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Summary

The mitochondrial contact site and cristae organization system (MICOS) mediates the formation of cristae, 

invaginations in the mitochondrial inner membrane. The highly diverged MICOS complex of the parasitic 

protist Trypanosoma brucei consists of 9 subunits. Except for two Mic10-like and a Mic60-like protein, all 

subunits are specific for kinetoplastids. Here we determined on a proteome-wide scale how ablation of 

individual MICOS subunits affects the levels of the other subunits. The results reveal co-regulation of 

TbMic10-1, TbMic10-2, TbMic16 and TbMic60, suggesting that these non-essential, integral inner 

membrane proteins form an interdependent network. Moreover, the ablation of TbMic34 and TbMic32 

reveals another network consisting of the essential, intermembrane space-localized TbMic20, TbMic32, 

TbMic34 and TbMic40, all of which are peripherally associated with the inner membrane. The 

downregulation of TbMic20, TbMic32 and TbMic34 also interferes with mitochondrial protein import and 

reduces the size of the TbMic10-containing complexes. Thus, the diverged MICOS of trypanosomes 

contains two subcomplexes: a non-essential membrane-integrated one, organized around the conserved 

Mic10 and Mic60, that mediates cristae formation, and an essential membrane-peripheral one consisting of 

four kinetoplastid-specific subunits, that is required for import of intermembrane space proteins.

Keywords: Trypanosoma brucei, mitochondria, cristae, protein import, intermembrane space
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Introduction

All mitochondria capable of oxidative phosphorylation contain cristae, invaginations which enlarge the area 

of the inner membrane (IM). Cristae divide the mitochondrial IM into two domains: the inner boundary 

membrane, which is adjacent to the outer membrane (OM) and that is enriched for protein import 

complexes, and the cristae membranes, where the electron transport chain complexes and the ATP synthase 

are localized. The two membrane domains are separated by the cristae junctions (CJs), narrow neck-like 

structures in which the IM is sharply bent. CJs are formed by the mitochondrial contact site and cristae 

organizing system (MICOS), a hetero-oligomeric protein complex consisting of at least 6-7 subunits in 

yeast and mammals, respectively (Harner et al., 2011, Hoppins et al., 2011, von der Malsburg et al., 2011, 

Alkhaja et al., 2012, Kozjak-Pavlovic, 2017). Except for the one or two peripheral membrane proteins that 

face the intermembrane space (IMS) all are integral IM proteins. MICOS is essential for the building of CJs 

and contact sites to the OM and thus for the formation of submitochondrial microcompartments optimized 

for oxidative phosphorylation (Schorr & van der Laan, 2018, Quintana-Cabrera et al., 2018, Kozjak-

Pavlovic, 2017, van der Laan et al., 2016, Rampelt et al., 2016). Moreover, the contact sites were shown to 

promote mitochondrial protein import (von der Malsburg et al., 2011, Bohnert et al., 2012, Wrobel et al., 

2015) and facilitate lipid transport (Aaltonen et al., 2016, Harner et al., 2014, Michaud et al., 2016). In a 

wider context MICOS can be viewed as a mitochondrial IM organizing structure that directly or indirectly 

influences many mitochondrial features including calcium uptake (Schorr & van der Laan, 2018) and 

mitochondrial DNA organization (Li et al., 2016, Itoh et al., 2013). It is therefore no surprise that MICOS 

dysfunction has been linked to a number of human diseases (van der Laan et al., 2016, Rampelt et al., 

2016, Kozjak-Pavlovic, 2017, Wollweber et al., 2017).  

Studies in yeast and humans identified two distinct MICOS subcomplexes organized around each of its two 

core subunits Mic10 and Mic60, respectively (Friedman et al., 2015, Ding et al., 2015, Bohnert et al., 

2015, Guarani et al., 2015, Li et al., 2016, Ott et al., 2015). The yeast Mic60 subcomplex contains Mic60 

and Mic19 and mediates contact site formation by interaction with various OM proteins and protein 

complexes including the sorting and assembly machinery (SAM), the protein translocase of the OM (TOM) 

as well as the voltage dependent anion channel (VDAC) (Korner et al., 2012, Zerbes et al., 2012, Schorr & 

van der Laan, 2018). The Mic10 subcomplex on the other hand consists of Mic10, Mic12, Mic26 and 

Mic27 and appears to be mainly devoted to the formation and maintenance of CJs (Zerbes et al., 2012).

The MICOS complex has experimentally been studied mainly in yeast and humans, both of which belong 

to the same eukaryotic supergroup Opisthokonta (Burki, 2014, Huynen et al., 2016). However, two MICOS 

subunits, Mic10 and Mic60, are evolutionarily conserved in all eukaryotes that have cristae-containing 

mitochondria (Munoz-Gomez et al., 2015, Munoz-Gomez et al., 2017). Moreover, Mic60 orthologues are 

found in -proteobacteria, suggesting that a Mic60-like protein was present in the bacterial ancestor that 
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was converted into the mitochondrion (Munoz-Gomez et al., 2017, Tarasenko et al., 2017, Munoz-Gomez 

et al., 2015).

The only experimentally studied MICOS complex outside the Opisthokonta is the one of the parasitic 

protist Trypanosoma brucei, a member of the eukaryotic supergroup Excavata (Burki, 2014, Munoz-

Gomez et al., 2015). Identification of the Mic10 orthologues in the T. brucei genome opened the way for 

the characterization of its MICOS complex (Kaurov et al., 2018). Pulldown experiments using epitope 

tagged Mic10 orthologues recovered 9 proteins. Moreover, the same set of proteins was consistently 

detected by several reciprocal immunoprecipitations (IPs) using the newly identified MICOS subunits. 

Three of them are conserved: the two Mic10 paralogues, termed TbMic10-1 and TbMic10-2, and a putative 

Mic60 orthologue, termed TbMic60, which shows a similiar domain structure as the yeast protein but lacks 

the mitofilin domain. It has been suggested that the absence of this domain might be compensated for by 

association of TbMic60 with the peripheral membrane protein TbMic34 which has two coiled-coiled 

domains (Kaurov et al., 2018). The remaining trypanosomal MICOS subunits TbMic16, TbMic17, 

TbMic20, TbMic32, TbMic34 and TbMic40 are unique to the kinetoplastid flagellates. The T. brucei 

MICOS was shown to be required for the maintenance of the typical discoidal cristae found in the 

kinetoplastids and euglenids. Moreover, ablation of the thioredoxin-like protein TbMic20 inhibited import 

of IMS-localized proteins suggesting it may be the long sought functional analogue of Mia40 (Kaurov et 

al., 2018), that seems to be absent from kinetoplastids (Basu et al., 2013, Haindrich et al., 2017). Mia40 is 

the central catalyst of mitochondrial intermembrane space assembly (MIA) pathway that mediates the 

oxidative-folding IMS proteins to sequester them in the IMS (Mordas & Tokatlidis, 2015, Stojanovski et 

al., 2012).

All trypanosomal MICOS subunits are present in a complex bigger than 1 MDa that was difficult to resolve 

by blue native polyacrylamide electrophoresis (BN-PAGE) (Kaurov et al., 2018). However, using IPs and 

BN-PAGE it was not possible to deduce whether the trypanosomal MICOS complex is organized into two 

subcomplexes as is the case in yeast and mammals. Thus, we decided to combine knockout/knockdown of 

individual MICOS components with proteome-wide analyses to investigate which subunits of the 

trypanosomal MICOS subunits might form networks whose members depend on each other. 

Results

TbMic10 strains define a network of integral membrane MICOS subunits

Using serial transfections two knockout cell lines, TbMic10-1 and TbMic10-2, were produced in which 

both alleles of either TbMic10-1 or TbMic10-2 were replaced by antibiotic resistance cassettes. Growth of 

the TbMic10-2 cell line was not altered and that of the TbMic10-1 cell line was only slightly affected in 
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media containing or lacking glucose (Fig. 1). In the latter case cells depend on oxidative phosphorylation 

for energy conversion (Lamour et al., 2005). Thus, as reported before (Kaurov et al., 2018), neither 

TbMic10-1 nor TbMic10-2 is essential for growth of procyclic T. brucei in culture. 

Next, we compared the proteomes of mitochondria-enriched fractions of the bMic10-1 cell line with its 

parental cell line having two intact alleles of TbMic10-1. Proteins in the fractions of the two cell lines were 

quantified by mass spectrometry (MS) using peptide stable isotope dimethyl labelling (Peikert et al., 2017). 

Lack of TbMic10-1 resulted in a significant, approximately 16-fold, reduction of TbMic16 (Fig. 1B, left 

panel). TbMic10-2 and TbMic60 are also downregulated although to a lesser extent and with quite high 

variability between sample replicates. All other MICOS subunits remained unaltered or were only 

marginally downregulated (Fig. 1B, left panel).

The corresponding experiment for the TbMic10-2 cell line gave comparable results (Fig. 1B, right panel). 

Again, an approximately 16-fold decrease of TbMic16 was observed. Moreover, the level of TbMic60 was 

significantly reducedeven to a higher extent as in TbMic10-1. Like in the bMic10-1 cell line, the levels 

of all other detected MICOS subunits were not affected. Interestingly, TbMic10-1 could not be detected by 

MS. Immunoblot analysis (Fig. 1C) showed that knockout of TbMic10-2 causes a dramatic reduction in 

TbMic10-1 steady state levels. In summary, these results demonstrate that TbMic10-1, TbMic10-2, 

TbMic60 and TbMic16, all of which are integral membrane proteins, form an interdependent network. 

Ablation of either of the two paralogous MICOS core subunits, TbMic10-1 and TbMic10-2, impairs the 

stability of all other members of this network. 

To investigate whether the TbMic10-containing network is required for cristae formation or maintenance, 

we analyzed TbMic10-1 and its parental cell line by transmission electron microscopy (EM). The ratio 

between the lengths of the cristae membranes and the OM (a proxy for the adjacent inner boundary 

membranes) was blindly quantified from a randomized selection of pictures from both cell lines. A 

significant reduction of cristae membranes in the TbMic10-1 cell line was evident, suggesting that the 

TbMic10-containing network is required for CJ formation (Fig. 2). Moreover, it can be concluded that 

cristae membranes can be dramatically reduced without affecting growth of procyclic T. brucei in culture. 

This is further supported by the observation that in the T. brucei strain 29-13, investigated in the present 

study, ablation of TbMic60 does not interfere with growth (S1 Fig.). 

Knockdown of TbMic34 defines a soluble second MICOS subunits network

TbMic34 is a trypanosomal MICOS subunit that is not part of the TbMic10-containing network defined 

above. The protein is of special interest since it was suggested to compensate for the lacking mitofilin 

domain of TbMic60 (Kaurov et al., 2018). Carbonate extraction at high pH shows that C-terminally tagged 
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TbMic34 fractionates with soluble proteins (Kaurov et al., 2018). indicating that tagged TbMic34 is a 

peripheral membrane protein that is tightly associated with the MICOS complex. 

Knockdown of TbMic34 causes a growth arrest (Fig. 3A). However, the levels of TbMic10-1, the atypical 

protein translocase of the OM 40 (ATOM40) (Schneider, 2018) and VDAC remain constant (Fig. 3B). 

Interestingly, we observe an accumulation of cytochrome oxidase subunit 4 (CoxIV) uncleaved precursor 

and in parallel a reduction of its mature form, which indicates an inhibition of mitochondrial protein import 

(Wenger et al., 2017) (Fig. 3B, lowest panel). A protein import phenotype related to CoxIV was also 

evident after knockdown of TbMic20 (Fig. S2), the putative catalyst for import of IMS proteins (Kaurov et 

al., 2018) such as the small Tim proteins (Wenger et al., 2017). Inhibition of protein import after knock 

down of TbMic20 was also directly analyzed using in vitro assays. Fig. S2C shows that when in vitro 

translated CoxIV precursor is incubated with mitochondria that were isolated from the uninduced 

TbMic20-RNAi cell line the substrate is processed to its mature form and becomes resistant to externally 

added proteases. Moreover, import as expected for an IM protein, requires an intact membrane potential. 

However, when the same experiment was done with mitochondria isolated from the induced TbMic20 

RNAi cell line essentially no import was observed, irrespectively whether they had an intact membrane 

potential or not. 

To get a global view of the effect upon TbMic34 knockdown, we analyzed the proteome of mitochondria-

enriched fractions using SILAC at two time points after RNAi induction. 2.5 days after RNAi induction a 

downregulation of a subset of MICOS subunits was observed (Fig. 4A). Besides the RNAi target TbMic34, 

the levels of the essential MICOS components TbMic20, TbMic32 and TbMic40 were significantly 

reduced, whereas the TbMic10-containing network was not affected. This finding defines a second network 

of MICOS subunits whose stability depends on TbMic34. All of its members are membrane-associated 

soluble proteins that reside in the IMS. 

At the later RNAi induction time point (3.5 days) indirect effects could be observed (Fig. 4B). Besides the 

downregulation of the TbMic34-containing network, a reduction in the levels of many proteins that are 

known or predicted to be localized, in the IMS (Peikert et al., 2017) was measured. Thus, the observed 

results phenocopy what has previously been observed for the TbMic20 knockdown cell line (Kaurov et al., 

2018) and therefore support the notion that TbMic20 might be a functional analogue of Mia40 which has 

not been identified in trypanosomatid genomes so far (Basu et al., 2013). 

Moreover, many of the other proteins that are downregulated at the later time point are subunits of 

respiratory complexes (S2 Table). A likely cause for this could be the reduced abundance of the IMS-

localized small Tim chaperones (Wenger et al., 2017) which are required for the import of TbTim17, the 

core subunit of the trypanosomal TIM complex (Singha et al., 2008, Harsman et al., 2016).

Characterization of TbMic32 confirms a second MICOS networkA
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To further address the possible existence of a second MICOS network comprised of soluble IM proteins, 

we characterized another of its subunits, TbMic32. Fig. 5A shows that a C-terminally tagged version of 

TbMic32 is recovered in a crude mitochondrial fraction. Moreover, after carbonate extraction at high pH 

the tagged TbMic32 is found in the supernatant indicating that it is a soluble protein (Fig. 5A). TbMic32 

contains two CX9C motifs near its C-terminus, a signature found in many IMS-localized proteins (Mordas 

& Tokatlidis, 2015, Stojanovski et al., 2012). In line with this, the protein gets depleted after RNAi-

mediated ablation of TbErv1, an essential import factor for IMS proteins (Fig. 5B) (Peikert et al., 2017).

RNAi-mediated downregulation of TbMic32 results in a growth arrest as previously reported (Fig. 6A) 

(Kaurov et al., 2018). Moreover, concomitant with its ablation, a reduction of TbMic34 is observed, 

whereas the levels of TbMic10-1 and two mitochondrial OM membrane proteins (VDAC and ATOM40) 

are not affected (Fig. 6B). Interestingly, a reduction of mature CoxIV and an accumulation of its precursor 

was observed, mirroring the mitochondrial protein import defect seen upon TbMic34 knockdown. The 

levels of ATOM40 (Schneider, 2018) and VDAC were unaffected under these conditions (Fig. 6B; lower 

panels). Thus, TbMic32 affects the abundance of TbMic34 but not of TbMic10-1, leading to the conclusion 

that these two proteins are members of the second network of interdependent MICOS subunits. 

MICOS subunit networks reflect MICOS subcomplexes 

Using proteome-wide analyses of knockdown/knockout cell lines for selected MICOS subunits, we have 

defined two non-overlapping networks of MICOS subunits. The first one consists of integral membrane 

proteins, while the other one is composed of soluble IMS-localized proteins. It is difficult to prove that the 

two networks correspond to physical subcomplexes because IPs of individual subunits always recover all 9 

trypanosomal MICOS subunits. Moreover, BN-PAGE analyses show that all tagged MICOS subunits are 

present in a difficult-to-resolve, very large complex of more than 1 MDa with little evidence for 

subcomplexes (Kaurov et al., 2018). A caveat is that most of the available data has been obtained with 

tagged proteins, which may not be as efficiently integrated into the MICOS complex or subcomplexes as 

the endogenous untagged proteins. Using antibodies specific for TbMic10-1 allowed the analysis of 

TbMic10-1-containing complexes after the ablation of other MICOS subunits (Fig. 7). In untreated cells, 

most TbMic10-1 is found in the high molecular weight MICOS complex that was shown to contain all 

tagged MICOS subunits. In addition, two low abundance TbMic10-1-containing subcomplexes of 

approximately 80 and 120 kDa could be detected. Knockdown of TbMic32, TbMic34 or TbMic20, all 

members of the second, soluble network, resulted in essentially the same phenotype: a partial shift of the 

high molecular weight MICOS complex to three low molecular weight Mic10-1-containing subcomplexes 

of approximatey 80, 120 and 200 kDa. Their existence suggests that deficiency of the second MICOS 

network allows the TbMic10-1-containing network to be recovered as smaller physical subcomplexes. The 

molecular weight differences between these subcomplexes may be due to different amounts of TbMic10-1, A
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and possibly TbMic10-2, as their orthologues in yeast and mammals are known to form oligomers (Bohnert 

et al., 2015, Barbot et al., 2015). 

Discussion

BN-PAGE shows that each of the 9 tagged MICOS subunits comigrates in a very large complex of more 

than 1 MDa (Kaurov et al., 2018). Using proteome-wide analysis of cell lines depleted for specific subunits 

we show that in trypanosomes this high molecular weight MICOS complex consists of two largely 

independent functional networks of MICOS subunits that likely represent physical subcomplexes. 

The first network consists of the integral membrane proteins TbMic10-1, TbMic10-2, TbMic16 and 

TbMic60, whereas the second network comprises the soluble IMS-localized proteins TbMic20, TbMic32, 

TbMic34 and TbMic40. TbMic17 was not downregulated in the proteomes of the Mic10-1 and Mic10-2 

cell lines and is therefore not part of the first network. Whether it contributes to the second one is unclear 

since it was not detected in the SILAC RNAi analysis of TbMic34 RNAi. 

The bipartite nature of the MICOS complex is conserved among trypanosomes, yeast and humans. 

However, the resulting subcomplexes are very different in Opisthokonts as compared to trypanosomes. In 

yeast and humans they are each organized around one of the widely conserved core components, the 

integral membrane proteins Mic10 and Mic60, respectively. Mic10 is associated with the integral 

membrane proteins Mic26 and Mic27 forming the Mic10 subcomplex, whereas the Mic60 subcomplex 

includes the peripheral membrane proteins Mic19 in yeast or Mic25, the paralogue thereof in humans. The 

main function of the Mic10 subcomplex appears to be membrane sculpting and thus the building of the CJs, 

whereas the Mic60 subcomplex mainly forms the contact sites between the OM and the IM, although 

Mic60 also has a membrane-bending activity (Hessenberger et al., 2017, Tarasenko et al., 2017). Both 

subcomplexes are independently anchored in the cristae membranes, as most of their subunits are integral 

membrane proteins. Finally, it was shown that the integral IM protein Mic12 in yeast, or its orthologue in 

humans QIL12/MIC13 (Guarani et al., 2015), mediate the lateral interaction of the two subcomplexes 

(Friedman et al., 2015, Ding et al., 2015, Bohnert et al., 2015, Guarani et al., 2015, Li et al., 2016, Ott et 

al., 2015). 

While the trypanosomal MICOS contains orthologues of Mic10 and Mic60, the way the complex is 

organized in two networks is strikingly different from what is observed in yeast and mammals. One 

network of MICOS subunits is composed of the four integral membrane proteins TbMic10-1, TbMic10-2, 

TbMic16 and TbMic60. Thus, unlike in Opisthokonts, both conserved MICOS subunits, the Mic-10 

paralogues TbMic10-1 and TbMic10-2 together with TbMic60 belong to the same network, whereas all 

soluble IMS-localized proteins - TbMic34, TbMic32, TbMic20 and TbMic40 - comprise the second 

network. Therefore, rather than the lateral association of the two membrane-embedded MICOS A
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subcomplexes that is described in Opisthokonts, a vertical association of the trypanosomal subcomplexes 

between a module consisting exclusively of integral membrane proteins and a membrane peripheral 

network that includes only soluble proteins was observed (Fig. 8). The existence of two independent 

MICOS networks, composed of subunits whose stability depend on each other, suggests that the two 

subcomplexes are assembled independently. Regarding the functions of the two networks, it seems that the 

membrane-integrated subcomplex is mainly responsible for formation of CJs, whereas the most striking 

phenotype observed after the ablation of subunits of the peripheral subcomplex is an inhibition of 

mitochondrial protein import. Deletion or downregulation of individual subunits of the membrane-

integrated MICOS network does not affect growth, indicating the formation of CJs is not essential for 

procyclic T. brucei 29-13, not even when it is grown in the absence of glucose which forces the cell to rely 

on oxidative phosphorylation for energy conversion (Lamour et al., 2005). 

Ablation of individual subunits of the peripheral MICOS network in trypanosomes strongly interferes with 

mitochondrial protein import. Connections between protein import and MICOS have first been described in 

yeast, where it was shown that there are two different ways of how MICOS promotes protein import, both 

mediated by Mic60 (von der Malsburg et al., 2011, Bohnert et al., 2012, Wrobel et al., 2015). Mic60 

facilitates membrane insertion of -barrel proteins by its binding to the TOM and the SAM complexes, 

although the exact mechanism is unclear. Moreover, Mic60 transiently interacts with Mia40 and thus 

promotes import of IMS proteins by recruiting Mia40 to the vicinity of the TOM complex (von der 

Malsburg et al., 2011). Proteomics analyses of the TbMic34 RNAi cell line demonstrated that the earliest 

affected proteins are those localized in the IMS, including small Tim chaperones (Wenger et al., 2017), 

whose downregulation explains the general import phenotype that is observed at later time points. -barrel 

proteins however were not affected. Trypanosomes do not have a Mia40 orthologue (Basu et al., 2013) and 

their Mic60 orthologue is a member of the membrane integral subcomplex that is not essential for normal 

growth of the T. brucei 29-13 strain. The deficiency of IMS protein import that is seen after ablation of the 

essential membrane peripheral subcomplex can therefore not be connected to the lack of TbMic60. 

However, in T. brucei the function of Mic60 may be split between the Mic60 orthologue and TbMic34 

(Kaurov et al., 2018), the core component of the peripheral network that may functionally compensate for 

the lacking mitofilin domain of TbMic60. In this regard the peripheral MICOS network may still contain a 

Mic60 remnant corresponding to the C-terminal half of the protein. 

Nevertheless, we find it unlikely that TbMic34 is directly linked to the protein import phenotype. We prefer 

the previously proposed scenario, that the thioredoxin-like protein TbMic20 - a member of the peripheral 

MICOS subcomplex - might be a functional analogue of Mia40 and together with Erv1 directly mediate 

IMS protein import (Kaurov et al., 2018). Thus, protein import inhibition seen after the ablation of the 

peripheral MICOS network might ultimately be due to the concomitant depletion of TbMic20. However 
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presently, indirect effects cannot be excluded and more evidence is required to show that TbMic20 indeed 

is a functional analogue of Mia40.

In summary, our study illustrates the value of a comparative analysis of the MICOS complex between 

opisthokonts and excavates. Together with future studies in other organisms this will provide us with an 

"evolutionary cell biology" perspective (Richardson et al., 2015, Lynch et al., 2014, Brodsky et al., 2012) 

of the MICOS complex. This in turn should help us to determine which structural and functional features of 

the MICOS complex are universally conserved, not necessarily because of common descent but because of 

chemical and physical constraints imposed by functional selection.

Experimental procedures

Transgenic cell lines

All experiments were performed with procyclic T. brucei 29-13 and derivatives thereof (Wirtz et al., 1999). 

Double knockouts of TbMic10-1 and TbMic10-2 were generated by replacement of their ORFs of both 

alleles with the coding sequences of genes leading to resistance against phleomycin and puromycin. 

Growth of these cells was monitored in SDM-80 containing 10% (v/v) fetal calf serum supplemented with 

either 5.55 mM glucose (rich) or 50 mM N-acetylglucosamine (glucose-poor) (Lamour et al., 2005, 

Ebikeme et al., 2008). All other experiments were performed with cells cultured at 27 C in standard SDM-

79 containing 10% FCS.

Tetracycline inducible RNAi against the ORFs of TbMic34 (nt 167 to 628), TbMic32 (nt 229 - 806), 

TbMic60 (nt 386 - 669) and TbMic20 (nt 54 - 504) was achieved by stable integration of NotI-linearized 

plasmids containing stem-loop constructs targeting the indicated sequences. 

TbMic32 was tagged in situ with 3xHA (Oberholzer et al., 2005) in the background of RNAi against 

TbErv1 (Peikert et al., 2017). An additional cell line was made for inducible over-expression of a triple c-

myc tagged TbMic32 from an ectopic copy encoded on a derivative of pLEW100 (Bochud-Allemann & 

Schneider, 2002). 

Protein analysis

Digitonin extraction was used to separate cytoplasmic proteins from a crude mitochondrial pellet. In brief, 

5x107 cells were harvested, washed in PBS and incubated in 20 mM Tris-HCl pH 7.5, 0.6 M sorbitol, 2 

mM EDTA and 0.015% (w/v) digitonin for 10 min on ice. Subsequently, the suspension was centrifuged 
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for 5 min at 6’800 g at 4 C and samples containing equal cell equivalents of whole cells, the supernatant 

and the mitochondria-enriched pellet were subjected to SDS-PAGE and immunoblot analysis. 

For alkaline extraction, a mitochondria-enriched fraction was prepared as described above, resuspended in 

100 mM Na2CO3 pH11.5 and incubated for 10 min on ice. Centrifugation at 100’000 g for 10 min at 4 C 

separated the supernatant containing soluble proteins from pelleted integral membrane proteins. 

For BN-PAGE analysis, a crude mitochondrial pellet was prepared by digitonin extraction (see above) from 

1x107 cells. The pellet was then resupended in 100 µl 20 mM Tris-HCl pH 7.4, 50 mM NaCl, 10% 

glycerol, 0.1 mM EDTA and 1.5% (w/v) digitonin and proteins were solubilized by incubation on ice for 

20 min. After a clearing spin (15 min, 4 C, 21’000 g) a fraction of the supernatant corresponding to 4 x 107 

cells was separated on a 4-13 % BN-PAGE gradient gel. After electrophoresis the gel was incubated briefly 

in SDS-PAGE running buffer (25 mM Tris, 1 mM EDTA, 190 mM glycine, 0.05 % SDS) and proteins 

were blotted onto a PVDF membrane via semi-dry transfer. 

Antibodies

Polyclonal antibodies against TbMic10-1 (used in a 1:1’000 dilution) and TbMic34 (diluted 1:2’500 for 

immunoblots) were obtained upon immunization of rabbits with a synthetic peptide 

(LRKGFRGSTGVSDRESSGS ) or recombinant full length protein expressed in E. coli, respectively. All 

other antibodies are described in detail (Käser et al., 2017).

Transmission Electron Microscopy.

Transmission electron microscopy on 29-13 and TbMic10-1 knockout cells was done as described 

(Schnarwiler et al., 2014) and pictures were analyzed with ImageJ. In short, uninduced and induced 

TAC40-RNAi cells of T. brucei were fixed in culture for at least 24 h, using 2.5% glutaraldehyde in 0.15 M 

Hepes buffer. Samples were postfixed with 1% (wt/vol) osmium tetroxide, dehydrated in ascending 

concentrations of ethanol, and embedded in Epon. Ultrathin sections were stained with uranyl acetate and 

lead citrate, using an ultrostainer (Leica), and observed in a Philips CM12 electron microscope at 80 kV 

equipped with a Morada camera system, using iTEM software.

Proteolytic digestion for MS analysis

Mitochondria-enriched fractions prepared from TbMic10-1, TbMic10-2 and control cells (110 µg of 

protein per sample) as well as from SILAC-labeled tetracycline-induced and uninduced TbMic34-RNAi 
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cells (20 µg of protein per sample) were resuspended in 8 M urea/50 mM NH4HCO3. Cysteine residues 

were reduced using 5 mM Tris(2-carboxy-ethyl)phosphine/10 mM NH4HCO3 (incubation for 30 min at 

37°C) and free thiol groups were subsequently alkylated with 50 mM iodoacetamide/10 mM NH4HCO3 (30 

min at room temperature in the dark). Dithiothreitol was added to a final concentration of 20 mM to quench 

the alkylation reaction. Samples were diluted with 50 mM NH4HCO3 to a final urea concentration of 1.6 M 

and proteins were digested with trypsin (37°C, overnight). The reaction was stopped by adding acetic acid 

to a final concentration of 0.25% (v/v). Samples were desalted using StageTips and dried in vacuo 

(Rappsilber et al., 2007). 

Peptide stable isotope dimethyl labeling and high pH reversed-phase fractionation

Peptides derived from mitochondria-enriched fractions of TbMic10-1, TbMic10-2 and control cells were 

reconstituted in 100 mM tetraethylammonium bicarbonate (100 µl per 10 µg of protein). Peptides were 

labeled light, medium-heavy or heavy by stable isotope dimethyl labeling (Boersema et al., 2009) 

essentially as described previously (Peikert et al., 2017) including label-switch. For light labeling, 

formaldehyde (CH2O) and sodium cyanoborohydride (NaBH3CN) were used, medium-heavy labeling was 

performed with deutered formaldehyde (CD2O) instead of the light variant, and for heavy labeling, 13C-

containing deuterated formaldehyde (13CD2O) was used in combination with deuterated sodium 

cyanoborohydride (NaBD3CN). Labeling was performed by mixing 100 µl of reconstituted peptides with 

the respective isotopologue of formaldehyde (4% [v/v], 4 µl) and sodium cyanoborohydride (0.6 M, 4 µl) 

and incubation for 1 h at 20°C and 800 rpm. Reactions were stopped by addition of 16 µl of 1% NH3 and 

samples were subsequently acidified with 8 µl of 100% formic acid (FA). Differentially light, medium-

heavy and heavy dimethyl-labeled peptides were mixed, purified using StageTips and dried in vacuo. 

Peptides were subsequently fractionated by high pH reversed-phase chromatography on StageTips (Peikert 

et al., 2017). To this end, peptides were resuspended in 10 mM NH4OH and loaded onto StageTips 

equilibrated with 10 mM NH4OH. Peptides were fractionated by stepwise elution with 0%, 3%, 6%, 10%, 

13%, 18%, 40% and 72% (v/v) ACN/10 mM NH4OH. Solvents and peptides were applied by 

centrifugation for 1 - 2 min at 800 x g. Peptides were dried in vacuo, reconstituted in 15 µl of 0.1% (v/v) 

TFA per fraction, of which 10 µl were analyzed by liquid chromatography-mass spectrometry (LC-MS).  

LC-MS and analysis and data processing

Peptides corresponding to approximately 2 µg protein were analyzed by nano-HPLC-ESI-MS/MS on an 

Orbitrap Elite (TbMic34-RNAi experiments) or a Q Exactive (TbMic10-1/2 experiments) instrument 

(Thermo Fisher Scientific) each directly connected to an UltiMate 3000 RSLCnano HPLC system (Thermo 

Fisher Scientific). The RSLC system coupled to the Orbitrap Elite was equipped with PepMap C18 

precolumns (5 mm x 300 µm inner diameter; Thermo Scientific) for preconcentration of peptides and C18 A
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reversed-phase nano LC columns (Acclaim PepMap RSLC columns; 50 cm x 75 µm inner diameter; 

particle size 2 µm, pore size 100 Å; Thermo Scientific) for peptide separation. The RSLC system coupled 

to the Q Exactive was operated with nanoEase M/Z Symmetry C18 precolumns (20 mm x 180 µm inner 

diameter; Waters) and a nanoEase M/Z HSS C18 T3 analytic column (25 cm x 75 µm inner diameter; 

particle size 1.8 µm, pore size 100 Å; Waters). Peptides of TbMic34-RNAi experiments were loaded onto 

the precolumns at a flow rate of 30 µl/min. The solvent system used for peptide separation consisted of 4% 

(v/v) DMSO/0.1% (v/v) FA (solvent A) and 48% (v/v) methanol/30% (v/v) ACN/4% (v/v) DMSO/0.1% 

(v/v) FA (solvent B). Peptides were eluted applying a gradient of 3-60% solvent B in 315 min, 60-95% B 

in 15 min at 5 min at 95%B at a flow rate of 250 nl/min and a column temperature of 40°C. Peptides of 

TbMic10-1/2 experiments were loaded at a flow rate of 5 µl/min. Solvent system and gradient for peptide 

separation were as follows: 0.1% (v/v) FA (solvent A) and 86% (v/v) ACN (solvent B); 4-40% B in 50 

min, 40-95% B in 5 min and 5 min at 95% B; flow rate and column temperature were 300 nl/min and 40°C, 

respectively. MS data were acquired in data-dependent mode essentially as described before (Peikert et al., 

2017). 

Mass spectrometric raw data were processed using MaxQuant/Andromeda (version 1.5.5.1; (Cox et al., 

2011, Cox & Mann, 2008)) and the fasta file for T. brucei TREU927 downloaded from the TriTryp 

database (version 8.1). MaxQuant default settings were used except that only one unique peptide and one 

ratio count were required for protein identification and relative quantification. For analysis of data from 

TbMic34-RNAi SILAC experiments, Lys0/Arg0 were set as light and Lys8/Arg10 as heavy labels; for data 

from peptide stable isotope dimethyl labeling experiments (TbMic10-1/2 experiments), 

DimethLys0/DimethNter0 was set as light, DimethLys4/DimethNter4 as medium-heavy, and 

DimethLys8/DimethNter8 as heavy label. Data were visualized by plotting the mean of log10-tranformed 

normalized protein abundance ratios against the negative log10 of the corresponding p-value determined in a 

two-sided Student's t-test. Information about proteins identified and quantified in TbMic10-1/2 

experiments and TbMic34-RNAi experiments are provided in Table S1 and S2A/S2B, respectively.

Miscellaneous

Knockdown efficiency of RNAi against TbMic60 was analyzed by RT-PCR. Briefly, total RNA was 

isolated and reverse transcribed using oligo-dT primers. Resulting cDNA was amplified using a TbMic60 

specific reverse primer and a forward primer hybridizing to the spliced leader sequence ensuring that PCR 

products can only derive from cDNA and not from traces of genomic DNA. In vitro import assays were 

done as described (Hauser et al., 1996), using in vitro translated CoxIV precursor as a substrate. 
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Figure legends

Fig. 1 - Growth and proteomic characterization of the Mic10-1 and Mic10-2 cell lines.

A) Growth curves of the Mic10-1, Mic10-2 and the corresponding parent cell line T. brucei 29-13 in 

SDM80 medium containing or lacking glucose. B) Graph on the left indicates proteins reduced in 

abundance in mitochondria-enriched fractions of the Mic10-1 cell line. MS-based quantification of 

proteins from the Mic10-1 cell line versus T. brucei 29-13 cells was based on peptide stable isotope 

dimethyl labelling (n=3). Vertical dashed lines indicate a 2 and 5-fold reduction, respectively. Horizontal 

dashed line indicates a P value of 0.05. MICOS subunits are indicated with red dots. Graph on the right 

shows the same analysis for the Mic10-2 cell line. For a complete list of protein see S1 Table. C) 

Immunoblots of crude mitochondrial extracts from T. brucei 29-13, Mic10-1 and Mic10-2 grown in 

standard medium were probed for TbMic10-1 and ATOM40 as a loading control.

Fig. 2. Mic10-1 is required for cristae formation.

A) Transmission EM images from T. brucei 29-13 (left) and the TbMic10-1 cell line (right). The white 

arrows mark the cristae. B) Quantitation of the ratio between the lengths of all discernable cristae 

membranes and discernable outer membranes in individual transmission EM images of the T. brucei 29-13 

(n=19) and the TbMic10-1 cell lines (n=19). **** indicates P < 0.0001.

Fig. 3. Ablation of TbMic34 does not affect TbMic10-1 levels but inhibits protein import

A) Growth curves of uninduced (-Tet) and induced (+Tet) TbMic34 RNAi cell lines. B) Immunoblots 

of total cellular extracts from the TbMic34 RNAi cell lines induced for the indicated days were probed 

for TbMic34, TbMic10-1, ATOM40, VDAC and CoxIV using polyclonal antisera. The positions of 

precursor and mature form of CoxIV are indicated.

Fig. 4. Proteomic characterization of the TbMic34 RNAi cell line. 

The TbTim34-RNAi cell line was subjected to SILAC-based quantitative MS comparing protein 

abundances in 2.5 (A) and 3.5 days (B) induced versus uninduced mitochondria-enriched fractions. Vertical 

dashed lines indicate a 2 and 5-fold reduction, respectively. Horizontal dashed line indicates a P value of 

0.05. MICOS subunits are indicated by their names in red in the top panels. In the bottom panels MICOS 

subunits and proteins that localize or are predicted to be localized in the IMS are indicated by red and green 

dots, respectively. For a complete list of proteins see S2 Table. A
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Fig. 5. TbMic32 is a soluble IMS-localized protein.

A) Top panels, digitonin extraction of total cells (T) to separate a mitochondria-enriched fraction (P) from 

the cytosol-containing supernatant (SN). The tagged TbMic32 co-fractionates with the mitochondrial 

marker VDAC while the cytosolic elongation factor 1A (EF1a) stays in the supernatant. Bottom panels, 

carbonate extraction at pH 11.5 of the mitochondria-enriched pellet fraction (inp) probed for TbMic32-

myc. The pellet (P) and the supernatant (SN) fractions correspond to integral membrane and soluble 

proteins. VDAC and cytochrome C (Cyt C) serve as markers for integral and peripheral membrane 

proteins, respectively. B) Growth curve of an uninduced and induced TbErv1-RNAi cell line that 

constitutively expresses C-terminally HA-tagged TbMic32. Bottom panels, immunoblots of total cellular 

extracts of the same cell line probed for HA-tagged TbMic32. Time of induction is indicated. The OM 

protein VDAC serves as loading control. 

Fig. 6. Ablation of TbMic32 affects TbMic34 but not TbMic10 levels and inhibits protein import. A) 

Growth curve of an uninduced and induced TbMic32-RNAi cell line. B) Immunoblots of total cellular 

extracts from the TbMic34 RNAi cell lines induced for the indicated days were probed for TbMic34 and 

TbMic10-1 (top panel) or VDAC, ATOM40, and CoxIV (bottom panel) using polyclonal antisera. The 

positions of precursor and mature form of CoxIV are indicated.

Fig. 7. TbMic20, TbMic32 and TbMic34 RNAi disrupts the high molecular weight TbMic10-

containing complex. Mitochondria enriched fractions of the indicated uninduced and induced RNAi cell 

lines were resolved by BN-PAGE, blotted to PVDF membranes and probed for TbMic10-1. A section of 

the corresponding Coomassie-stained gel is shown as a loading control.

Fig. 8. The subcomplex architecture of yeast and trypanosomal MICOS complexes. A scheme 

comparing the laterally organized integral Mic10 and Mic60 subcomplexes of yeast with the vertically 

associated integral and membrane peripheral subcomplexes of T. brucei. Subunits are indicated by the last 

digits of their names. The twin CX9C motif bearing Mic19 and TbMic32 are shown as hairpins with two 

intramolecular thiol-bridges. TbMic17, shown with broken lines, is tentatively assigned to peripheral 

subcomplex. The transient interaction of the yeast Mic60 mitofilin domain with Mia40 is depicted by an 

arrow. The putative role of TbMic20 in MIA in an analogous way to Mia40 is shown by their red outlines 

and reduced thiol-groups. The path of electrons from Mia40/TbMic20 to Erv1 is indicated by a broken 

arrows. TbMic34 is positioned above TbMic60 to indicate it may represent the missing mitofilin domain 

present in yeast Mic60. IM is shown in grey.
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