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Fifty-nine thousand crowdsourced hail size reports, gathered in Switzerland since May 2015, are 

presented, assessed, and compared to two operational radar-based hail detection algorithms.

EXPERIENCES WITH  
>50,000 CROWDSOURCED  

HAIL REPORTS IN 
SWITZERLAND

Hélène Barras, Alessandro Hering, Andrey Martynov, Pascal-Andreas Noti,  
Urs Germann, and Olivia Martius

THE HAIL OBSERVATION GAP. Hail fall 
in Switzerland at a specific location is infrequent, 
typically very localized, and characterized by a high 
spatial variability in hailstone sizes. That said, in the 
hail hot spots, hail occurs about 2–3 times per square 
kilometer per year (Nisi et al. 2016; Punge and Kunz 
2016). As a consequence, ground observations require 
a very dense observational network and are therefore 
very expensive. Similar challenges exist for hail ob-
servations worldwide. Since the 1990s, researchers 
have attempted to fill the gap by involving the general 
public in gathering weather observations. Examples 
include the Community Collaborative Rain, Hail 

and Snow Network (CoCoRaHS) in North America 
(Cifelli et al. 2005; Reges et al. 2016), the European Se-
vere Weather Data Base (ESWD; Dotzek et al. 2009), 
the European Weather Observer application (app) 
(EWOB; Groenemeijer et al. 2017), and the Mobile 
Precipitation Identification Near the Ground Project 
(mPING) mostly in North America (Elmore et al. 
2014). Ground observations are essential for develop-
ing, verifying, and improving indirect hail detection 
and hail size estimation algorithms based on remotely 
sensed data such as weather radar observations.

In Switzerland, two radar-based hail algorithms 
have been in operation since 2008: the probability of 
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hail (POH) and the maximum expected severe hail 
size (MESHS). They are used for nowcasting applica-
tions and for insurance loss estimates, and they were 
used to create the first Swiss radar-based hail clima-
tology (Nisi et al. 2016). Recently, the algorithms were 
used to analyze the initiation and lifetime of hail cells 
and their swaths in complex topography (Nisi et al. 
2018). A first verification of POH in Switzerland by 
Nisi et al. (2016) is based on insurance car loss data. 
Insurance loss data primarily provide information on 
the presence or absence of hail in areas with insured 
assets; the hail size is estimated from the damage 
type. However, the claims are often georeferenced to 
a ZIP code rather than to the actual hail event loca-
tion. Spatially widespread information regarding the 
size of hail on the ground has so far been missing in 
Switzerland.

In May 2015, the Swiss Federal Office of Meteo-
rology and Climatology (MeteoSwiss) started to fill 
this observational gap by simultaneously launching a 
pilot network of 11 automatic hail sensors and a hail 
size crowdsourcing function in the MeteoSwiss app. 
These hail sensors record the impact of individual 
hailstones on a Makrolon disk using piezo-electric 
microphones. The signal correlates positively with 
the kinetic energy and momentum of the hailstone, 
and thus, the hailstone diameter can be estimated 
from these measurements. For more information on 
the hail sensors, see Löffler-Mang et al. (2011). As of 
2018, this pilot network is being extended to include 
a total of 80 automatic sensors that will measure 
the kinetic energy and momentum of hailstones for 
at least 8 years in the three hail hot spot regions of 
Switzerland (see Nisi et al. 2016).

The crowdsourced reports, the radar-based hail 
algorithms, and the automatic hail sensor network 
combine three sources of hail data that are of great 
complementary value. The radar hail algorithms pro-
vide automatic, spatially and temporally continuous 
estimates of the likelihood and size of hailstones at the 
ground. Automatic hail sensors have the advantage of 
measuring hail at the ground in a precise manner, but 
only at their exact location. The crowdsourced reports 
are numerous and account for much larger areas than 
automatic hail sensors, but provide subjective and less 
precise information of the true size of hail.

Trefalt et al. (2018) combined these hail data sourc-
es, as well as a newly developed dual-polarization 
radar-based hydrometeor classification (Besic et al. 
2016, 2018), in a case study of an intense hailstorm in 
the northern Prealps. This case study showed good 
agreement between POH, MESHS, and the hailstone 
sizes sourced from the MeteoSwiss app. Kunz et al. 

(2018) and Wapler et al. (2015) emphasized the benefit 
of combining multiple data sources in similar case 
studies on hail storms in Germany.

This article wil l introduce the MeteoSwiss 
crowdsourced hail reports, demonstrate a strategy 
to automatically filter them for plausibility, com-
ment on their utility and limitations, and present a 
comparison to the two radar-based hail algorithms, 
POH and MESHS.

RADAR AND CROWDSOURCED DATA. 
Radar-based hail products. We compare the reports 
with two operational radar-based hail algorithms, 
i) POH [Foote et al. (2005) based on Waldvogel et al. 
(1979)] and ii) MESHS [Joe et al. (2004) based on 
Treloar (1998)]. POH is a measure for the likelihood 
of hail occurrence, ranging from 0% to 100%. MESHS 
estimates the largest expected hail diameter in units 
of centimeters, starting at 2 cm. In Switzerland, POH 
and MESHS are used operationally and derived by 
combining freezing-level height information from 
the analysis (in real-time applications from the fore-
cast) of the Consortium for Small-Scale Modeling 
numerical weather prediction model COSMO with 
the maximum height (echo top or ET) at which a 
radar reflectivity of at least 45 dBZ for POH (50 dBZ 
for MESHS) is detected (Donaldson 1961). Both algo-
rithms are described in detail in sections 3.1 and 3.2 
in Nisi et al. (2016). MESHS differs from the maxi-
mum estimated size of hail (MESH; Witt et al. 1998), 
a radar-based hail product that is commonly used in 
North America and that integrates the reflectivity 
greater than 40 dBZ above the melting layer. The 
ET information stems from the Swiss radar network 
which consists of five dual-polarization Doppler C-
band radars. The radars scan the atmosphere at 20 
elevations from −0.2° to 40° every 5 min (Germann 
et al. 2015, 2016). POH and MESHS 2D mosaic fields 
are available in real time every 5 min on a 1 × 1 km2 
Cartesian grid covering Switzerland and surround-
ing areas.

Crowdsourced data. The hail reporting function is part 
of the app of MeteoSwiss. It is included in the page 
that shows the radar precipitation fields in animated 
form, which is one of the most popular pages of the 
app (Fig. 1a). After passing a simple plausibility check, 
the hail reports are displayed seconds after they are 
submitted, overlaid on the radar echoes, and can be 
animated in time over the past 24 h. Users who ob-
serve hail can submit information on the time, loca-
tion, and size of the hailstones. When a user submits a 
report, the current time and location of the phone are 
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suggested as default input values, but both parameters 
can be adapted manually. The location information 
stems from position tracking by the smartphone. A 
manual adaptation of the location name and/or ZIP 
code will reduce the spatial accuracy by several hun-
dred meters (depending on the size of the ZIP code 
area). The user can manually adapt the time by choos-
ing the minute of the event. Knowing if the location 
and/or time were reported manually is important for 
filtering the reports. The user then chooses a size from 
a predefined hailstone size category scheme (Fig. 1b). 
Between May 2015 and September 2017, users could 
choose between the size categories “no hail,” “coffee 
bean,” “1 Swiss Franc coin (CHF),” “5 CHF,” and “>5 
CHF” (see Table 1 for the corresponding diameters 
in millimeters). This original size category scheme 
was updated in September 2017 to include a “smaller 
than coffee bean” category, and the “>5 CHF” size was 
replaced with two categories, “golf ball” and “tennis 

ball” (see Table 1). The “smaller than a coffee bean” 
category was added to differentiate between graupel 
(<5 mm) and hail (≥5 mm). The other two categories 
extend the range of categories to one that replaces 
“>5 CHF” and another larger size that mainly serves 
to catch suspicious reports. In spring 2018, an instruc-
tion was added requesting the users to report the 
largest hailstone size that they see. In addition to the 
location, the event time [time indicated by the user; 
in CEST (UTC + 2 h) in summer and CET (UTC + 
1 h) in winter], and the hailstone size, the app stores 
the submission time (time at which the user presses 
“send”; Fig. 1b) and an anonymous user ID.

Note that users can also report “no hail.” The “no 
hail” reports provide valuable information in close 
proximity of a thunderstorm to delineate hail from 
no-hail areas. However, we do not include the “no 
hail” reports in this statistical analysis because we 
cannot use it to count false alarms, since we cannot 

Fig. 1. (a) Screenshot of the animation with radar-based precipitation rates (mm h−1, colors) and the crowd-
sourced reports (blue and white dots) on 7 May 2018. The blue dots indicate hail reports for the shown time, 
white dots indicate past reports. (b) Screenshot of the hail size category scheme in spring 2018.
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dismiss the possibility that hail did occur within the 
radar grid box (1 × 1 km2) and 5-min time step cor-
responding to a “no hail” report. To simplify reading 
the article hereafter, we will refer to the reported cat-
egories in terms of hailstone diameter (Table 1). Note 
that each category spans a wider range of diameters 
that varies according to the chosen category scheme.

SUCCESSFUL DATA ACQUISITION. From 
1 May 2015 to 31 October 2018, 59,020 MeteoSwiss 
crowdsourced hail reports were submitted by 39,733 
different user IDs on 1,203 days over an area of 
12,375 km2 (with at least one report per square kilo-
meter), which corresponds to a quarter of the Swiss 
territory. The dataset has 17,739 reports in the “no 
hail” category and 41,281 reports that indicate the 
presence of hail. More than 10 reports were submitted 
each day on 718 days, and more than 100 reports were 
submitted each day on 140 days. These are impressive 
numbers when compared to the small size and popu-
lation of Switzerland. Crowdsourcing hail with the 
MeteoSwiss mobile app has been successful for several 
reasons. First, hail is a rare natural phenomenon that 
fascinates many people, is easy to recognize, and often 
interrupts people’s activities. Second, the crowdsourc-
ing function is embedded in the radar animation 
of the MeteoSwiss weather app. This app is widely 
used, with an average of about 500,000 active users 
per day (of a population of approximately 8 million). 
Third, the MeteoSwiss mobile app has been down-
loaded more than 8 million times and is therefore the 
most popular weather app in Switzerland. The high 
number of users provides an unprecedented spatial 
and temporal observational coverage that could not 
be acquired differently given today’s observational 
methods, knowledge, and monetary restrictions. Last, 
MeteoSwiss deliberately publishes blog posts about 
the reporting function in the spring, at the beginning 
of the hail season, to encourage usage. The blog is part 
of the app and is popular.

An example of the crowdsourced data submitted 
on 31 May 2017 in the region of Thun is shown in 
Fig. 2. The 86 reports were mainly submitted from 
densely populated areas. Almost all of the 86 reports 
are located inside the POH >80% area. There are 
some reports of the largest size category collocated 
with MESHS values >60 mm. On this day, several 
reports were submitted within the same 1-km2 grid 
box. From one grid box (see coordinate 614.5/178.5 
in Fig. 2), 17 reports were submitted within 26 min; 
the maximum number of reports per individual grid 
box ever recorded within 1 h. There is quite some 
variability in the reported hailstone sizes among the 

17 reports, which points to subgrid-scale variability 
in the hailstone size, as well as to the uncertainty of 
the size estimates submitted by the app users.

CROWDSOURCED DATA ACQUISITION 
USING A GOVERNMENT APP VERSUS 
A CUSTOM APP. While the wide distribution 
of the MeteoSwiss app is a huge advantage for the 
dissemination of the app and hence the number 
of reports, working with the government weather 
app has implications for the hail reporting options. 
The app is one main warning channel for the Swiss 
authorities and, therefore, the stability of the app 
has precedence over the reporting function. Every 
additional function imperils the stability and has 
to meet strict requirements. Hence, working with a 
custom app (e.g., mPING, EWOB) dedicated solely 
to gathering information on hail (or thunderstorms) 
would have the advantage of a substantial extension 
of the reporting options. The MeteoSwiss app is 
continuously being updated and improved, and one 
next step will be to provide an official Internet page 
informing on the hail reporting function. Suggestions 
for expanding the hail reporting function include the 
option of submitting photos and reporting the hail 
cover thickness, hail shape, hail size distributions, 
hail density, hailstone temperatures, event duration, 
or the damage caused. Such information would be 
very valuable; for example, Brimelow and Taylor 
(2017) verified the MESH algorithm with hail sizes 
estimated from photos posted in social media. In ad-
dition, quality control measures could be included in 

Table 1. Original and current crowdsourcing hail 
report size category scheme, the corresponding 
approximate diameters, and range of diameters 
they cover.

Size category
Diameter 

(mm)
Diameter 

range (mm)

Original

Coffee bean 5–8 >0–15

One Swiss franc coin 23 15–27

Five Swiss francs coin 32 27–32

Larger than five Swiss francs coin >32 >32

Current

Smaller than a coffee bean >0–5 >0–5

Coffee bean 5–8 5–15

One Swiss franc coin 23 15–27

Five Swiss francs coin 32 27–37

Golf ball 43 37–55

Tennis ball 68 >55
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a custom app, such as the option to submit an email 
address to contact people who submit reports for 
later verification.

QUALITY CONTROL OF THE CROWD-
SOURCED REPORTS. Plausibility f ilters. The 
crowdsourced reports are inf luenced by human 
perception and sense of humor. This is why the 
crowdsourced data need to be quality controlled. 
Particularly for the comparison to the radar algo-
rithms, erroneous reports need to be removed. We 
apply a multistep procedure to the 41,281 MeteoSwiss 
crowdsourced hail reports (excluding “no hail” re-
ports) that is applicable in real time. First, we only 
keep the reports within an area that includes Switzer-
land and approximates the area that is well covered 
by the Swiss radar network (between 45.5°N, 5.6°E 
and 47.9°N, 10.7°E). This removes 479 (1%) reports. 

Second, any duplicate of the 
same anonymous ID, time 
(rounded to 5 min), coor-
dinate (rounded to 1 km), 
and size is removed, in case 
the same user repeats the 
same report within a few 
seconds. This criterion ac-
counts for 724 (2%) reports.

We then apply a time 
filter and discard reports 
with more than 30 min 
difference between the sub-
mission time and event 
time. The reasoning behind 
this filter being that when 
people report hail hours 
after the event happened, 
they might not remember 
the size of the hailstones 
and/or the time of the hail 
event very accurately. This 
is also one of the reasons 
why the app suggests a size 
category scheme rather 
than allowing people to 
directly estimate the size in 
centimeters. This removes 
3,195 (8%) reports.

Next, reports that are 
implausible due to the me-
teorological conditions are 
removed. This reflectivity 
filter requires a minimum 
radar reflectivity of 35 dBZ, 

that is, a convective cell, to be located in the neighbor-
hood of the report. The neighborhood method follows 
the so-called single observation neighborhood fore-
cast verification (Ebert 2008) and filters the reports 
as follows: we consider all radar grid boxes, for all 
time steps between 15 min before and 15 min after 
the reported time, whose centers are within a radius 
of 4 km from the exact report location. In most cases, 
this temporal space includes six time steps. Figure 
3 shows an example for two reports, using a radius 
of 2 km and for two time steps. Depending on the 
location of a report within its grid box, the spatial 
radius will include a different number of neighbor-
hood grid boxes. The neighborhood accounts for 
the up to 2–4-km wind drift of hailstones (Schiesser 
1990; Schmid et al. 1992; Hohl et al. 2002) and for 
a margin of error in the reporting time. This filter 
is based on radar information, as are the POH and 

Fig. 2. Maximum values of MESHS (blue grid boxes, mm), POH (green con-
tours, %), and the crowdsourced hail reports (red dots, see also Table 1) for 
31 May 2017 in the region of Thun, Switzerland. The dashed dark gray lines 
contour the areas with more than 2,000 residents per 1 km2 in the year 2017 
(Federal Statistical Office of Switzerland 2017). The light gray area shows the 
Lake of Thun. The 32-mm report on the lake was probably submitted from a 
boat. The axes indicate the Swiss Coordinate System (km, tick marks every 
5 km). The image is centered at approximately 46.802°N, 7.655°E.

1433AMERICAN METEOROLOGICAL SOCIETY |AUGUST 2019



MESHS products, and hence not fully independent. 
Unfortunately, there is no fully independent valida-
tion information available in Switzerland. However, 
the 35-dBZ threshold is smaller than the thresholds 
used to define POH and MESHS. This filter removes 
16,892 reports, that is, 41% of the reports.

Next, reports by individual users with an unusual 
reporting pattern are removed. This includes reports 
from users with at least three reports of at least three 
different sizes, including the largest size category, 
within an hour. Furthermore, we filter reports if a 

user submits more than three reports on the same 
day and chooses a different, manually adapted loca-
tion for each report. The last filter removes reports 
in which the same user submitted <5–8- or 5–8-mm 
reports and the largest size category within 2 min. 
These filters remove 327 (1%) reports.

Note that the quality control is not based on the 
number of reports for an individual event. Indeed, 
there are many cases in which single reports from 
lightly populated, remote areas are plausible and even 
confirmed by independent reports. There are also 

Fig. 3. Example radar grids at two time steps with two crowdsourced reports (R1, R2). The blue grid boxes 
indicate nonzero radar values. The circles delimit the areas that are within a radius of 2 km around each report 
and the dotted lines show which grid boxes are within the neighborhoods defined by the circles.

Fig. 4. Number of reports per size category with (a) the original size category scheme that were valid from 
May 2015 to Aug 2017 and (b) the current size category scheme (valid since Sep 2017). “No hail” reports are 
excluded. The fraction of reports that were filtered out are given as percentages above the bars and indicated 
by the dark blue color. Note the different y-axis ranges.
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several cases in which the reflectivity filter identifies 
implausible reports clustered in a populated area.

The effect of the filters on the number of reports 
for each size category is shown in Fig. 4. Considering 
both size category schemes, 19,664 or 48% of all reports 
remain after filtering. For the original size category 
scheme (Fig. 4a), 16,570 or 40% of the reports remain. 
We refer to the remaining reports collected with the 
original size category scheme as the filtered reports. Of 
the 16,570 filtered reports, 12,136 (73%) are 5–8-mm, 
3,171 (19%) are 23-mm, 653 (4%) are 32-mm, and 
610 (4%) are >32-mm reports (see Table 2, top row, 
and Fig. 4a). The filters mainly reduce the number of 
>32-mm reports. This is expected, as the largest size 
category (until September 2017, >32 mm) might be 
chosen as a joke. Figure 4b shows the filter effects for 
reports submitted using the new size category scheme. 
Since the sample size is small and because of the change 
in category scheme, we do not compare the two histo-
grams any further. The effects of altering hail reporting 
thresholds are discussed by Allen and Tippett (2015). 
The large fraction of filtered 
reports for the large size 
categories (43 and 68 mm) 
suggests that the filters are 
efficient, particularly since 
these reports were mostly 
submitted during the win-
ter half year, when such 
large hailstones are almost 
impossible. However, more 
tennis ball (68 mm) reports 
than golf ball (43 mm) re-
ports remain in the sample 
after filtering, which indi-
cates that the filters do not 
remove all untrustworthy 
reports.

Almost 81% (13,420) of 
the filtered reports were 
submitted on 100 hail days. 

The number of reports is greatest in the late afternoon 
and evening (Fig. 5), which reflects the typical thun-
derstorm diurnal cycle (e.g., Mandapaka et al. 2013; 
Nisi et al. 2018). The radar-based hail climatology 
(Nisi et al. 2016) indicates a second hail maximum at 
night that likely develops through down-valley winds 
and thunderstorm outflows converging in moist and 
unstable pre-Alpine air masses. This second maxi-
mum is not visible in the number of reports, most 
probably due to the general population being indoors. 
The spatial report density (not shown) primarily re-
flects the population density rather than the spatial 
hail frequency (see also Fig. 2) and therefore reflects 
the locations at which people and/or assets may be 
exposed, which is an advantage for hail risk studies.

Comparison of the MeteoSwiss crowdsourced hail re-
ports with independent hail information. The network 
of hail sensors under construction already captured 
five events with graupel or very small hailstones and 
three events with maximum hail diameters >20 mm. 

Table 2. Number of matches between the filtered reports and POH and MESHS for each re-
ported category, considering the radar gridbox value containing the report (A) and a 2-km and 
5-min neighborhood window around the report (B). Numbers in rows 2–5 are absolute numbers 
(percentage of filtered reports).

5–8 mm 23 mm 32 mm >32 mm Total

Number of filtered reports 12,136 3,171 653 610 16,570

Matches with POH (A) 4,506 (37%) 1,598 (50%) 263 (40%) 60 (10%) 6,427 (38%)

Matches with POH (B) 6,593 (54%) 1,971 (62%) 317 (49%) 101 (17%) 8,982 (54%)

Matches with MESHS (A) 1,139 (9%) 719 (23%) 157 (24%) 29 (5%) 2,044 (12%)

Matches with MESHS (B) 2,717 (22%) 1,306 (41%) 231 (35%) 49 (8%) 4,303 (26%)

Fig. 5. Number of crowdsourced hail reports per hour of the day and per size 
category after filtering. The legend also shows the number of reports per 
size category.
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During three of the five graupel/very small hail 
events, 1, 9, and 16 coffee bean reports (no reports 
of larger sizes) were recorded within a 2-km radius 
around the hail sensors. The MeteoSwiss crowd-
sourced hail reports submitted during the three hail 
events with hail diameters >20 mm, within 2 km of 
the sensors, were mostly equal to or larger than the 
diameters measured by automatic hail sensors. More 
events are needed to make a quantitative comparison.

Between May 2015 and July 2018, 110 filtered 
MeteoSwiss crowdsourced reports could be matched 
with 25 ESWD reports. For 21 cases, we found at 
least one MeteoSwiss report of the same size as the 
ESWD reports within the time uncertainty given 
by ESWD and within 2 km of the ESWD report. 
The MeteoSwiss crowdsourced reports for the re-
maining four cases indicated smaller hail diameters 
than the ESWD reports. In two cases, MeteoSwiss 
crowdsourced reports suggested larger hail sizes than 
indicated by ESWD. While the number of compared 
reports is too small for a conclusive statement, the 
results point toward the filtered MeteoSwiss crowd-
sourced reports being in good agreement with inde-
pendent crowdsourced data.

COMPARISON WITH RADAR-BASED HAIL 
ALGORITHMS. Matching the reports to POH and 
MESHS. We match the filtered reports to nonzero POH 
and MESHS values. We use the 16,570 filtered reports 
received with the original size category scheme, as they 
constitute 84% of the sample. Again, we use a space and 
time neighborhood to match the reports with radar 
fields. Aside from the horizontal drift of hailstones, 
arguments can be made to allow for a margin of error 
in reporting time. Users might need to move them-
selves, a car, or flowers to safety before they report the 
hail fall, or they might not remember the time of the 
hail event. In addition, hail remains on the ground for 
some time before it melts and users might report hail 
on the ground rather than the hail fall. It therefore 
might be important to consider a spatial and temporal 
neighborhood to match the reports to the radar fields. 
To illustrate the sensitivity 
of the match to the chosen 
spatial and temporal neigh-
borhoods, two methods are 
used to match the reports to 
the radar-based fields.

Method A assumes no 
spatial drift, an accurate re-
porting time, and uses the 
POH and MESHS values of 
the grid box and the 5-min 

time step closest to the reporting location and time. 
Method B uses the maximum POH or MESHS value 
within a spatial neighborhood radius of 2 km and a 
temporal neighborhood of 5 min centered around 
the exact reporting location and time. This neighbor-
hood method is identical to the method applied in 
the reflectivity filter, but with a different neighbor-
hood size (Fig. 3). Note that with the neighborhood 
method several reports might be matched with the 
same radar value. Of all filtered reports (including 
both size category schemes and excluding “no hail” 
reports), 86% (16,815 out of 19,664) are single reports 
within the respective grid box and 5-min time step. 
In 61% of cases with more than one report within 
the same grid box and 5-min time step, one unique 
size category was reported. Most of the cases (72%) 
where at least two sizes were reported within the same 
grid box and 5-min time step are combinations of 
<5–8-, 5–8-, and/or 23-mm reports. Repeating the 
analysis with only the maximum reported sizes does 
not significantly alter the results, which is why we 
conducted the analysis with all reports and not just 
the maxima. Table 2 shows the number of matches 
with POH and MESHS per size category for both 
methods. As expected, method B produces more 
matches than method A. The reports matched with 
method B but not with method A include cases in 
which hail drifted.

A sensitivity study that considered neighborhoods 
ranging between 2 and 6 km and between 5 and 
30 min revealed little sensitivity of the results. The 
largest changes in the results occur when going from 
no neighborhood (method A) to a small neighbor-
hood (method B; Table 2). Compared to the number of 
additional radar grid boxes that are considered with 
a larger neighborhood size, the increase in fraction 
of matches is relatively small (Table 3).

Only 9% of the filtered 5–8-mm reports are 
matched with MESHS using method A (Table 2). 
Since MESHS includes only hailstones ≥2 cm, a very 
low number of MESHS matches is expected for the 
smallest size class. POH estimates the probability of 

Table 3. Fraction of matches between the filtered reports and POH and 
MESHS considering different neighborhood sizes and the median number 
of grid boxes per neighborhood.

Neighborhood radii
2 km and 5 min  

(method B)
4 km and 5 min 4 km and 15 min

Matches with POH 54% 60% 67%

Matches with MESHS 26% 33% 41%

Median No. of grid boxes 
within the neighborhood

26 100 300
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hail for hailstones of all sizes. Using method A, 37% 
of the 5–8-mm reports are matched with a POH sig-
nal, and using method B, 54% are matched. For the 
23-mm category, 23% of the reports are matched with 
MESHS using method A, and 24% are matched for the 
larger 32-mm class (41% and 35%, respectively, with 
method B). Interestingly, the fraction of matched re-
ports decreases substantially for the largest size class 
(5%, method A and MESHS). This fraction is also 
very low for POH and when using method B, which 
suggests that there is still a significant number of 
reports in this category that are likely “joke” reports.

Between 46% (method B) and 72% (method A) 
of the filtered reports cannot be matched with POH 
larger than zero (74% and 88% for MESHS). There 
are several possible explanations for this. First, the 
neighborhood used to match the reports (i.e., 2 km 
and 5 min) is much more restrictive than the one used 
to filter the reports (i.e., 4 km and 15 min). However, 
increasing the matching neighborhood size does 
not greatly increase the number of matched reports 
(see Table 3). If the spatial neighborhood radius was 
doubled to 4 km, which quadruples the number of 
considered grid boxes, the total fraction of matched 
reports increases from 54% to 60% for POH and from 
26% to 33% for MESHS. If the temporal neighborhood 
radius is additionally increased from 5 to 15 min, the 
fractions further increase to 67% (POH) and 41% 
(MESHS), which still leaves 33% (POH) and 59% 
(MESHS) unmatched filtered reports.

Second, recall that POH and MESHS are defined 
using reflectivity thresholds (45 dBZ for POH and 
50 dBZ for MESHS). There is therefore a 10-dBZ 
difference between the minimum reflectivity of the 

filter (35 dBZ) and the required reflectivity for a POH 
signal. For 43% of the filtered reports that were not 
matched with POH using method B (39% for MESHS), 
the maximum reflectivity in the neighborhood was 
below the 45-dBZ threshold (50 dBZ for MESHS; not 
shown). It is therefore likely that hail (or graupel) can 
develop in Switzerland even if the radar reflectivity 
does not reach the threshold values of 45 or 50 dBZ. 
Third, the freezing-level height derived from the 
model influences the POH signal. The model may 
simulate a locally high freezing-level height stemming 
from the diabatic heating in a simulated thunderstorm 
cell. As a consequence, POH would be smaller or zero, 
since the distance between the freezing-level height 
and the maximum height with 45 dBZ would decrease. 
The same applies analogously to MESHS.

Fourth, the radar algorithms were fitted for 
convective thunderstorms happening during the 
summer season, and may miss events with graupel 
and/or small hail in the winter half year. The frac-
tion of unmatched reports is much higher between 
October and April (88% for POH, 98% for MESHS 
with method B) than between May and September 
(38%, 71%). Another reason for the large fraction of 
unmatched reports in the winter half year may be 
that users mistakenly report sleet. Finally, despite 
the filters, we likely still have an unknown number of 
erroneous reports in our sample (see Fig. 6).

Evaluation of the MeteoSwiss crowdsourced hail reports. 
The POH values of the matched reports increase with 
increasing reported size (Fig. 6a). Note that POH is 
not intended to provide any hailstone size informa-
tion. In an ideal setting, POH would be independent 

Fig. 6. Boxplots of (a) POH vs reported size and (b) MESHS vs reported size considering no neighborhood (light) 
and a neighborhood radius of 2 km and 5 min (dark). The numbers at the top of the plots indicate the number 
of values (matches) that contribute to each boxplot. The boxplots are Tukey-style whiskers with notches show-
ing the 95% confidence interval for the median m, given by m ± 1.58 × IQR/√

–
n (McGill et al. 1978). IQR is the 

interquartile range and n is the sample size (see also Krzywinski and Altman 2014).
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of the hail size. However, given how POH is defined, 
we expect POH to be higher for large hail sizes and 
lower for smaller hail sizes. Figure 4b suggests that the 
original 5–8-mm category includes reports of graupel. 
In the original scheme, “coffee bean” (5–8 mm) was 
the smallest available size category; the large fraction 
of “smaller than a coffee bean” reports in the current 
category scheme strongly suggests the presence of 
graupel in the original “coffee bean” category. This is 
consistent with the POH values for this category being 
significantly lower than the POH values for the larger 
hailstone size categories (Fig. 6a). Since the notches 
of the POH boxplots do not overlap when comparing 
the 5–8-, 23-, and 32-mm size categories, the increase 
in median POH with the reported size is significant. 
There is a significant difference between the medians 
of the method A and method B POH values when 
comparing the 5–8-, 23-, and 32-mm categories (non-
overlapping notches and Mann–Whitney U test with 
p value of 0.05, not shown). Only a small fraction of 
reports are matched with small POH values. Using 
method A, only a quarter of the matched POH values 
are below 70% for the 23- and 32-mm reports. Using 
method B, only a quarter of the values are below 80%. 
Last, more than 50% of the matched POH values for 
the 23- and 32-mm reports and for method B have 
values >98%. The large interquartile and notch range 
of the POH values matched with >32-mm reports 
reflect the much smaller sample size and might in-
dicate that this sample potentially still contains some 
incorrect reports despite the filtering.

MESHS values increase with increasing reported 
size (see Fig. 6b). This increase in the median is sig-
nificant (Mann–Whitney U test, p value of 0.05) in all 
cases except when comparing the medians of 23 and 
32 mm with >32 mm (for both methods A and B). 
This increase in median values (except for >32 mm) 
shows that the MESHS correctly recognizes the rela-
tive maximum expected size of hail above 2 cm. The 
interquartile ranges (IQRs) of MESHS span 1.5–2 cm. 
They approximate the size range that would be as-
signed to the reporting categories using the nearest 
neighbor (see Table 1). The constant IQRs suggest 
that the variance in MESHS is constant throughout 
the reported sizes.

When considering the 23- and 32-mm reports, 
MESHS is roughly 10–15 mm larger than the reported 
size, depending on whether method A or B is used 
for matching. The >32 mm and method B matching 
boxplot has lower quartile values than the boxplot of 
the MESHS values matched with 32-mm reports. As 
previously discussed, we assume that the matched 
sample likely still contains reports in which users 

exaggerated the reported size. However, the lack of 
additional fully independent data prohibits a defini-
tive statement if the users systematically overestimate 
the hail size of the largest reporting category or 
MESHS systematically underestimates the size. Since 
the sample of matched reports for >32 mm is very 
small in comparison with the other reporting cat-
egories, the incorrect reports have a larger influence. 
We therefore expect the quartiles to be larger once 
the sample size has reached several hundred reports. 
Once more 32-, 43-, and 68-mm reports are gathered, 
the IQRs for 32 mm and these larger categories can 
be meaningfully compared.

SUMMARY AND CONCLUSIONS. The crowd-
sourced hail reports gathered with the MeteoSwiss 
app constitute an extremely valuable observational 
dataset on the presence and approximate size of hail 
in Switzerland. This dataset has the advantage of 
unprecedented spatial and temporal coverage, and 
the automatic real-time processing and visualization 
is very convenient for nowcasting applications. Beside 
the scientific value of the dataset, we hope that the 
crowdsourcing function serves as a bridge between 
the general population and the world of research. 
This requires feedback from the scientists to the app 
users, which is currently provided through blog posts 
linked to the app and in newspaper articles. It will be 
extended in the future to include information on a 
dedicated website.

The reported hailstone sizes indicate that hail with 
a size close to the size of coffee beans is most abun-
dant (note that this size category likely contains also 
reports of graupel). The number of reports follows the 
typical diurnal cycle of thunderstorm activity, with 
most reports being submitted in the early evening 
and evening. The spatial distribution of the reports 
primarily reflects the population density.

While the crowdsourced dataset dramatically in-
creases the number of hail observations, they need to 
be quality controlled. Our reflectivity filter requires 
reports to be close to a radar reflectivity area of at 
least 35 dBZ. Overall, the plausibility filters remove 
approximately half of the reports in the dataset.

Our analyses suggest that except in the largest 
size category, enough false reports are filtered out 
for them to not substantially inf luence statistical 
analyses. The dense spatial and temporal coverage 
of the filtered reports allowed us to carry out a sys-
tematic comparison to the two operational, single-
polarization radar-based hail algorithms, probability 
of hail (POH) and maximum expected severe hail 
size (MESHS). The fraction of unmatched reports 
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between May and September (38% for POH and 71% 
for MESHS; using method B) suggest that POH and 
MESHS are too restrictive in identifying hail areas. 
Of these unmatched reports, 43% (39% for MESHS) 
were submitted in an area with a maximum reflectiv-
ity between 35 and 45 (or 50 for MESHS) dBZ. Using 
a lower reflectivity threshold in the algorithms may 
therefore improve their quality. However, adapting 
the radar-based algorithms should entail a quantifica-
tion of the false alarm rate, which cannot be achieved 
with the crowdsourced reports alone.

The positive correlation between reported sizes 
and the values of POH and MESHS suggest that the 
filters adequately separate plausible reports from 
improbable reports, except for the largest hail size 
category. Furthermore, the comparison of MESHS 
with the reported size shows that MESHS can be used 
as an estimate of the maximum size of hail >2 cm 
in terms of relative comparisons. Absolute MESHS 
values matched with the 23- and 32-mm categories 
exceed the reported hailstone size on average by 
1.5 cm when a spatial neighborhood is considered to 
match the crowdsourced reports with MESHS values 
(method B). This difference merits further investiga-
tion using data from the hail sensor network. If the 
measurement campaign with the 80 new automatic 
hail sensors is successful, we will be able to test this 
conclusion and further improve the hail algorithms.

ACKNOWLEDGMENTS. The implementation of the 
crowdsourcing function in the app was enthusiastically 
supported by Markus Aebischer and Bertrand Calpini (Me-
teoSwiss) and was funded by the Mobiliar Lab for Natural 
Risks of the University of Bern thanks to the help of Mat-
thias Künzler. Pascal-Andreas Noti and Andrey Martynov 
carried out a pilot study of the MeteoSwiss crowdsourced 
hail reports and the comparison to the radar algorithms 
in the framework of Pascal Noti’s master’s thesis (http://
occrdata.unibe.ch/students/theses/msc/192.pdf). We also 
thank Mattia Brughelli and Veronika Roethlisberger for 
their advice on the population data. Last but not least, we 
thank the three reviewers for their encouraging comments 
and their great suggestions for improving our article.

REFERENCES
Allen, J. T., and M. K. Tippett, 2015: The characteristics 

of United States hail reports: 1955–2014. Electron. 
J. Severe Storms Meteor., 10 (3), www.ejssm.org 
/ojs/index.php/ejssm/article/view/149/104.

Besic, N., J. Figueras i Ventura, J. Grazioli, M. Gabella, U. 
Germann, and A. Berne, 2016: Hydrometeor classifi-
cation through statistical clustering of polarimetric 

radar measurements: A semi-supervised approach. 
Atmos. Meas. Tech., 9, 4425–4445, https://doi.
org/10.5194/amt-9-4425-2016.

—, J. Gehring, C. Praz, J. Figueras i Ventura, J. Grazi-
oli, M. Gabella, U. Germann, and A. Berne, 2018: Un-
raveling hydrometeor mixtures in polarimetric radar 
measurements. Atmos. Meas. Tech., 11, 4847–4866, 
https://doi.org/10.5194/amt-11-4847-2018.

Brimelow, J. C., and N. M. Taylor, 2017: 240 Verification 
of the MESH product over the Canadian Prairies us-
ing a high-quality surface hail report dataset sourced 
from social media. 38th Conf. on Radar Meteorol-
ogy, Chicago, IL, Amer. Meteor. Soc., 240, https://
ams.confex.com/ams/38RADAR/webprogram 
/Paper321272.html.

Cifelli, R., N. Doesken, P. Kennedy, L. D. Carey, S. A. 
Rutledge, C. Gimmestad, and T. Depue, 2005: The 
community collaborative rain, hail, and snow net-
work: Informal education for scientists and citizens. 
Bull. Amer. Meteor. Soc., 86, 1069–1078, https://doi 
.org/10.1175/BAMS-86-8-1069.

Donaldson, R. J., 1961: Radar ref lectivity profiles in 
thunderstorms. J. Meteor., 18, 292–305, https://doi 
.org/10.1175/1520-0469(1961)018<0292:RRPIT>2 
.0.CO;2.

Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. 
Holzer, 2009: Overview of ESSL’s severe convective 
storms research using the European Severe Weather 
Database ESWD. Atmos. Res., 93, 575–586, https://
doi.org/10.1016/j.atmosres.2008.10.020.

Ebert, E. E., 2008: Fuzzy verification of high-reso-
lution gridded forecasts: A review and proposed 
framework. Meteor. Appl., 15, 51–64, https://doi 
.org/10.1002/met.25.

Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. 
Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz, 
2014: MPING: Crowd-sourcing weather reports for 
research. Bull. Amer. Meteor. Soc., 95, 1335–1342, 
https://doi.org/10.1175/BAMS-D-13-00014.1.

Federal Statistical Office of Switzerland, 2017: Sta-
tistics of buildings and housing (StatBL). Subset: 
Total Population in the year 2017 (STATPOP2017). 
Federal Statistical Office of Switzerland, accessed 
4 October 2018, www.bfs.admin.ch/bfsstatic/dam 
/assets/6027943/master.

Foote, G. B., T. W. Krauss, and V. Makitov, 2005: Hail 
metrics using convectional radar. Proc. 16th Conf. 
on Planned and Inadvertent Weather Modification, 
San Diego, CA, Amer. Meteor. Soc., 1.5, https://
ams.confex.com/ams/Annual2005/techprogram 
/paper_86773.htm.

Germann, U., M. Boscacci, M. Gabella, and M. Sartori, 
2015: Radar design for prediction in the Swiss Alps. 

1439AMERICAN METEOROLOGICAL SOCIETY |AUGUST 2019

http://occrdata.unibe.ch/students/theses/msc/192.pdf
http://occrdata.unibe.ch/students/theses/msc/192.pdf
http://www.ejssm.org/ojs/index.php/ejssm/article/view/149/104
http://www.ejssm.org/ojs/index.php/ejssm/article/view/149/104
https://doi.org/10.5194/amt-9-4425-2016
https://doi.org/10.5194/amt-9-4425-2016
https://doi.org/10.5194/amt-11-4847-2018
https://ams.confex.com/ams/38RADAR/webprogram/Paper321272.html
https://ams.confex.com/ams/38RADAR/webprogram/Paper321272.html
https://ams.confex.com/ams/38RADAR/webprogram/Paper321272.html
https://doi.org/10.1175/BAMS-86-8-1069
https://doi.org/10.1175/BAMS-86-8-1069
https://doi.org/10.1175/1520-0469(1961)018%3C0292%3ARRPIT%3E2.0.CO%3B2
https://doi.org/10.1175/1520-0469(1961)018%3C0292%3ARRPIT%3E2.0.CO%3B2
https://doi.org/10.1175/1520-0469(1961)018%3C0292%3ARRPIT%3E2.0.CO%3B2
https://doi.org/10.1016/j.atmosres.2008.10.020
https://doi.org/10.1016/j.atmosres.2008.10.020
https://doi.org/10.1002/met.25
https://doi.org/10.1002/met.25
https://doi.org/10.1175/BAMS-D-13-00014.1
www.bfs.admin.ch/bfsstatic/dam/assets/6027943/master
www.bfs.admin.ch/bfsstatic/dam/assets/6027943/master
https://ams.confex.com/ams/Annual2005/techprogram/paper_86773.htm
https://ams.confex.com/ams/Annual2005/techprogram/paper_86773.htm
https://ams.confex.com/ams/Annual2005/techprogram/paper_86773.htm


Meteorological Technology International, April, 
UKIP Media & Events, 42–45, www.ukimedia 
events.com/publication/574f8129/44.

—, J. Figueras i Ventura, M. Gabella, A. Hering, 
I. Sideris, and B. Calpini, 2016: Triggering innova-
tion: The latest MeteoSwiss Alpine weather radar 
network. Meteorological Technology International, 
April, UKIP Media & Events, 62–65, www.ukimedia 
events.com/publication/2d183b22/64.

Groenemeijer, P., and Coauthors, 2017: Severe convec-
tive storms in Europe: Ten years of research and 
education at the European Severe Storms Laboratory. 
Bull. Amer. Meteor. Soc., 98, 2641–2651, https://doi 
.org/10.1175/BAMS-D-16-0067.1.

Hohl, R., H. H. Schiesser, and I. Knepper, 2002: The 
use of weather radars to estimate hail damage to 
automobiles: An exploratory study in Switzerland. 
Atmos. Res., 61, 215–238, https://doi.org/10.1016 
/S0169-8095(01)00134-X.

Joe, P., D. Burgess, R. Potts, T. Keenan, G. Stumpf, 
and A. Treloar, 2004: The S2K severe weather de-
tection algorithms and their performance. Wea. 
Forecasting, 19, 43–63, https://doi.org/10.1175/1520 
-0434(2004)019<0043:TSSWDA>2.0.CO;2.

Krzywinski, M., and N. Altman, 2014: Visualizing 
samples with box plots. Nat. Methods, 11, 119–120, 
https://doi.org/10.1038/nmeth.2813.

Kunz, M., U. Blahak, J. Handwerker, M. Schmidberger, 
H. J. Punge, S. Mohr, E. Fluck, and K. M. Bedka, 
2018: The severe hailstorm in southwest Germany 
on 28 July 2013: Characteristics, impacts and meteo-
rological conditions. Quart. J. Roy. Meteor. Soc., 144, 
231–250, https://doi.org/10.1002/qj.3197.

Löff ler-Mang, M., D. Schön, and M. Landry, 2011: 
Characteristics of a new automatic hail recorder. 
Atmos. Res., 100, 439–446, https://doi.org/10.1016/j 
.atmosres.2010.10.026.

Mandapaka, P. V., U. Germann, and L. Panziera, 2013: 
Diurnal cycle of precipitation over complex Alpine 
orography: Inferences from high-resolution radar 
observations. Quart. J. Roy. Meteor. Soc., 139, 1025–
1046, https://doi.org/10.1002/qj.2013.

McGill, R., J. W. Tukey, and W. A. Larsen, 1978: Varia-
tions of box plots. Amer. Stat., 32, 12–16, https:// 
doi.org/10.1080/00031305.1978.10479236.

Nisi, L ., O. Martius, A. Hering, M. Kunz, and 
U. Germann, 2016: Spatial and temporal distribu-
tion of hailstorms in the Alpine region: A long-term, 

high resolution, radar-based analysis. Quart. J. Roy. 
Meteor. Soc., 142, 1590–1604, https://doi.org/10.1002 
/qj.2771.

—, A. Hering, U. Germann, and O. Martius, 2018: A 
15-year hail streak climatology for the Alpine region. 
Quart. J. Roy. Meteor. Soc., 144, 1429–1449, https://
doi.org/10.1002/qj.3286.

Punge, H. J., and M. Kunz, 2016: Hail observations and 
hailstorm characteristics in Europe: A review. Atmos. 
Res., 176–177, 159–184, https://doi.org/10.1016/j 
.atmosres.2016.02.012.

Reges, H. W., N. Doesken, J. Turner, N. Newman, A. 
Bergantino, and Z. Schwalbe, 2016: CoCoRaHS: The 
evolution and accomplishments of a volunteer rain 
gauge network. Bull. Amer. Meteor. Soc., 97, 1831–
1846, https://doi.org/10.1175/BAMS-D-14-00213.1.

Schiesser, H. H., 1990: Hailfall: The relationship be-
tween radar measurements and crop damage. Atmos. 
Res., 25, 559–582, https://doi.org/10.1016/0169-8095 
(90)90038-E.

Schmid, W., H. H. Schiesser, and A. Waldvogel, 1992: The 
kinetic energy of hailfalls. Part IV: Patterns of hail-
pad and radar data. J. Appl. Meteor., 31, 1165–1178, 
https://doi.org/10.1175/1520-0450(1992)031<1165:TK
EOHP>2.0.CO;2.

Trefalt, S., and Coauthors, 2018: A severe hail storm in 
complex topography in Switzerland—Observations 
and processes. Atmos. Res., 209, 76–94, https://doi 
.org/10.1016/j.atmosres.2018.03.007.

Treloar, A. B., 1998: Vertically integrated radar reflectiv-
ity as an indicator of hail size in the greater Sydney 
region of Australia. Preprints, 19th Conf. on Severe 
Local Storms, Minneapolis, MN, Amer. Meteor. 
Soc., 48–51.

Waldvogel, A., B. Federer, and P. Grimm, 1979: Crite-
ria for the detection of hail cells. J. Appl. Meteor., 
18, 1521–1525, https://doi.org/10.1175/1520-0450 
(1979)018<1521:CFTDOH>2.0.CO;2.

Wapler, K., F. Harnisch, T. Pardowitz, and F. Senf, 2015: 
Characterisation and predictability of a strong and 
a weak forcing severe convective event—A multi-
data approach. Meteor. Z., 24, 393–410, https://doi.
org/10.1127/metz/2015/0625.

Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. 
Mitchell, and K. W. Thomas, 1998: An enhanced 
hail detection algorithm for the WSR-88D. Wea. 
Forecasting, 13, 286–303, https://doi.org/10.1175/1520 
-0434(1998)013<0286:AEHDAF>2.0.CO;2.

1440 | AUGUST 2019

www.ukimediaevents.com/publication/574f8129/44
www.ukimediaevents.com/publication/574f8129/44
http://www.ukimediaevents.com/publication/2d183b22/64
http://www.ukimediaevents.com/publication/2d183b22/64
https://doi.org/10.1175/BAMS-D-16-0067.1
https://doi.org/10.1175/BAMS-D-16-0067.1
https://doi.org/10.1016/S0169-8095(01)00134-X
https://doi.org/10.1016/S0169-8095(01)00134-X
https://doi.org/10.1175/1520-0434(2004)019%3C0043%3ATSSWDA%3E2.0.CO%3B2
https://doi.org/10.1175/1520-0434(2004)019%3C0043%3ATSSWDA%3E2.0.CO%3B2
https://doi.org/10.1038/nmeth.2813
https://doi.org/10.1002/qj.3197
https://doi.org/10.1016/j.atmosres.2010.10.026
https://doi.org/10.1016/j.atmosres.2010.10.026
https://doi.org/10.1002/qj.2013
https://doi.org/10.1080/00031305.1978.10479236
https://doi.org/10.1080/00031305.1978.10479236
https://doi.org/10.1002/qj.2771
https://doi.org/10.1002/qj.2771
https://doi.org/10.1002/qj.3286
https://doi.org/10.1002/qj.3286
https://doi.org/10.1016/j.atmosres.2016.02.012
https://doi.org/10.1016/j.atmosres.2016.02.012
https://doi.org/10.1175/BAMS-D-14-00213.1
https://doi.org/10.1016/0169-8095(90)90038-E
https://doi.org/10.1016/0169-8095(90)90038-E
https://doi.org/10.1175/1520-0450(1992)031%3C1165%3ATKEOHP%3E2.0.CO%3B2
https://doi.org/10.1175/1520-0450(1992)031%3C1165%3ATKEOHP%3E2.0.CO%3B2
https://doi.org/10.1016/j.atmosres.2018.03.007
https://doi.org/10.1016/j.atmosres.2018.03.007
https://doi.org/10.1175/1520-0450(1979)018%3C1521%3ACFTDOH%3E2.0.CO%3B2
https://doi.org/10.1175/1520-0450(1979)018%3C1521%3ACFTDOH%3E2.0.CO%3B2
https://doi.org/10.1127/metz/2015/0625
https://doi.org/10.1127/metz/2015/0625
https://doi.org/10.1175/1520-0434(1998)013%3C0286%3AAEHDAF%3E2.0.CO%3B2
https://doi.org/10.1175/1520-0434(1998)013%3C0286%3AAEHDAF%3E2.0.CO%3B2

	1

