type we computed the expression mean of genes 24 

across all RNAseq samples belonging to that cancer type (GENCODE v19). 25 

Transposable elements: We downloaded 5,520,016 transposable elements from the UCSC table 26 

browser (Karolchik et al. 2004) on August, 3, 2017. We separated them by element types and counted 27 

how many of them intersected or not with the transcription start sites of CLC and nonCLC genes, in 28 

order to detect any association with the Fisher' exact test. 29 

Distance to protein-coding genes and CGC genes: For each lncRNA we calculated the TSS to 30 

TSS distance to the closest protein-coding gene (GENCODE v24) or CGC gene (downloaded on 31 

October, 3, 2016 from Cosmic database) (Futreal et al. 2004) using closest function from Bedtools 32 

v2.19 (Quinlan & Hall 2010). In order to divide nonCLC genes into potentially functional nonCLC 33 

(PF-nonCLC) and others, we sampled the list of all nonCLC genes to get a subsample that has a 34 
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matched distribution to CLC genes in conservation (% of conserved elements, from Vertebrate Multiz 1 

Alignment 100 Species from UCSC genome browser data, in exonic regions). Then we sampled again 2 

the resulting subset to get a final subset that also matches CLC genes in terms of expression (median 3 

of expression across 16 human tissues, data from Illumina Human Body Map Project (HBM)). To 4 

create the nonCLC samples we used the matchDistribution script: 5 

https://github.com/julienlag/matchDistribution. 6 

Coexpression with closest CGC gene: We took CLC-CGC gene pairs whose TSS-TSS distance 7 

was <200kb. RNAseq data from 11 human cell lines from ENCODE was used to assess expression 8 

levels (Djebali et al. 2012; ENCODE Project Consortium et al. 2012). ENCODE RNAseq data were 9 

obtained from ENCODE Data Coordination Centre (DCC) in September 2016, 10 

https://www.encodeproject.org/matrix/?type=Experiment. All data is relative to GENCODE v24. We 11 

calculated the expression correlation of gene pairs within each of the 11 cell lines, using the Pearson 12 

measure. To control for the effect of proximity, we randomly sampled a subset of nonCLC-CGC pairs 13 

matching the same TSS-TSS distance distribution as above, and performed the same expression 14 

correlation analysis (“nonCLC-CGC”). Finally, to further control for the fact that CLC and CGC are 15 

both cancer genes, which may influence their expression correlation, we shuffled CLC-CGC pairs 16 

1000 times, and tested expression correlation for each set (“Shuffled CLC-CGC”). 17 

Genomic classification: We used an in-house script to classify lncRNA transcripts into different 18 

genomic categories based on their orientation and proximity to the closest protein-coding gene 19 

(GENCODE v24): a 10 kb distance was used to distinguish “genic” from “intergenic” lncRNAs. 20 

When transcripts belonging to the same gene had different classifications, we used the category 21 

represented by the largest number of transcripts.  22 

Functional enrichment analysis: The list of protein-coding genes (GENCODE v24) that are 23 

divergent and closer than 10 kb to CLC genes (or nonCLC) was used for a functional enrichment 24 

analysis (20 unique genes in the case of CLC analysis and 1202 in the case of nonCLC analysis). We 25 

show data obtained using g:Profiler web server (Reimand et al. 2016), g:GOSt, with default 26 

parameters for functional enrichment analysis of protein-coding genes divergent to CLC and using 27 

Bonferroni correction for protein-coding gene divergent to nonCLC. For CLC analysis we performed 28 

the same test with independent methods: Metascape (http://metascape.org) (Tripathi et al. 2015) and 29 

GeneOntoloy (Panther classification system)(Mi et al. 2013; Mi et al. 2017).  In both cases similar 30 

results were found.  31 

 32 

 33 

 34 
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Mouse mutagenesis screen analysis 1 

We extracted the genomic coordinates of transposon common insertion sites (CISs) in Mouse 2 

(GRCm38/mm10) http://ccgd-starrlab.oit.umn.edu/about.php (Abbott et al. 2015). This database 3 

contains target sites identified by transposon-based forward genetic screens in mice. LiftOver (Kent 4 

et al. 2002) was used at default settings to obtain aligned human genome coordinates (hCISs) 5 

(GRCh38/hg38). We discarded hCIS regions longer than 1000 nucleotides and those that overlap 6 

protein-coding genes, and intersected the remainders with the genomic coordinates CLC and nonCLC 7 

genes. 8 

To correctly assess the statistical enrichment of CLC in hCIS regions, we performed two control 9 

analyses:  10 

Randomly repositioning of CLC and nonCLC genes: We randomly relocated CLC/nonCLC 11 

genes 10,000 times within the whole genome using the tool shuffle from BedTools v19 (Quinlan & 12 

Hall 2010). In each iteration, we calculated the number of genes that intersected at least one hCIS, 13 

and created the distribution of these simulated values. Finally, we calculated an empirical p-value by 14 

counting how many of the simulated values were higher or equal than the real values. This analysis 15 

was performed separately for CLC and nonCLC genes.  16 

Length-matched sampling: To calculate if the enrichment of hCIS intersecting genes in CLC set 17 

is higher and statistically different from nonCLC set, while controlling by gene length, we created 18 

1000 samples of nonCLC genes with the same gene length distribution as CLC genes. Each sample 19 

was intersected with hCIS, and the number of intersecting hCISs per Mb of gene length was 20 

calculated. To create the nonCLC samples we used the matchDistribution script: 21 

https://github.com/julienlag/matchDistribution.  22 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152769doi: bioRxiv preprint first posted online Jun. 20, 2017; 

http://ccgd-starrlab.oit.umn.edu/about.php
http://dx.doi.org/10.1101/152769
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

Acknowledgements 1 

We wish to thanks Julien Lagarde (CRG) for help and advice in bioinformatic analysis. We 2 

acknowledge Romina Garrido (CRG), Deborah Re (DKF), Silvia Roesselet (DKF) and Marianne 3 

Zahn (Inselspital) for administrative support. We thank Ivo Buchhalter (DKFZ) and Sandra Koser 4 

(DKFZ) for preprocessing the SNV and expression data for the integrated analysis. Iñigo 5 

Martincorena (Sanger Institute) kindly provided the script for analysing driver prediction sensitivity. 6 

A.L. is supported by pre-doctoral fellowship FPU14/03371. This research was supported by the 7 

NCCR RNA & Disease funded by the Swiss National Science Foundation. 8 

  9 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152769doi: bioRxiv preprint first posted online Jun. 20, 2017; 

http://dx.doi.org/10.1101/152769
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

Contributions 1 

RJ conceived the project, performed manual annotation of CLC, and supervised with advice and 2 

suggestions of JS-P, LF and CH. JCF and AL performed the feature analysis and evolutionary 3 

analysis. AL performed mutation analysis.  RJ, AL and JCF drafted the manuscript and prepared the 4 

figures and supplementary material. All authors read and approved the final draft. 5 

  6 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152769doi: bioRxiv preprint first posted online Jun. 20, 2017; 

http://dx.doi.org/10.1101/152769
http://creativecommons.org/licenses/by-nc/4.0/


23 
 

Figure Legends 1 

Figure 1: Overview of the Cancer LncRNA Census. Rows represent the 122 CLC genes, 2 

columns represent 29 cancer types. Asterisk next to gene names indicate that they are predicted as 3 

drivers by PCAWG, based either on gene or promoter evidence (see Supplementary Table 1).. Blue 4 

cells indicate evidence for the involvement of a given lncRNA in that cancer type. Left column 5 

indicates functional classification: tumour suppressor (TSG), oncogene (OG) or both (OG/TSG). 6 

Above and to the right, barplots indicate the count totals of each column / row. The piechart shows 7 

the fraction that CLC within GENCODE v24 lncRNAs. Note that 8 CLC genes are classified as 8 

“pseudogenes” by GENCODE. “nonCLC” refers to all other GENCODE-annotated lncRNAs, which 9 

are used as background in comparative analyses. 10 

Figure 2: Intersection of CLC with public databases. (A) Proportional Venn diagrams 11 

displaying the overlap between CLC set and the three indicated databases. Shown are the total number 12 

of unique human lncRNAs contained in each intersection (note that for LncRNADisease, numbers 13 

refer only to cancer-related genes). Databases are divided into genes that belong to GENCODE v24 14 

annotation and others. (B) Barplot shows the percent of GENCODE v24 lncRNAs of each database 15 

that is present in the final list of cancer lncRNA candidates of two CRISPR cancer screenings (Liu et 16 

al. 2016 and Zhu et al. 2016). N represents the number of GENCODE v24 lncRNAs that could be 17 

used for the analysis. Names of the genes that overlap between the databases and the screenings are 18 

shown in each bar.   19 

Figure 3: CLC as benchmark for cancer driver predictions. (A)  CLC benchmarking of 20 

ExInAtor driver lncRNA predictions using PCAWG whole genome tumours at q-value (false 21 

discovery rate) cutoff of 0.1. Genes sorted increasingly by q-value are ranked on x axis. Percentage 22 

of CLC genes amongst cumulative set of predicted candidates at each step of the ranking (precision), 23 

are shown on the y axis. Black line shows the baseline, being the percentage of CLC genes in the 24 

whole list of genes tested. Coloured dots represent the number of candidates predicted under the q-25 

value cutoff of 0.1. “n” in the legend shows the number of CLC and total candidates for each cancer 26 

type. (B) Rate of driver gene predictions amongst CLC and nonCLC genesets (q-value cutoff of 0.1) 27 

by all the individual methods and the combined list of drivers developed in PCAWG. p-value is 28 

calculated using Fisher’s exact test for the difference between CLC and nonCLC genesets. (C) Rate 29 

of driver gene predictions amongst CGC and nonCGC genesets (q-value cutoff of 0.1) by all the 30 

individual methods and the combined list of drivers developed in PCAWG. p-value is calculated 31 

using Fisher’s exact test for the difference between CGC and nonCGC genesets. 32 

Figure 4: Distinguishing features of CLC genes. (A) Panel showing a hypothetic feature 33 

analysis example to illustrate the content of the following figures. All panels in figure 4 display 34 
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features (dots), plotted by their log fold difference (Odds Ratio in case of panel “B”) between CLC / 1 

nonCLC genesets (y-axis) and statistical significance (x-axis). In all plots dark and light green dashed 2 

lines indicate 0.05 and 0.01 significance thresholds, respectively. (B) Cancer and noncancer disease 3 

related data from indicated sources: y-axis shows the log2 of the Odds Ratio obtained by comparing 4 

CLC to nonCLC by Fisher’s exact test; x-axis displays the estimated p-value from the same test. 5 

“CGC 1 kb TSS” refers to the fraction of genes that have a nearby known CGC cancer protein-coding 6 

gene. This is explored in more detail in the next Figure. “Noncancer SNPs” refers to GWAS SNPs 7 

associated with diseases/traits other than cancer (C) Sequence and gene properties: y-axis shows the 8 

log2 fold-difference of CLC / nonCLC means; x-axis represents the p-value obtained. (D) 9 

Evolutionary conservation: “Phastc mean” indicates average base-level PhastCons score; “Elements” 10 

indicates percent coverage by PhastCons conserved elements (see Materials and Methods). Colours 11 

distinguish exons (blue) and promoters (purple). (E) Tumour RNAseq: expression levels of lncRNA 12 

genes in different cancer tissues obtained from RNAseq expression data from PCAWG. For B-D, 13 

statistical significance was calculated using Wilcoxon test. 14 

Figure 5: Evidence for genomic clustering of non-coding and protein-coding cancer genes. 15 

(A) Cumulative distribution of the genomic distance of lncRNA transcription start site (TSS) to the 16 

closest Cancer Gene Census (CGC) (protein-coding) gene TSS. LncRNAs are divided into CLC 17 

(n=122), potentially functional nonCLC genes (PF-nonCLC) (n=149), and other nonCLC genes 18 

(n=15678) (B) Boxplot shows the distribution of the gene expression correlation between CLC and 19 

their closest CGC genes in 11 human cell lines, including two control analyses (distance-matched 20 

nonCLC-CGC pairs, and shuffled CLC-CGC pairs). Correlation was calculated for gene pairs within 21 

each cell type, using Pearson method. p-value for Kolmogorov-Smirnov test is shown. (C) Genomic 22 

classification of lncRNAs. Genes are classified according to distance and orientation to the closest 23 

protein-coding gene, and these are grouped into three categories: genes closer than 10kb to closest 24 

protein-coding gene, genes overlapping a protein-coding gene and intergenic genes (>10kb from 25 

closest protein-coding gene). p-values for Fisher’s exact tests are shown. (D) The percentage of 26 

divergent CLC (left bar) and nonCLC (right bar) genes divergent to a cancer protein-coding gene 27 

(CGC). Numbers represent numbers of genes with which the percentage is calculated. p-value for 28 

Fisher’s exact test is shown.  (E) Functional annotations of the 20 protein-coding genes divergent to 29 

CLC genes from Panel C. Bars indicate the –log10 (corrected) p-value (see Materials and Methods) 30 

and are coloured based on the “enrichment”: the number of genes that contain the functional term 31 

divided by the total number of queried genes. Numbers at the end of the bars correspond to the number 32 

of genes that fall into the category.  33 
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Figure 6: Evidence for ancient conserved cancer roles of lncRNAs. (A) Functional 1 

conservation of human CLC genes was inferred by the presence of Common Insertion Sites (CIS), 2 

identified in transposon mutagenesis screens, at orthologous regions in the mouse genome. Orthology 3 

was inferred from Chain alignments and identified using LiftOver utility. (B) Number of CLC and 4 

nonCLC genes that contain human orthologous common insertion sites (hCIS) (see Table 1). 5 

Significance was calculated using Fisher’s exact test. (C) UCSC browser screenshot of a CLC gene 6 

(SLNCR1, ENSG00000227036) intersecting a CIS (yellow arrow).  (D) Number of basepairs and 7 

number of overlapping hCIS for cancer driver protein-coding genes (CGC), non cancer driver protein-8 

coding genes (nonCGC), cancer related lncRNAs (CLC), rest of GENCODE lncRNAS (nonCLC) 9 

and the rest of the genome that do not overlap any of the previous element types (intergenic). Arrows 10 

indicate the number of hCIS and the percentage for each element type. (E) Number of overlapping 11 

hCIS per megabase of genomic span for each gene class.  12 
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Supplementary Figure Legends 1 

Supplementary Figure 1: CLC summary statistics. (A) Barplot showing the non-redundant 2 

number of genes in CLC broken down by supporting evidence types. p: prognostic; t: in vitro; v: in 3 

vivo; g: germline mutations; s: somatic mutations. (B) Similar as previous, but with (redundant) 4 

number of genes per individual evidence type. (C) Histogram of genes broken down by their number 5 

of associated cancer types. (D) Histogram of cancer types, by their (redundant) number of associated 6 

lncRNAs. 7 

Supplementary Figure 2: CLC genes are highly expressed. Panels display feature analysis 8 

results similar to Figure 4 using other datasets. (A) Panel displaying the log fold difference between 9 

CLC and nonCLC genesets (y-axis) and statistical significance by Wilcoxon test (x-axis) when 10 

comparing RNAseq expression levels in human tissues (each dot represents a different tissue) from 11 

Human Body Map data. (B) Same than previous panel for expression data in human cell lines instead 12 

of tissues, from ENCODE RNAseq data.  13 

Supplementary Figure 3: CLC TSSs association with Transposable Elements.  Figure shows 14 

the comparison of the intersection of each category of Transposable elements with transcription start 15 

sites (TSS) of CLC and nonCLC genes. y-axis shows the log2 of the Odds Ratio obtained by 16 

comparing CLC to nonCLC by Fisher’s exact test; x-axis displays the estimated p-value from the 17 

same test. 18 

Supplementary Figure 4: CLC lncRNAs tend to be closer to protein-coding genes. (A) 19 

Cumulative distribution of the genomic distance from CLC and nonCLC genes, to the closest protein-20 

coding gene (NB this may be a CGC gene or not). Distances are defined as the distance of the 21 

annotated transcription start site (TSS) of each gene in the pair. p-value for Wilcoxon test is shown. 22 

(B) Same as (A) for genomic distance to closest CGC genes. (C) Same than A dividing nonCLC genes 23 

into two groups: potentially functional nonCLC (PF-nonCLC) (those nonCLC genes that are in the 24 

same range of expression and conservation than CLC genes) and other nonCLC (the rest of nonCLC 25 

genes). 26 

Supplementary Figure 5: sampling nonCLC genes. (A) Density plot comparing the 27 

percentage of PhastCons conserved elements in lncRNA exons of CLC genes and a subset of nonCLC 28 

sampled to match CLC conservation distribution. (B) Same than A but comparing the median of 29 

RNAseq expression values across 16 human tissues. NonCLC subset here is sampled from the subset 30 

obtained after matching conservation distribution.  31 

Supplementary Figure 6: hCIS enrichment corrected by gene length. (A) Distribution of the 32 

number of intersecting hCIS per Megabase (Mb) of total gene length, for 1000 subsets of nonCLC 33 

genes with same length distribution as CLC genes (grey). Vertical blue line represents the overall 34 
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value for CLC geneset: 1.42 hCIS sites per Mb of gene span. (B) Distribution of the number of genes 1 

overlapping a hCIS after 10,000 genomic randomizations of CLC genes (blue). Vertical black line 2 

represents the observed number of CLC genes (8) that intersect a hCIS. (C) Distribution of the number 3 

of intersecting genes with a hCIS after 10,000 genomic randomizations of nonCLC genes (grey). 4 

Vertical black line represents the observed number of nonCLC genes that intersect a hCIS (64). 5 

  6 
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Supplementary Tables: 1 

Supplementary Table 1: full CLC set. 2 

Supplementary Table 2: CLC – protein-coding pairs. 3 

Supplementary Table 3: GO analysis for protein-coding genes divergent to nonCLC genes. 4 

Supplementary Table 4: Counts of mouse CIS per cancer type.  5 
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Tables  1 
 2 
Table 1: List of intergenic CIS human (GRCh38) / mouse (GRCm38) gene pairs. 3 
 4 

Human 
CLC 
Name 

Human CLC ID Chr 
Human 

Start 
Human End Human Chr 

Mouse Start Mouse End Mouse PubMed 
ID 

Cancer Type 
Mouse 

DLEU2 ENSG00000231607 chr13 50,048,971 50,049,063 chr14 61,631,880 61,631,972 24316982 Liver 
DLEU2 ENSG00000231607 chr13 50,049,117 50,049,206 chr14 61,632,026 61,632,110 24316982 Liver 
GAS5 ENSG00000234741 chr1 173,864,370 173,864,435 chr1 161,038,091 161,038,156 25961939 Sarcoma 
MONC ENSG00000215386 chr21 16,539,096 16,539,161 chr16 77,598,935 77,599,000 23685747 Nervous System 
MONC ENSG00000215386 chr21 16,561,654 16,561,655 chr16 77,616,439 77,616,440 24316982 Liver 
NEAT1 ENSG00000245532 chr11 65,444,511 65,444,512 chr19 5,825,497 5,825,498 24316982 Liver 
PINT ENSG00000231721 chr7 131,049,455 131,049,456 chr6 31,179,149 31,179,150 22699621 Pancreatic 
PVT1 ENSG00000249859 chr8 128,007,970 128,007,971 chr15 62,186,646 62,186,647 22699621 Pancreatic 

SLNCR1 ENSG00000227036 chr17 72,507,275 72,507,276 chr11 113,137,613 113,137,614 22699621 Pancreatic 
XIST ENSG00000229807 chrX 73,841,539 73,841,540 chrX 103,473,862 103,473,863 24316982 Liver 
XIST ENSG00000229807 chrX 73,841,539 73,841,540 chrX 103,473,862 103,473,863 24316982 Liver 
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